

intgl.
LITERATURE

To order Intel literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES In the U.S. and Canada
P.O. Box 7641 call toll free
Mt. Prospect, IL 60056-7641 (800) 548-4725

This 800 number is for external customers only.

CURRENT HANDBOOKS
Product line handbooks contain data sheets, application notes, article reprints and other design

information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

. Intel
Title Order Number ISBN

SET OF FOURTEEN HANDBOOKS 231003 N/A
(Available in U.S. and Canada)

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

CONNECTIVITY 231658 1-66512-202-7
EMBEDDED MICROCONTROLLERS 270646 1-566512-203-5
EMBEDDED MICROPROCESSORS 272396 1-556512-204-3
FLASH MEMORY (2 volume set) 210830 1-55512-214-0
MICROPROCESSORS, VOL. 1: 230843 1-55512-196-9
Intel386™ 80286 & 8086 MICROPROCESSORS

MICROPROCESSORS, VOL. 2: 241731 1-656512-197-7
Intel486™ MICROPROCESSORS

MICROPROCESSORS, VOL. 3: 241732 1-56512-198-5
PENTIUM™ PROCESSORS

i7509, i860™, i960© PROCESSORS AND RELATED PRODUCTS 272084 1-56512-217-5
OEM BOARDS, SYSTEMS & SOFTWARE 280407 1-566512-201-9
PACKAGING 240800 1-556512-208-6
PERIPHERAL COMPONENTS 296467 1-56512-207-8
PRODUCT OVERVIEW 210846 N/A
PROGRAMMABLE LOGIC ' 296083 1-56512-206-X
NETWORKING 297360 1-56512-220-5

ADDITIONAL LITERATURE:
(Not included in handbook set)

AUTOMOTIVE PRODUCTS 231792 1-565512-212-4
COMPONENTS QUALITY/RELIABILITY 210997 1-565512-132-2
CUSTOMER LITERATURE GUIDE 210620 N/A
EMBEDDED APPLICATIONS (1993/94) 270648 1-565512-179-9
INTERNATIONAL LITERATURE GUIDE E00029 N/A

(Available in Europe only)

MILITARY AND SPECIAL PRODUCTS (2 volume set) 210461 1-565512-213-2

SYSTEMS QUALITY/RELIABILITY 231762 1-55512-046-6

LITCV1/110493

intgl.

U.S. and CANADA LITERATURE ORDER FORM

NAME:
COMPANY:
ADDRESS:
CITY: STATE: ZIP:
COUNTRY:
PHONE NO.: _()

ORDER NO. TITLE QTY. PRICE TOTAL

X X X X X X X X X X
1

— — — = — —— — — }—

[|
[|
| |
[|
[|
[|
[1
[1
[|
[]

I
I
I
I
I
I
I
I
I

Subtotal .

Must Add Your
Local Sales Tax

Include postage:
Must add 15% of Subtotal to cover U.S. Postage
and Canada postage. (20% all other.)

Total

Pay by check, money order, or include company purchase order with this form ($200 minimum). We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-3 weeks for
delivery.

O VISA []MasterCard [] American Express Expiration Date

Account No.

Signature

Mail To: Intel Literature Sales International Customers outside the U.S. and Canada
P.O. Box 7641 should use the International order form on the next page or
Mt. Prospect, IL 60056-7641 contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada, call Toll Free: (800) 548-4725
or FAX to (708) 296-3699. Please print clearly in ink to expedite your order.

Prices good until 12/31/94.
Source HB

intal.

INTERNATIONAL LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:

COUNTRY:

PHONE NO.: _()

| ORDER NO. TITLE QTy. PRICE TOTAL

[(TIT111] x -

LI rTT] X =

LT 1T 7T T X =

LI T T T T X =

L1 T T T T X =

LI T T T T1 x =

Lt 1T T T T] x =

LI T T 11 x =

L1 T T T 1] X =

LI P11 X =

Subtotal
Must Add Your
Local Sales Tax
Total
PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back éover).

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to
your local Intel Sales Office.

LOFINT1/100693

? cenryry oF

Founded in 1968 to pursue the integration of large numbers of
transistors onto tiny silicon chips, Intel’s history has been marked by
a remarkable number of scientific breakthroughs and innovations. In
1971, Intel introduced the 4004, the first microprocessor. Containing
2300 transistors, this first commercially-available computer on a chip
is considered primitive compared with today’s million-plus transistor
products.

Innovations such as the microprocessor, the erasable program-
mable read-only memory (EPROM) and the dynamic random access
memory (DRAM) revolutionized electronics by making integrated
circuits the mainstay of both consumer and business computing
products.

Over the last two and a half decades, Intel’s business has
evolved and today the company’s focus is on delivering an extensive
line of component, module and system-level building block products
to the computer industry. The company’s product line covers a broad
spectrum, and includes microprocessors, flash memory, microcontrol-
lers, a broad line of PC enhancement and local area network
products, multimedia technology products, and massively parallel
supercomputers. Intel’s 32-bit X86 architecture, represented by the
Intel386™ and Intel486™ microprocessor families, are the de facto
standard of modern business computing and installed in millions of
PCs worldwide.

Intel has over 25,000 employees located in offices and manufac-
turing facilities around the world. Today, Intel is the largest semicon-
ductor company in the United States and the second largest in the
world.

Intel Corporation makes no warranty for the use of its, products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products. :

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prqspect, IL 60056-7641

or call 1-800-879-4683

©INTEL CORPORATION, 1993

LGCPY1/100693

intgl.

Intel486™ MICROPROCESSOR
FAMILY PROGRAMMER'’S
REFERENCE MANUAL

1992

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION TO THE

Intel486™ MICROPROCESSOR FAMILY) Page

1.1 ORGANIZATION OF THIS MANUALcoooiiiiniieeeeecne e 1-2

1.1.1 Part i —Application Programmingc.ccocevveeiieninienineniineeiese e s sneens 1-3

1.1.2 Part Il — System Programmingcccceceviiemrinieniiensiesecsieee e e sresssse e ssnesseens 1-3

1.1.3 Part Il —NUMENC ProCESSINGccccevirviriiiiniiiiieiensie sttt n e 1-4

1.1.4 Part IV—Compatibilityccoceiiimieieiieee 1-5

1.1.5 Part V—INstruction Setcccoevimiiiiii e 1-6

LI R o] o 1= g o o= TSP PRTON 1-6

1.2 RELATED LITERATUREcoeiiiiititcieeniei ettt sn e e s sb e e 1-6

1.3 NOTATIONAL CONVENTIONS 1-7

1.3.1 Bit @nd Byte OFAEr ..icceeviiiiiiiiieieriire ettt sttt b e b s s stas e e srneste e 1-7

1.3.2 Undefined Bits and Software Compatibilityc.ccccceerininiinininince, 1-8

1.3.3 INStruCtion OPErandsccccvcieiiiiriiiiiie s 1-8

1.3.4 Hexadecimal NUMDEISccoiriiiiiiiictree et 1-9

1.3.5 Segmented AdArESSINGcccceveeirireeiiereiriene ettt s s r e snnens 1-9

1.3.8 EXCEPHIONS ..oveiiiiiieiitiete ettt sttt e ettt snea s sen e s ea e 1-9
PART |-APPLICATION PROGRAMMING

CHAPTER 2

BASIC PROGRAMMING MODEL -

2.1 MEMORY ORGANIZATIONccocctiiriiieirieieeres it 21

2.1.1 Unsegmented or “Flat” MOdelccccoriiiireriiniinieieeenes et 2-3

2.1.2 Segmented MOGE! ..ottt et s

2.2 DATA TYPES ...ttt bbb s b

2.3 REGISTERS ...ttt ettt st b e st be b b e s s b seeseereneene e e enean

2.3.1 General REGISIEISccceeiieieiieriiiineete ettt e sben e

2.3.2 Segment REGISIEIScccceiriiiiiiirie ettt e s

2.3.3 Stack IMpIementationcccccceeiiiiieieeee e st

2.3.4 Flags REISIEr ...coccuiiiiiiiiieeeie et e

2.3.4.1 STATUS FLAGS ...ttt sttt sttt s e snete e

2.3.4.2 CONTROL FLAG ...ccveeiiieieieieniiieerese sttt sae vt s snene b s s ene s

2.3.4.3 INSTRUCTION POINTER

2.4 INSTRUCTION FORMATccoooivimrerieeeiriennieieseesieeennan

2.5 OPERAND SELECTIONcoiiiiiieieiiitiriesrte st sie e ssaesse s saesae s ssesseeseennesessesenensesons

2.5.1 Immediate OPerandsc.ccecereerereriennienieesenenee e vt

2.5.2 ReiSter OPErandscccocveviirieriieeiiiecieessiesiteessesssresiaessesasaessesssessaesseessessesesssnessnens

2.5.3 MeMOry OPErandscccoviiviirieniiiieeree ettt et sb e e sbe e st e saeesbsabe s sbaesaneas

2.5.3.1 SEGMENT SELECTIONccciiiiiiiieieeieeirieneet ettt s

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATIONccceiiiiiiiinieientnencceeeereis e 2-20

2.6 INTERRUPTS AND EXCEPTIONScoooiriitieirieenieirieieesteie sttt 2-23

CHAPTER 3

APPLICATION PROGRAMMING

3.1 DATA MOVEMENT INSTRUCGTIONSc.oiiiiiiiiiiiteee et 3-1

3.1.1 General-Purpose Data Movement INStructionsc..ccccevevieninenienncneieinceceeen 3-1

3.1.2 Stack Manipulation Instructions ' 3-2

3.1.3 Type Conversion INSrUCHIONSccceviiieiinrieiiiie et 3-4

Vii

|nte|@ TABLE OF CONTENTS

Page
3.2 BINARY ARITHMETIC INSTRUCTIONScooiviererierinrenenesee e s 3-6
3.2.1 Addition and Subtraction INSITUCHONScccceeiiereenriirieneer e e 3-7
3.2.2 Comparison and Sign Change INStructioncc.ccoeceevevrieeiciinicnceeeeeee, 3-8
3.2.3 Multiplication INSIrUCHIONSccoiiiiiiiiiiiierr s 3-8
3.2.4 Division INSTIUCHONScoceeiieieiriieeerctc e e cveeen . 39
3.3 DECIMAL ARITHMETIC INSTRUCTIONScccceoitiriiieneesieneenesee e 3-10
3.3.1 Packed BCD Adjustment Instructionscccccceeveeiieienes e s 3-10
3.3.2 Unpacked BCD Adjustment Instructionscc.ccccevviiovccnnenene e 3-10
3.4 LOGICAL INSTRUCTIONScooceiriirinreererisreesieinnesseeesneeens ettt asees 3-11
3.4.1 Boolean Operation INStrUCLIONSocceeeieeiiirceiieee e e 3-11
3.4.2 Bit Test and Modify INStrUCHONSc.coceeiiiiiiiiiii s e - 312
3.4.3 Bit Scan INStrUCHIONSiccvieiiecieeceee e s e e riaenine 3-12
3.4.4 Shift and Rotate INStIUCHONScouvieiieiiieicerreieer s st 3-13
3.4.4.1 SHIFT INSTRUGCTIONSoooririiririeiins i ettt se e e sae s s et s s s e seennesneas 3-13
3.4.4.2 DOUBLE-SHIFT INSTRUCTIONSccoiiieriinitsieeesreeesiesteess e sresiessnsneesnens 3-14
3.4.4.3 ROTATE INSTRUCTIONSooiiiiriniierieeieeieeit e e snesr b st senes 3-16
3.4.4.4 FAST “bit bit” USING DOUBLE-SHIFT INSTRUCTIONS cererreenen e 3-19
3.4.4.5 FAST BIT STRING INSERT AND EXTRACT .c.eovirierienireeieneeeeeesie e sreseesieeneas 3-20
3.4.5 Byte-Set-On-Condition INSTTUCLIONScccueiiiiieieiiiie e e 3-23
3.4.6 TeSE INSIIUCHION ..coveeiiiieiice e et e rae et e s sr e e e e sbesnresee st ne e 3-23
3.5 CONTROL TRANSFER INSTRUCTIONScoiiiiiinieeieenieseesresiessressesesssessneesseeses 3-23
3.5.1 Unconditional Transfer INStruCtioNScccccveeieeiieriienieenenince e 3-23
3.5.1.1 JUMP INSTRUCTION ...c.eoiiiriiriiiieniirieieseresresees e st esaesaesre s e ssessasseeeseneeeseennennean 3-23
3.5.1.2 CALL INSTRUCTIONSccciiririiririniieteeienresireee st st sseseesreesre s e s s ssse e saessssnenes 3-24
3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONSccocvvririnuinene 3-24
3.5.2 Conditional Transfer INSrUCHONScccevueerireiirie i e 3-25
3.5.2.1 CONDITIONAL JUMP INSTRUCTIONSooiiiirreniirerinrene s esb e i 3-25
3.5.2.2 LOOP INSTRUCTIONS ..ottt eneseeees PO YRR 3-26
3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMESccccooeiiiiineneeenineecns e 3-26
3.5.3 SOftWaAre INTEITUPLS ...cccueiiiieiiiiieiieecee e e et e s eeeseeesne s 3-27
3.6 STRING OPERATIONScctiiiiiiiiiicerrest st secreesaesssssaesas e st ssesae e e s esesnassssbessseans . 327
3.6.1 Repeat Prefixescc.vviviiiceieeeeeecteeteee e eeebeesaeeesnereniieranie 3-28
3.6.2 Indexing and Direction Flag Controlcccovviviiiinne e, 3-29
3.6.3 StriNG INSIIUCLIONSouviuireieieeieeeriere sttt e 3-30
3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGESc..cccoevuenns et 3-30
3.8 FLAG CONTROL INSTRUCTIONSccciiiiiieienrerieeeereeee s s sne e 3-37
3.8.1 Carry and Direction Flag Control INStructionsccceeereninniciiniinicinieecennie 3-37
3.8.2 Flag Transfer INStrUCIONSc.coviiiiiiiiiieeecreecee e everressrenieines 3-37
3.9 NUMERIC INSTRUGCTIONS ...ttt seeesres e sensessesaessae s saeseessnesneesnees 3-39
3.10 SEGMENT REGISTER INSTRUCTIONSccceoiteiiiientinieniinesiesseesiesesese s . 3-39
3.10.1 Segment-Register Transfer INStructionsccccecvevercnienincniciennene Ferresseisieeneenas 3-40
3.10.2 Far Control Transfer INStrUCtONSccuvveriiiiiiiiicreeee e 3-40
3.10.3 Data Pointer INSITUCLIONScccovieiiiiiiiieree et et e nb e 3-40
3.11 MISCELLANEOUS INSTRUCTIONSoootiirieieieninresie et 3-41
3.11.1 CPU_ID DeteCtion COdEcccvviiiirierierienisiciinneeniesissrissessesessessiessnessisssseseeseionessneins 3-46
3.11.2 Address Calculation INStrUCHONccccvvieriireeninirienesc e e e 3-46
3.11.3 No-Operation INStrUCHONccoiirieiierieeiieniecce e e 3-46
3.11.4 Translate INSrUCHONcooviiiiiiceee e e 3-46
3.11.5 Byte SWap INSrUCHONcoiiiiiiieceecre e et 3-46
3.11.6 Exchange-and-Add Instructionc.ccoeeviiveenivnnennee, O S SRR 3-47
3.11.7 Compare-and-Exchange INStructioncc.ccoceevvnrmnieininecesinen eretesineadiiesiat it 3-47

viii

||'|1'e|® TABLE OF CONTENTS

PART II-SYSTEM PROGRAMMING

CHAPTER 4

SYSTEM ARCHITECTURE _ Page
4.1 SYSTEM REGISTERSooiiiiieieeteierteieee ettt see e s e sse s e en s seaenes 4-1
4.1.1 System FIagsccccoeevevveriieniicnnennnenes e e 4-2
4.1.2 Memory-Management REGISIErSccccciiviriiniiiiieetrescece e 4-4
4.1.3 CONtrol REGISIEIS ..c..cvueruieiiiiiiireiteicree s 4-5
4.1.4 DEbUG REGISLETS ...c.eeiieieiiiiiiieirieneeer e bbb s e 4-8
4.1.5 TeSt REGISIEIS ...cc.eiuiiiiiiiiececc e 4-8
4.2 SYSTEM INSTRUCTIONSooiiiiicenineireneeee et e es e e nrs st esen e 4-9
CHAPTER 5

MEMORY MANAGEMENT

5.1 SELECTING A SEGMENTATION MODELccccoeiiviriniiretiieiiee e 5-3
5.1.1 Flat Modelccoeeveiiiiiiiirceeeecieseeceeeene e et e 5-3
5.1.2 Protected Flat MOGE!cceeueuieniriririnietisieteeeeieetes et se st eees 5-4
5.1.3 Multi-Segment MOc.cooiiiiiieniie e et 5-4
5.2 SEGMENT TRANSLATION ...otiiiriisiiniineeneteieseise sttt sn s ss e s e sresesnessssssanes 5-5
5.2.1 Segment REGISIEIScccciiiiiitioiiieeeie ettt e 5-7
5.2.2 SegMENt SEIECIOIScocciiiiiiiiiiieccres e s 5-8
5.2.3 Segment DESCHPIOrSccccceiemiiniiieiene et 5-10
5.2.4 Segment Descriptor TAbIESccovvireeiiiniiincic e 5-15
5.2.5 Descriptor Table Base REGIStErSovviiiiiiiiiiiiiciecceceeeieeee et e 5-16
5.3 Page Translationccceveineiininiicniiniinniina, e e s 5-17
5.3.1 PG Bit ENables Pagingccoeeeirireniieeccieieeceeececte e 5-18
5.3.2 LiNar AArESScceeiruiiiineiiiiiiiicnicniicis it s S 5-18
5.3.83 Pa@e TabIESccceoiiiiiiieice e 5-19
5.3.4 Page-Table ENtMESccccoeieiiieiiieiincie ettt e 5-20
5.3.4.1 PAGE FRAME ADDRESSccocceiiiiin ittt 5-20
5.3.4.2 PRESENT BIT ..ottt sa s s 5-20
5.3.4.3 ACCESSED AND DIRTY BITSccciiiiiiiiininiiniiieicsnsicsnsnesic s e 5-21
5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITScccciiniininiinccncienceinien,. 5-22
5.3.4.5 PAGE-LEVEL CACHE CONTROL BITSccooiiiinieieeenienecesesreiesese e e 5-22
5.3.5 Translation Lookaside BUFfercceceeuiiiiniiiiniinicinciicreccree e 5-22
5.4 COMBINING SEGMENT AND PAGE TRANSLATION .. 5-23
5.4.1 FlIat MOAEI ...ttt st 5-23
5.4.2 Segments Spanning Several Pagesccccceviriiiiiinninninicnicnesi e 5-24
5.4.3 Pages Spanning Several SEgMENtSscccccvciivininiiniininncni e, 5-24
5.4.4 Non-Aligned Page and Segment Boundariesccoceeverivirneincenincienscnienes e 5-24
5.4.5 Aligned Page and Segment BoOUNAri€scccceriiniiiiinicniininnninncseneesiens 5-24
5.4.6 Page-Table Per SEgmMENtc.cccciveriiieeiieeieieenercee et s 5-24
CHAPTER 6

PROTECTION

6.1 SEGMENT-LEVEL PROTECTIONcccoiiitiiiiiiiieninie et 6-1
6.2 SEGMENT DESCRIPTORS AND PROTECTIONccccoceiiminiiiniiiienienicieiemesesenennen 6-2
6.2.1 TYPE ChECKINGeevteeiieiieereeieiriiiie ettt s b s e s b s sre s san s s e 6-3
6.2.2 Limit ChECKING ..veeeuiiieiiieiee ettt et nn s 6-4
6.2.3 PriVIlege LEVEISooivieieeieieieeieceeeece sttt 6-5
6.3 RESTRICTING ACCESS TO DATAoriirererietretesntese et iessssasssssssssssssessssasssssssans 6-7
6.3.1 Accessing Data in Code SEgMENtSceceieiiiiiiiiiinicniene e 6-8
6.4 RESTRICTING CONTROL TRANSFERSccccooiiiiiininiieereceercencsrie e e 6-9
6.5 GATE DESCRIPTORSccoctiieieieerieereieie ettt sre s sn e sasbsn st sns 6-11

|nte| . TABLE OF CONTENTS

' : ' Page
6.5.1 StaCk SWIChING ..ecveeiiieiiieiee e e e 6-13
6.5.2 Returning from @ ProCedurec.ccoceeiieieiciiiniciercec et 6-17
6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEMcccecenviivinenivinnene, 6-19
6.6.1 Privileged INSIrUCHONSccccciiiiiiii e 6-19
6.6.2 Sensitive INSIIUCHIONScociiveririi e 6-19
6.7 INSTRUCTIONS FOR POINTER VALIDATIONccccoeiiiiininieesieercsiesecsirenee st 6-20
6.7.1 Descriptor Validationccccevevriruinenes s TR 6-21
6.7.2 Pointer Integrity and RPLcccoiiiiiiiie e e 6-22
6.8 PAGE-LEVEL PROTECTION w......ccoviiiiieii it 6-22
6.8.1 Page-Table Entries Hold Protection Parametersccccovveeeeviieenviieeicenecien e, 6-23
6.8.1.1 RESTRICTING ADDRESSABLE DOMAINccccecrmireninieniineenreseseence s 6-23
6.8.1.2 TYPE CHECKINGcciiieiieienineereieecesret e et sr e nssn e s 6-24
6.8.2 Combining Protection of Both Levels of Page Tablescccvvviiiiiiniiiiiincnne, 6-24
6.8.3 Overrides 10 Page ProteCHONccocecieieeiiiiiiiiiie et 6-24
6.9 COMBINING PAGE AND SEGMENT PROTECTIONccceoimiinineirenecnieneneeiseeeane 6-25
CHAPTER 7
MULTITASKING ' : .
7.1 TASK STATE SEGMENTotiieirieeiereeceiee ettt sn s s 7-2
7.2 TSS DESCRIPTORoteiieiiiiiieesiteeeiieesee st aeeesesessteessaessssnesssseessssesssenessenssssaneesnseesnseens 7-4
7.3 TASK REGISTERoiiiiiieiieieinicrie ettt nn e st s s 7-5
7.4 TASK GATE DESCRIPTORc.ooiiiiieiriee et ae e s 7-5
7.5 TASK SWITCHINGc.eoieeiirieeiiiteiereetee e s s s s rs e sr s ssn e sbe s s s s s enens 7-8
7.6 TASK LINKING ..ottt sttt st st s e b e 7-10
7.6.1 Busy Bit Prevents LOOPScccciciiiiiiiniieiicieiiieci s s 7-10
7.6.2 Modifying Task LINKAGEScccevieeriiriiniieeiniiiinicc e e 7-13
7.7 TASK ADDRESS SPACGEooiiiiiirieiieeerineeei e s 7-13
7.7.1 Task Linear-to-Physical Space Mappingccccviriiininininnnnnicirieee e, 7-14
7.7.2 Task Logical AdAress SPACEccccerereireererieeieiieneesrenie st s ssb e e 7-14
CHAPTER 8
INPUT/OUTPUT
8.1 1/O ADDRESSINGcoeieiieeierierteneeiesieses e e st e sre st sa st ese st e s se et eae s bt bes e n e ne 8-1
8.1.1 1/O AAAIESS SPACE ...occeereieeiieiiieeiiiieert et e e seesaes e s e s e st ssesseasae s b e seessesaeebesresnesennnns 8-2
8.1.2 MemOry-Mapped 1/Ocoooiiiiiieiieee et 8-3
8.2 /O INSTRUCTIONScoiiiiiiiiiicsiii s s 8-4
8.2.1 Register 1/O INSIrUCHIONSc.ciiuiiiiiiie et 8-4
8.2.2 BIOCK 1/O INSIIUCHONS ..coviiiieiieieiceeccctere st e ... 85
8.3 PROTECTION AND I/0cctiviiieiieiinieieieiesee sttt 8-6
8.3.1 1/O Privilege LEVEIovieeieeteieee ittt s e 8-6
8.3.2 1/O Permission Bit Mapccccceieieririnennesesteieie s e 8-7
CHAPTER 9
EXCEPTIONS AND INTERRUPTS
9.1 EXCEPTION AND INTERRUPT VECTORScccccerememmineenene irveriseeseisanpsiisesasesaestsisens 9-1
9.2 INSTRUCTION RESTART ..ottt bbb b ssne s 9-2
9.3 ENABLING AND DISABLING INTERRUPTScccooiiiieiinirsreeeenieecsie et 9-3
9.3.1 NMI Masks FURher NMISccccoririiiiiireeeses ettt s 9-3
9.3.2 [F MASKS INTR ..ottt resr e sre e e b e s ere e s n e b sin b nes 9-3
9.3.3 RF Masks Debug FaultScccceiiiriiniiiniiic e 9-4
9.3.4 MOV or POP to SS Masks Some Exceptions and Interruptsccccccviiivniinnnnnnne 9-4
9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTSccceueuueeee 9-5
9.5 INTERRUPT DESCRIPTOR TABLEccceoieirriniicceiesirerere et 9-5

lntel ® ' TABLE OF CONTENTS

9.6 IDT DESCRIPTORS ..ottt sttt sttt sttt ae st st a e s e e stasba e s st e bessnadans
9.7 INTERRUPT TASKS AND INTERRUPT PROCEDUREScccccceviimirineeineirreseieeenes
9.7.1 INtErrupt ProCEAUIESccoviieiiiiieiieeiiie ettt et te e etae s snee e aeeseneenaees

9.7.1.1 STACK OF INTERRUPT PROCEDUREcccecveeieeiectie et
9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE

pl pl Vv INITEDDI IDT bDNNAENI IDE
97.1 .3 FLAG USAGE Bl INTENNUE T FNUULLUNLD iiiiitiiiesieiaisesinisitesscetscsssessssssssssasssasas

9.7.2 INTEITUPE TASKS ...veiviiieeieeit ettt sttt as e st saes e reeas
9.8 ERROR CODEoooiiiiiiiietteteeteeste et sttt s sttt er e e

9.9.1 Interrupt 0 —Divide EITOT ..cc.covuiiiiesiieceie ettt
9.9.2 Interrupt 1 —Debug Exceptions
9.9.3 Interrupt 3 —Breakpointccocvviiicenniinr e e

9.9.4 Interrupt 4 —OVerfloWccceeeueeiiieeieeee e

9.9.5 Interrupt 5—Bounds Checkcccceveeeeiieiiccicreceeeee e

9.9.6 Interrupt 6—Invalid OPCOAEccceeiieeiiicie et e
9.9.7 Interrupt 7—Device Not Availableccccoevieiiiecieeiieece e e
9.9.8 Interrupt 8 —DouUbIE FaUItc.cceiiiiiiiiiiner e
9.9.9 Interrupt 9— (Intel reserved. DO NOt USE.)cccevreririeeeiinneceeierer e
9.9.10 Interrupt 10—INvalid TSSooiiiiiiieeee et sa e as
9.9.11 Interrupt 11 —Segment Not Present
9.9.12 Interrupt 12— Stack Exception
9.9.13 Interrupt 13— General Protection
9.9.14 Interrupt 14 —Page Faultccoooiiiiiiiiiici e
9.9.14.1 PAGE FAULT DURING TASK SWITCHccccoiiirieieniieienienreiee e
9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTERcccccccvivinieninnreneenennns - 9-23
9.9.15 Interrupt 16 —Floating-Point EIrOrcccioeiiiiiiinincre e 9-24
9.9.16 Interrupt 17 —AlIGNMENt ChECKcccceviieiriiiiieee et 9-24
9.10 EXCEPTION SUMMARY ...ttt sttt ssies e seessesbesbe e s s sae e s s nressa e e e sssessnan 9-25

CHAPTER 10
INITIALIZATION
10.1 PROCESSOR STATE AFTER RESETccciietiiienieinie ettt ee e 10-1
10.2 Intel486 SX MICROPROCESSOR/Intel487 SX MATH COPROCESSOR

INITIALIZATION ..ottt st saen e enen e
10.3 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE
10.3.1 System TabIEsccoerieieririeieie e st
10.3.2 NMIINTEITUPE .ottt sttt sre e
10.3.3 First INStructionccccceveeiinieicnecnenesecceenen
10.3.4 ENabling Cachingccceeeererierinieicie ettt ettt
10.4 SWITCHING TO PROTECTED MODE
10.4.1 System Tables
10.4.2 NMI Interrupt
10.4.3 PE Bit oo st et

10.5.1 SEGMENTALION ...cc.eevieiieciecieiee ettt et re e re e sae e beeesteesae s reebaeeessenaeens
10.5.2 PAGING .oouviiieeiiiiesiiiie sttt st i et ee e e te st e s s e s e sre e saesaae s be et eeeseesieesaneevenns
T0:5.3 TASKS .vviiiiiiiiiicsiii e e e ae et es

10.6.2 Test Registers
10.6.3 Test Operations

Xi

Intel ® TABLE OF CONTENTS

Page
10.7 CACHE TESTINGcccecrenrvrrnrnnn ettt et sbe et et r e b r e s Rt et nebetes 10-12
10.7.1 Structure Of the CAChEccccriiiriecis et 10-12
10.7.2 TeSt REGISIEIS ..oceeiriiiiiiiiiiiicci e s 10-13
10.7.3 TeSt OPEratioNSeeiiiieiciiiicirie e rere e e st ses e s rere e s e s sas e e s se e e s beesaeee s saneesanesnns 10-15
10.8 INITIALIZATION EXAMPLEccoioiiiee ettt sa e 10-16
CHAPTER 11
DEBUGGING ‘ :
11.1 DEBUGGING SUPPORTccoveriiiiiniersiinee it sne s e sesss s ssa e snsnsnsens 11-1
11.2 DEBUG REGISTERSccooiiiiiiciesciicesiices i cssssss s sne e 11-2
11.2.1 Debug Address Registers (DRO-DR3)ccccccivveerinininiieciinnceneercsnesine e 11-2
11.2.2 Debug Control Register (DR7)cccooeiiiininiiieiiie ettt 11-2
11.2.3 Debug Status Register (DR6)ccccvveriiiieiiiiinniiiirc et 11-4
11.2.4 Breakpoint Field ReCOgNItioNccccocviiivineiiniie i 11-5
11.3 DEBUG EXCEPTIONS ..ottt sbe s 11-6
11.3.1 Interrupt 1 —Debug EXCEPLONScccccireiiniiiiiic e 11-6
11.3.1.1 INSTRUCTION-BREAKPOINT FAULTcccoteiiiirieniieeenreriece e snese e 11-6
11.3.1.2 DATA-BREAKPOINT TRAPooiiiincieiee et sse s s et sa e 11-7
11.3.1.3 GENERAL-DETECT FAULT ..cooiiiiiiiisie ettt sssbene s 11-7
11.3.1.4 SINGLE-STEP TRAPc...... iberseaneriste et e eas it s ne e st s e sbe s i el ar bae s e s SR e e 11-8
11.3.1.5 TASK-SWITCH TRAPeooiitiieiccie sttt st 11-8
11.3.2 Interrupt 3 —Breakpoint INStrUCHONccecvvviniiveneiiei e 11-8
CHAPTER 12
CACHING
12.1 INTRODUCTION TO. CACHINGcocoeeiiviiirenineeisiereiene st 12-1
12.2 OPERATION OF THE INTERNAL CACHE ... 12-2
12.2.1 Cache Disabling BitSccceeierieririininiinene i st 12-2
12.2.2 Cache Management INSLIUCHONScccciceiieiiniiiiicne e 12-3
12.2.3 Self-Modifying Code:ccocerriiierecriiceneeeee e s 12-3
12.3 PAGE-LEVEL CACHE MANAGEMENTccoccoiiiiiniiniiinin s 12-3
12.3.1 Cache Management Bitscccccvcirieniininieniininiestese e 12-4
12.3.1.1 PCD BIT ittt et 124
12.3.1.2 PWT BIT oot R Lemeasiotausasesnsssansaneasens 12-4
CHAPTER 13
MULTIPROCESSING
13.1 LOCKED AND PSEUDO-LOCKED BUS CYCLESccceortierienreeeenieieieeeeseseenenas 13-1
13.1.1 LOCK Prefix and the LOCK# Signalccccceeevrerrerenienieres et esseseenes 13-2
13.1.2 AUOMALIC LOCKINGvivviiiiiiiiiiiiniieist it 13-3
13.1.3 PSEUAO-LOCKING ...ueouvieiiiieniinieieenee s ettt 13-3
PART lll—-NUMERIC PROCESSING
CHAPTER 14
INTRODUCTION TO NUMERIC APPLICATIONS
14.1 HISTORY ..ottt e 14-1
14.2 PERFORMANCEccooiiiiiiiiii it sas s 14-2
14.3 EASE OF USEooiiiiiiictec e s e -14-3
14.4 APPLICATIONS ..ottt ene s e s e e 14-4
14.5 PROGRAMMING INTERFACE e e 14-5

Xii

gnteﬂ ® TABLE OF CONTENTS

CHAPTER 15

ARCHITECTURE OF THE FLOATING-POINT UNIT Page
15.1 NUMERICAL REGISTERScoeiiiieriiiete ettt sttt e asn e st neenens 15-1
15.1.1 The FPU RegiSter StACKccceiiiiiriiie et 15-1
15.1.2 The FPU StatUS WOTcooiiiiieriieiinie ettt vt e san e s aeennens 15-2
15.1.3 CONErOl WOKc.ciuiiiiriieiieicriie ettt st v e st sestes e steeessnnsensesaens 15-5
15.1.4 The FPU Tag WOKAc.ooiiiieiieeeie ettt ettt anaans 15-6
15.1.5 Opcode Field of Last Instructlon ... 15-7
15.1.6 The Numeric Instruction and Data POINETScccccevivrereieineneneicieeeeeee e 15-8
15.2 COMPUTATION FUNDAMENTALSoooiiciriricinecienee st e e e steseesane st esseensssesnsesnnenaens 15-9
15.2.17 NUMDEE SYSIEM ...coiiiiiiiicire ettt st st n e b st 15-10
15.2.2 Data Types and FOMALScccccviririeiiiiiniiiie e 15-12
15.2.2.1 BINARY INTEGERS ..ottt see st sttt 15-13
15.2.2.2 DECIMAL INTEGERSccctritiiitiitinie e sterecvectessis e e saeste s e saesae s e aese e b e e 15-13
15.2.2.3 REAL NUMBERSottt et an 15-13
15.2.3 RoUNdING CONIOl ...cvevuieieeiiiiiicsieestesie ettt st sae st a s saa e e s 15-16
15.2.4 PreciSion CONIOlc.ccciieeiiiiiieieeeieeeee sttt erte e e sae e et e st e e reessa e e s s e e ennesans 15-17
CHAPTER 16

SPECIAL COMPUTATIONAL SITUATIONS

16.1 SPECIAL NUMERIC VALUESooiiioiiecieeeiietie ettt sieesaae e e sre e s sanens
16.1.1 Denormal Real NUMDEIScccciriiiiiriereriiitesiee ettt e e sre b st saans

16.1.1.1 DENORMALS AND GRADUAL UNDERFLOW
16.1.2 ZBIOS ..oueiiiiiiieeierecen sttt et
16.1.3 INfiNity coveeeeeeceecee e

16.1.4 NaN (Not-a-Number)
16.1.4.1 SIGNALING NaNs
16.1.4.2 QUIET NANS ..ottt e
16.1.5 INAEFINIE. ..eeeiiiiiieiee e ettt be e
16.1.6 Encoding Of Data TYPES ...ccccieiiiriiiiiiie ittt
16.1.7 Unsupported FOrMALSccoveiiiiiiriiiiiicesietcte e sr st s s
16.2 NUMERIC EXCEPTIONSc.oooiiiiiieeieeieritre sttt sre s ettt eas
16.2.1 Handling NUmeric EXCEPHIONSccccereeiriniiiiesieincntireee e
16.2.1.1 AUTOMATIC EXCEPTION HANDLINGcc.cccoiiiniiiiinieneieieenie st
16.2.1.2 SOFTWARE EXCEPTION HANDLINGcccccceriniirirerienciencenene e sve s
16.2.2 INvalid OPerationccceeeeeeieiiiiriiesoree e seeesee e ae e rae s

16.2.2.1 STACK EXCEPTION

16.2.3 DIVISION DY ZEIO ..cviiieiiiiieiieeeste et ettt s e sae st et st esaesns e e sne st e s nneeane
16.2.4 Denormal OPerandc.cccoeierieienieieenie et ettt s see st s ses e et nraens
16.2.5 Numeric Overflow and Underflowcccooveiiriiniieniineeneenene s

16.2.6 Inexact (Precision)
* 16.2.7 Exception Priority
16.2.8 Standard Underflow/Overflow Exception Handlerccccocerrreeeinerenesveeieennan, 16-28

CHAPTER 17

FLOATING-POINT INSTRUCTION SET

17.1 SOURCE AND DESTINATION OPERANDScccooiiiinerieeeesesere e esicresie e 17-1
17.2 DATA TRANSFER INSTRUCTIONSccciiiiiiiereecereeere et

17.3 NONTRANSCENDENTAL INSTRUCTIONS :
17.4 COMPARISON INSTRUCTIONScoiiiiiiiiiiiiieiene e

xiii

Intel ® TABLE OF CONTENTS

Page
17.5 TRANSCENDENTAL INSTRUCTIONScccoiiiminiinininiicicceins assarssesnansensinsss 179-5
17.6 CONSTANT INSTRUCTIONScocoiiiiiieeieicceenireeeee eeseesestee e saais TR 17-6
17.7 CONTROL INSTRUCTIONScuiiiiiririe ettt s 17-7
CHAPTER 18
NUMERIC APPLICATIONS . '
18.1 PROGRAMMING FACILITIESooiiieieeieeieeree et s 18-1
18.1.1 High-Level LangUAaQgEScccceceeiuereericiieriieneniesiesteseses s e st s ene e 18-1
18.1.2 C Programs «......cceeriiieiiiieeresienieieesstss e ssee e e sstasaneas ST ST 18-1
18.1.3 PL/M-3BB/486c.coveuereeerinieneenieieteeessiemeeseesesee e ses e sbe e e s se et en s b st e snese b e 18-2
18.1.4 ASMBBE/ABEcovvereeeieeiriireeerreiiesses et eestesie s eesbessesaee st ssesae e e saesse et e sne s e e sresnenaeaae 18-4
18.1.4.1 DEFINING DATA ..ottt ettt ettt st s s e sr e s s n e e e 18-4
18.1.4.2 RECORDS AND STRUCTUREScccoiiiiieinireeieeeene et ne e 18-5
18.1.4.3 Addressing Methodsccceeeirrceniineiiecee et rrereeann 18-6
18.1.5 Comparative Programming EXampleccccoceiminiiininiceecie e 18-7
18.2 CONCURRENT PROCESSINGcoviieriiiniriecniereis e 18-12
18.2.1 Managing CONCUITENCYcccccueerieerierrieerrieesieesseesseesseesresseesnessneesssesssssstsssanesnesseans 18-12
18.2.1.1 INCORRECT EXCEPTION SYNCHRONIZATIONcccccoererirrieniencriesecneeenes 18-13
18.2.1.2 PROPER EXCEPTION SYNCHRONIZATION et e s 18-14
CHAPTER 19
SYSTEM-LEVEL CONSIDERATIONS
19.1 ARCHITECTUREcoeoteeereeiereeeeee et r bbb bbb sa e sn e e e 19-1
19.1.1 Independent of Addressing Modeccccoveviiiniininnnin s 19-1
19.2 PROCESSOR INITIALIZATION AND CONTROLccocevirieineciiciieecencctee e 19-1
19.2.1 System INH@liZationccceeveireeriieeee e 19-2
19.2.2 Configuring the Numerics EnVIronmentccoveverenienenecinniiiesbenenc s 19-2
19.2.3 INItIAliZiNg the FPU ...oueiiiecieeciectenteee ettt 19-2
19.2.3.1 Intel486 DX CPU SOFTWARE EMULATIONcccoiiiiiiiiiicinincsnit e 19-3
19.2.3.2 Intel486 SX CPU SOFTWARE EMULATION PROCEDUREccccccviiiniininiinienne 19-3
19:2.4 Handling Numerics EXCEPONSccccciiririineiniiienic s et 19-4
19.2.5 Simultaneous Exception RESPONSEcccceevivvieciiriiniinicniineininsn i 19-5
19.2.6 Exception Recovery EXamplesccceivieiiniiiniinencic i eeeennens 19-5
CHAPTER 20
NUMERIC PROGRAMMING EXAMPLES
20.1 CONDITIONAL BRANCHING EXAMPLEccccooiiiiiniiiiinnene Leessesiensnesnansesssannnent 20-1
20.2 EXCEPTION HANDLING EXAMPLEScooininiriiinininicnsirceeai i 20-2
20.3 FLOATING-POINT TO ASCII CONVERSION EXAMPLES uneessiesensitsbnssnnsassens 20-7
20.3.1 Function Partitioningc.cccoceiviiiiiiiiiii s 20-7
20.3.2 Exception Considerationsc.ceviciirenniinicninince s 20-7
20.3.3 Special INSIIUCHIONScoocuieiieieiiiiriiecerir e e e e e s s e e ss e s snsee s ssne e e raneessneeenas 20-21
20.3.4 Description of Operationccciriiviinininiin 20-21
20.3.5 SCaliNg the VAIUE ...c..ceeiuiiiiieieeciecceeie ettt sae s e r e e e s ne e ns 20-22
20.3.5.1 INACCURACY IN SCALINGcccerimirriiininiiienesisi i sas s 20-22
20.3.5.2 AVOIDING UNDERFLOW AND OVERFLOWccccocemiriirnirnececnnenes e 20-23
20.3.5.3 FINAL ADJUSTMENTS ..ot 20-23
20.3:6 OUPUL FOMMALcoeiiiieiiiieeccect e s e e ae s e ae e 20-23

20.4 TRIGONOMETRIC CALCULATION EXAMPLES s oo 20-23

Xiv

"Ttei ® TABLE OF CONTENTS

PART IV—-COMPATIBILITY

CHAPTER 21

EXECUTING 286 AND Intei386 DX OR SX CPU PROGRAMS Page
21.1 TWO WAYS TO RUN 286 CPU TASKScooeieriiiiieicrrerenteeere s 21-2
21.2 DIFFERENCES FROM 286 CPUccccciiiiiieriieieeeerieiereesrete e esssessese e ssanaens 21-2
21.2.1 Wraparound of 286 Processor 24-Bit Physical Address Spacec.ccocevevvinnennen. 21-2
21.2.2 Reserved Word of Segment Descriptor . 21-2
21.2.3 New Segment Descriptor Type Codes -3
21.2.4 Restricted Semantics of LOCK PrefiXccoeveverininiceneieninccienesieeieneenenne -3
21.2.5 Additional EXCEPLONS ...cociiiiiiiiiiiiieiciiecc et sae e s eee s ee e see s e san e s sae e sne e e s nnee s -3
21.3 DIFFERENCES FROM INtel886 CPUccooviiiiiiierieieninte et see e sve s -4
21.3.1 NBW FIAQ .eieveeiieiiiiieieeiie ettt stae et e e e sae e s e e b e sas e s e e s st esseesseesanesanesssesseesnsesanaans -4
21.3.2 NEW EXCEPHON ...ooiiiiieiieiicee ettt sre et s s n e s ra e -4
21.3.83 NeW INSITUCHIONScooiieiiiiiiiii et e s -4
21.3.4 New Control Register BitSccccviieriieinieniienicieneeenee -5
21.3.5 New Page-Table Entry BitSccccceevvriieeeninieeeciineennennene -5
21.3.6 Changes in Segment Descriptor Loads -5
CHAPTER 22

REAL-ADDRESS MODE .

22.1 ADDRESS TRANSLATIONoiiiiiiiieieeeceeetee s e sre e '
22.2 REGISTERS AND INSTRUCTIONSccceevivviiiinienne

22.3 INTERRUPT AND EXCEPTION HANDLINGccccecueuiiie

22.4 ENTERING AND LEAVING REAL-ADDRESS MODE

22.4.1 Switching to Protected Modecccovueeenenee. eereinrsensaeeasantssetsensatsnnisanerenaisnibasissisannans

22.5 SWITCHING BACK TO REAL-ADDRESS MODE

22.6 REAL-ADDRESS MODE EXCEPTIONScccooiiiirieieienie e :

22.7 DIFFERENCES FROM 8086 CPUccoccceiiiniiiiniiiincrcneere s e essenees

22.8 DIFFERENCES FROM 286 CPU IN REAL-ADDRESS MODEcccccceeiviennieniiniiennens 229
22.8.1 BUS LOCK ..vevieiiiiiiiiiiitieeitesie et s e steeie e e st st sieesas s sasete s sb e e saenbe s saesasassse et ssneesssenaes
22.8.2 Location of First Instructionccoceeveeeveeieniieniieniencene

22.8.3 Initial Values of General Registers
22.8.4 BUS HOIG ...ceviiiiiiiieiecte ettt e ettt e e e sttt et e saseaeennesre e e ene e

22.8.5 Math Coprocessor DifferenCesccvcerviiiiiiininininieesee s

22.9 DIFFERENCES FROM Intel386 DX CPU IN REAL-ADDRESS MODEccoueu.e. 22-11
22.10 PROCESSOR DETECTION CODEccoeciiiirieieerieieeee et sassnenans 22-11
CHAPTER 23

VIRTUAL-8086 MODE : ,

23.1 EXECUTING 8086 CPU CODEcooeviimriirciiiiiiereeesresic et 23-1
23.1.1 Registers and INSITUCHONSccoveiriirieeiieeeer e e 23-1
23.1.2 Address TransIationc...coceeeeiirienene et st 23-2
23.2 STRUCTURE OF A VIRTUAL-8086 TASK ...c..evtririeieneerieneerenrerecree e 23-3
23.2.1 Paging for Virtual-8086 TaskSccccecriiirimiiniiiecnieierrsrerere st 23-4
23.2.2 Protection within a Virtual-8086 Taskc.ccccviiveeniinereiinieieniese s 23-5
23.3 ENTERING AND LEAVING VIRTUAL-8086 MOdEccccoureiriirriiniicicsirenisiciene 23-5
23.3.1 Transitions Through Task SWItCheSscccccoviiiiiriee e 23-6
23.3.2 Transitions Through Trap Gates and Interrupt Gatesc..cccceeererveeneeniiesiennneneenne 23-7
23.4 ADDITIONAL SENSITIVE INSTRUCTIONScooiiiiriiriieirieseesee e ene e 23-8
23.4.1 Emulating 8086 Operating System Callscccveriirrenreniiniininieresese e 23-9
23.4.2 Emulating the Interrupt-Enable FIagccccociiiiieineneniccicicincei e 23-9
28.5 VIRTUAL /O ittt s s s sae s s bbb 23-9
23.5.1 1/O-MAPPEA 1/O ..ttt et e sa e 23-10

Intel ® TABLE OF CONTENTS

; Page
23.5.2 MemOry-Mapped 1/Ocoueoiiiieieieecterte ettt st 23-10
23.5.3 Special I/ BUFETScoeeviiviiririireireete ettt sse et e s es st s 23-10
23.6 DIFFERENCES FROM 8086 CPUcceoimniiirceeercrientnese s ive s snesee s s esne st esesaes 23-11
23.7 DIFFERENCES FROM 286 CPU IN REAL-ADDRESS MODEccccoeiiviencncnnenne. 23-14
23.7.1 Privilege Level ..o et e 23-14
23.7.2 BUS LOCK ..cuverieieiieeiiee i te et e e ree s eestee s s aseeneeenasienaeeesteesbneesessansainesssssessainnesnnnnen 23-14
23.8 DIFFERENCES FROM Intel386 DX AND SX CPUScccecrvienininieniireenne e 23-15
CHAPTER 24
MIXING 16-BIT AND 32-BIT CODE
24.1 USING 16-BIT AND 32-BIT ENVIRONMENTSccccc.. ST O SRR 24-2
24.2 MIXING 16-BIT AND 32-BIT OPERATIONScooioiieieereicteceeerr st 24-2
24.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTScoccoinniivneninenenienis 24-3
24.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTSc..ccou.. 24-4
24.4.1 Size of Code-Segment POINEETcccovvieeriiiieieecceecceee ettt s ne e enns
24.4.2 Stack Management for Control Transferscceeecevririencninneseneiseseeseese e
24.4.2.1 CONTROLLING THE OPERAND SIZE FOR A CALL . y
24.4.2.2 CHANGING SIZE OF A CALL ...ooviiiieieireteie e et see e
24.4.3 Interrupt Control TranSErSc.covereeirieirieereereee e
24.4.4 Parameter Translationcccevcviininnienienninnc e ‘
24.4.5 The Interface Procedurec.cccooceeviiriinecinenieeneninesseeseeees eeesiereie s
CHAPTER 25
COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 MATH COPROCESSORS
25.1 DIFFERENCES FROM Intel386 CPU/Intel387 NPX SYSTEMScccoviircnnininnne 25-1
25.2 DIFFERENCES FROM 286/Intel287 SYSTEMScccoociiiiiieiiieniriecienrencene e 25-2
25.2.1 Data Types and Exception Handlingcccceevveniriiininieicnciieciecccee e 25-3
25.2.2 Tag, Status, and Control Words reesstsaetetistnaanesaeasesansinssiasisansariressiesansssasassssasaasesertannre 25-6
25.2.3 INSIIUCHION SBLeiiiiis ittt e se 25-8
25.3 DIFFERENCES FROM 8086/8087 SYSTEMS .. 25-11

PART V—INSTRUCTION SET

CHAPTER 26
INSTRUCTION SET _
26.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTESccoocvriiieeiieeeieeeieeeeeeee 26-1
26.1.1 Default Segment ARMDULEcccoviiiiiiie 26-1
26.1.2 Operand-Size and Address-Size Instruction Prefixesc.cocvivernencenienieniieiennnn 26-1
26.1.3 Address-Size Attribute for Stackcceceeivinenrcninice ! e
26.2 INSTRUCTION FORMATicciiiiiiieiieeeneeee ettt fee b et e beee e e s ene e seeneas _
26.2.1 MOdR/M and SIB BYIESccccerieirenirer e e s
26.2.2 How to Read the Instruction Set Pages '
26.2.2.1 OPCODE COLUMNcccciviiiiiiiiiietdincnseii i s snsnnas
26.2.2.2 INSTRUCTION COLUMNiicicivncnnneneenns ‘
26.2.2.3 CLOCKS COLUMNccoiimeineeieneree e et ettt b nnenean
26.2.2.4 DESCRIPTION COLUMNcccivevcnneiecenenes
26.2.2.5 OPERATIONccooiiiiiieirinestee it s s e bae e esse s e veneas ettt
26.2.2.6 DESCRIPTIONcccecivininineniinnasd iemresessrenesirensseseebrssasnaneneiatiasanarrasnissantssenceacs
26.2.2.7 FLAGS AFFECTEDoctiiieirieieeieieeenescutees e st sae e aeseesesb s se b eesnesmenesasamesnens
26.2.2.8 PROTECTED MODE EXCEPTIONS reeseiieseeenesaesenisnsssassassrnsassans
26.2.2.9 REAL ADDRESS MODE EXCEPTIONSccccovnuenne s 2017

Intel ® TABLE OF CONTENTS

CMPXCHG ..ottt bbbttt bbb bbb e bt neas .. 26-62

FBLD ooeooeeeoreeeoeeeeeseeesssesessssses s sesessses e s ees e s s ess s e sseeeeseseee e ees e ee et es e eeeeeen 26-77
FBSTP oooeeeeceeeoeeeeeesesesessesessss s sesssesesssssss s eessaesssssessssses e sesseessssseesssessresoasssssnsseens 26-79
FOHS ootvvteeetteevtseseeees st eesssesssess s s sss s s sss s s st s s ss s s sssesesssnssssaseessesseenn 26-80
FCOLEX/FNCLEXvooovveesessessessesossessesssssssesssessssssssssssssssssssssssssssesssssssssssssssessansossessssneesees 26-81
FCOM/FCOMP/FCOMPPocovveeereeeseeeseeeesseesseesseseesessessssssessssessssessessessssssasesssssenene 26-82
FCOS woveo.es ettt et 26-84
FDECSTP woooovveeevveesseesssssseessssessesssessssssssssssssssessssssssesssssssssssssssssssssssssssssssssssnesssasnsssessesen 26-86
FDIV/FDIVR/FIDIV ..cooooeoeeeveeeesseeeee e sessessesessssseesssssssssessssssssssasssssnssssasssssnssssssssnssesenns 26-87
FDIVR/FDIVPR/FIDIVR ...ooovveeereeerneeesseeessseesssesssesses e esssessassssessesesssssssssssasasssssnsssesssseenes 26-89
FFREE ...vvooevveoeeeesseseessessessssesssssessssssssssssssasesssssssssssssasesssssssssssssssssssssssessasnsssssssssnssssnness 26-91
FICOM/FICOMP ...ocovooveeeeeveeeesseeeeeesssseesessses s ssssssssssssessssssssassassssssssessanss s snsnsssnns 26-92
FILD oo eeeees e eessesss e eeeesessee e ses s eeeseaeses s ses s ses s s s eeeeeee 26-94
FINCSTP .ooooveeoseeeseseeeeeseeesssssesseassesesssssesssss s esseaesesesess e ssseessssssssssssesessssessasssessssa 26-96
FINIT/ENINIT oo ettt 26-97
FIST/FISTP <.oooooeeveeereseeeeessssesssessesessssssessssssssssssssessssssssssssssssssesssssssssssssessssssesesessssssas 26-99

FLD e b e 26-101

XVii

Intel ® TABLE OF CONTENTS

FLD1/FLDL2T/FLDL2E/ :

FLDPI/FLDLG2/FLDLN2/FLDZcceoieiriiiniirisireiinceictnre st srsssse s ene s
FLDCW ..ot et
FLDENV .ttt et se e st n et snenenens

FINOP bbb e et eeen e

FRSETOR ...ttt
FSCALEcccocivviniiiiriiens TN

FOQRT .o
FST/FSTP .ttt ettt s st
FSTCOW/ENSTCW ...ttt st
FSTENV/FNSTENV ..ot ST,
FSTSW/FNSTSW ..ot
FSUB/FSUBP/FISUBccooiciiiiiiiiiinncii s
FSUBR/FSUBPR/FISUBRccoiiiiiiiinii i
BT ST e e

FWAIT oo e e

INS/INSB/INSW/INSDcoouiviuiiriniirsiiniieninininineeeese s sssens s sesssessssmnaessnsnend
INT/INTO oot e bbb
INVD oottt b et e

JOC s ST

LGDT/LIDT ettt et bbb s
LGS/LSS/LDS/LES/LFS ..ottt s
LLDT e s e

xviii

Intel ® TABLE OF CONTENTS

Page
LOOP/LOOPECONA ..veiiiiiiiii ettt ettt ettt ee et e e ete s stee e et e ssnesssabeeetsasesbaessataessteesnnneens 26-205
[T TR RORRRPRRN 26-207
| = OO SRR 26-209
17 LY TR 26-210
MOV et e et s e et s e et e e e e e e eea— et e s sa b reee s et bt e e ea—aeeeee b rreseaabeeeanareeeaas 26-212
MOVS/MOVSB/MOVSW/MOVSDeviiiiiiiiiiiieeeetteeee st etes s steesateesvsaessaesiaeeeseeesanesanes 26-214
MOVSX ettt et e et e e s bt eebe e sebbe e st e s sabe s eesbaeabasesareesabesesasereeeeenee 26-216
MOVZX oottt ettt e s a b e e et e s b e e s bt e e bb e s sabessabbeeabeeeennreesabesesasebeneenns 26-217
VUL Lottt ettt e st e sab e e s br e e e sb b e e eabe e sabteeabeeesabessabeeeabae e abr e e baeesbesreeesates 26-218
[N PR 26-220
1N [= R 26-221
1@ 1 TSR 26-222
(] = TSRS 26-223
(16 1 LR 26-225
OUTS/OUTSB/OUTSW/OUTSDuveiiiiiiiitiieiteee ettt seaveeissestssenba s e sansssaseerseesenree s 26-227
O T OO 26-230
POPA/JPOPADoveeiiteeeeiee et st e ecattesette e st e e s et e s etee s ebe e s be s eeaseesabesansaeesasaesseeesasenssesennes 26-233
O oy L@ o 1 L S SRR 26-235
PUSH ettt e s e e e s bt e e e be s e e bt e e e rb e e st e e st b e ebe e e sabaeesabee et ennbeaeaan 26-236
PUSHA/PUSHAD ..ottt sttt eeeebe s eeavteebesassseebessnseesanbessaseesasennbesennes 26-238
PUSHEF/PUSHFDooootviicie ittt sttt eetee ittt te s s e eesb e s e ntessebeeenraeesneessanessasensbeesnns 26-240
RCL/RCR/ROL/RORooiiieeectee ettt eeree sttt e s s etee e ebe s eebaeeetbesenassatseesaeesnaessaneesseentaessnres 26-241
REP/REPE/REPZ/REPNE/REPNZoocoitiiictieee ettt et et et et eesaee s be s saeeesnesnbeeenes 26-244
[| TSP SRRORRON 26-247
L7 2Y SRR 26-251
SAL/SAR/SHLISHRoviieiteeeceeectet ettt ettt e ettt e e sae e e ar e e rae e sabe e e saneesbaesraeesrneeenn 26-252
512 S S SO O PRR RSP RRPSUPTRN 26-255
SCAS/SCASB/SCASW/SCASD ...ttt ettt et e et sre s seab e s et e e sareerneeeennees 26-257
5] = W eTo R PUTRRRPRN 26-259
ST C 1 7T 0 PSR 26-261
£ o PRSPPSO 26-263
SHERD ittt et et ettt ettt eea et et aet et e ettt aaa ——————tttteteeaaa———————ab——eteseeiintrraraans 26-265
] 5 R RRPURROPRTUY 26-267
SIMSW ettt e e et e et e e e b et e be e eebae et e e sa b et eaaea e ebeernreeeraes 26-268
) 12T PSP RPUUPRRN 26-269
S 0 LU PP PSPPIt 26-270
S 1 R RRPPRPUPPRINY 26-271
STOS/STOSB/STOSW/STOSD ...cccvviiiiiiiceiee ettt ecare st seebesesseesbbe s esasasaeareesebesraeeenns 26-272
S 1 2 SRR RO 26-274
SUB ittt et et ettt ettt tettaeaetaa————————tteeateeaa ——b———————ttaaeeeinararrras 26-275
I =15 1 USRI 26-277
VERR, VERW ..ottt ettt e st este s e aeeeaate e abes s eatee e e sbeeenabeebeeeabaens 26-278
WAIT ettt — ettt et et e b A et et et e b e Rt er st et et et et et eae e et e eRe s e et st e b et ebere s ee et etsananetets 26-280
WBINVD ...ttt ettt e e a e e e sabe e e sabe e st e s sbbeeesbessabeeessaseesatsessasesbaeeann 26-281
KXADD ottt b er e e e s e e narraens eveererrarrererrerraaanes 26-282
D0 = 1 T RSO STUUPUP 26-284
D) I I TR 26-285
D0] = T ettt AR e s bbb 26-287

XiX

lnteL TABLE OF CONTENTS

APPENDICES
APPENDIX A
OPCODE MAP
APPENDIX B
FLAG CROSS-REFERENCE
APPENDIX C
STATUS FLAG SUMMARY
APPENDIX D
CONDITION CODES
APPENDIX E
INSTRUCTION FORMAT AND TIMING
APPENDIX F
NUMERIC EXCEPTION SUMMARY
APPENDIX G
CODE OPTIMIZATION
APPENDIX H
REVISION HISTORY
GLOSSARY
INDEX

Figures

Figure Title Page
1-1 Bit @nd Byte Orderccccviiiiiiiiciniiniee e et 1-7
2-1 Segmented Addressing 2-4
2-2 Fundamental Data TYPEScccceieieerinencivnesieriese e e e 2-5
2-3 Bytes, Words, and Doublewords in Memorycccoeeceeiiveniecnieieeneeeeeees 2-5
2-4 (D 1= B Y o L= RO SRR U PP 2-7
2-5 Application Register Set ... 2-9
2-6 An Unsegmented Memory 2-10
2-7 A Segmented Memorycccceeiieiciiennenend L 2-11
2-8 SEACKS .ot SRR 2-13
29 EFLAGS REJISIEr ..c.veeviiiiiiieieiinte sttt s 2-14
2-10 Effective Address Computation - 2-21
3-1 PUSH Instructionccccevvvininvinniciiencinn, ‘ 3-2
3-2 PUSHA Instructionccccceceeeniininecnieinennn 3-3
3-3 POP INSIFUCHON ...ttt e s 3-4
3-4 POPA INSITUCLION ..ot 3-5
3-5 Sign EXENSION ...ccoiiiiiiiiccic 3-5
3-6 SHL/SAL INSIUCHION ..eovvieiiciieeieeece ettt et 3-14
3-7 SHR INSIUCION .. 3-15

Intel ® ' TABLE OF CONTENTS

Figures
Figure Title Page
3-8 SAR INSIIUCHON .eeiieiiieitieiesee ettt e et es e s essaen e e nee e 3-15
3-9 SHLD INSTUCHON ...eoiiiiieiiiiiecie ettt aer e e eas 3-16
3-10 SHRD INSITUCHON .eeiiieeiieiiieie ettt siaesnneesaeean 3-17
3-11 ROL INSEIUCHON ..ottt s 3-18
3-12 ROR INSTFUCION ..ottt e 3-18
3-13 RCOL INSIUCHION vt s 3-18
3-14 RCR INSITUCHION .o s 3-19
3-15 Formal Definition of the ENTER Instructionc..ccoceevieniniiiineicceeee 3-32
3-16 Nested ProCeAUIESccovcieiiieiiiie e e 3-33
3-17 Stack Frame After Entering MAINooiiiiiieie e 3-34
3-18 Stack Frame After Entering PROCEDURE Acccooievieicnneen. e 3-35
3-19 Stack Frame After Entering PROCEDURE Bc.ccccooviiinininiieccicee, 3-35
3-20 Stack Frame After Entering PROCEDURE Ccccocviiiiiiicnicniniiinennn, 3-36
3-21 Low Byte of EFLAGS REQISIErvevvviviiiriiiciiies et eser e sere e er e 3-38
3-22 Flags Used with PUSHF and POPFcccooiiiiiis e 3-38
3-23 CPU_ID, MCP_ID Detection Codec.cceveririrrieinnienieieresn s see s 3-42
3-24 ASCII Arithmetic Using BSWAP ..ottt 3-48
4-1 SYSIEM FIAGS oot 4-2
4-2 Memory Management REQIStErScovveeiiiiiiiiiiiciie e 4-4
4-3 (070] 0] i (o] I o {=To 151 (=] T PS O PTPROTRRTP PR 4-5
4-4 Debug RegiSters ... 4-8
4-5 TeSt REQISIEIS ...ocviiiiiiiereiertee e s 4-9
5-1 Flat Modelicice e e 5-3
5-2 Protected Flat Model ... 5-5
5-3 Multi-Segment Modelcccccevceennennnn 5-6
5-4 Tl Bit Selects Descriptor Table ’ 5-8
5-5 Segment TransIation ...t 5-9
5-6 Segment REGISIEISccccociiiiiiiiniiere e 5-9
5-7 SegMENt SEIECIOI ..ouiiiiieiieieee e s e 5-10
5-8 Segment DESCrIPIOISccccoiiiiiiieeierie ettt s 5-11
5-9 Segment Descriptor (Segment Not Present)ccccoccvvvvienvenienessinneeneens 5-14
5-10 DeSCrPtOr TADIESooiiiiiiie ittt e 5-15
5-11 Pseudo-Descriptor FOrmatcccovcieieeiiniiiceei e 5-16
5-12 Format of a Linear AAdressccc.ecciiciiiiiiciiicicccci e, 5-19
5-13 Page Translationccceeoiciieiiiiiiiicn e e a e 5-19
5-14 Format of a Page Table ENtryccccovieiiciieniie e e 5-20
5-15 Format of a Page Table Entry for a Not-Present Pagecccccocvevceeiiiceennen, 5-21
5-16 Combined Segment and Page Address Translationc..cccoovvrcnerccennen. 5-23
5-17 Each Segment Can Have Its Own Page Tablecccccveevieniinienieecneienen, 5-25
6-1 Descriptor Fields Used for Protectionccccvcviiiiiiiicinieecniieccnieeecnneeeeen, 6-2
6-2 - Protection RiNGS ...oooeiiiiie e e 6-7
6-3 Privilege Check for Data ACCESSccccevirireeieniniieiireeieee e 6-8
6-4 Privilege Check for Control Transfer Without Gate:cccceeviivvvreesieniennnen, 6-10
6-5 Call GAtE ...cieiiiiiiii e 6-11
6-6 Call Gate MeChaniSmMccceeviiiiie s e 6-12
6-7 Privilege Check for Control Transfer with Call Gateccccvevcvrveniecennenne 6-14
6-8 Initial Stack Pointers in @ TSS ..o 6-15
6-9 Stack Frame During Interlevel Callccoviiiiinieciiiciee e 6-17
6-10 Protection Fields of a Page Table Entrycccccrviiiiniinieneeer e, 6-23
7-1 Task State SEgMENToviiiiii e e 7-3

XXi

Intel ® TABLE OF CONTENTS

Figure

Figures
Title Page
TSS DESCHIPLON ...oeeiireeeie e 7-4
TR REGISIEr ..o ' 7-6
Task Gate Descriptor : - 77
Task Gates Reference Taskscccoeiiiiiiiiniiin e e 7-8
NEStEA TASKS ..viiuiiiieiierireer e e e 7-12
Overlapping Linear-to-Physical Mappings 7-15
Memory-Mapped 1/O ... 8-3
I/O Permission Bit Mapccocivenencnnienineeneenennene. 8-7
IDTR Register Locates IDT in MemOrycccoeeviiiiiiniinniniiniecceiecieeene 9-6
IDT Gate DESCHPIOIS ..oociiiiveiiicie ittt s s saaeeenee 9-8
JInterrupt Procedure Call 9-9
Stack Frame After Exception or Interrupt 9-10
Interrupt Task Switch ... reessisnanes 9-12
Error Codecvvvivieenieeiecie ettt 9-13
Page Fault Error Codeccoovvviininnnniiiienieeneneeie, 9-22
Contents of the EDX Register After Reset 10-2
Contents of the CRO Register After Reset ‘ - 10-2
TLB SErUCIUIE ...oiviiiiiiciieccni s 10-9
TLB Test ReGISIersociiciiciiiiiiiieeesi e 10-10
,CAChE SITUCIUIE ...coieeeieiie e e 10-13
Cache Test Registers 10-14
Debug Registersccciviiiiiiiniiniieesneseee s 11-3
Evolution and Performance of Numeric Processors! 14-2
Intel486™ FPU Register Set.coceevvvnenicirenreninens 15-2
Intel486™ FPU Status Wordcccevirvvicicinenne, 15-3
Intel486™ FPU Control Word FOrmatccccccivviieiieiiiivneieeneeescee e 15-6
Tag Word FOrmatccocveeiiiiniiiee e 15-7
(O] oo To =N o= o [TSP SRPPRPPN 15-7
Protected Mode Numeric Instruction and Data Pointer Image in
Memory, 32-Bit FOrmMatcooviiiieiiieseeereeebe e SR 15-8
Real Mode Numeric Instruction and-Data Pointer Image in Memory,
32-Bit Formatcccceveeennne eeresteissreentensissirressesesantesssesanenisiesaanssresantasesssnbne 15-9
Protected Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit FOrMAaLt .o e 15-9
Real Mode Numeric Instruction and Data Pointer Image in Memory, '
16-Bit FOrmat ..o e 15-10
Double-Precision Number System 15-11
Numerical Data FOrmatscooiiivnc e e 15-12
Floating-Point System with Denormals "ccccovviieininicnniece e 16-5
Floating-Point System without Denormalsccceiveviinnivnienncnn. 16-5
Arithmetic Example Using Infinity . 16-20
Coprocessor Detection Codeccevvevvviciene 16-24
Sample C-386/486 Program evireteseeisivanes ; 18-2
Sample Numeric Constantsccccevvivriiiiecnieenecne, 18-5
Status Word Record Definition 18-6
Structure Definitionco..coceniniceni - 18-6
Sample PL/M-386/486 Program : 18-8
Sample ASM386/486 Program 18-9
Instructions and Register Stack 18-11

xxii

Intel 0 TABLE OF CONTENTS

Figure

18-8
20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
22-1
22-2
23-1
23-2
23-3
24-1
26-1
26-2
26-3
26-4

Table

SO

DDOOD T CEWWN NN
PON—=—=20DPDON—=-HRON=

Figures

Title Page
Exception Synchronization EXamplesccccccoiviiniiiiiiininiceeen 18-14
Conditional Branching for Comparescccceeeniireeninninniecnnen 20-2
Conditional Branching for FXAMcccciiiiiiiienne e 20-3
Full-State Exception Handlercccociiiiiiiiniienin i 20-4
Reduced-Latency Exception Handlercccccoiiiiniinniiiiiinnicece 20-5
Reentrant Exception Handlercccvieiiiiiniiiniiin e 20-6
Floating-Point to ASCII Conversion Routing ... 20-8
Relationships Between Adjacent JOINtSccoccevvvniininniiiiiiiieccee, .. 20-24
Robot Arm Kinematics Examplecccoccviiniiiiiiini 20-26
8086 AAAress Translationcccceeveereeniiinienieseeeeee e s 22-2
Real-Address Detection Codecccviiiiiiiiiiiiiiniieeieeeee e e 22-12
8086 Address Translation ... 23-3
Entering and Leaving Virtual-8086 Modecccccovviniiininniinniniee 23-5
Privilege Level O Stack After Interrupt in Virtual-8086 Modec..coecunene 23-7
Stack After Far 16- and 32-Bit Callsccccevvvvvnvviniviniric i, 24-5
Intel486™ Processor Instruction Format ..o, 26-2
ModR/M and SIB Byte FOrmatsccc.ccecvriiiiiniiinienie i 26-4
Bit Offset for BIT[EAX, 21] oovcriiiiiriii i 26-15
Memory Bit INAEXINGcccvvviiiriiiiiiie et 26-16

Tables

Title Page
Register Namesccccveciiiiiieeeeee e 2-8
STAtUS FIagS .evicviiiiieeiieie e s 2-14
Default Segment Selection Rules 2-20
Exceptions and Interrupts 2-24
Operands fOr DIVISIONcccceevieiieereieesiieseesiiertesieete s seesiessre s 3-9
Bit Test and Modify Instructions 3-12
Conditional Jump INSTrUCHIONSccceiiiiiieiiiir e 3-25
Repeat INStructionscccoviieiiiiiic 3-29
Flag Control INStruCtioNScccceeiiiiiiiiiini s 3-37
Application SEgMENt TYPES ..occiiieiieiiiir e s 5-12
System Segment and Gate TYPES ...ccceveerveerriieniiieeiiee e s 6-4
Interlevel Return Checksocciiviiiiiiiiiiicc 6-18
Valid Descriptor Types for LSL Instruction 6-21
Combined Page Directory and Page Table Protectionccccviiiininnnnn. 6-25
Checks Made during a Task SWItChccoociriiiiiinni, 7-11
Effect of a Task Switch on Busy, NT, and Link F|elds 7-12
Exception and Interrupt VECIOrSccoovcireiiiiiiiiiin s 9-2
Priority Among Simultaneous Exceptlons and Interruptscooceeeiiiniiniins 9-5
Intel Reserved OPCOdESccccvvrierieisininienie e 9-16
Interrupt and Exceptions Classes ' 9-17
Invalid TSS ConditioNScccvieeiiiiiieiie et e 9-18
Alignment Requirements by Data TYpecccecviiviiniiiiiniiiiieee e, 9-24
EXCeption SUMMArY ..o e e 9-26
Error Code SUMMAIY .coceieiiiieiee e 9-27

xxiii

|nte| ® TABLE OF CONTENTS

Table

10-1
10-2

10-3
10-4
10-5
11-1
112
12-1
141
14-2
14-3
15-1
152
15-3

164

Tables

Title Page
Processor State Following Power-Upccccviiiinninniviininnnnenn e 10-3

Recommended Values of the FP Related Bits for Intel486™ SX
Microprocessor/Intel487™ SX Math CoProcessor System Leeereneisieneeens 10-4
EM and MP Bits Interpretatlons .. [T 10-4
Meaning of Bit Pairs in the TR6 Registeriivorvirienniinnn e 10-10
Encoding of Cache Test Control Blts ' 10-15
Breakpointing Examples T S L ST 11-5
Debug Exception Conditions .. 11-6
Cache Operating MOdescccccvvereiienienenesesisenenes 12-3
Numeric Processing Speed Comparisonsccccovervinneane 14-2
Numeric. Data TYPES ...c.cccveveiieeiierririeeniienriee e s sne s 14-6
Principal Numeric INStruCtions.cccccvivciniinnniccii i 14-7
Condition Code Interpretationcc..ccciveviniinnenninnes 15-4
Correspondence Between FPU and IU Flag Bits 15-5
Summary of Format Parametersccccceiviinnnennnnn. e 15-14
Real Number Notationccccovvveeiiniininnisssesisesiesnsivennenee. 15-14
RouNding MOAESooviiiiiiiiiiciie e e et 15-16
Arithmetic and Nonarithmetic Instructionsccocciviiviniiicinnininine, 16-2
Denormalized Values ...t 16-3
Zero Operands and Results 16-6
Infinity Operands and Results 16-9
Rules for Generating QNaNs 16-12
Binary Integer ENCOdiNgSc.ccoviiiiiiinniinienie et 16-14
Packed Decimal ENCOAINGSccceveriiiriiiiiiieeerecsee e 16-15
Single and Double Real ENCOAINGScccceveveeririnieneircrese e 16-16
Extended Real ENCOAINGScoccveriiriiiniineirieee e 16-17
Unsupported FOrmMats ... 16-18
Masked Response to Invalid Operations 16-22
Masked Overflow Results 16-25
Data Transfer Instructions 17-2
Nontranscendental Instructions (Besides Basic Arithmetic) 17-3
Basic Arithmetic Instructions and Operands v 17-3
Comparison INStructionsccccceevvveecceeecieee e, 17-4
TEST Constants for Conditional Branching 17-5
Transcendental INStruCtioNSc..ccooviiicii 17-6
Constant INStructionscoevveecinicnnennn deerenesse et saes 17-7
Control InStructionsccceveeivineiiininrc 17-7
PL/M-386/486 Built-In Procedures -...........cccccevuuie 18-3
ASM386/486 Storage Allocation Directives 18-4
Addressing Method EXamplesccviiviniciisineses e 18-7
- FPU State Following Initialization ccocooiinniiiciie I 19-3
Exceptions and INtErrupts ... e 22-6
New Intel486™ CPU Exceptionsccccccevevveeveveirinnenn. . 229
Effective Size Attributesccccevveenenne. e ————— 26-2
16-Bit Addressing Forms with the ModR/M Byte 26-5
32-Bit Addressing Forms with the ModR/M Byte 26-6
32-Bit Addressing Forms with the SIB Byte 26-7
Task Switch Times for Exceptions 26-12
EXCEPHONS ..o, e 26-17

XXiv

Introduction to the Intel486 ™ 1
Microprocessor Family

CHAPTER 1 :
INTRODUCTION TO THE
Intel486™ MICROPROCESSOR FAMILY

The Intel486 microprocessors offer the highest performance for DOS, OS/2, Windows
and UNIX System V/386 applications. The Intel486 microprocessor family currently
includes the Intel486 SX CPU (and Inteld87™ SX Math CoProcessor), Intel4d86 DX
CPU, and the Intel486 DX2 CPU. These processors are 100% binary compatible with
one another and with the Intel386™ family of microprocessors. Throughout this text,
these members are collectively referred to as the “Intel486 processor.” The high integra-
tion Intel486 processors maintain binary compatibility with previous members of the x86
architectural family. The instruction set microarchitecture has been reimplemented
using RISC design techniques such that frequently used instructions execute in one
cycle. An 8-Kbyte unified code and data cache combined with the high bandwidth, burst-
able data bus allow this performance level to be sustained, providing a significant per-
formance advantage without additional system complexity.

New features enhance multiprocessing systems. New instructions speed manipulation of
memory-based semaphores. On-chip hardware ensures cache consistency and provides
hooks for multi-level caching.

The built-in self-test extensively tests on-chip logic, cache memory and the on-chip pag-
ing translation cache. Debug features include breakpoint traps on code execution and
data accesses.

Features of the Intel486 processor include:

o Full binary compatibility with Intel386 DX CPU, Intel386 SX CPU, Intel386 SL,
376™ embedded processor, 80286, 8086, and 8088 processors.

o Execution unit designed to execute frequently-used instructions in one clock cycle.
o 32-bit integer processor for performing arithmetic and logical operations.

o Internal or coprocessor floating-point unit (Intel486 FPU) for supporting the 32-, 64-,
and 80-bit formats specified in IEEE standard 754 (object-code compatible with
Intel387™ DX and Intel387 SX math coprocessors).

e Internal 8-Kbyte cache memory, which provides fast access to recently-used instruc-
tions and data.

o Bus control signals for maintaining cache consistency in multiprocessor systems.

o Segmentation, a form of memory management for creating independent, protected
address spaces.

e Paging, a form of memory management which provides access to data structures
larger than the available memory space by keeping them partly in memory and partly
on disk.

o Restartable instructions that allow a program to be restarted followmg an exception
(necessary for supporting demand-paged virtual memory).

o Pipelined instruction execution overlaps the interpretation of different instructions.
o Debugging registers for hardware support of instruction and data breakpoints.

1-1

Inte|® INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

The Intel486 processors are object-code compatible with four other Intel386 processors:

Intel386 DX Processor (32-bit data bus) — A cost-effective form for high-end personal
computers and mid-range workstations.

Intel386 SX Processor (16-bit data bus)—The Intel386 processor adapted for mid-
range personal computers, which are sensitive to the higher system cost of a 32-bit
bus.

Intel386 SL Processor (16-bit data bus) — A high integration, static Intel386 micropro-
cessor with ISA peripheral subsystem and power management.

376 Embedded Processor (16-bit data bus)— A reduced form of the Intel386 proces-
sor optimized for embedded applications, such as process controllers. The 376 pro-
cessor lacks the paging and 8086-compatibility features provided in the Intel486
processor. The 376 processor is available in a surface-mount plastic package, which
provides the lowest cost and smallest form factor for any implementation of the
Intel386 processor.

The operating mode of the Intel486 processor determines which instructions and archi-
tectural features are accessible. The Intel486 processor has three modes for running
programs:

Protected mode uses the native 32-bit instruction set of the processor. In this mode
all instructions and architectural features are available.

Real-address mode (also called “real mode”) emulates the programming environ-
ment of the 8086 processor, with a few extensions (such as the ability to break out of
this mode). Reset initialization places the processor into real mode.

Virtual-8086 mode (also called “V86 mode”) is another form of 8086 emulation
mode. Unlike real-address mode, virtual-8086 mode is compatible with protection and
mode to run a program written for the 8086 processor, then leave virtual-8086 mode
and re-enter protected mode to continue a program which uses the 32-bit instruction

~ set.

1.1 ORGANIZATION OF THIS MANUAL

This book presents the architecture of the Intel486 processor in five parts:

Part I— Application Programming
Part I1—System Programming
Part III — Numeric Processing
Part IV — Compatibility

Part V —Instruction Set

Appendices

- 1-2

Ini'el® INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

These divisions are determined by the architecture and by the ways programmers use
this book. The first three parts are explanatory, showing the purpose of architectural
features, developing terminology and concepts, and describing instructions as they relate
to specific purposes or to specific architectural features. The remaining parts are refer-
ence material for programmers developing software for the Intel486 processor.

The first four parts cover the operating modes and protection mechanism of the Intel486
processor. The distinction between application programming and system programming is
related to the protection mechanism of the Intel486 processor. One purpose of protec-
tion is to prevent applications from interfering with the operating system. For this rea-
son, certain registers and instructions are inaccessible to application programs. The
features discussed in Part I and Part III are those which are accessible to applications;
the features in Part II are available only to programs running with special privileges, or
programs running on systems where the protection mechanism is not used.

The features available to application programs in protected mode and to all programs in
virtual-8086 mode are the same. These features are described in Part I and Part IIT of
this book. The additional features available to system programs in protected mode are
described in Part II. Part IV describes real-address mode and virtual-8086 mode, as well
as how to run a mix of 16-bit and 32-bit programs.

1.1.1 Part |- Application Programming

This part presents the features used by most application programmers. It does not
include features used in numeric applications, which are discussed in Part III.

Chapter 2 —Basic Programming Model: Introduces the models of memory organization.
Defines the data types. Presents the register set used by applications. Introduces the
stack. Explains string operations. Defines the parts of an instruction. Explains address
calculations. Introduces interrupts and exceptions as they apply to application
programming.

Chapter 3 —Application Programming: Surveys the instructions. commonly used for
application programming. Considers instructions in functionally related groups; for
example, string instructions are considered in one section, while control-transfer instruc-
tions are considered in another. Explains the concepts behind the instructions. Details of
individual instructions are deferred until Part IV, the instruction-set reference.

1.1.2 Part II—Systém Programming

This part presents the features used by operating systems, device drivers, debuggers, and
other software which support application programs. Some additional information rele-
vant to systems programming is presented in Part III.

1-3

Intei® INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

Chapter 4— System Architecture: Describes the features of the Intel486 processor used
by system programmers. Introduces the registers and data structures of the Intel486
processor which are not discussed in Part I or Part III. Introduces the system-oriented
instructions in the context of the registers and data structures they support. References
the chapters in which each register, data structure, and instruction is discussed in. more
detail.

Chapter 5—Memory Management: Presents details of the data structures, registers, and
instructions which support segmentation. Explains how system designers can choose
between an unsegmented (“flat”) model of memory organization and a model with
segmentation.

Chapter 6— Protection: Discusses protection as it applies to segments. Explains the
implementation of privilege rules, stack switching, pointer validation, user and supervi-
sor modes. Protection aspects of multitasking are deferred until the following chapter.

Chapter 7— Multitasking: Explains how the hardware of the Intel486 processor supports
multitasking with context-switching operations and intertask protection.

Chapter 8 —Input/Output: Describes the 1/O features of the Intel486 processor, includ-
ing I/O instructions, protection as it relates to I/O, and the I/O permission bit map.

Chapter 9—Exceptions and Interrupts: Explains the basic interrupt mechanisms of the
Intel486 processor. Shows how interrupts and exceptions relate to protection. Discusses
all possible exceptions, listing causes and including information needed to handle and
recover from each exception.

Chapter 10— Initialization: Defines the condition of the processor after reset initializa-
tion. Explains how to set up registers, flags, and data structures. Shows how to test the
on-chip cache and the translation lookaside buffer. Contains an example of an 1n1t1ahza-
tion program. :

Chapter 11 —Debugging: Tells how to use the debuggmg registers of the Intel486
processor.

Chapter 12— Caching: Explains the general concept of caching and the spec1f1c mecha-
nisms used by the internal cache on the Intel486 processor.

Chapter 13 —Multiprocessing: Explains the instruétions and flags which support multiple
processors with shared memory.

1.1.3 Part lll —Numeric Processing

This part explains the floating-point arithmetic features of the Intel486 microprocessor
family. These features are an object-code compatible implementation of the features
provided by the Intel387 DX or SX math coprocessor used w1th the Intel386 DX or SX
processor.

1-4

|nte|® INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

Chapter 14— Introduction to Numeric Applications: Gives an overview of the floating-
point unit and reviews the concepts of numerical computation.

Chapter 15— Architecture of the Floating-Point Unit: Presents the floating-point regis-
ters and data types available to both applications and systems programmers.

Chapter 16— Special Computational Situations: Discusses the special values that can be
represented in the teal formats of the Intel486 processor —denormal numbers, zeros,
infinities, NaNs (Not a Number)—as well as the numerical exceptions. This chapter
should be read thoroughly by systems programmers, but can be skimmed by applications
programmers. Many of these special situations may never arise in applications programs.

Chapter 17 —Floating-Point Instruction Set: Surveys the instructions commonly used for
numeric processing. Details of individual instructions are deferred until Part V, the
instruction-set reference.

Chapter 18— Numeric Applications: Describes the Intel486 processor’s floating-point
arithmetic facilities. Gives short programming examples in both assembly language and
high-level languagés.

Chapter 19— System-Level Considerations: Provides information of interest to systems
software writers.

Chapter 20 — Numeric Programming Examples: Provides detailed examples of assembly-
language numeric programming with the Intel486 processor, including conditional
branching, conversion between floating-point values and their ASCII representations,
and use of trigonometric functions.

1.1.4 Part IV— Compatibility

This part explains the features of the architecture which support programs written for
earlier Intel processors. The native mode of execution is an upward-compatible superset
of the environment of the 286 and Intel386 processors. All three execution modes have
support for 16-bit programming: 16-bit operations can be performed in protected mode
using the operand-size prefix, programs written for the 8086 processor or the real mode
of the 286 processor can run in real mode on the Intel386 DX or SX processor, and a
virtual machine monitor can be used to emulate real mode using virtual-8086 mode, even
while multitasking with 32-bit programs.

Chapter 21 —Executing 286 and Intel386 DX or SX CPU Programs: Explains the pro-
gramming differences between the 286 and Intel486 processors, and between the
Intel386 DX and SX and Intel486 processors.

Chapter 22— Real-Address Mode: Explains the real mode of the Intel486 processor. In
this mode, the Intel486 processor appears as a fast real-mode 286 or Intel386 processor
or a fast 8086 processor enhanced with additional instructions.

1-5

Inte|® INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

Chapter 23 — Virtual-8086 Mode: Describes how the Intel486 processor supports execu-
tion of one or more 8086, 8088, 80186 or 80188 programs in an Intel486 processor
protected-mode environment.

Chapter 24 —Mixing 16-Bit and 32-Bit Code: Explains how the Intel486 processor can
mix 16-bit and 32-bit modules within the same program or task. Any particular module
can use both 16-bit and 32-bit operands and addresses.

Chapter 25— Compatibility with 8087, Intel287, and Intel387 Math CoProcessors: Com-
pares the floating-point unit of the Intel486 processors with the arithmetic of the numer-
ics coprocessors used with earlier Intel processors.

1.1.5 Part V—Instruction Set

Parts I, II, and III present the general features of the instruction set as they relate to
specific aspects of the architecture. Part V presents the instructions in alphabetical
order, with the detail needed by assembly language programmers and programmers of
debuggers, compilers, operating systems, etc. Instruction descriptions include an algo-
rithmic description of operations, effect of flag settings, effect on flag settings, effect of
operand- and address-size attributes, and exceptions which may be generated.

1.1.6 Appendices

The appendices present tables of encodings and other details in a format designed for
quick reference by programmers.

The following books contain additional material related to Intel processors:

Intel386™ Processor Hardware Reference Manual, Order Number 231732

Intel386™ Processor System Software Writer’s Guzde Order Number 231499

Intel386™ High-Performance 32-Bit CHMOS Mzcroprocessor with Integrated Memory Man-
agement, Order Number 231630

376™ Embedded Processor Prograinmer’s Reference Manual, Order Number 240314
Intel386™ DX Processor Programmer’s Reference Manual, Order Number 230985
Intel386™ SX Processor Programmer’s Reference Manual, Order Number 240331

80387 Programmer’s Reference Manual, Order Number 231917

376™ High-Performance 32-Bit Embedded Processor, Order Number 240182

Intel386™ SX Microprocessor, Order Number 240187

50-MHz Intel486™ DX CPU-Cache Chip Set Hardware Reference Manual, Order Number
241172

50-MHz Intel486™ DX CPU-Cache Module Hardware Reference Manual Order Number
241091 '
Microprocessor and Penpheral Handbook (vol. 1), Order Number 230843

1-6

IntGL INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

The Intel486™ Microprocessor Hardware Reference Manual is the companion of this book
for use by hardware designers. It contains.information which may be useful to program-
mers, especially system programmers.. Order Number 240552

The Intel486™ Microprocessor Data Book (Order Number 240440), Intel486™ DX2 Micro-
processor Data Book (Order Number 241245-001), and Intel486™ SX CPU/Intel487™ SX
Math CoProcessor Data Book (Order Number 240950-002) contains the latest informa-
tion regarding device parameters (voltage levels, bus cycle timing, priority of simulta-
neous exceptions and interrupts, etc.). .

The Intel486™ Microprocessor Product Brief Book describes many related products com-
monly used with Intel486 CPU. Order Number 240459

1.3 NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation
of instructions, and for hexadecimal numbers. A review of this notation makes the man-
ual easier to read. ;

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bot-
tom of the figure; addresses increase toward the top. Bit positions are numbered from
right to left. The numerical value of a set bit is equal to two raised to the power of the bit
position. The Intel486 processor is a “little endian” machine; this means the bytes of a
word are numbered starting from the least significant byte. Figure 1-1 illustrates these
conventions.

DATA STRUCTURE

31 8- 16 7 0 <—BIT OFFSET
28
24
20
16
12
8
UNDEFINED 4 GuaLLEST
BYTE3 BYTE2 BYTE1 BYTEO | 0 ADDRESS

GREATEST
ADDRESS

BYTE OFFSET

240486i1-1

Figure 1-1. Bit and Byte Order

1-7

Int9|® INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

Numbers are wusually expressed in decimal notation (base 10). When hexadecimal
(base 16) numbers are used, they are indicated by an ‘H’ suffix.- ~

1.3.2 Undefined Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved.
When bits are marked as undefined or reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. Software should follow these guidelines in dealing with reserved bits:

o Do not depend on the states of any reserved bits when testing the values of registers
which contain such bits. Mask out the reserved bits before testing.

e Do not depend on the states of any reserved bits when stormg to memory or to a
register.

¢ Do not depend on the ability to retain information written into any reserved bits.

e When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously stored from the same
register.

NOTE

Depending upon the values of reserved register bits will make software dependent upon

_the unspecified manner in which the Intel486 processor handles these bits. Depending
-upon reserved values risks incompatibility with future processors. AVOID ANY SOFT-
WARE DEPENDENCE UPON.THE STATE OF RESERVED Intel486 PROCESSOR
REGISTER BITS.

1.3.3 Instruction Oberands

When instructions are represented symbolically, a subset of the assembly language for
the Intel486 processor is used. In this subset, an instruction has the following format:

label: mnemonic argumentl, argument2, argument3

where:
e A label is an identifier which is followed by a colon.

e A mnemonic is a reserved name for a class of instruction opcodes which have the
same function. :

e The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form
of either literals or identifiers for data items. Operand identifiers are either reserved
names of registers or are assumed to be assigned to data items declared in another
part of the program (which- may not be shown in the example).

1-8

n‘&eﬂ&a INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

When two operands are present in an arithmetic or logical instruction, the right oper-
and is the source and the left operand is the destination. Some assembly languages
put the source and destination in reverse order.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. .

1.3.4 Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the char-
~ acter H. A hexadecimal digit is a character from the set (0, 1, 2, 3,4, 5,6, 7, 8,9, A, B,

C, D, E, F). A leading zero is added if the number would otherwise begin with one of the
digits A-F. For example, OFH is equivalent to the decimal number 15.

1.3.5 Segmented Addressing

The Intel486 processor uses byte addressing. This means memory is organized and
accessed as a sequence of bytes. Whether one or more bytes are being accessed, a byte
number is used to address memory. The memory which can be addressed with this
number is called an address space.

The Intel486 processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments. For
example, a program can keep its code (instructions) and stack in separate segments.
Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. An example of the notation used to show segmented addresses
is shown below.

CS:EIP

This example refers to a byte wifhin the code segment. The byte number is held in the
EIP register.

1.3.6 Exceptions

An exception is an event which occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. There are several different types of
exceptions, and some of these types may provide error codes. An error code reports
additional information about the error. Error codes are produced only for some excep-
tions. An example of the notation used to show an exception and error code is shown
below.

#PF(fault code)

1-9

|nte|® INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code is
zero, as shown below.

#PF(0)

Part |
Application Programming

Basic Programming Model 2

CHAPTER 2 |
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment (except for the
floating-point features) as seen by assembly-language programmers. The chapter intro-
duces the architectural features which directly affect the design and implementation of
application programs. Floating-point applications are described separately in Part III.

The basic programming model consists of these parts:
e Memory organization

o Data types

e Registers =

e Instruction format

o Operand selection

e Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers may choose to make 1/O instructions available to applications or may choose to
reserve these functions for the operatlng system. For this reason, the 1/O features of the
Intel486 processor are discussed in Part II.

This chapter contains a section for each feature of the architecture normally visible to
applications. ‘

2.1 MEMORY ORGANIZATION

The memory on the bus of an Intel486 processor is called physical memory. It is orga-
nized as a sequence of 8-bit bytes. Each byte is assigned a unique address, called a
physical address, which ranges from zero to a maximum of 2*2—1 (4 gigabytes). Memory
management is a hardware mechanism for making reliable and efficient use of memory.
When memory management is used, programs do not directly address physical memory.
Programs address a memory model, called virtual memory.

Memory management consists of segmentatlon and paging.' Segmentation is a mecha-
nism for providing multiple, mdependent address spaces. Paging is a mechanism to sup-
port a model of a large address space in RAM using a small amount of RAM and some
disk storage. Either or both of these mechanisms may be used. An address issued by a
program is a logical address. Segmentation hardware translates a logical address into an
address for a continuous, unsegmented address space, called a linear address. Pagmg
hardware translates a linear address into a physical address.

Memory may appear as a single, addressable space like physical memory. Or, it may
appear as one or more independent memory spaces, called segments. Segments can be
assigned specifically for holding a program’s code (instructions), data, or stack. In fact, a
single program may have up to 16,383 segments of different sizes and kinds. Segments

2-1

Intel ® BASIC PROGRAMMING MODEL

can be used to increase the reliability of programs and systems. For example, a pro-
gram’s stack can be put into a different segment than its code to prevent the stack from
growing into the code space and overwriting instructions with data.

Whether or not multiple segments are used, logical addresses are translated into linear
addresses by treating the address as an offset into a segment. Each segment has a seg-
ment descriptor, which holds its base address and size limit. If the offset does not exceed
the limit, and no other condition exists which would prevent reading the segment, the
offset and base address are added together to form the linear address.

The linear address produced by segmentation is used directly as the physical address if
bit 31 of the CRO register is clear (the CRO register is discussed in Chapter 4). This
register bit controls whether paging is used or not used. If the bit is set, the paging
hardware is used to translate the linear address into the physical address.

The paging hardware gives another level of organization to memory. It breaks the linear
address space into fixed blocks of 4K bytes, called pages. The logical address space is
mapped into the linear address space, which is mapped into some number of pages. A
page may be in memory or on disk. When a logical address is issued, it is translated into
an address for a page in memory, or an exception is issued. An exception gives the
operating system a chance to read the page from disk and update the page mapping. The
program which generated the exception then can be restarted without generatlng an
exception.

If multiple segments are used, they are part of the programming environment seen by
application programmers. If paging is used, it is normally invisible to the application
programmer. It only becomes visible when there is an interaction between the applica-
tion program and the paging algorithm used by the operating system. When all of the
pages in memory are used, the operating system uses its paging algorithm to decide
which memory pages should be sent to disk. All paging-algorithms (except random algo-
rithms) have some kind of worst-case behavior which may be exerc1sed by some kinds of
application programs.

The architecture of the Intel486 proceSsor gives designers the freedom to choose a dif-
- ferent memory model for each program, even when more than one program is running at
the same time. The model of memory organization can range between the following
extremes:

o A “flat” address ‘space where the code, stack, and data spaces are mapped to .the
same linear addresses. To the greatest extent possible, this eliminates segmentation
by allowing any type of memory reference to access any type of data.

o A segmented address space with separate sc:ginents for the codé, data, and stack /
spaces. As many as 16,383 linear address spaces of up to 4 gigabytes each can be used.

Both models can provide memory protection. Models intermediate between these
extremes also can be chosen. The reasons for choosing a particular memory model and
the manner in which system programmers implement a model are discussed in Part II—
System Programming.

2-2

In'l'e|® BASIC PROGRAMMING MODEL

2.1.1 Unsegmented or “Flat” Model

The simplest memory model is the flat model. Although there isn’t a mode bit or control
register which turns off the segmentation mechanism, the same effect can be achieved by
mapping all segments to the same linear addresses. This will cause all memory opera—
tions to refer to the same memory space.

In a flat model, segments may cover the entire 4 gigabyte range of physical addresses, or
they may cover only those addresses which are mapped to physical memory. The advan-
tage of the smaller address space is it provides a minimum level of hardware protection
against software bugs; an exception will occur if any logical address refers to an address
for which no memory exists.

2.1.2 Segmented Model

In a segmented model of memory organization, the logical address space consists of as
many as 16,383 segments of up to 4 gigabytes each, or a total as large as 2*° bytes (64
terabytes). The processor maps this 64 terabyte logical address space onto the physical
address space (up to 4 gigabytes) by the address translation mechanism described in
Chapter 5. Application programmers may ignore the details of this mapping. The advan-
tage of the segmented model is that offsets within each address space are separately
checked and access to each segment can be individually controlled.

A pointer into a segmented address space consists of two parts (see Figure 2-1).
1. A segment selector, which is a 16-bit field which identifies a segment.

2. An offset, which is a 32-bit byte address within a segment.

The processor uses the segment selector to find the linear address of the beginning of
the segment, called the base address. Programs access memory using fixed offsets from
this base address, so an object-code module may be loaded into memory and run without
changing the addresses it uses (dynamic linking). The size of a segment is defined by the
programmer, so a segment can be exactly the size of the module it contains. -

2 2 DATA TYPES

Bytes, words, and doublewords are the prmc1pa1 data types (see Flgure 2-2). A byte is
eight bits. The bits are numbered 0 through 7, bit 0 being the least significant bit (LSB).

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits.
The bits of a word are numbered from 0 through 15, bit 0 again being the least signifi-
cant bit. The byte containing bit 0 of the word is'called the low byte; the byte containing
bit 15 is called the high byte. On the Intel486 processor, the low byte is stored in the byte
with the lower address. The address of the low byte also is the address of the word. The
address of the high byte is used only when the upper half of the word is being accessed
separately from the lower half. -

2-3

|nte|@ BASIC PROGRAMMING MODEL

OPERAND
‘* OFFSET WITHIN SEGMENT
SEGMENT SELECTOR
15 0
SEGMENT SELECTOR
31 0
OFFSET WITHIN SEGMENT

240486i2-1

Figure 2-1. Segmented Addressing

A doubleword is four bytes occupying any four consecutive addresses. A doubleword
contains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again
being the least significant bit. The word containing bit 0 of the doubleword is called the
low word; the word containing bit 31 is called the high word. The low word is stored in
the two bytes with the lower addresses. The address of the lowest byte is the address of
the doubleword. The higher addresses are used only when the upper word is being
accessed separately from the lower word, or when individual bytes are being accessed.
Figure 2-3 illustrates the arrangement of bytes within words and doublewords.

Note that words do not need to be aligned at even-numbered addresses and double-
words do not need to be aligned at addresses evenly divisible by four. This allows maxi-
mum flexibility in data structures (e.g., records containing mixed byte, word, and
doubleword items) and efficiency in memory utilization. Because the Intel486 processor
has a 32-bit data bus, communication between processor and memory takes place as

2-4

BASIC PROGRAMMING MODEL

15
| HIGH BYTE I

LOW BYTE J WORD

address N +1 address N
31 15 0
l HIGH WORD I LOW WORD
address N +3 address N +2 address N+ 1 address N

] DOUBLEWORD

240486i2-2
Figure 2-2. Fundamental Data Types
E
DOUBLEWORD AT ADDRESS A
CONTAINS 7AFE0636 7A D
FE c
WORD AT ADDRESS B CONTAINS FE06
06 B
l 36 A
RN A
BYTE AT ADDRESS 9 CONTAINS 1F 1F 9
f 8
23 7
WORD AT ADDRESS 6 CONTAINS 230B o 6
5
. 4
WORD AT ADDRESS 2 CONTAINS 74CB) 74 3
f cB 2
WORD AT ADDRESS 1 CONTAINS CB31 -
I 31 1
0
240486i2-3

Figure 2-3. Bytes, Words, and Doublewords in Memory

2-5

|nte|® BASIC PROGRAMMING MODEL

doubleword transfers aligned to addresses evenly divisible by four; the processor con-
verts doubleword transfers aligned to other addresses into multiple transfers. These
unaligned operations reduce speed by requiring extra bus cycles. For maximum speed,
data structures (especially stacks) should be designed so, whenever possible, word oper-
ands are aligned to even addresses and doubleword operands are aligned to addresses
evenly divisible by four.

Although bytes, words, and doublewords are the fundamental types of operands, the
processor also supports additional interpretations of these operands. Specialized instruc-
tions recognize the following data types (shown in Figure 2-4):

e lInteger: A signed binary number held in a 32-bit doubleword, 16-bit word, or 8-bit
byte. All operations assume a two’s complement representation. The sign bit is
located in bit 7 in a byte, bit- 15 in a word, and bit 31 in a doubleword: The sign bit is
set for negative integers, clear for positive integers and zero. The value of an 8-bit
integer is from —128 to +127; a 16-bit integer from —32,768 to +32,767; a 32-bit
integer from —23! to +23! —1.

o Ordinal: An unsigned binary number contained in a 32-bit doubleword, 16-bit word,
or 8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a 16-bit ordinal from 0 to
165,535; a 32-bit ordinal from 0 to 2°2 — 1.

e Near Pointer: A 32-bit logical address. A near pointer is an offset within a segment
Near pointers are used for all pointers in a flat memory model, or for references
within a segment in a segmented model.

e Far Pointer: A 48-bit logical address consisting of a 16-bit segment selector and a
32-bit offset. Far pointers are used in a segmented memory model to access other
segments. ’

° Stnng A contlguous sequence of bytes, words, or doublewords. A string may contain
from zero to 2°° — 1 bytes (4 gigabytes).

e Bit field: A contiguous sequence of bits. A bit field may begin at any bit position of
any byte and may contain up to 32 bits.

e Bit string: A contiguous sequence of bits. A bit string may begin. at any bit position of
any byte and may contain up to 232 — 1 bits.

o BCD: A representation of a binary-coded decimal (BCD) digit in the range 0 through
9. Unpacked decimal numbers are stored as unsigned byte quantities. One digit is
stored in each byte. The magnitude of the number.is the binary value of the low-order
half-byte; values 0 to 9 are valid and are interpreted as the value of a digit. The
high-order half-byte must be zero during multlphcatlon and division; 1t may contain
any value during addition and subtraction.

e Packed BCD: A representation of binary-coded decimal digits, each in the range 0 to
9. One digit is stored in each half-byte, two digits in each byte. The digit in bits 4 to 7
is more significant than the digit in bits 0 to 3. Values 0 to 9 are valid for a digit.

o Floating-Point Types: For a discussion of the data types used by floating-point instruc-
tions, see Chapter 15.

2-6

BASIC PROGRAMMING MODEL

7 0
RARLIAM
—
—»ll<_
15 0
T
—
e f—
31 0
—lf— '
7 0
| RARARARS |
—
15 0
| ISR RAAS RARLLAL|
—
31 0
ey vt
< =~
N)
[MJoee [T
—]
—_]
N 0
[Mloeoe [T
—1 |
—_—
31 0
| AELAAR RARMRAARS MM RS MAAR MM |
> ~
47 31) 0
| RASLAAAS AR AR GARE SAASLAASE RN RARE MAALAR |

= ‘ -
1
[ll‘lI"'I'lllll'l'lll"lIII'l'llllllll'llll'lllll

[T T e e 0 [T

T T eee [T

BYTE INTEGER
7-BIT MAGNITUDE
'—BIT SIGN

WORD INTEGER
15-BIT MAGNITUDE
1-BIT SIGN

DOUBLEWORD INTEGER
31-BIT MAGNITUDE

1-BIT SIGN

BYTE ORDINAL
8-BIT MAGNITUDE

WORD ORDINAL
16-BIT MAGNITUDE

DOUBLEWORD ORDINAL
32-BIT MAGNITUDE

BCD INTEGER
4-BIT DIGIT PER BYTE
4-BIT DIGIT PER BYTE

PACKED BCD INTEGER
4-BIT PER HALF-BYTE
4.BIT PER HALF-BYTE

NEAR POINT
32-BIT OFFSET
4.BIT DIGIT PER BYTE

FAR POINTER
32-BIT OFFSET
16-BIT SELECTOR

BIT FIELD
UP TO 32 BITS

BIT STRING
UP TO 4 GIGABITS

BYTE STRING
UP TO 4 GIGABYTES

240486i2-4

Figure 2-4. Data Types

2-7

|nte|® BASIC PROGRAMMING MODEL

2.3 REGISTERS

The Intel486 processor contains sixteen registers which may be used by an application
programmer. As Figure 2-5 shows, these registers may be grouped as:

- 1. General registers. These eight 32-bit registers are free for use by the programmer.

- 2. Segment registers. These registers hold-segment selectors associated with different
forms of memory access. For example, there are separate segment registers for
access to code and stack space. These six registers determine, at any given time,
which segments of memory are currently available.

3. Status and control registers. These registers report and- allow modification of the
state of the Intel486 processor.

2.3.1 General Registers

The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI,
and EDI. These registers are used to hold operands for logical and arithmetic opera-
tions. They also may be used to hold operands for address calculations (except the ESP
register cannot be used as an index operand). The names of these registers are derived
from the names of the general registers on the 8086 processor, the AX, BX, CX, DX,
BP, SP, SI, and DI registers. As Table 2-1 shows, the low 16 bits of the general registers
can be referenced using these names.

Each byte of the 16-bit 'régisters AX, BX, CX, and DX also have other names. The byte
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low
bytes). -

Table 2-1. Register Names

8-Bit . : 16-Bit : 32-Bit
AL AX EAX
AH _
BL ¢ .. : BX EBX.
BH ‘
cL)¢ ' ECX
CH
DL ‘ DX , EDX
DH i . :
sl ESI
DI EDI
BP EBP
SP ESP

2-8

BASIC PROGRAMMING MODEL

GENERAL REGISTERS

31 23 15 7
AH AL
DH _ DL
CH cL
BH BL
BP
s|
DI
sP

31

SEGMENT REGISTERS
15

cs

SS

DS

ES

FS

GS

STATUS AND CONTROL REGISTERS

EFLAGS

EIP

16-BIT

AX

DX

CcX

BX

32-BIT
EAX

EDX

" ECX

EBX

EBP
ESI
EDI

ESP

240486i2-5

Figure 2-5. Application Register Set

2-9

Inte|® BASIC PROGRAMMING MODEL

All of the general-purpose registers are available for address calculations and for the
results of most arithmetic and logical operations; however, a few instructions assign
specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. By assigning specific registers for these
functions, the instruction set can be encoded more compactly. The instructions using
specific registers include: double-precision multiply and divide, I/O, strings, translate;
loop, variable shift and rotate, and stack operations.

2.3.2 Segment Registers

Segmentation gives system designers the flexibility to choose among various models of
memory organization. Implementation of memory models is the subject of Part
II —System Programming:

The segment registers contain -16-bit segment selectors, which index into tables in mem-
ory. The tables hold the base address for each segment, as well as other information
regarding memory access. An unsegmented model is created by mapping each segment
to the same place in physical memory, as shown in Figure 2-6.

At any instant, up to six segments of memory are immediately available. The segment
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments:
Each register is associated with a particular kind of memory access (code, data, or stack).
Each register specifies a segment, from among the segments used by the program, which
is used for its kind of access (see Figure 2-7). Other segments can be used by loading
their segment selectors into the segment registers.

DIFFERENT LOGICAL SEGMENTS ONE PHYSICAL ADDRESS SPACE

GS
FS
ES
DS

Ccs

SS

240486i2-6

Figure 2-6. An Unsegmented Memory

2-10

InteL BASIC PROGRAMMING MODEL

DIFFERENT LOGICAL SEGMENTS DIFFERENT ADDRESS SPACE
IN PHYSICAL MEMORY

cs
SS

DS CODE
ES SEGMENT

FS

STACK
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

240486i2-7

Figure 2-7. A Segmented Memory

The segment containing the instructions being executed is called the code segment. Its
segment selector is held in the CS register. The Intel486 processor fetches instructions
from the code segment, using the contents of the EIP register as an offset into the
segment. The CS register is loaded as the result of interrupts, exceptions, and instruc-
tions which transfer control between segments (e.g., the CALL, IRET and JMP
instructions). '

Before a procedure is called, a region of memory needs to be allocated for a stack. The
stack is used to hold the return address, parameters passed by the calling routine, and
temporary variables allocated by the procedure. All stack operations use the SS register
to find the stack segment. Unlike the CS register, the SS register can be loaded explic-
itly, which permits application programs to set up stacks.

The DS, ES, FS, and GS registers allow as many as four data segments to be available
simultaneously. Four data segments give efficient and secure access to different types of
data structures. For example, separate data segments can be created for the data struc-
tures of the current module, data exported from a higher-level module, a dynamically-
created data structure, and data shared with another program. If a bug causes a program
to run wild, the segmentation mechanism can limit the damage to only those segments
allocated to the program. An operand within a data segment is addressed by specifying
its offset either in an instruction or a general register..

2-11

Inte|® BASIC PROGRAMMING MODEL

Depending on the structure of data (i.e., the way data is partitioned into segments), a
program may require access to more than four data segments. To access additional
segments, the DS, ES, FS, and GS registers can be loaded by an application program
-during execution. The only requirement is to load the appropriate segment register
before accessing data in its segment.

A base address is kept for each segment. To address data within a segment, a 32-bit
offset is added to the segment’s base address. Once a segment is selected (by loading the
segment selector into a segment register), an instruction only needs to specify the offset.
Simple rules define which segment register is used to form an address when only an
offset is specified.

2.3.3 Stack Implementation

Stack operations are supported by three registers:

1. Stack Segment (SS) Register: Stacks reside in memory. The number of stacks in a
system is limited only by the maximum number of segments. A stack may be up to 4
gigabytes long, the maximum size of a segment on the Intel486 processor. One stack
is available at a time —the stack whose segment selector is held in the SS register.
This is the current stack, often referred to simply as “the” stack. The SS register is
used automatically by the processor for all stack operations.

2. Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack
(TOS) in the current stack segment. It is used by PUSH and POP operations, sub-
routine calls and returns, exceptions, and interrupts. When an item is pushed onto
the stack (see Figure 2-8), the processor decrements the ESP register, then writes
the item at the new TOS. When an item is popped off the stack, the processor
copies it from the TOS, then increments the ESP register. In other words, the stack
grows down in memory toward lesser addresses.

3. Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to
access data structures passed on the stack. For example, on entering a subroutine
the stack contains the return address and some number of data structures passed to
the subroutine. The subroutine adds to the stack whenever it needs to create space
for temporary local variables. As a result, the stack pointer moves around as tempo-
rary variables are pushed and popped. If the stack pointer is copied into the base
pointer before anything is pushed on the stack, the base pointer can be used to
reference data structures with fixed offsets. If this is not done, the offset to access a
particular data structure would change whenever a temporary variable is allocated
or de-allocated.

When the EBP register is used to address memory, the current stack segment is
selected (i.e., the SS segment). Because the stack segment does not have to be
specified, instruction encoding is more compact. The EBP register also can be used
to address other segments.

Instructions, such as the ENTER and LEAVE instructions, are provided which
automatically set up the EBP register for convenient access to variables.

2-12

Inte|® BASIC PROGRAMMING MODEL

STACK SEGMENT
31 0
BOTTOM OF STACK
(INITIAL ESP VALUE)
TOP OF STACK < ESP
PUSHES PUT THE POPS PUT THE
TOP OF STACK AT TOP OF STACK AT
LOWER ADDRESSES HIGHER ADDRESS
240486i2-8

Figure 2-8. Stacks

2.3.4 Flags Register

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register
named EFLAGS. Figure 2-9 defines the bits within this register. The flags control cer-
tain operations and indicate the status of the Intel486 processor.

The flags may be considered in three groups: status flags, control flags, and system flags.
Discussion of the system flags occurs in Part II.

2.3.4.1 STATUS FLAGS

The status flags of the EFLAGS register report the kind of result produced from the
execution of arithmetic instructions. The MOV instruction does not affect these flags.
Conditional jumps and subroutine calls allow a program to sense the state of the status
flags and respond to them. For example, when the counter controlling a loop is decre-
mented to zero, the state of the ZF flag changes, and this change can be used to sup-
press the conditional jump to the start of the loop.

The status flags are shown in Table 2-2.

2.3.4.2 CONTROL FLAG
The control flag DF of the EFLAGS register controls string instructions.

DF (Direction Flag, bit 10)

2-13

intgl.

BASIC PROGRAMMING MODFEL

111111111
8765432109876543210
Alv|r| |N| & lolp|1|T|s|z|.|A| . |P|.|c

ojojojolo|o]ojojojojoio|clyle|olT| & |F[F|r|F|FIF|O|F|O|F||F

j AAAAAA A A A

X . ALIGNMENT CHECK (AC)

X VIRTUAL 8086 MODE (VM)

X RESUME FLAG (RF)

X NESTED TASK (NT)

X /0 PRIVILEGE LEVEL (IOPL)

S OVERFLOW FLAG (OF)

C DIRECTION FLAG (DF)

X INTERRUPT ENABLE FLAG (IF)

X TRAP FLAG (TF)

S SIGN FLAG (SF)

S ZERO FLAG (ZF)

S AUXILIARY CARRY FLAG (AF)

S PARITY FLAG (PF)-

S CARRY FLAG (CF)

S INDICATES A STATUS FLAG

C INDICATES A CONTROL FLAG

X INDICATES A SYSTEM FLAG

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED.
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ.

240486i2-9

Figure 2-9. EFLAGS Register

Tabie 2-2. Status Flags

Name Purpose Condition Reported
OF overflow Result exceeds positive or negative limit of number range
SF sign Result is negative (less than zero)
ZF zero " Result is zero
AF auxiliary carry Carry out of bit.position 3 (used for BCD)
-PF - parity Low byte of result has even parity (even number of set bits)
CF carry flag Carry out of most significant bit of result

Setting the DF flag causes string instructions to auto-decrement, that is, to process
strings from high addresses to low addresses. Clearing the DF flag causes string instruc-
tions to auto-increment, or to process strings from low addresses to high addresses.

2.3.4.3 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for
the next instruction to execute. The instruction pointer is not directly available to the

2-14

Inte|® BASIC PROGRAMMING MODEL

programmer; it is controlled implicitly by control-transfer instructions (jumps, returns,
etc.), interrupts, and exceptions. .

The EIP register is advanced from one instruction boundary to the next. Because of
instruction prefetching, it is only an approximate indication of the bus activity which
loads instructions into the processor.

The Intel486 processor does not fetch single instructions. The processor prefetches
aligned 128-bit blocks of instruction code in advance of instruction execution. (An
aligned 128-bit block begins at an address which is clear in its low four bits.) These
blocks are fetched without regard to the boundaries between instructions. By the time an
instruction starts to execute, it already has been loaded into the processor and decoded.
This is a performance feature, because it allows instruction execution to be overlapped
with instruction prefetch and decode.

When a jump or call is executed, the processor prefetches the entire aligned block con-
taining the destination address. Instructions which have been prefetched or decoded are
discarded. If a prefetch would generate an exception, such as a prefetch beyond the end
of the code segment, the exception is not reported until the execution of an instruction
containing at least one exception-generating byte. If the instruction is discarded, no
exception is generated.

In real mode prefetching may cause the processor to access addresses not anticipated by
programmers. In protected mode exceptions are correctly reported when these addresses
are executed. There may not be hardware mechanisms which account for real mode
behavior of the processor. For example, if a system does not return the RDY# signal
(the signal which terminates a bus cycle) for bus cycles to unimplemented addresses,
prefetching must be prevented from referencing these addresses. If a system implements
parity checking, prefetching must be prevented from accessing addresses beyond the end
of parity-protected memory. (Alternatively, RDY# can be returned even for bus cycles
to unimplemented addresses, and parity errors can be ignored on prefetches beyond the
end of parity-protected memory.)

Prefetching can be kept from referencing a particular address by placing enough dis-
tance between the address and the last executable byte. For example, to keep prefetch-
ing away from addresses in the block from 10000H to 1000FH, the last executable byte
should be no closer than OFFEEH. This places one free byte followed by one free,
aligned, 128-bit block between the last byte of the last instruction and the address which
must not be referenced. The prefetching behavior of the Intel486 processor is
implementation-dependent; future Intel products may have different prefetching
behavior. ‘

2.4 INSTRUCTION FORMAT

The information encoded in an instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these oper-
ands. If an operand is located in memory, the instruction also must select, explicitly or
implicitly, the segment which contains the operand.

2-15

Intel o BASIC:PROGRAMMING MODEL

An instruction may have various parts and formats. The exact format of instructions is
shown in Appendix A; the parts of an instruction are-described below. Of these parts,
only the opcode is always present. The other parts may or may not be present, depending
on the operation involved and the location and type of the operands. The parts of an
instruction, in order of occurrence, are listed below: SRS

o Prefixes: one or more bytes preceding an instruction which modify the operation of
 the instruction. The following prefixes can be used by application programs:

1. Segment override —explicitly specifies which segment reglster an _instruction
-should use, 1nstead of the default segment regrster

2. Address srze—sw1tches between 16- and 32- brt addressmg Elther size can be the
default; this prefix selects the non-default size.

3. Operand size —switches between 16- and 32-bit data size. Either :size can be the
default; this, prefix selects the. non-default size. :

4. Repeat—used with a string instructfon to cause the instruction to be repeated for
each element of the, string.,

e Opcode: specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different form of the operation.

e Register specifier: an instruction may specify one or two register operands. Register
specifiers occur either in the same byte as the opcode or in the same byte as the
addressing-mode spe01f1er

e Addressing-mode specifier' when present, specifies whether an operand is a register
or memory location; if in memory, specifies-whether a: dlsplacement .a base register,
an index register, and scaling are to be used. :

e SIB (scale, index, basé) byte: when the addressing-mode specifier indicates an index
register will be used to calculate the address of an operand, a SIB byte is included in
the 1nstruct10n to encode the base reglster the 1ndex register, and a scaling factor.

o Displacement: when the addressing-mode-speci_fier indicates a displacement will be
used to compute the address of an operand, the.displacement is encoded in the
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is
used in the common case when the displacement is sufficiently small. The processor
extends an 8-bit displacement to 16 or 32 bits, taking into account the sign.

¢ Immediate operand: when present, directly provides the value of an operand. Imme-
“diate operands may be bytes, words, or doublewords. In cases where an 8-bit imme-
diate operand is used with a 16- or 32-bit operand, the processor extends the eight-bit
operand to an integer of the same sign and magnitude in the larger size. In the same
way, a 16-bit operand is extended to 32-bits. R '

2-16

InteL BASIC PROGRAMMING MODEL

2.5 OPERAND SELECTION

An instruction acts on zero or more operands. An example of a zero-operand instruction
is the NOP instruction (no operation). An operand can be held in any of these places:
o In the instruction itself (an immediate operand).

o In a register (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP,
or EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the
case of 8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers;
or the EFLAGS register for flag operations). Use of 16-bit register operands requires
use of the 16-bit operand size prefix (a byte with the value 67H preceding the
instruction).

e In memofy.

o At an I/O port.

Access . to operands is very fast. Register and immediate operands are available
on-chip —the latter because they are prefetched as part of interpreting the instruction.
Memory operands residing in the on-chip cache can be accessed just as fast.

Of the instructions which have operands, some specify operands implicitly; others specity
operands explicitly; still others use a combination of both. For example:

Implicit operand: AAM

By definition, AAM (ASCII adjust for multiplication) operates on the contents of
the AX register.

Explicit operand: XCH6 EAX, EBX
The operands to be exchanged are encoded in the instruction with the opcode.
Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER (the explicit operand) is copied to the top of the
stack (the implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for exam-
ple, update the EFLAGS register.

An instruction can explicitly reference one or two operands. Two-operand instructions,
such as MOV, ADD, and XOR, generally overwrite one of the two participating oper-
ands with the result. This is, the difference between the source operand (the one unaf-
fected by the operation) and the destination operand (the one overwritten by the result).

2-17

|nte|® BASIC PROGRAMMING MODEL

For most instructions, one of the two explicitly specified operands —either the source or
the destination —can be either in a register or in memory. The other operand must be in
a register or it must be an immediate source operand. This puts the explicit two-operand
instructions into the following groups:

e Register-to register

¢ Register to memory

e Memory to register

¢ Immediate to register

e Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data
from memory to memory. Both operands of some string instructions are in memory and

are specified implicitly. Push and pop stack operations allow transfer between memory
operands and the memory-based stack.

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD
instructions. Two of the three operands are specified explicitly, as for the two-operand
instructions, while a third is taken from the ECX register or supplied as an immediate.
Other three-operand instructions, such as the string instructions when used with a repeat
prefix, take all their operands from registers.

2.5.1 Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of
the operands. Such an operand is called an immediate operand. It may be a byte, word,

or doubleword. For example:

SHR PATTERN, 2

One byte of the instruction holds the value 2, the number of bits by which to shift the
variable PATTERN. '

TEST PATTERN, OFFFF@BFFH

A doubleword of the instruction holds the mask which is used to test the variable
PATTERN. '

InuL ¢X, MEMWORD, 3
A word in memory is multiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate
value. When the destination is the EAX or AL register, the instruction encoding is one
byte shorter than with the other general registers.

2-18

Inteh BASIC PROGRAMMING MODEL

2.5.2 Register Operands

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX,
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI,
DI, SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL,
or DL).

The Intel486 processor has instructions for referencing the segment registers (CS, DS,
ES, SS, FS, and GS). These instructions are used by application programs only if system
designers have chosen a segmented memory model.

The. Intel486 processor also has instructions for changing the state of individual flags in
the EFLAGS register. Instructions have been provided for setting and clearing flags
which often need to be accessed. The other flags, which are not accessed so often, can be
changed by pushing the contents of the EFLAGS register on the stack, makmg changes
to it while it’s on the stack, and popping it back into the register.

2.5.3 Memory Operands

Instructions with explicit operands in memory must reference the segment containing
the operand and the offset from the beginning of the segment to the operand. Segments
are specified using a segment-override prefix, which is a byte placed at the beginning of
an instruction. If no segment is specified, simple rules assign the segment by default The
offset is specified in one of the following ways:

1. Most instructions which access memory contain a byte for specifying the addressing
method of the operand. The byte, called the modR/M byte, comes after the opcode
and specifies whether the operand is in a register or in memory. If the operand is in
memory, the address is calculated from a segment register and any of the following
values: a base register, an index register, a scaling factor, and a displacement. When
an index register is used, the modR/M byte also is followed by another byte to
specify the index register and scaling factor. This form of addressing is the most
flexible.

2. A few instructions use implied address modes:

A MOV instruction with the AL or EAX register as either source or destination can
address memory with a doubleword encoded in the instruction. This special form of
the MOV instruction allows no base register, index register, or scaling factor to be
used. This form is one byte shorter than the general-purpose form.

String operations address memory in the DS segment using the ESI register, (the
MOVS, CMPS, OUTS, and LODS instructions) or using the ES segment and EDI
register (the MOVS, CMPS, INS, SCAS, and STOS instructions).

Stack operations address memory in the SS segment using the ESP register (the
PUSH, POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF,
POPFD, CALL LEAVE, RET, IRET, and IRETD instructions, exceptions, and
interrupts).

2-19

Inte|® BASIC PROGRAMMING MODEL

2.5.3.1 SEGMENT SELECTION

Explicit specification of a segment is optional. If a segment is not specified using a
segment-override prefix, the processor automatically chooses a segment according to the
rules of Table 2-3. (If a flat model of memory organization is used, the rules for selecting
segments are not apparent to application programs.)

Different kinds of memory access have different default segments. Data operands usu-
ally use the main data segment (the DS segment). However, the ESP and EBP registers
are used for addressing the stack, so when either register is used, the stack segment (the
SS segment) is selected.

Segment-override prefixes are provided for each of the segment registers. Only the fol-
lowing special cases have a default segment selection which is not affected by a segment-
override prefix:

o Destination strings in string instructions use the ES segment
¢ Destination of a push or source of a pop uses the SS segment

o Instruction fetches use the CS segment

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION

The modR/M byte provides the most flexible form of addressing. Instructions which have
a modR/M byte after the opcode are the most common in the instruction set. For mem-
ory operands specified by a modR/M byte, the offset within the selected segment is the
sum of three components: ‘

¢ A displacement
e A base register

e An index register (the index register may be multiplied by a factor of 2, 4, or 8)

Table 2-3. Default Segment Selection Rules

Segment Used

Register Used Default Selection Rule

Type of Reference

Instructions Code Segment ' Automatic with instruction fetch.
CS register ‘

Stack Stack Segment All stack pushes and pops. Any mem-
SS register ory reference which uses ESP or EBP

as a base register.

Local Data Data Segment All data references except when rela-
DS register tive to stack or string destination.
Destination Strings E-Space Segment Destination of string instructions.
ES register

2-20

"Tl'el@ BASIC PROGRAMMING MODEL

The offset which results from adding these components is called an effective address.
Each of these components may have either a positive or negative value. Figure 2-10
illustrates the full set of possibilities for modR/M addressing.

The displacement component, because it is encoded in the instruction, is useful for
relative addressing by fixed amounts, such as:

e Location of simple scalar operands.

e Beginning of a statically allocated array.

o Offset to a field within a record.

The base and index components have similar functions. Both use the same set of general

registers. Both can be used for addressing which changes during program execution,
such as:

e Location of procedure parameters and local variables on the stack.

o The beginning of one record among several occurrences of the same record type or in
an array of records.

e The beginning of one dimension of rhultiple dimension array.

o The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ in the following
respects:

e The ESP register cannot be used as an index register.
e When the ESP or EBP I‘PUIQ ter is used as fh' b S

er 18 S thn ae_‘.A.‘
selection. In all other cases, the DS segment is the default selection.

The scaling factor permits efficient indexing into an array when the array elements are 2,
4, or 8 bytes. The scaling of the index register is done in hardware at the time the
address is evaluated. This eliminates an extra shift or multiply instruction.

SEGMENT + BASE + (INDEX * SCALE) + DISPLACEMENT

EAX EAX 1
CS ECX ECX .
$S EDX EDX 2 NO DISPLACEMENT
DS b+ EBX L S EBX S +< 8-BIT DISPLACEMENT
2 524 EBP 4 32.BIT DISPLACEMENT
GS ESI ESI 8

EDI - | EDI

240486i2-10

Figure 2-10. Effective Address Computation

2-21

|nte|® BASIC PROGRAMMING MODEL

The base, index, and displacement components may be used in any combination; any of
these components may be null. A scale factor can be used only when an index also is
used. Each possible combination is useful for data structures commonly used by pro-
grammers in high-level languages and assembly language. Suggested uses for some com-
binations of address components are described below.

DISPLACEMENT

The displacement alone indicates the offset of the operand. This form of addressing is
used to access a statically allocated scalar operand. A byte, word, or doubleword dis-
placement can be used.

BASE

The offset to the operand is specified indirectly in one of the general registers, as for
“based” variables.

BASE + DISPLACEMENT

A register and a displacement can be used together for two distinct purposes:

1. Index into static array when the element size is not 2, 4, or 8 bytes. The displace-
ment component encodes the offset of the beginning of the array. The register holds
the results of a calculation to determine the offset to a specific element within the
array. '

2. Access a field of a record. The base register holds the address of the beginning of
the record, while the displacement is an offset to the field.

An important. special case of this combination is access to parameters in a procedure
activation record. A procedure activation record is the stack frame created when a sub-
routine is entered. In this case, the EBP register is the best choice for the base register,
because it automatically selects the stack segment. This is a compact encoding for this
common function. :

(INDEX * SCALE) + DISPLACEMENT

This combination is an efficient way to index into a static array when the element size is
2, 4, or 8 bytes. The displacement addresses the beginning of the array, the index register
holds the subscript of the desired array element, and the processor automatically con-
verts the subscript into an index by applying the scaling factor.

' BASE + INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement
holds the address of the beginning of the array) or one of several instances of an array of
records (the displacement is an offset to a field within the record).

2-22

|nte|@ BASIC PROGRAMMING MODEL

BASE + (INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the ele-
ments of the array are 2, 4, or 8 bytes in size.

2.6 INTERRUPTS AND EXCEPTIONS

The Intel486 processor has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events which are responses of the processor to certain
conditions detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily sus-
pend the program being run in order to run a program of higher priority. The major
distinction between these two kinds of interrupts is their origin. An exception is always
reproducible by re-executing the program which caused the exception, while an interrupt
can have a complex, timing-dependent relationship with programs. :

Application programmers normally are not concerned with handling exceptions or inter-
rupts. The operating system, monitor, or device driver handles them. More information
on interrupts for system programmers may be found in Chapter 9. Certain kinds of
exceptions, however, are relevant to-application programming, and many operating sys-
tems give application programs the opportunity to service these exceptions. However,
the operating system defines the interface between the application program and the
exception mechanism of the Intel486 processor. Table 2-4 lists the interrupts and
exceptions.

e A divide-error exception results when the DIV or IDIV instruction is executed with a
zero denominator or when the quotient is too large for the destination operand. (See
Chapter 3 for more information on the DIV and IDIV instructions.)

¢ A debug exception may be sent back to an application program if it results from the
TF (trap) flag. .

e A breakpoint exception results when an INT3 instruction is executed. This instruction
is used by some debuggers to stop program execution at specific points.

¢ An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction.

¢ A bounds-check exception results when the BOUND instruction is executed with an
array index which falls outside the bounds of the array. See Chapter 3 for a discussion
of the BOUND instruction.

e The device-not-available exception occurs whenever the processor encounters an
escape instruction and either the TS (task switched) or the EM (emulate COPIocessor)
bit of the CRO control register is set.

2-23

|nte|® BASIC PROGRAMMING MODEL

Table 2-4. Exceptions-and Interrupts:

bY:I:tl:r Description .
0 Divide Error
1 Debugger Call
2 NMI Interrupt
3 Breakpoint
4 INTO-detected Overflow .
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
8 Double Fault
9 (Intel reserved. Do not use.
Not used by Intel486™ CPU.)
10. Invalid Task State Segment
11 Segment Not Present
12 Stack Exception
13 S General Protection R T LOTRe
14 ' Page Fault
15 (Intel reserved. Do not use.)
16 - ' : Floating-Point-Error
17 Alignment Check
18-31 : (Intel reserved. Do not use.)
32-255 o - 'Maskable Interrupts

¢ An alignment-check exception is generated for unaligned memory: operations: in user
mode (nrrvnlpcp level 3), nrnvrdpd both AM and AC are set. Memory nnemtmnc at

superv1sor mode (prrvrlege levels 0, 1, and 2), or memory operatrons whrch default to
supervisor mode, do not generate thls exception.

The INT instruction generates an interrupt whenever it is executed; the processor treats
this interrupt as an exception. Its effects (and the effects of all other exceptions) are
determined by exception handler routines in the application program .or .the operating
system. The INT instruction itself is discussed in Chapter 3. See Chapter 9 for a more
complete description of exceptlons :

Exceptions caused by segmentatlon and pagmg are handled dlfferently than 1nterrupts
Normally, the contents of the program counter (EIP register) are saved on the stack
when an exception or interrupt is generated. But exceptions resulting from segmentation
and paging restore the contents of some processor registers to their state before interpre-
tation of the instruction began. The saved contents of the program counter:address the
instruction which caused the exception, rather than the instruction after it. This lets the
operating system fix the exception-generating condition and restart the program which
- generated the exceptlon This mechamsm is completely transparent to the program '

2-24

Application Programming

CHAPTER 3
APPLICATION PROGRAMMING

This chapter is an overview of the integer instructions which programmers can use to
write application software for the Intel486 processor. The instructions are grouped by
categories of related functions. (Additional application instructions for operating on
floating-point operands are described in Part III.)

The instructions not discussed in this chapter or Part III normally are used only by
operating-system programmers. Part II describes these system-level instructions.

These instruction descriptions are for the Intel486 processor in protected mode. The
instruction set in this mode is a 32-bit superset of the instruction set used in Intel 16-bit
processors. In real-address mode or virtual-8086 mode, the Intel486 processor appears to
have the architecture of a fast, enhanced 8086 processor with instruction set extensions.
See Chapters 21, 22, 23, 24 and 25 for more information about running the 16-bit
instruction set. All of the instructions described in this chapter are available in all
modes. .

“The instruction set descriptions in Chapter 26 contain more detailed information on all
instructions, including encoding, operation, timing, effect on flags, and exceptions which
may be generated.

3.1 DATA MIOVEMENT INSTRUCTIONS
These instructions provide convenient methods for moving bytes, words, or doublewords
between memory and the processor registers. They come in three types:

1. General-purpose data movement instructions.

2. Stack manipulation instructions.

3. Type-conversion instructions.

3.1.1 General-Purpose Data Movement Instructions

MOV (Move) transfers a byte, ‘word, or doubleword from the source operand to the
destination operand. The MOV instruction is useful for transferring data along any of
these paths: ’

e To a register from memory.
¢ To memory from a register.
¢ DBetween general registers.

e Immediate data to a register.

o Immediate data to memory.

3-1

Inte|® APPLICATION PROGRAMMING

The MOV instruction cannot move from memory to memory or from a segment register
to a segment register. Memory-to-memory moves can be performed, however, by the
string move instruction MOVS. A special form of the MOV instruction is provided for
transferring data between the AL or EAX registers and a location in memory specified
by a 32-bit offset encoded in the instruction. This form of the instruction does not allow
a segment override, index register, or scaling factor to be used. The encoding of this
form is one byte shorter than the encoding of the general-purpose MOV instruction. A
similar encoding is provided for moving an 8-, 16-, or 32-bit immediately into any of the
general registers.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place
of three MOV instructions. It does not require a temporary location to save the contents
of one operand while the other is being loaded. The XCHG instruction is especially
useful for implementing semaphores or -similar data structures for process
synchronization, ' ' ‘

The XCHG instruction can swap two byte operands, two word operands, or two double-
word operands. The operands for the XCHG instruction may be two register operands,
or a register operand and a memory operand. When used with a memory operand,
XCHG automatically activates the LOCK 51gnal (See Chapter 13 for more information
on bus locking.) ‘

3.1.2 Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (ESP register), then copies the source oper-
and to the top of stack (see Figure 3-1). The PUSH instruction often is used to place
parameters on the stack before calling a procedure. Inside a procedure, it can be used to
reserve space on the stack for temporary variables. The PUSH instruction operates on

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD

31 0 31 0

j«— ESP

DOUBLEWORD ’ J«—ESP

240486i3-1

Figure 3-1. PUSH Instruction

3-2

ﬂ[ﬁﬁ'eﬁ@ APPLICATION PROGRAMMING

memory operands, immediate operands, and register operands (including segment regis-
ters). A special form of the PUSH instruction is available for pushing a 32-bit general
register on the stack. This form has an encoding which is one byte shorter than the
general-purpose form.

PUSHA (Push All Registers) saves the contents of the eight general registers on the
stack (see Figure 3-2). This instruction simplifies procedure calls by reducing the number
of instructions required to save the contents of the general registers. The processor
pushes the general registers on the stack in the following order: EAX, ECX, EDX, EBX,
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the
PUSHA instruction is reversed using the POPA instruction.

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by
the ESP register) to the destination operand, and then increments the ESP register to
point to the new top of stack. See Figure 3-3. POP moves information from the stack to
a general register, segment register, or to memory. A special form of the POP instruction
is available for popping a doubleword from the stack to a general register. This form has
an encoding which is one byte shorter than the general-purpose form.

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION

31 . 0 31 0

<— ESP

EAX

ECX

EDX

EBX

OLD ESP

EBP

ESI

EDI «— ESP

240486i3-2

Figure 3-2. PUSHA Instruction

3-3

Inte|® APPLICATION PROGRAMMING

BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD

31 0 31 0

|«— ESP

DOUBLEWORD [<— ESP

240486i3-3

Figure 3-3. POP Instruction

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general
registers, except for the ESP register. The ESP register is restored by the action of
reading the stack (popping). See Figure 3-4.

3.1.3 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and

doublewords into 64-bit quantities (called quadwords). These instructions are especially

useful for converting signed integers, because they automatically fill the extra bits of the .
larger item with the value of the sign bit of the smaller item. This results in an integer of

the 'same sign and magnitude, but a larger format. This kind of conversion, shown in

Figure 3-5, is called sign extension. :

There are two kinds of type conversion instructions:

o The CWD, CDQ, CBW, and CWDE instructions which only operate on data in the
EAX register.

o The MOVSX and MOVZX instructions, which permit one operand to be in a general
register while letting the other operand be in memory or a register.

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word)
double the size of the source operand. The CWD-instruction copies the sign (bit 15) of
the word in the AX register into every bit position in the DX register. The CDQ instruc-
tion copies the sign (bit 31) of the doubleword in the EAX register into every bit posi-
tion in the EDX register. The CWD instruction can be used to produce a doubleword
dividend from a word before a word division, and the CDQ instruction .can be used to
produce a quadword dividend from a. doubleword before doubleword division.

3-4

|nte|® APPLICATION PROGRAMMING

BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION
31 0 31 0
l«— ESP
EAX
ECS
EDX
EBX
IGNORED
EBP
ESI
EDI e— ESP
240486i3-4
Figure 3-4. POPA Instruction
15 0
BEFORE SIGN
S[NINININININININININININININING Coor Do oL
31 ' 15 0
AFTER SIGN
s[s[s|s|s[s|s|s[s|s|s|S|s|s|S[S|SN|NIN[NININ[N[NIN[N[NININNINGE EontloN

240486i3-5

Figure 3-5. Sign Extension

3-5

In'l'e|® APPLICATION PROGRAMMING

CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into
every bit position in the AX register.

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word 1n'
the AX register into every bit position in the EAX register.

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by using the value of the sign to fill empty positions. ‘

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an'8- or
16-bit value to 32-bit value by clearing the empty bit positions.

3.2 BINARY ARITHMETIC INSTRUCTIONS

The arithmetic instructions of the Intel486 processor operate on numeric data encoded
in binary. Operations include the add, subtract, multiply, and divide as well as incre-
ment, decrement, compare, and change sign (negate). Both signed and unsigned binary
integers are supported. The binary arithmetic instructions may also be used as steps in
arithmetic on decimal integers. Source operands can be immediate values, general reg-
isters, or memory. Destination operands can be general registers or memory (except
when the source operand is in memory). The basic arithmetic instructions have special
forms for using an immediate value as the source operand and the AL or EAX registers
as the destination operand. These forms are one byte shorter than the general purpose
anthmetlc instructions. :

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of
result which was produced. The kind of instruction used to test the flags depends on
whether the data is being interpreted as signed or unsigned. The CF flag contains infor-
mation relevant to unsigned integers; the SF and OF flags contain information relevant
to signed integers. The ZF flag is relevant to both signed and unsigned integers; the ZF
flag is set when all bits of the result are clear.

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to
reflect the size of the operation. For example, an 8-bit ADD instruction sets the CF flag
if the sum of the operands exceeds 255 (decimal). (

If the integer is unsigned, the CF flag may be tested after one of these arithmetic oper-
ations to determine whether the operation required a carry or borrow to be propagated
to the next stage of the operation. The CF flag is set if a carry occurs (addition instruc-
tions ADD, ADC, AAA, and DAA) or borrow occurs (subtractlon instructions SUB,
SBB, AAS, DAS, CMP, and NEG).

The INC and DEC instructions do not change the state of the CF flag. This allows the
instructions to be used to update counters used for loop control without changing the
reported state of arithmetic results. To test the arithmetic state of the counter, the ZF.
flag can be tested to detect loop termination, or the ADD and SUB 1nstruct10ns can be
used to update the value held by the counter.

3-6

|nte|® ' APPLICATION PROGRAMMING

The SF and OF flags support signed integer arithmetic. The SF flag has the value of the
sign bit of ‘the result. The most significant bit (MSB) of the magnitude of a signed
integer is the bit next to the 51gn —Dbit 6 of a byte, bit 14 of a word, or bit 30 of a
doubleword. The OF flag is set in either of these cases:

e A carry was generated from the MSB into the sign bit but no carry was generated out
of the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other
words, the result was greater than the greatest positive number which could be rep-
resented in two’s complement form.

o A carry was generated from the sign bit into the MSB but no carry was generated into
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG).
In other words, the result was smaller than the smallest negative number which could
be represented:in two’s complement form. .

These status flags are tested by either kind of conditional instruction: Jec (Jump on
condltlon cc) or SETcc (byte set on condltlon)

3.2.1 Addition and Subtraction Instructions

ADD (Add Integers) replaces the destination operand: with the sum of the source and
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

ADC (Add Integers with Carry) replaces the destination operand with the sum of the
source and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the
ADC instruction performs the same operation as the ADD instruction. An ADC instruc-
tion is used to propagate carry when adding numbers in stages, for example when using
32-bit ADD instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF
flags are affected.

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the
state of the CF flag. This allows the use of INC instructions to update counters in loops
without disturbing the status flags resulting from an arithmetic operation used for loop
control. The ZF flag can be used to detect when carry would have occurred. Use an
ADD instruction with an immediate value of 1 to perform an increment which updates
the CF flag. A one-byte form of this instruction is available when the operand is a
general register. The OF, SF, ZF, AF, and PF flags are affected.

SUB (Subtract Integers) subtracts the source operand from the destination operand and
replaces the destination operand with the result. If a borrow is required, the CF flag is
set. The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF,
ZF, AF, PF, and CF flags are affected.

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination
operand and replaces the destination operand with the result, minus 1 if the CF flag is
set. If the CF flag is clear, the SBB instruction performs the same operation as the SUB
instruction. An SBB instruction is used to propagate borrow when subtracting numbers
in stages, for example when using 32-bit SUB instructions to subtract one'quadword
operand from another. The OF, SF, ZF, AF, PF, and CF flags are affected.

3-7

|nte| o APPLICATION PROGRAMMING

DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction pre-
serves the state of the CF flag. This allows the use of the DEC instruction to update
counters in loops without disturbing the status flags resulting from an arithmetic opera-
tion used for loop control. Use a SUB instruction with an immediate value of 1 to
perform a decrement which updates the CF flag. A one-byte form of this instruction is
available when the operand is a general register. The OF, SF, ZF, AF, and PF flags are
affected.

3.2.2 Comparison and Sign Change Instruction

CMP (Compare) subtracts the source operand from the destination operand. It updates
the OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination
operands. A subsequent Jcc or SETcc instruction can test the flags.

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG
instruction is to change the sign of a two’s complement operand while keeping its mag-
nitude. The OF, SF, ZF, AF, PF, and CF flags are affected.

3.2.3 Multiplication Instructions

The Inteld486 processor has separate multiply instructions for unsigned and signed oper-
ands. The MUL instruction operates on unsigned integers, while the IMUL instruction
operates on signed integers as well as unsigned.

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source
operand and the AL, AX, or EAX register. If the source is a byte, the processor multi-
plies it by the value held in the AL register and returns the double-length result in the
AH and AL registers. If the source operand is a word, the processor multiplies it by the
value held in the AX register and returns the double-length result in the DX and AX
registers. If the source operand is a doubleword, the processor multiplies it by the value
held in the EAX register and returns the quadword result in the EDX and EAX regis-
ters. The MUL instruction sets the CF and OF flags when the upper half of the result is
non-zero; otherwise, the flags are cleared. The state of the SF, ZF, AF, and PF flags is
undefined.

IMUL (Signed Integer Multiply) performs a signed multlphcatlon operatlon The IMUL
instruction has three forms:

1. A one-operand form. The operand may be a byte, word, or doubleword located in
-memory or in a general register. This instruction uses the EAX and EDX registers
as implicit operands in the same way as the MUL instruction.

2. A two-operand form. One of the source operands is in a general register while the
_ other may be in a general register or memory. The result replaces the general-
register operand.

3. A three-operand form; two are source operands and one is the destination. One of
the source operands is an immediate value supplied by the instruction; the second
may be in memory or in a general register. The result is stored in a general register.

3-8

APPLICATION PROGRAMMING

intel.

The immediate operand is a two’s complement signed integer. If the immediate
operand is a byte, the processor automatically sign-extends it to the size of the
second operand before performing the multiplication.

The three forms are similar in most respects:
o The length of the product is calculated to twice the length of the operands.

e The CF and OF flags are set when significant bits are carried into the upper half of

- the result. The CF and OF flags are cleared when the upper half of the result is the
sign-extension of the lower half. The state of the SF, ZF, AF, and PF flags is
undefined.

However, forms 2 and 3 differ because the product is truncated to the length of the
operands before it is stored in the destination register. Because of this truncation, the
OF flag should be tested to ensure that no significant bits are lost. (For ways to test the
OF flag, see the JO, INTO, and PUSHF instructions.)

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the
operands are signed or unsigned, the lower half of the product is the same. The CF and
OF flags, however, cannot be used to determine if the upper half of the result is
non-zero.

3.2.4 Division Instructions

The Intel486 processor has separate division instructions for unsigned and signed oper-
ands. The DIV instruction operates on unsigned integers, while the IDIV instruction
operates on both signed and unsigned integers. In either case, a divide-error exception is
generated if the divisor is zero or if the quotient is too large for the AL, AX, or EAX

ragictar
ICEIStCr.

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX
register by the source operand. The dividend (the accumulator) is twice the size of the
divisor (the source operand); the quotient and remainder have the same size as the
divisor, as shown in Table 3-1.

Non-integral results are truncated toward 0. The remainder is always smaller than the
divisor. For unsigned byte division, the largest quotient is 255. For unsigned word divi-
sion, the largest quotient is 65,535. For unsigned doubleword division the largest quo-
tient is 2°2—1. The state of the OF, SF, ZF, AF, PF, and CF flags is undefined.

Table 3-1. Operands for Division

Oper.a |:1d Size Dividend Quotient Remainder
(Divisor)

Byte AX register AL register AH register

Word DX and AX AX register DX register

Doubleword EDX and EAX EAX register EDX register

3-9

Intel o APPLICATION PROGRAMMING

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the
source operand. The IDIV instruction uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is.+127, and the minimum
negative quotient is —128. For signed word division, the maximum positive quotient is
+32,767, and the minimum negative quotient is —32,768. For signed doubleword divi-
sion the maximum positive quotient is 2°*—1, the minimum negative quotient is —23'.
Non-integral results are truncated towards 0. The remainder always has the same sign as
the dividend and is less than the divisor in magnitude. The state of the OF, SF, ZF, AF,
PF, and CF flags is undefined.

3.3 DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic is performed by combining the binary arithmetic instructions
(already discussed in the prior section) with the decimal arithmetic instructions. The
decimal arithmetic instructions are used in one of the following ways:

¢ To adjust the results of a previous binary arithmetic operation to produce a valid
packed or unpacked decimal result.

¢ To adjust the inputs to a subsequent binary arithmetic operation so that the operation
will produce a valid packed or unpacked decimal result. These instructions operate
only on the AL or AH registers. Most use the AF flag.

3.3.1 Packed BCD Adjustment Instructions

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed dec-
imal operands in the AL register. A DAA instruction must follow the addition of two
pairs of packed decimal numbers (one digit in each half-byte) to obtain a pair of valid
packed decimal digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF,
and CF flags are affected. The state of the OF flag is undefined.

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid
packed decimal operands in the AL register. A DAS instruction must always follow the
subtraction of one pair of packed decimal numbers (one digit in each half-byte) from
another to obtain a pair of valid packed decimal digits as results. The CF flag is set if a
borrow is needed. The SF, ZF, AF, PF, and CF flags are affected. The state of the OF
flag is undefined.

3.3.2 Unpacked BCD Adjustment Instructions

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow
the addition of two unpacked decimal operands in the AL register. The CF flag is set
and the contents of the AH register are incremented if a carry occurs. The AF and CF
flags are affected. The state of the OF, SF, ZF, and PF flags is undefined.

3-10

|nte| 0 APPLICATION PROGRAMMING

AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow
the subtraction of one unpacked decimal operand from another in the AL register. The
. CF flag is set and the contents of the AH register are decremented if a borrow is
needed. The AF and CF flags are affected. The state of the OF, SF, ZF, and PF flags is
undefined.

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of
two decimal numbers to produce a valid decimal result. The upper digit is left in the AH
register, the lower digit in the AL register. The SF, ZF, and PF flags are affected. The
state of the AF, OF, and CF flags is undefined.

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers
to prepare for the division of two valid unpacked decimal operands, so that the quotient
produced by the division will be a valid unpacked decimal number. The AH register
should contain the upper digit and the AL register should contain the lower digit. This
instruction adjusts the value and places the result in the AL register. The AH register
will be clear. The SF, ZF, and PF flags are affected The state of the AF, OF, and CF
flags is undefined.

3.4 LOGICAL INSTRUCTIONS

The logical instructions have two operands. Source operands can be immediate values,
general registers, or memory. Destination operands can be general registers or memory
(except when the source operand is in memory). The logical instructions modify the state
of the flags Short forms of the instructions are available when an immediate source
operand is applied to a destination operand in the AL or EAX registers. The group of
logical instructions includes:

o Boolean operation instructions.
e Bit test and modify instructions.
o Bit scan instructions.

e Rotate and shift instructions.

e Byte set on condition.

3.4.1 Boolean Operation Instructions
The logical operations are performed by the AND, OR, XOR, aﬁd NOT instructions.

NOT (Not) inverts the bits in the specified operand to form a one’s complement of the
operand. The NOT instruction is a unary operation which uses a single operand in a
register or memory. NOT has no effect on the flags.

3-11

|nte| o APPLICATION PROGRAMMING

The AND, OR, and XOR instructions perform the standard logical operations ““and,”
“or,” and “exclusive or.” These instructions can use the following combinations of
operands:

o. Two register operands.
o A general register operand with a memory operand.

e An immediate operand with either a general register operand or a memory operand.

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag
undefined, and update the SF, ZF, and PF flags.

3.4.2 Bit Test and Modify Instructions

This group of instructions operates on a single bit which can be in memory or in a
general register. The location of the bit is specified as an offset from the low end of the
operand. The value of the offset either may be given by an immediate byte in the instruc-
tion or may be contained in a general register.

These instructions first assign the value of the selected bit to the CF flag. Then a new
value is assigned to the selected bit, as determined by the operation. The state of the
OF, SF, ZF, AF, and PF flags is undefined. Table 3-2 defines these instructions.

Table 3-2. Bit Test and Modify Instructions

Instruction 1 Effect on CF Flag Effect on Selected Bit
BT (Bit Test) CF flag < Selected Bit no effect
BTS (Bit Test and Set) CF flag < Selected Bit Selected Bit < 1
BTR (Bit Test and Reset) CF flag < Selected Bit | Selected Bit < 0
BTC (Bit Test and Complement). CF flag < Selected Bit Selected Bit < — (Selected Bit)

3.4.3 Bit Scan Instructions

These instructions scan a word or doubleword for a set bit and store the bit index (an
integer representing the bit position) of the first set bit into a register. The bit string
being scanned may be in a register or in memory. The ZF flag is set if the entire word is
clear, otherwise the ZF flag is cleared. In the former case, the value of the destination
register is left undefined. The state of the OF, SF, AF, PF, and CF flags is undefined.

BSF (Bit Scan Forward) scans low-to-high (from bit 0 toward the upper bit positions).

BSR (Bit Scan Reverse) scans high-to-low (frorri the uppermost bit toward bit 0).

3-12

lnteL . APPLICATION PROGRAMMING

3.4.4 Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand.

These instructions fall into the following classes:
o Shift instructions.
e Double shift instructions.

e Rotate instructions.

3.4.4.1 SHIFT INSTRUCTIONS

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords.
An arithmetic shift right copies the sign bit into empty bit positions on the upper end of
the operand, while a logical shift right fills high order empty bit positions with zeros. An
arithmetic shift is a fast way to perform a simple calculation. For example, an arithmetic
shift right by one bit position divides an integer by two. A logical shift right divides an
unsigned integer or a positive integer, but a signed negative integer loses its sign bit.

The arithmetic and logical shift right instructions, SAR and SHR, differ only in their
treatment of the bit positions emptied by shifting the contents of the operand. Note that
there is no difference between an arithmetic shift left and a logical shift left. Two names,
SAL and SHL, are supported for this instruction in the assembler.

A count specifies the number of bit positions to shift an operand. Bits can be shifted up
to 31 places A shift instruction can give the count in any of three ways. One form of shift
instruction always shifts by one bit position. The second form gives the count as an
immediate operand The third form gives the count as the value contained in the CL
register. This last form allows the count to be a result from a calculation. Only the low
five bits of the CL register are used.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the
CF flag is left with the value of the last bit shifted out of the operand. In a single-bit
shift, the OF flag is set if the value of the uppermost bit (sign bit) was changed by the
operation. Otherwise, the OF flag is cleared. After a shift of more than one bit position,
the state of the OF flag is undefined. On a shift of one or more bit positions, the SF, ZF,
PF, and CF flags are affected, and the state of the AF flag is undefined.

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left
by one bit position or by the number of bits specified in the count operand (an immedi-
ate value or a value contained in the CL register). Empty bit positions are cleared. See
Figure 3-6. .

SHL (Shift Logical Left) is another name for the SAL instruction. It is supported in the
assembler.

3-13

|nte| ® APPLICATION PROGRAMMING

INITIAL STATE: b o ;
CF OPERAND
m | 1ooo1ooo1ooo_10001o‘oo1ooo1ooo1111J

AFTER 1-BIT SHL/SAL INSTRUCTION:

D‘—I 00010001000100010001000100011110;'4—4 0

AFTER 10-BIT SHL/ISAL INSTRUCTION:

0 |«~— o00100010001000100011110000000000 [«—— 0

240486i3-6

i 'thu're' 3-6. ‘SHL/SAL Instruction

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right
by one bit position or by the number of bits specified in the count operand (an immedi-
ate value or a value contamed in the CL reglster) Empty bit posntlons are cleared. See
Figure 3-7. ‘

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand
to-the right by one bit position or:by the: number of bits specified in the count operand
(4n immediate value or a value contained in the CL register). The sign of the operand is
preserved by clearing empty bit positions if the operand is positive, or setting the emptv
bits if the. operand 18 negatlve See Flgure 3-8.. '

Even though thlS 1nstruct10n can be used to divide mtegers by an mteger power of two,
the type of division is not the same as that produced by the IDIV instruction. The
quotient from the IDIV instruction is rounded toward zero, whereas the “quotient” of
the SAR instruction is rounded toward negative 1nf1n1ty This difference is apparent only
for negatlve numbers. For example, when the IDIV instruction is used to divide —9 by 4,
the result is —2 with a remainder of —1. If the SAR instruction is used to shift —9 right
by two bits, the résult is. —3. The “remamder of this kind of division is + 13; however,
the SAR mstructlon stores only the ‘high- -order bit of the remainder (in the CF flag).

3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS .

The'se instructions proVide t_he basic ‘dperatio'ns needed to implement opefations on long
unaligned bit strings. The double shifts operate either on word or doubleword operands,
as follows:

o Take two word operands and produce a one-word result (32-bit shift).

o Take two doubleword operands and produce a doubleword result (64-bit Shlft)

3-14

intel.

APPLICATION PROGRAMMING

INITIAL STATE:
OPERAND CF

[10001000100010001000100010001111 I

AFTER 1-BIT SHR INSTRUCTION:

0—>| 01000100010001000100010001000111 J—>D

AFTER 10-BIT SHR INSTRUCTION:

0—| 00000000001000100010001000100010

240486i3-7
Figure 3-7. SHR Instruction
INITIAL STATE (POSITIVE OPERAND):
OPERAND CF
01000100010001000100010001000111 E
AFTER 1-BIT SAR INSTRUCTION:
00100010001000100010001000100011
INITIAL STATE (NEGATIVE OPERAND):
OPERAND CF
l11000100010001000100010001000011:‘ E
AFTER 1-BIT SAR INSTRUCTION
11100010001000100010001000100011 —PD
240486i3-8

Figure 3-8. SAR Instruction

3-156

Inte|® APPLICATION PROGRAMMING

Of the two operands, the source operand must be in a register while the destination
operand may be in a register or in memory. The number of bits to be shifted is specified
either in the CL register or in an immediate byte in the instruction. Bits shifted out of
the source operand fill empty bit positions in the destination operand, which also is
shifted. Only the destination operand is stored.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the
CF flag is set to the value of the last bit shifted out of the destination operand, and the
SF, ZF, and PF flags are affected. On a shift of one bit position, the OF flag is set if the
sign of the operand changed, otherwise it is cleared. For shifts of more than one bit
position, the state of the OF flag is undefined. For shifts of one or more bit positions,
the state of AF flag is undefined.

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling
empty bit positions with bits shifted out of the source operand (see Figure 3-9). The
result is stored back into the destination operand. The source operand is not modified.

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while
filling empty bit positions with bits shifted out of the source operand (see Figure 3-10).
The result is stored back into the destination operand. The source operand is not
modified.

3.4.4.3 ROTATE INSTRUCTIONS

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits
are emptied during a rotation.

31 0
. DESTINATION (MEMORY OR REGISTER)

—

SOURCE (REGISTER)

'240486i3-9

Figure 3-9. SHLD Instruction

3-16

|nte| o APPLICATION PROGRAMMING

31) 0

SOURCE (REGISTER) |—‘

31 0
7 1
> DESTINATION (MEMORY OR REGISTER) ; ‘

240486i3-10

Figure 3-10. SHRD Instruction

Rotate instructions use only the CF and OF flags. The CF flag may act as an extension
of the operand in two of the rotate instructions, allowing a bit to be isolated and then
tested by a conditional jump instruction (JC or JNC). The CF flag always contains the
value of the last bit rotated out of the operand, even if the instruction does not usc the
CF flag as an extension of the operand. The state of the SF, ZF, AF, and PF flags is not
affected.

In a single-bit rotation, the OF flag is set if the operation changes the uppermost bit
(sign bit) of the destination operand. If the sign bit retains its original value, the OF flag
is cleared. After a rotate of more than one bit position, the value of the OF flag is
undefined.

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one
bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). For each bit position of the rotation, the bit
which exits from the left of the operand returns at the right. See Figure 3-11.

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by
one bit position or by the number of bits specified in the count operand (an immediate
value or a value contained in the CL register). For each bit position of the rotation, the
bit which exits from the right of the operand returns at the left. See Figure 3-12.

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destina-
tion operand left by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on
the upper end of the destination operand. Each bit which exits from the left side of the
operand moves into the CF flag. At the same time, the bit in the CF flag enters the right
side. See Figure 3-13.

3-17

Intel o APPLICATION PROGRAMMING

31) 0

| CF H DESTINATION (MEMORY OR REGISTER) 1—l

240486i3-11

Figure 3-11. ROL Instruction

31 0
——L DESTINATION (MEMORY OR REGISTER)]I I CF I
240486i3-12
Figure 3-12. ROR Instruction
3 0
DESTINATICN (MEMORY OR REGISTER) |<_
240486i3-13

Figure 3-13. RCL Instruction

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword desti-
nation operand right by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower
end of the destination operand. Each bit which exits from the right side of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters the left side. See
Figure 3-14.

3-18

Entel 0 APPLICATION PROGRAMMING

DESTINATION (MEMORY OR REGISTER) H CF

240486i3-14

Figure 3-14. RCR Instruction

3.4.4.4 FAST “bit bit” USING DOUBLE-SHIFT INSTRUCTIONS

One purpose of the double shift instructions is to implement a bit string move, with
arbitrary misalignment of the bit strings. This is called a “bit bit” (BIT BLock Transfer).
A simple example is to move a bit string from an arbitrary offset into a doubleword-
aligned byte string. A left-to-right string is moved 32 bits at a time if a double shift is
used inside the move loop.

MoV ESI,ScrAddr
MOV EDI,DestAddr
MoV EBX,WordCnt
MoV CL,RelDffset ; relative offset Dest-Src
MoV EDX,[ESI] 3 load first word of source

ADD ESI,H ; bump source address
BltLoop:
LODS ; new low order part in EAX
SHLD EDX,EAX,CL ; EDX overwritten with aligned stuff
XCHG EDX,EAX ; Swap high and low words
STOS ; Urite out next aligned chunk
DEC EBX ; Decrement loop count

JNZ BltLoop

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest
possible performance. Without a double shift, the best which can be achieved is 16 bits
per loop iteration by using a 32-bit shift, and replacing the XCHG instruction with a
ROR instruction by 16 to swap the high and low words of registers. A more general loop
than shown above would require some extra masking on the first doubleword moved
(before the main loop), and on the last doubleword moved (after the main loop), but
would have the same 32-bits per loop iteration as the code above.

3-19

|nte| 0 APPLICATION PROGRAMMING

3.4.4.5 FAST BIT STRING INSERT AND EXTRACT

The double shift instructions also make possible:

o Fast insertion of a bit string from a register into an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the inserted bits

o Fast extraction of a bit string into a register from an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the extracted bits

The following coded examples illustrate bit insertion and extraction under various
conditions:

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e., spans
four bytes or less):

; Insert a right-justified bit string from a register into
i @ bit string in memory.

; Assumptions:

; 1. The base of the string array is doubleword aligned.
; 2. The length of the bit string is an immediate value
3 and the bit offset is held in a register.

3 The ESI register holds the right-justified bit string

; to be inserted. .

; The EDI register holds the bit offset of the start of the
; substring.

; The EAX register and ECX are also used.

MoV ECX,EDI ; save original offset

SHR EDI,3 ; divide offset by 8 (byte addr)
AND (i, 7H ; get low three bits of offset
MoV EAX, [EDIlstrg_base ; move string dword into EAX

ROR EAX,CL ; right justify old bit field
SHRD EAX,ESI,length ; bring in new bits

ROL EAX,length ; right justify new bit field
ROL EAX,CL - ; bring to final position

MOV [EDI)strg_base,EAX ; replace doubleword in memory

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans five
bytes or less): . ' '

; Insert a right-justified bit string from a register into
; @ bit string in memory.

i .

; Assumptions:

3 1. The base of the string array is doubleword aligned.

;' 2+ The length of the bit string is an immediate value

3 and the bit offset is held in a register.

; The ESI register holds the right-justified bit string
; to be inserted.

3-20

tel.

APPLICATION PROGRAMMING

; The EDI register holds the bit offset of the start of the
; substring.
; The EAX, EBX, ECX, and EDI registers also are used.

nov
SHR
SHL
AND
nov
Mav
nav
SHRD
SHRD
SHRD
ROL
nov
SHLD
SHLD
Mov
nav

Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e.,

spans

ECX,EDI

EDI,S

EDI,2

CL,1FH
EAX,[EDIlstrg_base
EDX, (EDI)strg_base+y
EBX,EAX
EAX,EDX, CL
EAX,EBX, CL
EAX,ESI,length
EAX,length

EBX,EAX

EAX,EDX, CL
EDX,EBX, CL
[EDI)strg_base,EAX
[EDIlstrg_base+4,EDX

four or five bytes):

temp storage for offset

divide offset by 32 (dwords)
multiply by 4 (byte address)
get low five bits of offset
move low string dword into EAX
other string dword into EDX
temp storage for part of string
shift by offset within dword
shift by offset within dword
bring in new bits

right justify new bit field
temp storage for string

shift by offset within word
shift by offset within word
replace dword in memory
replace dword in memory

; Insert right-justified bit string from a register into
; a bit string in memory.

; Assumptions:
i 1. The base of the string array is doubleword -aligned.
; 2. The length of the bit string is 32 bits

and the bit offset is held in a register.

; The ESI register holds the 32-bit string to be inserted.

; The EDI register holds the bit offset to the start of the
; substring.
;i The EAX, EBX, ECX, and EDI registers also are used.

nov
SHR
SHL
AND
nov
nov
nov
SHRD
SHRD
nav
nav
SHLD
SHLD

EDX,EDI

EDI,S

EDI,2

CL,1FH
EAX,[EDI)strg_base
EDX, (EDIlstrg_base+y
EBX,EAX

EAX,EDX

EDX,EBX

EAX,ESI

EBX,EAX

EAX,EDX

EDX,EBX

save original offset

divide offset by 32 (dwords)
multiply by 4 (byte address)
isolate low five bits of offset
move low string dword into EAX
other string dword into EDX
temp storage for part of string
shift by offset within dword
shift by offset within dword
move 32-bit field into position
temp storage for part of string
shift by offset within word
shift by offset within word

3-21

|nte| 0 APPLICATION PROGRAMMING

MOV (EDI)strg_base,EAX" ;.replace dword in memory:
MOV [EDIlstrg_base,+4,EDX 3 replace dword in memory

4. Bit String Extraction from Memory (when the bit string is 1-25 bits long, i.e., spans
four bytes or less):

Extract a right- Justlfled bit string- 1nto a reglster from
;.a bit string in memory. '

; Assumptions: R

3 1) The base of the string array is doubleword aligned.
; 2) The length of .the bit string is an immediate value
3 and the bit offset.is held in.a register.

3 The EAX register hold the right-justified, zero-padded |
; bit string that was extracted.

; The EDI register holds the bit offset of .the start of the

; substring.

3 The EDI, and ECX reg1sters also are: used:

HDV ECX,EDI ; temp storage for offset: . -

SHR EDI,3 ; divide offset by 8 (byte addr)
AND . CL,7H ‘ ...+ get low three bits of offset
mov EAX,[EDI]strg_baée ; move string dword into EAX

SHR EAX,CL ; shift by offset within dword
AND EAX,mask ; extracted bit field in EAX -

5. Bit String Extraction from Memory (when bit string is 1- 32 bits long, i.e., spans five
bytes or less): "

; Extract a right-justified bit string into a reg1ster from a
; bit string in memory.

; Assumptions:

3 1) The base of the strihg array‘is doubleword aligned.
; 2) The length of thebit 'string isi‘an immediate

3 value and the bit offset is held ina register-

; The EAX register holds the right- Just1f1ed, zero-padded

; bit string that was extracted. .

; The EDI register holds the bit offset: of the start of the
; substring.

; The EAX, EBX, and ECX reglsters also are used.

HDV ECX,EDI ST Ctemp storage for offset

SHR EDI,S ;- divide offset by 32 (dwords)
SHL EDI,2 “o o lsimultiply by 4 (byte address)
AND CL,1FH ‘s get low five bits of offset in
MOV EAX,[EDIlstrg_base 4 move low string dword into EAX
MOV EAX,CEDI)strg_base +4 ; other string dword into EDX

SHRD EAX,EDX,CL © . 7y shift right by offset in dword
AND EAX,mask L extracted bit field in EAX

3-22

Intei o APPLICATION PROGRAMMING

3.4.5 Byte-Set-On-Condition Instructions

This group of instructions sets a byte to the value of zero or one, depending on any of
the 16 conditions defined by the status flags. The byte may be in a register or in memory.
These instructions are especially useful for implementing Boolean expressmns in high-
level languages such as Pascal. :

Some languages represent a Iogical one as an integer with all bits set. This can be done
by using the SETcc instruction w1th the mutually exclusive condition, then decrementing
the result. :

SETcc (Set Byte on Condition cc) loads the value 1 into a byte if condition cc is true;
clears the byte otherwise. See Appendix D for a definition of the possible conditions.

3.4.6 Test Instruction

TEST (Test) performs. the logical “and” of the two operands, clears the. OF and CF
flags, leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can
be tested by conditional control transfer instructions or the byte-set-on-condition
instructions. The operands may be bytes, words, or doublewords.

The difference between the TEST and AND instructions is the TEST instruction does
not alter the destination operand. The difference between the TEST-and BT instructions
is the TEST instruction can test the Value of multiple brts in one operatlon whlle the BT
1nstruct10n tests a single bit.

3.5 CONTROL TRANSFER INSTRUCTIONS

The Intel486 processor provides both conditional and unconditional control transfer
instructions to direct the flow of execution. Conditional transfers are executed only for
certain combinations of the state of the flags. Unconditional control transfers are always
executed.

3 5 1 Uncondltlonal Transfer Instructlons

The JMP, CALL, RET, INT and IRET instructions transfer execution to a destination
in a code segment. The destination can be within the same code segment (near transfer)
or in a different code segment (far transfer). The forms of these instructions which
transfer execution to other segments are discussed in a later section of this chapter. If
the model of memory organization used in a particular apphcatlon does not make seg-
mients visible to applrcatlon programmers far transfers will not be used.

3.5.1.1 JUMP INSTRUCTION

JMP (Junip) unconditionally transfers execution to the destination. The JMP instruction
is a one-way transfer of execution; it-.does not:save a return address on.the stack.

3-23

|nte| o APPLICATION PROGRAMMING

The JMP instruction transfers execution from the current routine to a different routine.
The address of the routine is specified in the instruction, in a register, or in memory. The
location of the address determines whether it is interpreted as a relative address or an
absolute address.

Relative Address. A relative jump uses a displacement (immediate mode constant used
for address calculation) held in the instruction. The displacement is signed and variable-
length (byte or doubleword). The destination address is formed by adding the displace-
ment to the address held in the EIP register. The EIP register then contains the address
of the next instruction to be executed.

Absolute Address. An absolute j]ump is used with a 32-bit segment offset in either of the
following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register and execution continues.

2. The destination address can be a memory operand specified using the standard
- addressing modes. The operand is copied into the EIP register and execution
continues.

3.5.1.2 CALL INSTRUCTIONS

CALL (Call Procedure) transfers execution and saves the address of the instruction
following .the CALL instruction for later use by a RET (Return) instruction. CALL
pushes the current contents of the EIP register on the stack. The RET instruction in the
called procedure uses this address to transfer execution back to the calling program.

CALL instructions, like JMP instructions, have relative and absolute forms.

Indirect CALL instructions specify an absolute address in one of the following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register, the return address is pushed on the stack, and execution
continues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register, the return address is
pushed on the stack, and execution continues.

3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT ‘INSTRUCTIONS

RET (Return From Procedure) terminates a procedure and transfers execution to the
instruction following the CALL instruction which originally invoked the procedure. The
RET instruction restores the contents of the EIP register which were pushed on the
stack when the procedure was called.

The RET instructions have an optional immediate operand. When present, this constant

is added to the contents of the ESP register, which has the effect of removing any
parameters pushed on the stack before the procedure call.

3-24

Inte|® APPLICATION PROGRAMMING

IRET (Return From Interrupt) returns control to an interrupted procedure. The IRET
instruction differs from the RET instruction in that it also restores the EFLAGS register
from the stack. The contents of the EFLAGS register are stored on the stack when an
interrupt occurs.

3.5.2 Conditional Transfer Instructions

The conditional transfer instructions are jumps which transfer execution if the states in
the EFLAGS register match conditions specified in the instruction.

3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS

Table 3-3 shows the mnemonics for the jump instructions. The instructions listed as pairs
are alternate names for the same instruction. The assembler provides these names for
greater clarity in program listings.

A form of the conditional jump instructions is available which uses a displacement added
to the contents of the EIP register if the specified condition is true. The displacement
may be a byte or doubleword. The displacement is signed; it can be used to jump for-
ward or backward.

Table 3-3. Conditional Jump Instructions

Unsigned Conditional Jumps

Mnemonic Flag States Description

JA/UNBE (CF or ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/JNAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF) =1 below or equal/not above
JC CF=1 carry

JENZ ZF =1 equal/zero

JNC CF=0 not carry

JNE/UNZ ZF=0 not equal/not zero .
JNP/JPO PF=0 not parity/parity odd
JP/JPE PF=1 parity/parity even

Signed Conditional Jumps

JG/INLE ((SF xor OF) or ZF) =0 greater/not less nor equal
JGE/JNL : (SF xor OF)=0 greater or equal/not less
JL/UNGE (SF xor OF) =1 less/not greater nor equal
JLE/AUNG . ((SF xor OF) or ZF) =1 less or equal/not greater
JNO OF=0 not overflow

JNS SF=0 not sign (non-negative)
JO OF =1 overflow

JS SF=1 i sign (negative)

3-25

Inte|® APPLICATION PROGRAMMING

3.5.2.2 LOOP INSTRUCTIONS

The loop instructions are conditional jumps which use a value placed in the ECX regis-
ter as a count for the number of times to run a loop. All loop instructions decrement the
contents of the ECX register on each reposition and terminate when zero is reached.
Four of the five loop instructions accept the ZF flag as a condition for terminating the
loop before the count reaches zero. '

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements
the contents of the ECX register before testing for the loop-terminating condition. If
contents of the ECX register are non-zero, the program jumps to the destination speci-
fied in the instruction. The LOOP instruction causes the execution of a block of code to
be repeated until the count reaches zero. When zero is reached, execution is transferred
to the instruction immediately following the LOOP instruction. If the value in the ECX
register is zero when the instruction is first called, the count is pre-decremented to
OFFFFFFFFH and the LOOP runs 2°? times. ‘

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same
instruction. These instructions are conditional jumps which decrement the contents of
the ECX register before testing for the loop-terminating condition. If the contents of the
ECX register are non-zero and the ZF flag is set, the program jumps to the destination
specified in the instruction. When zero is reached or the ZF flag is clear, execution is
transferred to the instruction immediately following the LOOPE/LOOPZ instruction.

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms
for the same instruction. These instructions are conditional jumps which decrement the
contents of the ECX register before testing for the loop-terminating condition. If the
contents of the ECX register are non-zero and the ZF flag is clear, the program jumps to
the destination specified in the instruction. When zero is reached or the ZF flag is set,
execution is transferred to the instruction immediately following the LOOPE/LOOPZ
instruction.

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the
ECX register holds a value of zero. The JECXZ instruction is used in combination with
the LOOP instruction and with the string scan and compare instructions. Because these
instructions decrement the contents of the ECX register before testing for zero, a loop
will run 232 times if the loop is entered with a zero value in the ECX register. The
JECXZ instruction is used to create loops which fall through without executing when the
initial value is zero. A JECXZ instruction at the beginning of a loop can be used to jump
out of the loop if the count is zero. When used with repeated string scan and compare
instructions, the JECXZ instruction can determine whether the loop terminated due to
the count or due to satisfaction of the scan or compare conditions.

3-26

lnte|® APPLICATION PROGRAMMING

3.5.3 Software Interrupts

The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of
execution to an exception or interrupt handler.

INTr (Software Interrupt) calls the handler specified by an interrupt vector encoded in
the instruction. The INT instruction may specify any interrupt type. This instruction is
used to support multiple types of software interrupts or to test the operation of interrupt
service routines. The interrupt service routine terminates with an IRET instruction,
which returns execution to the instruction following the INT instruction.

INTO (Interrupt on Overflow) calls the handler for the overflow exception, if the OF
flag is set. If the flag is clear, execution continues without calling the handler. The OF
flag is set by arithmetic, logical, and string instructions. This instruction supports the use
of software interrupts for handling error conditions, such as arithmetic overflow.

BOUND (Detect Value Out of Range) compares the signed value held in a general reg-
ister against an upper and lower limit. The handler for the bounds-check exception is
called if the value held in the register is less than the lower bound or greater than the
upper bound. This instruction supports the use of software interrupts for bounds check-
ing, such as checking an array index to make sure it falls within the range defined for the
array.

The BOUND instruction has two operands. The first operand specifies the general reg-
ister being tested. The second operand is the base address of two words or doublewords
at adjacent locations in memory. The lower limit is the word or doubleword with the
lower address; the upper limit has the higher address. The BOUND instruction assumes
that the upper limit and lower limit are in adjacent memory locations. These limit values
cannot be register operands; if they are, an invalid-opcode exception occurs.

The upper and lower limits of an array can reside just before the array itself. This puts
the array bounds at 'a constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra bus
cycles to obtain the effective address of the array bounds.

3.6 STRING OPERATIONS

String operations manipulate large data structures in memory, such as alphanumeric
character strings. See also the section on I/O for information about the string I/O
instructions (also known as block I/O instructions).

3-27

!ntel o APPLICATION PROGRAMMING

The string operations are made by putting string instructions (which execute only one
iteration of an operation) together with other features of the instruction set, such as
repeat prefixes. The string instructions are:

MOVS —Move String
CMPS — Compare string
SCAS —Scan string
LODS —Load string
STOS —Store string

After a string instruction executes, the string source and destination registers point to
the next elements in their strings. These registers automatically increment or decrement
their contents by the number of bytes occupied by each string element. A string element
can be a byte, word, or doubleword. The string registers are:

ESI— Source index register
EDI — Destination index register

String operations can begin at higher addresses and work toward lower ones, or they can
begin at lower addresses and work toward higher ones. The direction is controlled by:

DF —Direction flag

If the DF flag is clear, the registers are incremented. If the flag is set, the registers are
decremented. These instructions set and clear the flag:

. STD —Set direction flag instruction
CLD —Clear direction flag instruction

To operate on more than one element of a string, a repeat prefix must be used, such as:

REP —Repeat while the ECX register not zero
REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set
REPNE/REPNZ —Repeat while the ECX register not zero and the ZF flag is clear

Exceptions or interrupts which occur during a string instruction leave the registers in a
state which allows the string instruction- to be restarted. The source and destination
registers point to the next string elements, the EIP register points to the string instruc-
tion, and the ECX register has the value it held following the last successful iteration.
All that is necessary to restart the operation is to service the interrupt or fix the source
of the exception, then execute an IRET instruction.

3.6.1 Repeat Prefixes

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated
operation of a string instruction. This form of iteration allows string operations to pro-
ceed much faster than would be possible with a software loop.

3-28

Intel® APPLICATION PROGRAMMING

When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied.

For each repetition of the instruction, the string operation may be suspended by an
exception or interrupt. After the exception or interrupt has been serviced, the string
operation can restart where it left off. This mechanism allows long string operations to
proceed without affecting the interrupt response time of the system.

All three prefixes shown in Table 3-4 cause the instruction to repeat until the ECX
register is decremented to zero, if no other termination condition is satisfied. The repeat
prefixes differ in their other termination condition. The REP prefix has no other termi-
nation condition. The REPE/REPZ and REPNE/REPNZ prefixes are used exclusively
with the SCAS (Scan String) and CMPS (Compare String) instructions. The REPE/
REPZ prefix terminates if the ZF flag is clear. The REPNE/REPNZ prefix terminates if
the ZF flag is set. The ZF flag does not require initialization before execution of a
repeated string instruction, because both the SCAS and CMPS instructions affect the ZF
flag according to the results of the comparisons they make.

3.6.2 Indexing and Direction Flag Control

Although the general registers are completely interchangeable under most conditions,
the string instructions require the use of two specific registers. The source and destina-
tion strings are in memory addressed by the ESI and EDI registers. The ESI register
points to source operands. By default, the ESI register is used with the DS segment
register. A segment-override prefix allows the ESI register to be used with the CS, SS,
ES, FS, or GS segment registers. The EDI register points to destination operands. It
uses the segment indicated by the ES segment register; no segment override is allowed.
The use of two different segment registers in one instruction permits operations between
strings in different segments.

When ESI and EDI are used in string instructions, they automatically are incremented
or decremented after each iteration. String operations can begin at higher addresses and
work toward lower ones, or they can begin at lower addresses and work toward higher
ones. The direction is controlled by the DF flag. If the flag is clear, the registers are
incremented. If the flag is set, the registers are decremented. The STD and CLD
instructions set and clear this flag. Programmers should always put a known value in the
DF flag before using a string instruction.

Table 3-4. Repeat Instructions

Repeat Prefix Termination Condition 1 Termination Condition 2
REP ECX=0 none
REPE/REPZ ’ ECX=0 ZF=0
REPNE/REPNZ ECX=0) ZF =1

3-29

|nte| ° APPLICATION PROGRAMMING

3.6.3 String Instructions

MOVS (Move String) moves the string element addressed by the ESI register to the
location addressed by the EDI register. The MOVSB instruction moves bytes, the
MOVSW instruction moves words, and the MOVSD instruction moves doublewords.
The MOVS instruction, when accompanied by the REP prefix, operates as a memory-
to-memory block transfer. To set up this operation, the program must initialize the ECX,
ESI, and EDI registers. The ECX register specifies the number of elements in the block.

CMPS (Compare Strings) subtracts the destination string element from the source string
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written
back to memory. If the string elements are equal, the ZF flag is set; otherwise, it is
cleared. CMPSB compares bytes, CMPSW compares words and CMPSD compares
doublewords.

SCAS (Scan String) subtracts the destination string element from the EAX, AX, or AL
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF
flags. The string and the register are not modified. If the values are equal, the ZF flag is
set; otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction
scans words; the SCASD instruction scans doublewords.

When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SCAS or CMPS
instructions, the loop which is formed is terminated by the loop counter or the effect the
SCAS or CMPS instruction has on the ZF flag. -

LODS (Load String) places the source string element addressed by the ESI register into
the EAX register for doubleword strings, into the AX register for word strings, or into
the AL register for byte strings. This instruction usually is used in a loop, where other
instructions process each element of the string as they appear in the register.

STOS (Store String) places the source string element from the EAX, AX, or AL register
into the string addressed by the EDI register. This instruction usually is used in a loop,
where it writes to memory the result of processing a string element read from memory
with the LODS instruction. A REP STOS instruction is the fastest way.to 1n1t1ahze a
large block of memory. .

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES

These instructions provide machine-language support for implementing block-structured
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify
procedure entry and exit in compiler-generated code. They support a structure of point-
ers and local variables on the stack called a stack frame.

ENTER (Enter Procedure) creates a stack frame compatible with the scope. rules of
block-structured languages. In these languages, a procedure has access to its own vari-
ables and some number of other variables defined elsewhere in the program. The scope

3-30

InteL APPLICATION PROGRAMMING

of a procedure is the set of variables to which it has access. The rules for scope vary
among languages; they may be based on the nesting of procedures, the division of the
program into separately-compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be
reserved on the stack for dynamic storage in the procedure being entered. Dynamic
storage is the memory allocated for variables created when the procedure is called, also
known as automatic variables. The second parameter is the lexical nesting level (from 0
to 31) of the procedure. The nesting level is the depth of a procedure in the hierarchy of
a block-structured program. The lexical level has no particular relationship to either the
protection privilege level or to the I/O privilege level.

The lexical nesting level determines the number of stack frame pointers to copy into the
new stack frame from the preceding frame. A stack frame pointer is a doubleword used
to access the variables of a procedure. The set of stack frame pointers used by a proce-
dure to access the variables of other procedures is called the display. The first double-
word in the display is a pointer to the previous stack frame. This pointer is used by a
LEAVE instruction to undo the effect of an ENTER instruction by dlscardmg the cur-
rent stack frame.

Example: ENTER 2048,3

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two
previous stack frames in the stack frame for this procedure.

After the ENTER instruction creates the display for a procedure, it allocates the
dynamic (automatic) local variables for the procedure by decrementing the contents of
the ESP register by the number of bytes specified in the first parameter. This new value
in the ESP reglster serves as the initial top-of-stack for all PUSH and POP operatlons
within the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP
register pointing to the first doubleword in the display. Because stacks grow down, this is
actually the doubleword with the highest address in the display. Data manipulation
instructions which specify the EBP register as a base register automatically address
locations within the stack segment instead of the data segment.’

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical
level is 0, the non-nested form is used. The non-nested form pushes the contents of the
EBP register on the stack, copies the contents of the ESP register into the EBP register,
and subtracts the first operand from the contents of the ESP register to allocate dynamic
storage. The non-nested form differs from the nested form in that no stack frame point-
ers are copied. The nested form of the ENTER instruction occurs when the second
parameter (lexical level) is not zero.

Figure 3-15 shows the formal definition of the ENTER instruction. STORAGE is the

number of bytes of dynamic storage to allocate for local Varlables and LEVEL is the
lexical nesting level. :

3-31

Inte|® APPLICATION PROGRAMMING

Push EBP
Set a temporary value FRAME_PTR :=ESP
If LEVEL O then
Repeat LEVEL - 1) times:
EBP :=EBP -4
Push the doubleword pointed to by EBP
End repeat
Push FRAME__PTR
End if
EBP :=FRAME_PTR
ESP :=ESP - STORAGE

Figure 3-15. Formal Definition of the ENTER Instruction

The main procedure (in which all other procedures are nested) operates at the highest
lexical level, level 1. The first procedure it calls operates at the next deeper lexical level,
level 2. A level 2 procedure can access the variables of the main program, which are at
fixed locations specified by the compiler. In the case of level 1, the ENTER instruction
allocates only the requested dynamic storage on the stack because there is no previous
display to copy.

A procedure which calls another procedure at a lower lexical level gives the called pro-
cedure access to the variables of the caller. The ENTER instruction provides this access
by placing a pointer to the cailing procedure’s stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give
access to its variables. In this case, the ENTER instruction copies only that part of the
display from the calling procedure which refers to previously nested procedures operat-
ing at higher lexical levels. The new stack frame does not include the pointer for
addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the
same lexical level. In this case, each succeeding iteration of the re-entrant procedure can
address only its own variables and the variables of the procedures within which it is
nested. A re-entrant procedure always can address its own variables; it does not require
pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the
ENTER instruction makes certain that procedures access only those variables of higher
lexical levels, not those at parallel lexical levels (see Figure 3-16).

3-32

Inteﬁ 0 APPLICATION PROGRAMMING

MAIN (LEXICAL LEVEL 1)

PROCEDURE A (LEXICAL LEVEL 2)

I PROCEDURE B (LEXICAL LEVEL 3) l

PROCEDURE C (LEXICAL LEVEL 3)

| PROCEDURE D (LEXICAL LEVEL 4) I

240486i3-16

Figure 3-16. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control
access to the variables of nested procedures. In the figure, for example, if PROCE-
DURE A calls PROCEDURE B which, in turn, calls PROCEDURE C, then PROCE-
DURE C will have access to the variables of MAIN and PROCEDURE A, but not those
of PROCEDURE B because they are at the same lexical level. The following definition
describes the access to variables for the nested procedures in the figure.

1. MAIN has variables at fixed locations.
2. PROCEDURE A can access only the variables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN.
PROCEDURE B cannot access the variables of PROCEDURE C or PROCE-
DURE D.

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN.
PROCEDURE C cannot access the variables of PROCEDURE B or PROCE-
DURE D.

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A,

aYa = T

-and MAIN. PROCEDURE D cannot access the variabies of PROCEDURE B.

In the following diagram, an ENTER instruction at the beginning of the MAIN program
creates three doublewords of dynamic storage for MAIN, but copies no pointers from
other stack frames (See Figure 3-17). The first doubleword in the display holds a copy of
the last value in the EBP register before the ENTER instruction was executed. The
second doubleword (which, because stacks grow down, is stored at a lower address)

3-33

|nte| 0 APPLICATION PROGRAMMING

OLD EBP <— EBP
MAIN’S EBP

DISPLAY

DYNAMIC
STORAGE

[<— ESP

240486i3-17

Figure 3-17. Stack Frame After Entering MAIN

holds a copy of the contents of the EBP register following the ENTER instruction. After
the instruction is executed, the EBP register points to the first doubleword pushed on
the stack, and the ESP register points to the last doubleword in the stack frame.

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (see
Figure 3-18). The first doubleword is the last value held in MAIN’s EBP register. The
second doubleword is a pointer to MAIN’s stack frame which is copied from the second
doubleword in MAIN’s display. This happens to be another copy of the last value held in
MAIN’s EBP register. PROCEDURE A can access variables in MAIN because MAIN
is at level 1. Therefore the base address for the dynamic storage used in MAIN is the
current address in the EBP register, plus four bytes to account for the saved contents of
MAIN’s EBP register. All dynamic variables for MAIN are at fixed, positive offsets from
this value.

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new
display (See Figure 3-19). The first doubleword holds a copy of the last value in PRO-
CEDURE A’s EBP register. The second and third doublewords are copies of the two
stack frame pointers in PROCEDURE A’s display. PROCEDURE B can access vari-
ables in PROCEDURE A and MAIN by using the stack frame pointers in its display.

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new
display for PROCEDURE C (See Figure 3-20). The first doubleword holds a copy of the
last value in PROCEDURE B’s EBP register. This is used by the LEAVE instruction to
restore PROCEDURE B’s stack frame. The second and third doublewords are copies of
the two stack frame pointers in PROCEDURE A'’s display. If PROCEDURE C were at
the next deeper lexical level from PROCEDURE B, a fourth doubleword would be
copied, which would be the stack frame pointer to PROCEDURE B’s local variables.

3-34

APPLICATION PROGRAMMING

DISPLAY

DYNAMIC
STORAGE

OLD EBP
MAIN’S EBP
MAIN’S EBP [<<— EBP
MAIN’S EBP
PROCEDURE A’S EBP
[— EBP

240486i3-18

Figure 3-18. Stack Frame After Entering PROCEDURE A

DISPLAY

DYNAMIC
STORAGE

1

OLD EBP

~ MAIN'S EBP

MAIN’S EBP

MAIN’S EBP

PROCEDURE A’S EBP

PROCEDURE A’S EBP

j«— EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE B’S EBP

j«<— ESP

240486i3-19

Figure 3-19. Stack Frame After Entering PROCEDURE B

3-35

Intel o APPLICATION PROGRAMMING

OLD EBP
MAIN’S EBP

MAIN’S EBP

MAIN’S EBP
PROCEDURE A’S EBP

PROCEDURE A’S EBP
MAIN’S EBP
PROCEDURE A’S EBP
PROCEDURE B’S EBP

F PROCEDURE B'S EBP l«— EBP
DISPLAY "MAIN'S EBP
PROCEDURE A'S EBP
B PROCEDURE C'S EBP
DYNAMIC
STORAGE
«— EsP

240486i3-20

Figure 3-20. Stack Frame After Entering PROCEDURE C

Note that PROCEDURE B and PROCEDURE C are at the same level, so PROCE-
DURE C is not intended to access PROCEDURE B’s variables. This does not mean
that PROCEDURE C is completely isolated from PROCEDURE B; PROCEDURE C
is called by PROCEDURE B, so the pointer to the returning stack frame is a pointer to
PROCEDURE B’s stack frame. In addition, PROCEDURE B can pass parameters to
PROCEDURE C either on the stack or through variables global to both procedures
(i.e., variables in the scope of both procedures).

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The
LEAVE instruction does not have any operands. The LEAVE instruction copies the
contents of the EBP register into the ESP register to release all stack space allocated to

3-36

|nte| 0 APPLICATION PROGRAMMING

the procedure. Then the LEAVE instruction restores the old value of the EBP register
from the stack. This simultaneously restores the ESP register to its original value. A
subsequent RET instruction then can remove any arguments and the return address
pushed on the stack by the calling program for use by the procedure.

3.8 FLAG CONTROL INSTRUCTIONS

The flag control instructions change the state of bits in the EFLAGS register, as shown
in Table 3-5.

3.8.1 Carry and Direction Flag Control Instructions

The carry flag instructions are useful with instructions like the rotate-with-carry instruc-
tions RCL and RCR. They can initialize the carry flag, CF, to a known state before
execution of an instruction which copies the flag into an operand.

The direction flag control instructions set or clear the direction flag, DF, which controls
the direction of string processing. If the DF flag is clear, the processor increments the
string index registers, ESI and EDI, after each iteration of a string instruction. If the DF
flag is set, the processor decrements these index registers.

3.8.2 Flag Transfer Instructions

Though specific instructions exist to alter the CF and DF flags, there is no direct method
of altering the other application-oriented flags. The flag transfer instructions allow a
program to change the state of the other flag bits using the bit manipulation instructions
once these flags have been moved to the stack or the AH register.

The LAHF and SAHF instructions deal with five of the status flags, which are used
primarily by the arithmetic and logical instructions.

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register

bits 7, 6, 4, 2, and 0, respectively (see Figure 3-21). The contents of the remaining bits 5,
3, and 1 are left undefined. The contents of the EFLAGS register remain unchanged.

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively (see Figure 3-21).

Table 3-5. Flag Control Instructions

Instruction Effect
STC (Set Carry Flag) CF <1
CLC (Clear Carry Flag) CF <0
CMC (Complement Carry Flag) CF « — (CF)
CLD (Clear Direction Flag) DF <0
STD (Set Direction Flag) DF « 1

3-37

|nte| o APPLICATION PROGRAMMING

mo

THE BIT POSITIONS OF THE FLAGS ARE THE SAME,
WHETHER THEY ARE HELD IN THE EFLAGS REGISTER
OR THE AH REGISTER. BIT POSITIONS SHOWN AS

0 OR 1 ARE INTEL RESERVED. DO NOT USE.

24048613-21

Figure 3-21. Low Byte of EFLAGS Register

The PUSHF and POPF instructions are not only useful for storing the flags in memory
where they can be examined and modified, but also are useful for preserving the state of
the EFLAGS register while executing a subroutine.

PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see
Figure 3-22). The PUSHFD instruction pushes the entire EFLAGS register onto the
stack (the RF flag reads as clear, however). -

POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 14,
11, 10, 8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege
level of the current code segment is 0 (most privileged), the IOPL bits (bits 13 and 12)
also are affected. If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is affected.
The POPFD instruction pops a doubleword into the EFLAGS register, and it can
change the state of the AC bit (bit 18) as well as the bits affected by a POPF instruction.

}g | PusHFDIPOPFD
}ﬁ ,{ PUSHFIPOPF
31 15 ' ; 0
Alv[r|.IN| & |o]p|i |T]|S|[Z|4]AlolP]4|C
ofojo|oofo|olofo|o|ofofofRINIElo [T & |FIR|E|EIRIFIOIE|°| £l t|F

BIT POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED.
DO NOT USE.

240486i3-22 |

Figure 3-22. Flags Used with PUSHF and POPF

3-38

InteL APPLICATION PROGRAMMING

3.9 NUMERIC INSTRUCTIONS

The Intel486 processor includes hardware and instructions for high-precision numeric
operations on a variety of numeric data types, including 80-bit extended real and 64-bit
long integer. Arithmetic, comparison, transcendental, and data transfer instructions are
available. Frequently-used constants are also provided, to enhance the speed of numeric
calculations.

The numeric instructions are embedded in the instruction stream of the Intel486 proces-
sor, as though they were being executed by a single device having both integer and
floating-point capabilities. But the floating-point unit of the Intel486 CPU actually works
in parallel with the integer unit, resulting in higher performance.

Refer to Section 10.2 to confirm the presence of an Intel486 floating point unit.

Part III of this manual, Chapters 14-18, describe the numeric instructions in more detail.

3.10 SEGMENT REGISTER INSTRUCTIONS

There are several distinct types of instructions which use segment registers. They are
grouped together here because, if system designers choose an unsegmented model of
memory organization, none of these instructions are used. The instructions which deal
with segment registers are:

1. Segment-register transfer instructions.

MOV SegReg, ---

MoV ..., SegReg

PUSH SegReg

POP SegReg

2. Control transfers to another executable segment.

P far

CALL far

RET far

3. Data pointer instructions.

LDS reg, 48-bit memory operand
LES reg, Y8-bit memory operand
LFS reg, 48-bit memory operand
LGS reg, 48-bit memory operand
LSS reg, 48-bit memory operand

4. Note that the following interrupt-related instructions also are used in unsegmented
systems. Although they can transfer execution between segments when segmentation
is used, this is transparent to the application programmer.

INT n
INTO
BOUND
IRET

3-39

|nte| ® APPLICATION PROGRAMMING

3.10.1 Segment-Register Transfer Instructions

Forms of the MOV, POP, and PUSH instructions also are used to load and store seg-
ment registers. These forms operate like the general-register forms, except that one
operand is a segment register. The MOV instruction cannot copy the contents of a
segment register into another segment register.

The POP and MOV instructions cannot place a value in the CS register (code segment);
only the far control-transfer instructions affect the CS register. When the destination is
the SS register (stack segment), interrupts are disabled until after the next instruction.

On the Intel386 DX processor, loading a segment register always results in locked read
and write cycles to set the Accessed bit. On the Intel486 processor, locked cycles are
generated only if the Accessed bit is not already set.

No 16-bit operand size prefix is needed when transferring data between a segment reg-
ister and a 32-bit general register.
3.10.2 Far Control Transfer Instructions

The far control-transfer instructions transfer execution to a destination in-another seg-
ment by replacing the contents of the CS register. The destination is specified by a far
pointer, which is a 16-bit segment selector and a 32-bit offset into the segment. The far
pointer can be an immediate operand or an operand in memory.

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS
registers on the stack.

Far RET. An intersegment RET instruction restores the values of the CS and EIP reg-
isters from the stack.

3.10.3 Data Pointer Instructions

The data pointer instructions load a far pointer into the processor registers. A far
pointer consists of a 16-bit segment selector, which is loaded into a segment register, and
a 32-bit offset into the segment, which is loaded into a general register.

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS
register and a general register. The source operand must be a memory operand, and the
destination operand must be a general register.

Example: LDS ESI, STRING_X

3-40

|nte| o APPLICATION PROGRAMMING

Loads the DS register with the segment selector for the segment addressed by
STRING_X, and loads the offset within the segment to STRING_X into the ESI
register. Specifying the ESI register as the destination operand is a convenient way
to prepare for a string operation, when the source string is not in the current data
segment.

LES (Load Pointer Using ES) has the same effect as the LDS instruction, except the
segment selector is loaded into the ES register rather than the DS register.

Example: LES EDI, DESTINATION_X

Loads the ES register with the segment selector for the segment addressed by DES-
TINATION_X, and loads the offset within the segment to DESTINATION_X into
the EDI register. This instruction is a convenient way to select a destination for
string operation if the desired location is not in the current E-data segment.

LFS (Load Pointer Using FS) has the same effect as the LDS instruction, except the FS
register receives the segment selector rather than the DS register.

LGS (Load Pointer Using GS) has the same effect as the LLDS instruction, except the GS
register receives the segment selector rather than the DS register.

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS
register receives the segment selector rather than the DS register. This instruction is
especially important, because it allows the two registers which identify the stack (the SS
and ESP registers) to be changed in one uninterruptible operation. Unlike the other
instructions which can load the SS register, interrupts are not inhibited at the end of the
LSS instruction. The other instructions, such as POP SS, turn off interrupts to permit
the following instruction to load the ESP register without an intervening interrupt. Since
both the SS and ESP registers can be loaded by the LSS instruction, there is no need to
disable or re-enable interrupts.

3.11 MISCELLANEOUS INSTRUCTIONS

The following instructions do not fit in any of the previous categories, but are no less
important.

The BSWAP, XADD, and CMPXCHG instructions are not available on Intel386 DX or
SX microprocessors. An Intel386 CPU can perform the same operations in multiple
instructions. To use these instructions, always include functionally-equivalent code for
Intel386 CPUs. Use the code in Figure 3-23 to determine whether these instructions can
be used. :

The INVD and WBINVD instructions cannot be implemented on earlier processors due
to the introduction of on-chip cache on the Intel486 CPU. Use the code in Figure 3-23
for detecting an Intel486 processor at runtime.

3-41

intal.

APPLICATION PROGRAMMING

TITLE CPUID

DOSSEG
model small
stack 1086h
.data
fpstatus dw ?
id_mess db ‘'This system nas a$’’
fp_8687 db ‘‘and an 8687 math coprocessor$’’
fp_80287 db ‘‘and an Intel28?™ math coprocessor$’’
fp_803a7 db ‘‘and an Intel387™ math coprocessor$’’
(€113 db *'ndP8L/BBA8 microprocessors’’
c28b db ‘'n8028b microprocessors$’’
c38b db ‘‘Intel38b™ microprocessor$’’
c4db db *‘Intell8b™ DX microprocessor/Intely8?™ SX math coprocessor$’’
c48bnfp db ‘‘Intely8b SX microprocessors$’’
period db ‘r.8'r,13,10
present_8b dw]
present_28b dw (]
present_38b dw)
present_lab dw]
3 The purpose of this code is to allow the user the ability to identify
i the processor and coprocessor that is currently in the system. The
H algorithm of the program is to first determine the processor id.
3 When that is accomplished, the program continues to then identify
H whether a coprocessor exists in the system. If a coprocessor or
3 integrated coprocessor exists, the program will identify the
H coprocessor- id. If one does not exist, the program then terminates.
.code
start:
mov ax,ddata
mov ds,ax ; set segment register
mov dx,of fset sprint header message
id_mess
mov ah,9h
int 2ih

Figure 3-23. CPU_ID, MCP_ID Detection Code

3-42

intel.

APPLICATION PROGRAMMING

808k check

Bits 12-15 are always set on the 808b processor.

pushf
pop
mov
and
push
popf
pushf
pop
and
cmp
mov
mov
je

80286 CPU Check

bx
ax,Bfffh
ax,bx

ax

ax
ax,0f008h
ax,0f000h

dx,of fset cBBA8b

preset_8k,1
check_fpu

save EFLAGS
store EFLAGS in BX
clear bits 12-15
in EFLAGS
store enw EFLAGS value on stack
replace current EFLAGS value
set new EFLAGS
store new EFLAGS in AX
if bits 12-15 are set, then CPU
is an 808bL/8088
store 808L/8088 message
turn on 808L/8088 flag
if (PU is 808L/8088, check for
8087

Bits 12-15 are always clear on the 80828k processor.

or
push
popf
pushf
pop
and
mov
nov
nov

jz

Intel38b CPU check

bx,8f000h
bx

ax
ax,0f000h

dx,of fset c28b

present_8b,0

present_28b,1

check_fpu

try to set bits 12-15

If bits 12-15 are cleared, then
CPU is a 28k

turn off 808b/8088 flag

turn on 28t flag

if (PU is 28k, check for Intel28?

microprocessor

The AC bit, bit #18, is a new bit introduced in the EFLAGS register
on the IntelliBb DX CPU to generate alignment faults. This bit can be set
on the Intel48k DX CPU, but not on the Intel3db CPU.

mov

and
db
pushf
db
pop
db
mov
db
xor
dw
db
push
db
popf

bx,sp

sp,not 3
bkh

bbh
ax
bbh
cx,ax
bbh
ax,f
4

bbh
ax
bbh

save current stack pointer to
align it
align 'stack to avoid AC fault

push original EFLAGS

get original EFLAGS

save original EFLAGS

xor EAX, 40008h

flip AC bit in EFLAGS

upper 1b-bits of xor constant

save for EFLAGS

copy to EFLAGS

Figure 3-23. CPU_ID, MCP_ID Detection Code (Contd.)

3-43

|nte|® APPLICATION PROGRAMMING

db bbh
pushf ;3 push EFLAGS
db bkh
pop ax 3 get new EFLAGS value
db bbh
xor ax,cx 3 if AC bit cannot be changed,
3 CPU is
mov . dx,of fset ; store Intel38b microprocessor message
c38k
mov present_28t,0 3 turn off 28k flag
mov present_38b,1 3 if CPU is Intel38b CPU, now check for
je check_fpu 3 Intel28?/Intel38? math coprocessors

i 48b DX CPU and 48b DX CPU w/o FPU checking

mov dx,of fset,c4dbnfp’ ; store Intellidk NFP message
mov present_38k,0 i turn of f Inteld8b CPU flag
mov present_48k,1 ; turn on Intelldb CPU flag

3 Co-processor checking begins here for the 868b/28b/Intel3db CPUs.

3 The algorithm is to determine whether or not the floating-point

3 status and control words can be written to, the correct coprocessor

3 is then determined depending on the processor id. Coprocessor checks

3 are first performed for an 8088k, 28k and an Intelu8b DX CPU. If the

3 coprocessor id is stillundetermined, the system must contain an Intel3db

3 (PU. The Intel38k CPU may work with either an Intel28? or an Intel38? math coprocessor.
i infinity of the coprocessor must be checked to determine the correct

; coprocessor id.)
1

c

heck_fpu:

fninit 3 check for 80887/Intel287/Intel387
3 math coprocessors
mov fp_status,5aSah ; initialize temp word to non-zero value
fnstsw fp_status 3 save FP status word
mov ax,fp_status ;3 check FP status word
cnp al,p ; see if correct status with -
; written
jne print_one ; jump if not Valid, no NPX
;3 installed
fnstcw fp_status ;3 save FP control word
mov ax,fp_status 3 check FP control word
and ax,103fh 3 see if selected parts looks OK
cmp ax,3fh 3 check that ones and zeroes
3 correctly read
jne print_one 3 jump if not Valid, no NPX installed
cmp present_48b,1 3 check if Intell8k CPU flag is on
je is_48k 3 if so, jump to print Intel48k CPU message
jmp not_48k ; else continue with Intel38k (PU checking
is_lidb
mov dx,of fset ; store Intelydb CPU message
c48b
jmp print_one

Figure 3-23. CPU_ID, MCP_ID Detection Code (Contd.)

3-44

intal.

APPLICATION PROGRAMMING

not_48bL:

print_one:

print_87__2a7:

print_fpu:

exit:

restore_EFLAGS:

cmp
jne

mov
int

; 80287/80387 check for

fldl

fldz
fdiv

fld
fchs
fcompp

fstsw
mov
mov
sahf
jz

mov
int
cmp
mov
je

mov

mov
int
mp
mov
mov
int

mov
int

end

present_38b,1
print_87.287

ah,9h
21h

the 38b CPU

st

fp_status
ax, fp_status
dx,offset fp_80287

restore_EFLAGS

dx,of fset fp_80387

ah,h
2ih
bbh
X
bbh

sp,bx
exit

ah,9h
2ih
exit

ah,9h

2ih

present_8b,1

dx, offset fp_8087
print_fpu

dx,of fset fp_80287

ah,h

2ih

exit

dx,offset period
ah,9h

21h

ax,u4csoh
2ih

start

check if Intel38b CPU flag is on

if Intel38b CPU flag not on, check NPX for
808L/8088 28b

print out Intel3d8k CPU ID first

must use default control from

; FNINIT

; form infinity

; 8087/Intel28? math coprocessors says +inf =
inf

form negative infinity

Intel387 math coprocessor says +inf <> -inf
see if they are the same and

remove them

look at status from FCOMPP

store Intel28? math coprocessor message
see if inities matched

jump if 8087/Intel28? math coprocessor is
present

store Intel387 math coprocessor message

clear any pending fp exception
print NPX message

push ECX

restore original EFLAGS register
restore original stack pointer

print out CPU ID with no NPX

print out 808L/8088/28k first

if 808b/8088 flag is on
store 8087 message

else (PU = 28k, store Intel2d?
math coprocessor message

print out NPX

print out a period of end message

terminate program

Figure 3-23. CPU_ID, MCP_ID Detection Code (Contd.)

3-45

Intel ® APPLICATION PROGRAMMING

3.11.1 CPU_ID Detection Code

The CPU identification assembly code (Figure 3-23) will determine for the user which
Intel microprocessor is installed, and if an Intel math coprocessor is present. If an
Intel486 microprocessor is installed, the program will determine if the CPU has an inte-
grated floating-point unit (FPU). Refer to Section 10.2 and 19.2.3 to guarantee proper
configuration of the Intel486 microprocessor (with and without FPU). Please understand
that only these code sequences have been validated by Intel to detect CPU_ID, math
coprocessor function, and initialize accordingly. Any other approach may produce
unpredictable results in future processors.

3.11.2 Address Calculation Instruction

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory
(rather than its contents) into the destination operand. The source operand must be in
memory, and the destination operand must be a general register. This instruction isespe-
cially useful for initializing the ESI or EDI registers before the execution of string
instructions or. initializing the. EBX register before an XLAT instruction. The LEA
instruction can perform any indexing or scaling which may be needed.

Example: LEA EBX, EBCDIC_TABLE

Causes the processor to place the address of the starting location of the table
labeled EBCDIC_TABLE into EBX.

3.11.3 No-Operation Instruction

NOP (No Operation) occupies a byte of code space. When executed, it increments the
EIP register to point at the next instruction, but affects nothing else.

3.11.4 Translate Instruction

XLATB (Translate) replaces the contents of the AL register with a byte read from a
translation table in memory. The contents of the AL register are interpreted as an
unsigned index into this table, with the contents of the EBX register used as the base
address. The XLAT instruction does the same operation and loads its result into the
same register, but it gets the byte operand from memory. This function is used to convert
character codes from one alphabet into another. For example, an ASCII code could be
used to look up its EBCDIC equivalent.

3.11.5 Byte Swap Instruction

BSWAP (Byte Swap) reverses the byte order in a 32-bit register operand. Bit positions
7..0 are exchanged with 31..24, and bit positions 15..8 are exchanged with 23..16. This
" instruction is useful for converting between-“big-endian” and “little-endian” data for-
mats. Executing this instruction twice in a row leaves the register in the same value as

3-46

Ini'el o APPLICATION PROGRAMMING

before. This instruction also $peeds execution of decimal arithmetic by operating on four
digits at a time as shown in Figure 3-24. See introduction for Section 3.11 regarding
Intel386 processors when using BSWAP.

3.11.6 Exchange-and-Add Instruction

XADD (Exchange and Add) takes two operands: a source operand in a register and a
destination operand in a register or memory. The source operand is replaced with the
destination operand, and the destination operand is replaced with the sum of the source
and destination operands. The flags reflect the result of the addition. This instruction
can be combined with LOCK in a multiprocessing system to allow multiple processors to
execute one do loop. See introduction for Section 3.11 regarding Intel386 processors
when using XADD.

3.11.7 Compare-and-Exchange Instruction

CMPXCHG (Compare and Exchange) takes three operands: a source operand in a reg-
ister, a destination operand in a register or memory, and the accumulator (i.e., the AL,
AX, or EAX register, depending on operand size). If the values in the destination oper-
and and the accumulator are equal, the destination operand is replaced with the source
operand. Otherwise, the original value of the destination operand is loaded into the
accumulator. The flags reflect the result which would have been obtained by subtracting
the destination operand from the accumulator. The ZF flag is set if the values in the
destination operand and the accumulator were equal, otherwise it is cleared.

The CMPXCHG instruction is useful for testing and modifying semaphores. It performs
a check to see if a semaphore is free. If the semaphore is free it is marked allocated,
otherwise it gets the ID of the current owner. This is all done in one uninterruptible
operation. In a single processor system, it eliminates the need to switch to level 0 to
disable interrupts to execute multiple instructions. For multiple processor systems,
CMPXCHG can be combined with LOCK to perform all bus cycles atomically. See
introduction for Section 3.11 regarding Intel386 processors when using CMPXCHG.

3-47

intgl.

APPLICATION PROGRAMMING

~e Ne

Ne e ve e Ne

addl0 proc

Se ~e

~e

addlo0 endp

Se Se Ne e

~e

~e e

subl0 proc

code segment

mov eax, [esi]
bswap eax
add eax,96969696H

and eax, 0AOAOAQARH

$title ('ASCII Add/Subtract With BSWAP')

name ASCII_arith

er public use32

Add a string of 4 ASCII decimal digits together.
The upper nibble MUST be 3.

DS: [ESI] points at operand 1

DS: [EBX] points at operand 2

DS: [EDI] points at the destination

near

Perform ASCII add using BSWAP instruction on i486 CPU.

Get low four digits of first operand
Put into big-endian form
Adjust for addition so carries work

~e Se Se

mov ecx, [ebx] ; Get low four digits of second operand
bswap ecx ; Put into big endian form

add eax,ecx ; Do the add with inter-digit carry

rcr ch,1 ; Save the carry flag

mov edx,eax ; Save the value

and eax, OFOFOFOFOH ; Extract upper nibble

sub edx,eax ; Zero out upper nibble of each byte
shr eax,4 ; Prepare for fixup

If non-zero upper nibble then form
10 as adjustment value to lower nibble

add eax,edx ; Form adjusted lower nibble value
; upper nibbles may be 1 from adjustment
or eax,30303030H ; Convert back to ASCII
bswap eax ; Back to little-endian
mov [edi],eax ; Set destination
rcl ch,1 ; Restore carry
ret

Subtract a string of 4 ASCII decimal digits together.
The upper nibble must be 3.

DS: [ESI] points at operand 1
DS: [EBX] points at operand 2
DS: [EDI] points at the destination

[ESI]-[EBX]

near

H Perform ASCII subtract using BSWAP instruction on 1486 CPU.

240486i3-240f1

Figure 3-24. ASCII Arithmetic Using BSWAP

3-48

intel.

APPLICATION PROGRAMMING

mov eax, [esi]
bswap eax
mov ecx, [ebx]
bswap ecx
sub eax, ecx
rer ch,1
mov edx, eax
and eax, 0OFOFOFOFO0H
sub edx, eax
shr eax, 4
and eax, 0AOAOAQOAH
add eax,edx
or eax,30303030H
bswap eax
mov [edi],eax
rcl ch,1
ret

subl0 endp

code ends
end

~.

~.

Se e S

Ne Se e Se e e

Se Se No Se

~e

~e ~e

Get low four digits of first operand
Put into big-endian form

Get low four digits of second operand
Put into big endian form

Do the subtract with inter-digit borrow
Save the carry flag

Save the value

Extract upper nibble, F if borrow happened
Zero out upper nibble of each byte
Prepare for fixup

If non-zero upper nibble then form

10 as adjustment value to lower nibble
Form adjusted lower nibble value

upper nibbles may be 1 from adjustment
Convert back to ASCII

Back to little-endian

Set destination

Restore borrow

240486i3-240f2

Figure 3-24. ASCII Arithmetic Using BSWAP (Contd.)

3-49

Part Il
System Programming

System Architecture

CHAPTER 4
SYSTEM ARCHITECTU RE

Many of the architectural features of the Intel486 processor are used.only by system
programmers. This chapter presents an overview of these features. Application program-
mers may need to read this chapter, and the following chapters which describe the use of
these features, in order to understand the hardware facilities used by system program-
mers to create a reliable and secure environment for application programs. The system-
level architecture also supports powerful debugging features which application
programmers may wish to use during program development.

The system-level features of the architecture include:

Memory Management
Protection
Multitasking
Input/Output
" Exceptions and Interrupts
Initialization
Coprocessing and Multlprocessmg
Debugging
Cache Management

These features are supported by registers and instructions, all of which are introduced in
the following sections. The purpose of this chapter is not to explain each feature in
detail, but rather to place the remaining chapters of Part II in perspective. When a
reglster or instruction is mentioned, it is accompanied by an explanation or a reference
to a following chapter. :

4.1 SYSTEM REGISTERS
The registers intended for use by system programmers fall into these categories:

EFLAGS Register ,
Memory-Management Registers
Control Registers

Debug Registers

Test Registers

The system registers control the execution environment of application programs. Most
systems restrict access to these facilities by application programs (although systems can
be built where all programs run at the most privileged level, in which case application
programs are allowed to modify these facilities).

4-1

|nte| o SYSTEM ARCHITECTURE

4.1.1 System Flags

The system flags of the EFLAGS register control I/O, maskable interrupts, debugging,
task switching, and the virtual-8086 mode. An application program should ignore these
flags, and should not attempt to change their state. In most systems, an attempt to
change the state of a system flag by an application program results in an exception.
These flags are shown in Figure 4-1.

AC (Alignment Check Mode, bit 18)

Setting the AC flag and the AM bit in the CRO register enables alignment checking on
memory references. An alignment-check exception is generated when reference .is made
to an unaligned operand, such as a word at an odd byte address or a doubleword at an
address which is not an integral multiple of four. Alignment-check exceptions are gen-
erated only in user mode (privilege level 3). Memory references which default to privi-
lege level 0, such as segment descriptor loads, do not generate this exception even when
caused by a memory reference in user-mode.

The alignment check interrupt can be used to check alignment of data. This is useful
when exchanging data with other processors like i860™ 64-bit microprocessor which
require all data to be aligned. The alignment check interrupt can also be used by inter-
preters to flag some pointers as special by misaligning the pointer. This eliminates over-
head of checking each pointer and only handles the special pointer when used.

3 111111111 :
1 8765432109876543210
A|ViR|.IN| = |o|p|1|T|s|z| |A| |P|,]|C
ojojofolojojo|o|ojoolofo|cimlic|0lr| & (EIRIrIFIFIFIOI||6||F
J AA

ALIGNMENT CHECK (AC)

VIRTUAL 8086 MODE (VM)

RESUME FLAG (RF)

NESTED TASK (NT)

/0 PRIVILEGE LEVEL (IOPL)

INTERRUPT ENABLE FLAG (IF)

TRAP FLAG (TF)

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED.
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ.

240486i4-1

Figure 4-1. System Flags

4-2

Intel o SYSTEM ARCHITECTURE

VM (Virtual-8086 Mode, bit 17)

Setting the VM flag places the processor in virtual-8086 mode, which is an emulation of
the programming environment of an 8086 processor. See Chapter 23 for more
information.

RF (Resume Flag, bit 16)

The RF flag temporarily disables debug exceptions so that an instruction can be
restarted after a debug exception without immediately causing another debug exception.
When the debugger is entered, this flag allows it to run normally rather than recursively
calling itself until the stack overflows. The RF flag is not affected by the POPF, POPFD
or IRET instructions. See Chapter 9 and Chapter 11 for details.

NT (Nested Task, bit 14)

The processor uses the nested task flag to control :chaining of interrupted and called
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is affected
by the POPF, POPFD, and IRET instructions. Improper changes to the state of this flag
can generate unexpected exceptions in application programs. See Chapter 7 and
Chapter 9 for more information on nested tasks. :

IOPL (I/O Privilege Level, bits 12 and 13)

The 1/O privilege level is used by the prdtection mechanism to control access to the I/O
address space. The privilege level of the code segment currently executing (CPL) and the
IOPL determme whether this field can be modlfled by the POPF, POPFD, and IRET

IF (Interrupt-Enable Flag, bit 9)

Setting the IF flag puts the processor in a mode in which it responds to maskable inter-
rupt requests (INTR interrupts). Clearing the IF flag disables these interrupts. The IF
flag has no effect on either exceptions or nonmaskable interrupts (NMI interrupts). The
CPL and IOPL determine whether this field can be modified by the CLI, STI, POPF,
POPFD, and IRET instructions. See Chapter 9 for more details about interrupts.

TF (Trap Flag, bit 8)

Setting the TF flag puts the processor into single-step mode for debugging. In this mode,
the processor generates a debug exception after each instruction, which allows a pro-
gram to be inspected as it executes each instruction. Single-stepping is just one of several
debugging features of the Intel486 processor. If an application program sets the TF flag
using the POPF, POPFD, or IRET instructions, a debug exceptlon is generated. See
Chapter 9 and Chapter 11 for more information.

4-3

Intel o SYSTEM ARCHITECTURE

4.1.2 Memory-Management Registers

Four registers of the Intel486 processor specify the location of the data structures which
control segmented memory management, as shown in Figure 4-2. Special instructions are
provided for loading and storing these registers. The GDTR and IDTR registers may be
loaded with instructions which get a six-byte block of data from memory. The LDTR and
TR registers may be loaded with instructions which take a 16-bit segment selector as an
operand. The remaining bytes of these registers are then loaded automatically by the
processor from the descriptor referenced by the operand.

Most systems will protect the instructions which load memory-management registers
from use by application programs (although a system in which no protection is used is
possible). ‘

GDTR Global Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the global
descriptor table (GDT). When a reference is made to data in memory, a segment selec-
tor is used to find a segment descriptor in the GDT or LDT. A segment descriptor
contains the base address for a segment. See Chapter 5 for an explanation of
segmentation.

LDTR Local Descriptor Table Register

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit segment
selector for the local descriptor table (LDT). The segment which contains the LDT has
a segment descriptor in the GDT. There is no segment selector for the GDT. When a
reference is made to data in memory, a segment selector is used to find a segment
descriptor in the GDT or LDT. A segment descriptor contains the base address for a
segment. See Chapter 5 for an explanation of segmentation.

SYSTEM ADDRESS REGISTERS
47 32-BIT LINEAR BASE ADDRESS 1615 LIMIT 0

GDTR
IDTR

SYSTEM SEGMENT
REGISTERS

15 0 32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATTRIBUTES

TR SELECTOR
LDTR SELECTOR

DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)

24048614-2

Figure 4-2. Memory Management Registers

4-4

"Ttel o SYSTEM ARCHITECTURE

IDTR Interrupt Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the interrupt
descriptor table (IDT). When an interrupt occurs, the interrupt vector is used as an
index to get a gate descriptor from this table. The gate descriptor contains a pointer used
to start up the interrupt handler. See Chapter 9 for details of the interrupt mechanism.

TR Task Register

This register holds the 32-bit base address, 16-bit segment limit, descriptor attributes,
and 16-bit segment selector for the task currently being executed. It references a task
state segment (TSS) descriptor in the global descriptor table. See Chapter 7 for a
description of the multitasking features of the Intel486 processor.

4.1.3 Control Registers

Figure 4-3 shows the format of the control registers CR0, CR1, CR2, and CR3. Most
systems prevent application programs from loading the control registers (although an
unprotected system would allow this). Application programs can read this register to
determine if a numerics coprocessor is present. Forms of the MOV instruction allow the
register to be loaded from or stored in general registers. For example:

nav EAX, (RO
nov CR3, EBX

The CRO register contains system control flags, which control modes or indicate states
which apply generally to the processor, rather than to the execution of an individual task.
A program should not attempt to change any of the reserved bit positions. Reserved bits
should always be set to the value previously read.

3 2 1
1 3 5 7 43 0
: plp
PAGE DIRECTORY BASE REGISTER (PDBR) c yrl CR3
D
PAGE FAULT LINEAR ADDRESS) CR2
RESERVED CR1
Plc|N Al (w N[, |T|E|M[P
clolw ml |p RESERVED £l1lsmlplg| SR
2 11
9 8 6
240486i4-3

Figure 4-3. Control Registers

45

|nte| o SYSTEM ARCHITECTURE

The LMSW instruction can only modify the lower 16 bits of CRO.
PG (Paging, bit 31)

This bit enables paging when set and disables paging when clear. See Chapter 5 for more
information about paging. See Chapter 10 for information on how to enable paging.

When an exception is generated during paging, the CR2 register has the 32-bit linear
address which caused the exception. See Chapter 9 for more information about handling
exceptions generated during paging (page faults).

When paging is used, the CR3 register has the 20 most-significant bits of the address of
the page directory (the first-level page table). The CR3 register is also known as the
page-directory base register (PDBR). Note that the page directory must be aligned to a
page boundary, so the low 12 bits of the register are ignored. Unlike the Intel386 DX
processor, the Inteld486 processor assigns functions to two of these bits. These are:

PCD (Page-Level Cache Disable, bit 4 of CR3)

The state of this bit is driven on the PCD pin during bus cycles which are not paged,
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus
cycles when paging is not enabled. The PCD pin is used to control caching in an external
cache on a cycle-by-cycle basis.

PWT (Page-Level Writes Transparent, bit 3 of CR3)

The state of this bit is driven on the PWT pin during bus cycles which are not paged,
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus
cycles when paging is not enabled. The PWT pin is used to control write-through in an
external cache on a cycle-by-cycle basis.

CD (Cache Disable, bit 30)

This bit enables the internal cache when clear and disables the cache when set. Cache
misses do not cause cache line fills when the bit is set. Note that cache hits are not
disabled; to completely disable the cache, the cache must be flushed. See Chapter 12 for
information on caching.

NW (Not Write-through, bit 29)

This bit enables write-throughs and cache invalidation cycles when clear and disables
invalidation cycles and write-throughs which hit in the cache when set. See Chapter 12
for information on caching.- Disabling write-throughs can allow stale data to appear in
the cache. «

4-6

"Ttel o SYSTEM ARCHITECTURE

AM (Alignment Mask, bit 18)

This bit allows alignment checking when set and disables alignment checking when clear.
Alignment checking is performed only when the AM bit is set, the AC flag is set, and the
CPL is 3 (user mode).

WP (Write Protect, bit 16)

When set, this bit write-protects user-level pages against supervisor-level writes. When
this bit is clear, read-only user-level pages can be written by a supervisor process. This
feature is useful for implementing the copy-on-write method of creating a new process
(forking) used by some operating systems, such as UNIX.

NE (Numeric Error, bit 5)

This bit enables the standard mechanism for reporting floating-point numeric errors
when set. When NE is clear and the IGNNE# input is active, numeric errors are
ignored. When the NE bit is clear and the IGNNE# input is inactive, a numeric error
causes the processor to stop and wait for an interrupt. The interrupt is generated by
using the FERR# pin to drive an input to the interrupt controller (the FERR# pin
emulates the ERROR# pin of the Intel287™ and Intel387 DX coprocessors). The NE
bit, IGNNE# pin, and FERR# pin are used with external logic to implement PC-style
error reporting.

ET (Extension Type, bit 4)

This bit is one to indicate support of Intel387 DX math coprocessor instructions (Intel
reserved).

TS (Task Switched, bit 3)

The processor sets the TS bit with every task switch and tests it when interpreting
floating-point arithmetic instructions. This bit allows delaying save/restore of numeric
content until the numeric data is actually used. The CLTS instruction will clear this bit.

EM (Emulation, bit 2)

When the EM bit is set, execution of a numeric instruction generates the coprocessor-
not-available exception. The EM bit must be set in the Intel486 SX microprocessor.

MP (Math Present, bit 1)

On the 286 and Intel386 DX processors, the MP bit controls the function of the WAIT
instruction, which is used to synchronize with a coprocessor. When running 286 and
Intel386 DX programs on processors with the Intel486 FPU, this bit should be set. The
MP bit should be reset in the Intel486 SX CPU.

4-7

|nte|® ~ SYSTEM ARCHITECTURE

PE (Protection Enable, bit 0)

Setting the PE bit enables segment-level protection. See Chapter 6 for more information
about protection. See Chapter 10 and Chapter 22 for information on how to enable

paging. :

4.1.4 Debug Registers

The debug registers bring advanced debugging abilities to the Intel486 processor, includ-
ing data breakpoints and the ability to set instruction breakpoints without modifying
code segments (useful in debugging ROM-based software). Only programs executing at
the highest privilege level can access these registers. See Chapter 11 for a complete
description of their formats and use. The debug registers are shown in Figure 4-4.

4.1.5 Test Registers

The test registers are not a formal part of the architecture. They are an implementation-
dependent facility provided for testing the translation lookaside buffer (TLB) and the
cache. See Chapter 10 for a complete description of their formats and use. The test
registers are shown in Figure 4-5. ‘

31 23 15 7 0
o i e S X A
0000000000000000 ?lgg 000000000 ggfg‘ DR6
: RESERVED DR5
' RESERVED . DR4
, A
"BREAKPOINT 3 LINEAR ADDRESS DR3
'BREAKPOINT 2 L:INEAR ADDRESS DR2
" BREAKPOINT 1 L:INEAR ADDRESS DR1
. ,
" BREAKPOINT 0 LINEAR ADDRESS DRO

NOTE: 0 MEANS INTEL RESERVED. DO NOT DEFINE.

240486i4-4

Figure 4-4. Debug Registers

4-8

SYSTEM ARCHITECTURE

111
3 2109876543210
Pl el R
PHYSICAL ADDRESS ciw| tru {oo{| E |oof a7
DiT p
LINEAR ADDRESS v(p[|u]¥w[¥[o 0 0 0|c| e
Elc
UNUSED SETSELECT | N | T | s
T|L
LINEAR ADDRESS v| LRy | vaLD |0 0 o] The
DATA "3

CTL
ENT

VALID
CONTROL
ENTRY

240486i4-5

Figure 4-5. Test Registers

4.2 SYSTEM INSTRUCTIONS

System instructions deal with functions such as:

1. Verification of pointer parameters (see Chapter 6):

. - Useful to Protected from
Instruction Description Application? Application?
ARPL Adjust RPL No No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No

4-9

intgl.

SYSTEM ARCHITECTURE

2. Addressing descriptor tables (see Chapter 5):

. L Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register Yes No
SLDT Store LDT Register Yes No
LGDT - Load GDT Register No Yes
SGDT Store GDT Register No No -
3. Multitasking (see Chapter 7):
. i Useful to Protected from
Instruction Description Application? Application?
LTR Load Task Register No Yes
STR Store Task Register Yes No
4. Floating-Point Numerics (see Part III):
. I Useful to Protected from
Instruction Description Application? Application?
CLTS Clear TS bit in CRO No Yes
ESC Escape Instructions Yes No
WAIT Wait Until Yes No
Coprocessor Not Busy
5. Input and Output (see Chapter 8):
. i Useful to Protected from
Instruction Description Application? Application?
IN Input Yes Can be
ouT Output Yes Can be
INS Input String Yes Can be
ouTsS Output String Yes Can be
6. Interrupt control (see Chapter 9):
. . Useful to Protected from
Instruction Description Application? Application?
CLI Clear IF flag Can be Can be
STI Store IF flag Can be Can be
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No

4-10

ﬂnieg o SYSTEM ARCHITECTURE

7. Debugging (see Chapter 11):

- - Useful to Protected from
Instruction Description Application? Application?
MOV Load and store debug No Yes
registers
8. Cache Management:
. ‘ _— Useful to Protected from
Instruction Description Application? Application?
INVD Invalidate cache, No Yes
no write-back
WBINVD Invalidate cache, No Yes
with write-back
INVLPG Invalidate TLB entry No Yes
9. System Control:
. . Useful to Protected from
Instruction Description Application? Application?
SMSwW Store MSW No No
LMSW Load MSW No Yes
MOV Load And Store Control Register No Yes
HLT Halt Processor No Yes
LOCK Bus Lock No Can Be

The SMSW and LMSW instructions are provided for compatibility with the 286 pro-
cessor. A program for the Intel486 processor should not use these instructions. A pro-
gram should access the Control Registers using forms of the MOV instruction. The
LMSW instruction does not affect the PG, CD, NW, AM, WP, NE or ET bits, and it
cannot be used to clear the PE bit.

The HLT instruction stops the processor until an enabled interrupt or RESET signal is
received. (Note that the NMI interrupt is always enabled.) A special bus cycle is gener-
ated by the processor to indicate halt mode has been entered. Hardware may respond to
this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initial-
ization may be invoked. Software designers may need to be aware of the response of
hardware to halt mode.

The LOCK instruction prefix is used to invoke a locked (atomic) read-modify-write
operation when modifying a memory operand. The LOCK# signal is asserted and the
processor does not respond to requests for bus control during a locked operation. This
mechanism is used to allow reliable communications between processors in multiproces-
sor systems.

In addition to the chapters mentioned above, detailed information about each of these
instructions can be found in the instruction reference chapter, Chapter 26.

4-11

Memory Management

CHAPTER 5
MEMORY MANAGEMENT

Memory management is a hardware mechanism which lets operating systems create sim-
plified environments for running programs. For example, when several programs are
running at the same time, they must each be given an independent address space. If they
all had to share the same address space, each would have to perform difficult and time-
consuming checks to avoid interfering with the others.

Memory management consists of segmentation and paging. Segmentation is used to give
each program several independent, protected address spaces. Paging is used to support
an environment where large address spaces are simulated using a small amount of RAM
and some disk storage. System designers may choose to use either or both of these
mechanisms. When several programs are running at the same time, either mechanism
can be used to protect programs against interference from other programs.

Segmentation allows memory to be completely unstructured and simple, like the memory
model of an 8-bit processor, or highly structured with address translation and protection.
The memory management features apply to units called segments. Each segment is an
independent, protected address space. Access to segments is controlled by data which
describes its size, the privilege level required to access it, the kinds of memory references
which can be made to it (instruction fetch, stack push or pop, read operation, write
operation, etc.), and whether it is present in memory.

Segmentation is used to control memory access, which is useful for catching bugs during
program development and for increasing the reliability of the final product. It also is
used to simplify the linkage of object code modules. There is no reason to write position-
independent code when full use is made of the segmentation mechanism, because all
memory references can be made relative to the base addresses of a module’s code and
data segments. Segmentation can be used to create ROM-based software modules, in
which fixed addresses (fixed, in the sense that they cannot be changed) are offsets from
a segment’s base address. Different software systems can have the ROM modules at
different physical addresses because the segmentation mechanism will direct all memory

references to the right place.

In a simple memory architecture, all addresses refer to the same address space. This is
the memory model used by 8-bit microprocessors, such as the 8080 processor, where the
logical address is the physical address. The Intel486 processor can be used in this way by
mapping all segments into the same address space and keeping paging disabled. This
might be done where an older design is being updated to 32-bit technology without also
adopting the new architectural features.

An application also could make partial use of segmentation. A frequent cause of soft-
ware failures is the growth of the stack into the instruction code or data of a program.
Segmentation can be used to prevent this. The stack can be put in an address space
separate from the address space for either code or data. Stack addresses always would

5-1

InteL MEMORY MANAGEMENT

refer to the memory in the stack segment, while data addresses always would refer to
memory in the data segment. The stack segment would have a maximum size enforced by
hardware. Any attempt to grow the stack beyond this size would generate an exception.

A complex system of programs may make full use of segmentation. For example, a
system in which programs share data in real time can have precise control of access to
that data. Program bugs appear as exceptions generated when a program makes
improper access. This is useful as an aid to debugging during program development, and
it also may be used to trigger error-recovery procedures in systems delivered to the end
user. :

Segmentation hardware translates a segmented (logical) address into an address for a
continuous, unsegmented address space, called a linear address. If paging is enabled,
paging hardware translates a linear address into a physical address. If paging is not
enabled, the linear address is used as the physical address. The physical address appears
on the address bus coming out of the processor.

Paging is a mechanism used to simulate a large, unsegmented address space using a
small, fragmented address space and some disk storage. Paging provides access to data
structures larger than the available memory space by keeping them partly in memory and
partly on disk.

Paging is applied to units of 4K bytes called pages. When a program attempts to access a
page which is on disk, the program is interrupted in a special way. Unlike other excep-
tions and interrupts, an exception generated due to address translation restores the
contents of the processor registers to values which allow the exception-generating
instruction to be re-executed. This special treatment is called instruction restart. It allows
the operating system to read the page from disk, update the mapping of linear addresses
to physical addresses for that page, and restart the program. This process is transparent
to the program. ‘

If an operating system never sets bit 31 of the CRO register (the PG bit), the paging
mechanism will never be enabled. Linear addresses will be used as physical addresses.
This might be done where a design using a 16-bit processor is being updated to use a
32-bit processor. An operating system written for a 16-bit processor does not use paging
because the size of its address space is so small (64K bytes) that it is more efficient to
swap entire segments between RAM and disk, rather than individual pages.

Paging would be enabled for operating systems which can support demand-paged virtual
memory, such as UNIX. Paging is transparent to application software, so an operating
system intended to support application programs written for 16-bit processors may run
those programs with paging enabled. Unlike paging, segmentation is not transparent to
application programs. Programs which use segmentation must be run with the segments
they were designed to use.

5-2

|nte| o MEMORY MANAGEMENT

5.1 SELECTING A SEGMENTATION MODEL

A model for the segmentation of memory is chosen on the basis of reliability and per-
formance. For example, a system which has several programs sharing data in real time
would get maximum performance from a model which checks memory references in
hardware. This would be a multi-segment model.

At the other extreme, a system which has just one program may get higher performance
from an unsegmented or “flat” model. The elimination of “far” pointers and segment-
override prefixes reduces code size and increases execution speed. Context switching is
faster, because the contents of the segment registers no longer have to be saved or
restored.

Some of the benefits of segmentation also can be provided by paging. For example, data
can be shared by mapping the same pages onto the address space of each program.

5.1.1 Flat Model

The simplest model is the flat model. In this model, all segments are mapped to the
entire physical address space. A segment offset can refer to either code or data areas. To
the greatest extent possible, this model removes the segmentation mechanism from the
architecture seen by either the system designer or the application programmer. This
might be done for a programming environment like UNIX, which supports paging but
does not support segmentation.

A segment is defined by a segment descriptor. At least two segment descriptors must be
created for a flat model, one for code references and one for data references. Both
descriptors have the same base address value. Whenever memory is accessed, the con-
tents of one of the segment registers are used to select a segment descriptor. The seg-
ment descriptor provides the base address of the segment and its limit, as well as access
control information (see Figure 5-1).

SEGMENT SEGMENT PHYSICAL
REGISTERS DESCRIPTORS MEMORY
a6
cs EPROM
ss [~ Access| LmiT

/ BASE ADDRESS :
DS DRAM

240486i5-1

Figure 5-1. Flat Model

5-3

|nte| ® MEMORY MANAGEMENT

ROM usually is put at the top of the physical address space, because the processor
begins execution at OFFFFFFFOH. RAM is placed at the bottom of the address space
because the initial base address for the DS data segment after reset initialization is 0.

For a flat model, each descriptor has a base address of 0 and a segment limit of 4
gigabytes. By setting the segment limit to 4 gigabytes, the segmentation mechanism is
kept from generating exceptions for memory references which fall outside of a segment.
Exceptions could still be generated by the paging or segmentation protection mecha-
nisms, but these also can be removed from the memory model.

5.1.2 Protected Flat Model

The protected flat model is like the flat model, except the segment limits are set to
include only the range of addresses for which memory actually exists. A general-
protection exception will be generated on any attempt to access unimplemented mem-
ory. This might be used for systems in which the paging mechanism is disabled, because
it provides a minimum level of hardware protection against some kinds of program bugs.

In this model, the segmentation hardware prevents programs from addressing non-
existent memory locations. The consequences of being allowed access to these memory
locations are hardware-dependent. For example, if the processor does not receive a
READY# signal (the signal used to acknowledge and terminate a bus cycle) the bus
cycle does not terminate and program execution stops

Although no program should make an attempt to access these memory locations, an
attempt may occur as a result of program bugs. Without hardware checking of addresses,
it is possible that a bug could suddenly stop program execution. With hardware checking,
programs fail in a controlled way. A diagnostic message can appear and recovery proce-
dures can be attempted.

An example of a protected flat model is shown in Figure 5-2. Here, segment descriptors
have been set up to cover only those ranges of memory which exist. A code and a data
segment cover the EPROM and DRAM of physical memory. The code segment limit can
be optionally set to allow access to DRAM area. The data segment limit must be set to
the sum of EPROM and DRAM sizes. If memory-mapped I/O is used, it can be
addressed just beyond the end of DRAM area.

5.1.3 Multi-Segment' Model

The most sophisticated model is the multi-segment model. Here, the full capabilities of
the segmentation mechanism are used. Each program is given its own table of segment
descriptors, and its own segments. The segments can be completely private to the pro-
gram, or they can be shared with specific other programs. Access between programs and
particular segments can be individually controlled.

5-4

|nte| o MEMORY MANAGEMENT

SEGMENT SEGMENT PHYSICAL : LOGICAL
REGISTERS DESCRIPTORS MEMORY OFFSETS
ACCESS | LIMIT ' 4G 4G
cs BASE ADDRESS | EPROM
ES MEMORY 1/0
MEMORY 1/0
DRAM
ss
DRAM
b8 ACCESS| LIMIT ' EPROM
BASE ADDRESS 0 0
240486i5-2

Figure 5-2. Protected Flat Model

Up to six segments can be ready for immediate use. These are the segments which have
segment selectors loaded in the segment registers. Other segments are accessed by load-
ing their segment selectors into the segment registers (see Figure 5-3).

Each segment is a separate address space. Even though they may be placed in adjacent
blocks of physical memory, the segmentation mechanism prevents access to the contents
of one segment by reading beyond the end of another. Every memory operation is
checked against the limit specified for the segment it uses. An attempt to address mem-
ory beyond the end of the segment generates a general-protection exception.

The segmentation mechanism only enforces the address range specified in the segment
descriptor. It is the responsibility of the operating system to allocate separate address
ranges to each segment. There may be situations in which it is desirable to have seg-
ments which share the same range of addresses. For example, a system may have both
code and data stored in a ROM. A code segment descriptor would be used when the
ROM is accessed for instruction fetches. A data segment descriptor would be used when
the ROM is accessed as data.

5.2 SEGMENT TRANSLATION

A logical address consists of the 16-bit segment selector for its segment and a 32-bit
offset into the segment. A logical address is translated into a linear address by adding
the offset to the base address of the segment. The base address comes from the segment
descriptor, a data structure in memory which provides the size and location of a segment,
as well as access control information. The segment descriptor comes from one of two
tables, the global descriptor table (GDT) or the local descriptor table (LDT). There is

5-5

Intel ® MEMORY MANAGEMENT

SEGMENT SEGMENT PHYSICAL

REGISTERS DESCRIPTORS MEMORY
ACCESS| LIMIT
cs BASE ADDRESS
ACCESS| LIMIT
S8 BASE ADDRESS
ACCESS| LIMIT
bs BASE ADDRESS
ks ACCESS | LIMIT
BASE ADDRESS
s | ACCESS| LimiT
F BASE ADDRESS
as _JAccess] LimiT
BASE ADDRESS

ACCESS | LIMIT
BASE ADDRESS

ACCESS [LIMIT
BASE ADDRESS

ACCESS | LIMIT
BASE ADDRESS

ACCESS | LIMIT
BASE ADDRESS

240486i5-3

Figure 5-3. Multi-Segment Model

one GDT for all programs in the system, and one LDT for each separate program being
run. If the operating system allows, different programs can share the same LDT. The
system also may be set up with no LDTs; all programs will then use the GDT.

Every logical address is associated with a segment (even if the system maps all segments
into the same linear address space). Although a program may have thousands of seg-
ments, only six may be available for immediate use. These are the six segments whose
segment selectors are loaded in the processor. The segment selector holds information
used to translate the logical address into the corresponding linear address.

Separate segment registers exist in the processor for each kind of memory reference (code
space, stack space, and data spaces). They hold the segment selectors for the segments
currently in use. Access to other segments requires loading a segment register using a
form of the MOV instruction. Up to four data spaces may be available at the same time,
thus providing a total of six segment registers.

5-6.

|nte| ® MEMORY MANAGEMENT

When a segment selector is loaded, the base address, segment limit, and access control
information also are loaded into the segment register. The processor does not reference
the descriptor tables again until another segment selector is loaded. The information
saved in the processor allows it to translate addresses without making extra bus cycles. In
systems in which multiple processors have access to the same descriptor tables, it is the
responsibility of software to reload the segment registers when the descriptor tables are
modified. If this is not done, an old segment descriptor cached in a segment register
might be used after its memory-resident version has been modified.

The segment selector contains a 13-bit index into one of the descriptor tables. The index
is scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit
base address of the descriptor table. The base address comes from either the global
descriptor table register (GDTR) or the local descriptor table register (LDTR). These
registers hold the linear address of the beginning of the descriptor tables. A bit in the
segment selector specifies which table to use, as shown in Figure 5-4.

The translated address is the linear address, as shown in Figure 5-5. If paging is not
used, it is also the physical address. If paging is used, a second level of address transla-
tion produces the physical address. This translation is described in Section 5.3.

5.2.1 Segment Registers

Each kind of memory reference is associated with a segment register. Code, data, and
stack references each access the segments specified by the contents of their segment
registers. More segments can be made available by loading their segment selectors into -
these registers during program execution.

Every segment register has a ‘“visible” part and an “invisible” part, as shown in
Figure 5-6. There are forms of the MOV instruction to load the visible part of these
segment registers. The invisible part is loaded by the processor.

The operations which load these registers are instructions for application programs
(described in Chapter 3). There are two kinds of these instructions:

1. Direct load instructions such as the MOV, POP, LDS, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL and JMP
instructions. These instructions change the contents of the CS register as an inciden-
tal part of their function.

When these instructions are used, the visible part of the segment register is loaded with
a segment selector. The processor automatically fetches the base address, limit, type, and
other information from the descriptor table and loads the invisible part of the segment
register.

Because most instructions refer to segments whose selectors already have been loaded

into segment registers, the processor can add the logical-address offset to the segment
base address with no performance penalty.

5-7

|nte| o MEMORY MANAGEMENT

SEGMENT GLOBAL LOCAL
SELECTOR DESCRIPTOR DESCRIPTOR
TABLE TABLE
T
; T=0 =1
I I
I |
I I
I [
| | I
| |
]]
] |
| I
| |
] |
| |
, : SELECTOR
—
[Base ADanElélleT GDTR [BASE Annnéggn LDTR
240486i5-4

Figure 5-4. Tl Bit Selects Descriptor Table

5.2.2 Segment Selectors

A segment selector points to the information which defines a segment, called a segment
descriptor. A program may have more segments than the six whose segment selectors
occupy segment registers. When this is true, the program uses forms of the MOV
instruction to change the contents of these registers when it needs to access a new
segment.

A segment selector identifies a segment descriptor by specifying a descriptor table and a
descriptor within that table. Segment selectors are visible to application programs as a

5-8

"Ttel o MEMORY MANAGEMENT

LOGICAL

15
ADDRESs | SELECTOR | | OFFSET |

DESCRIPTOR TABLE

SEGMENT
DESCRIPTOR

0

31
;'{,‘5;‘,;‘35 | oir |pacE | OFFSET

240486i5-5
Figure 5-5. Segment Translation
VISIBLE PART INVISIBLE PART
SELECTOR BASE ADDRESS, LIMIT, ETC. cs
ss
DS
ES
FS
GS
240486i5-6

Figure 5-6. Segment Registers

part of a pointer variable, but the values of selectors are usually assigned or modified by
link editors or linking loaders, not application programs. Figure 5-7 shows the format of
a segment selector.

Index: Selects one of 8192 descriptors in a descriptor table. The processor multiplies the
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the
base address of the descriptor table (from the GDTR or LDTR register).

Table Indicator bit: Specifies the descriptor table to use. A clear bit selects the GDT; a
set bit selects the current LDT.

Requester Privilege Level: When this field contains a privilege level having a greater
value (i.e., less privileged) than the program, it overrides the program’s privilege level.
When a program uses a less privileged segment selector, memory accesses take place at
the lesser privilege level. This is used to guard against a security violation in which a less
privileged program uses a more privileged program to access protected data.

5-9

InU ® MEMORY MANAGEMENT

15) 32 10

INDEX RPL

TABLE INDICATOR (0 = GDT, 1 = LDT)
REQUESTED PRIVILEGE LEVEL
(00 = MOST PRIVILEGED, 11 = LEAST)

240486i5-7

Figure 5-7. Segment Selector

For example, system utilities or device drivers must run with a high level of privilege in
order to access protected facilities such as the control registers of peripheral interfaces.
But they must not interfere with other protected facilities, even if a request to do so is
received from a less privileged program. If a program requested reading a sector of disk
into memory occupied by a more privileged program, such as the operating system, the
RPL can be used to generate a general-protection exception when the less privileged
segment selector is used. This exception occurs even though the program using the seg-
ment selector would have a sufficient privilege level to perform the operation on its own.

Because the first entry of the GDT is not used by the processor, a selector which has an
index of 0 and a table indicator of 0 (i.e., a selector which points to the first entry of the
GDT) is used as a “null selector.” The processor does not generate an exception when a
segment register (other than the CS or SS registers) is loaded with a null selector. It
does, however, generate an exception when a segment register holding a null selector is
used to access memory. This feature can be used to initialize unused segment registers.

5.2.3 Segment Descriptors

A segment descriptor is a data structure in memory which provides the processor with
the size and location of a segment, as well as control and status information. Descriptors
typically are created by compilers, linkers, loaders, or the operating system, but not
application programs. Figure 5-8 illustrates the two general descriptor formats. The sys-
tem segment descriptor is described more fully in Chapter 6. All types of segment
descriptors take one of these formats.

Base: Defines the location of the segment within the 4 gigabyte physical address space.
The processor puts together the three base address fields to form a single 32-bit value.
Segment base values should be aligned to 16 byte boundaries to allow programs to
maximize performance by aligning code/data on 16 byte boundaries.

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (2!). When the
bit is clear, the segment limit is interpreted in units of one byte; when set, the segment
limit is interpreted in units of 4K bytes (one page). Note that the twelve least significant

5-10

ﬂni'eﬂ ® MEMORY MANAGEMENT

DESCRIPTORS USED FOR APPLICATION CODE AND DATA SEGMENTS

2222211111111 11
432109876543210987 0

-

LIMIT

BASE 31:24 G|D|O 19:16

S| TYPE BASE 23:16

r<» |o
h]
roo

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

DESCRIPTORS USED FOR SPECIAL SYSTEM SEGMENTS

2222211111111 11
432109876543210987 0

- W

Al Lt

BASE 31:24 G|D|O|V S| TYPE BASE 23:16
L 19:16

o
roo

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

AVL - AVAILABLE FOR USE
BY SYSTEM SOFTWARE
BASE SEGMENT BASE ADDRESS
DPL DESCRIPTOR PRIVILEGE LEVEL
S DESCRIPTOR TYPE
(0 = SYSTEM; 1 = APPLICATION)
G GRANULARITY
LIMIT SEGMENT LIMIT
P SEGMENT PRESENT
TYPE SEGMENT TYPE
o DEFAULT OPERATION SIZE
(RECOGNIZED IN CODE SEGMENT DESCRIPTORS
ONLY; 0 = 16-BIT SEGMENT; 1 = 32-BIT SEGMENT)

240486i5-8

Figure 5-8. Segment Descriptors

bits of the address are not tested when scaling is used. For example, a limit of 0 with the
Granularity bit set results in valid offsets from 0 to 4095. Also note that only the Limit
field is affected. The base address remains byte granular.

Limit: Defines the size of the segment. The processor puts together the two limit fields
to form a 20-bit value. The processor interprets the limit in one of two ways, depending
on the setting of the Granularity bit:

1. If the Granularity bit is clear, the Limit has a value from 1 byte to 1 megabyte, in
increments of 1 byte.

2. If the Granularity bit is set, the Limit has a value from 4 kilobytes to 4 gigabytes, in
increments of 4K bytes.

|nte| o MEMORY MANAGEMENT

For most segments, a logical address may have an offset ranging from 0 to the limit.
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit
field; they may be addressed with any offset except those from 0 to the limit (see the
Type field, below). This is done to allow segments to be created in which increasing the
value held in the Limit field allocates new memory at the bottom of the segment’s
address space, rather than at the top. Expand-down segments are intended to hold
stacks, but it is not necessary to use them. If a stack is going to be put in a segment which
does not need to change size, it can be a normal data segment.

S bit: Determines whether a given segment is a system. segment or a code or data seg-
ment. If the S bit is set, then the segment is either a code or a data segment. If it is clear,
then the segment is a system segment.

D bit: The code segement D bit indicates the default length for operands and effective
addresses. If the D bit is set, then 32-bit operands and 32-bit effective addressing modes
are assumed. If it is clear, then 16-bit operands and addressing modes are assumed.

Type: The interpretation of this field depends on whether the segment descriptor is for
an application segment or a system segment. System segments have a slightly different
descriptor format, discussed in Chapter 6. The Type field of a memory descriptor spec-
ifies the kind of access which may be made to a segment, and its direction of growth (see
Table 5-1). ‘

Table 5-1. Application Segment Types

Number E w A Descriptor Description
Type

0 0 0 0 Data Read-Only

1 0 0 1 Data Read-Only, accessed

2 0 1 0 Data Read/Write

3 0 1 1 Data Read/Write, accessed

4 1 0 0 Data Read-Only, expand-down

5 1 0 1 Data Read-Only, expand-down, accessed

6 1 1 0 Data Read/Write, expand-down
7 1 1 1 Data Read/Write, expand-down, accessed
Number Cc R A Descriptor Description
Type

8 0 0 0 Code Execute-Only

9 0 0 1 Code Execute-Only, accessed

10 0 1 0 Code Execute/Read
11 0 1 1 Code Execute/Read, accessed
12 1 0 0 Code Execute-Only, conforming

13 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 0 Code Execute/Read-Only, conforming

15 1 1 1 Code Execute/Read-Only, conforming, accessed

5-12

Intel o MEMORY MANAGEMENT

For data segments, the three lowest bits of the type field can be interpreted as expand-
down (E), write enable (W), and accessed (A). For code segments, the three lowest bits
of the type field can be interpreted as conforming (C), read enable (R), and
accessed (A).

Data segments can be read-only or read/write. Stack segments are data segments which
must be read/write. Loading the SS register with a segment selector for any other type of
segment generates a general- protection exception. If the stack segment needs to be able
to change size, it can be an expand- -down data segment. The meaning of the segment
limit is reversed for an expand-down segment. While an offset in the range from 0 to the
segment limit is valid for other kinds of segments (outside this range a general-
protection exception is generated), in an expand-down segment these offsets are the
ones which generate exceptions. The valid offsets in an expand-down segment are those
which generate exceptions in the other kinds of segments. Expand-up segments must be
addressed by offsets which are equal or less than the segment limit. Offsets into expand-
down segments always must be greater than the segment limit. This interpretation of the
segment limit causes memory space to be allocated at the bottom of the segment when
the segment limit is decreased, which is correct for stack segments because they grow
toward lower addresses. If the stack is given a segment which does not change size, it
does not need to be an expand-down segment. »

Code segments can be exécute-only or execute/read. An execute/read segment might be
used, for example, when constants have been placed with instruction code in a ROM. In
this case, the constants can be read either by using an instruction with a CS override
prefix or.by placing a segment selector for the code segment in a segment register for a
data segment.

Code segments can be either conforming or non-conforming. A transfer of execution
into a more privileged conforming segment keeps the current privilege level. A transfer
into a non-conforming segment at a different privilege level results in a general-
protection exception, unless a task gate is used (see Chapter 6 for a discussion of multi-
tasking). System utilities which do not access protected facilities, such as data-conversion
functions (e.g., EBCDIC/ASCII translation, Huffman encoding/decoding, math library)
and some types of exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND
range exceeded) may be loaded in conforming code segments.

The Type field also reports whether the segment has been accessed. Segment descriptors
initially report a segment as having been accessed. If the Type field then is set to a value
for a segment which has not been accessed, the processor restores the value if the seg-
ment is accessed. By clearmg and testmg the low bit of the Type field, software can

monitor ngl’IlCl’l[usage \mc low bit of the lpr fieid also is called the Accessed Dl[)

For example, a program development system might clear all of the Accessed bits for the
segments of an application. If the application crashes, the states of these bits can be used
to generate a map of all the segments accessed by the application. Unlike the break-
points provided by the debugging mechanism (Chapter 11), the usage information
applies to segments rather than physical addresses. .

5-13

|nte| o MEMORY MANAGEMENT

The processor may update the Type field when a segment is accessed, even if the access
is a read cycle. If the descriptor tables have been put in ROM, it may be necessary for
hardware to prevent the ROM from being enabled onto the data bus during a write
cycle. It also may be necessary to return the READY# signal to the processor when a
write cycle to ROM occurs, otherwise the cycle does not terminate. These features of the
hardware design are necessary for using ROM-based descriptor tables with the Intel386
DX processor, which always sets the Accessed bit when a segment descriptor is loaded.
The Intel486 processor, however, only sets the Accessed bit if it is not already set. Writes
to descriptor tables in ROM can be avoided by setting the Accessed bits in every
descriptor.

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used
to control access to the segment, using the protection mechanism described in Chapter 6.

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present
exception when a selector for the descriptor is loaded into a segment register. This is
used to detect access to segments which have become unavailable. A segment can
become unavailable when the system needs to create free memory. Items in memory,
such as character fonts or device drivers, which currently are not being used are
de-allocated. An item is de-allocated by marking the segment “not present” (this is done
by clearing the Segment-Present bit). The memory occupied by the segment then can be
put to another use. The next time the de-allocated item is needed, the segment-not-
present exception will indicate the segment needs to be loaded into memory. When this
kind of memory management is provided in a manner invisible to application programs,
it is called virtual memory. A system may maintain a total amount of virtual memory far
larger than physical memory by keeping only a few segments present in physical memory
at any one time. '

Figure 5-9 shows the format of a descriptor when the Segment-Present bit is clear. When
this bit is clear, the operating system is free to use the locations marked Available to
store its own data, such as information regarding the whereabouts of the missing
segment. ‘

1111111
31 6543210987 0
D ip
AVAILABLE of P 7| TveE AVAILABLE +4
L
AVAILABLE +0

240486i5-9

Figure 5-9. Segment Descriptor (Segment Not Present)

5-14

Intel 0 MEMORY MANAGEMENT

5.2.4 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors. There are two kinds of
descriptor tables:

o The global descriptor table (GDT)
o The local descriptor tables (LDT)

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table
is an array of segment descriptors, as shown in Figure 5-10. A descriptor table is variable
in length and may contain up to 8192 (2'?) descriptors. The first descriptor in the GDT
is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a segment register, but it always generates an

GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE .
+ 38 + 38
+ 30 + 30
+ 28 + 28
+ 20 + 20

+ 18 + 18
+ 10 + 10
+ 8 + 8
FIRST DESCRIPTOR IN GDT l
IS NOT USED +0 +0
GDTR REGISTER . LDTR REGISTER
SELECTOR
LiMIT LIMIT
) ! LIMIT
I BASE ADDRESS I

NOTE: ADDRESSES SHOWN IN HEXADECIMAL

240486i5-10

Figure 5-10. Descriptor Tables

5-15

Intel o MEMORY MANAGEMENT

exception when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment
registers can be guaranteed to generate an exception.

5.2.5 Descriptor Table Base Registers

The processor finds the global descriptor table (GDT) and interrupt descriptor table
(IDT) using the GDTR and IDTR registers. These registers hold 32-bit base addresses
for tables in the linear address space. They also hold 16-bit limit values for the size of
these tables. When the registers are loaded or stored, a 48-bit “pseudo-descriptor” is
accessed in memory, as shown in Figure 5-11. The GDT and IDT should be aligned on a
16 byte boundary to maximize performance due to cache line fills.

The limit value is expressed in bytes. As with segmer ts, the limit value is added to the
base address to get the address of the last valid byte. A limit value of 0 results in exactly
one valid byte. Because segment descriptors are always eight bytes, the limit should
always be one less than an integral multiple of eight (i.e., 8N — 1). The LGDT and
SGDT instructions read and write the GDTR register; the LIDT and SIDT instructions
read and write the IDTR register.

A third descriptor table is the local descriptor table (LDT). It is identified using a 16-bit
segment selector held in the LDTR register. The LLDT and SLDT instructions read and
write the segment selector in.the LDTR register. The LDTR register also holds the base
address and limit for the LDT, but these are loaded automatically by the processor from
the segment descriptor for the LDT. The LDT should be aligned on a 16 byte boundary
to maximize performance due to cache line fills.

Alignment check faults may be generated by storing a pseudo-descriptor in user mode

.(privilege level 3). User-mode programs normally do not store pseudo-descriptors, but
the possibility of generating an alignment check fault in this way can be avoided by
placing the pseudo-descriptor at an odd word address (i.e., an address which is 2 MOD
4). This causes the processor to store an aligned word, followed by an aligned
doubleword. '

a7 ' 16 15 0
| BASE ADDRESS umr |
5 21 0

BYTE ORDER IS SHOWN BELOW

240486i5-11

Figure 5-11. Pseudo-Descriptor Format

5-16

In'l'el o MEMORY MANAGEMENT

5.3 Page Translation

A linear address is a 32-bit address into a uniform, unsegmented address space. This
address space may be a large physical address space (i.e., an address space composed of
4 gigabytes of RAM), or paging can be used to simulate this address space using a small
amount of RAM and some disk storage. When paging is used, a linear address is trans-
lated into its corresponding physical address, or an exception is generated. The excep-
tion gives the operating system a chance to read the page from disk (perhaps sending a
different page out to disk in the process), then restart the instruction which generated
the exception.

Paging is different from segmentation through its use of small, fixed-size pages. Unlike
segments, which usually are the same size as the data structures they hold, on the
Intel486 processor, pages are always 4K bytes. If segmentation is the only form of
address translation which is used, a data structure which is present in physical memory
will have all of its parts in memory. If paging is used, a data structure may be partly in
memory and partly in disk storage.

The information which maps linear addresses into physical addresses and exceptions is
held in data structures in memory called page tables. As with segmentation, this informa-
tion is cached in processor registers to minimize the number of bus cycles required for
address translation. Unlike segmentation, these processor registers are completely invis-
ible to application programs. (For testing purposes, these registers are visible to pro-
grams running with maximum privileges; see Chapter 10 for details.)

The paging mechanism treats the 32-bit linear address as having three parts, two 10-bit
indexes into the page tables and a 12-bit offset into the page addressed by the page
tables. Because both the virtual pages in the linear address space and the physical pages
of memory are aligned to 4K-byte page boundaries, there is no need to modify the low 12
bits of the address. These 12 bits pass straight through the paging hardware, whether
paging is enabled or not. Note that this is different from segmentation, because segments
can start at any byte address.

The upper 20 bits of the address are used to index into the page tables. If every page in
the linear address space were mapped by a single page table in RAM, 4 megabytes
would be needed. This is not done. Instead, two levels of page tables are used. The top
level page table is called the page directory. It maps the upper 10 bits of the linear
address to the second level of page tables. The second level of page tables maps the
middle 10 bits of the linear address to the base address of a page in physical memory
(called a page frame address).

An exception may be generated based on the contents of the page table or the page
directory. An exception gives the operating system a chance to bring in a page table from
disk storage. By allowing the second-level page tables to be sent to disk, the paging
mechanism can support mapping of the entire linear address space using only a few
pages in memory.

5-17

Intel ® MEMORY MANAGEMENT

The CR3 register holds the page frame address of the page directory. For this reason, it
also is called the page directory base register or PDBR. The upper 10 bits of the linear
address are scaled by four (the number of bytes in a page table entry) and added to the
value in the PDBR register to get the physical address of an entry in the page directory.
Because the page frame address is always clear in its lowest 12 bits, this addition is
performed by concatenation (replacement of the low 12 bits with the scaled index).

When the entry in the page directory is accessed, a number of checks are performed.
Exceptions may be generated if the page is protected or is not present in memory. If no
exception is generated, the upper 20 bits of the page table entry are used as the page
frame address of a second-level page table. The middle 10 bits of the linear address are
scaled by four (again, the size of a page table entry) and concatenated with the page
frame address to get the physical address of an entry in the second-level page table.

Again, access checks are performed, and exceptions may be generated. If no exception
occurs, the upper 20 bits of the second-level page table entry are concatenated with the
lowest 12 bits of the linear address to form the physical address of the operand (data) in
memory.

Although this process may seem complex; it all takes place with very little overhead. The
processor has a cache for page table entries called the translation lookaside buffer
(TLB). The TLB satisfies most requests for reading the page tables. Extra bus cycles
occur only when a new page is accessed. The page size (4K bytes) is large enough so that
very few bus cycles are made to the page tables, compared to the number of bus cycles
made to instructions and data. At the same time, the page size is small enough to make
efficient use of memory. (No matter how small a data structure is, it occupies at least
one page of memory.)

5.3.1 PG Bit Enables Paging

If paging is enabled, a second stage of address translation is used to generate the phys-
ical address from the linear address. If paging is not enabled, the linear address is used
as the physical address.

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is
set by the operating system during software initialization. The PG bit must be set if the
operating system is running more than one program in virtual-8086 mode or if demand-
paged virtual memory is used.

5.3.2 Linear Address

Figure 5-12 shows the format of a linear address.

5-18

Intel ® MEMORY MANAGEMENT

31 22 21 12 11 0
DIRECTORY TABLE OFFSET
240486i5-12
Figure 5-12. Format of a Linear Address
PAGE FRAME
| pirectory | TABLE | oFFseT |
»] OPERAND
PAGE DIRECTORY PAGE TABLE
L1 PG DIR ENTRY
PG TBL ENTRY
240486i5-13

Figure 5-13. Page Translation

Figure 5-13 shows how the processor translates the DIRECTORY, TABLE, and OFF-
SET fields of a linear address into the physical address using two levels of page tables.
The paging mechanism uses the DIRECTORY field as an index into a page directory,
the TABLE field as an index into the page table determined by the page directory, and
the OFFSET field to address an operand within the page specified by the page table.

5.3.3 Page Tables

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096
bytes of memory or, at most, 1K 32-bit entries. All pages, including page directories and
page tables, are aligned to 4K-byte boundaries.

Two levels of tables are used to address a page of memory. The top level is called the
page directory. It addresses up to 1K page tables in the second level. A page table in the
second level addresses up to 1K pages in physical memory. All the tables addressed by
one page directory, therefore, can address 1M or 2?° pages. Because each page contains
4K or 2'2 bytes, the tables of one page directory can span the entire linear address space
of the Intel486 processor (22° x 22 = 2%2),

5-19

Inte|® ' MEMORY MANAGEMENT

The physical address of the current page directory is stored in the CR3 register, also
called the page directory base register (PDBR). Memory management software has the
option of using one page directory for all tasks, one page directory for each task, or some
combination of the two. See Chapter 10 for information on initialization of the CR3
register. See Chapter 7 for how the contents of the CR3 register can change for each
task.

5.3.4 Page-Table Entries

Entries in either level of page tables have the same format, except that the page direc-
tory has no Dirty bit. Figure 5-14 illustrates this format. The bit position of the D bit is
reserved for future Intel use.

5.3.4.1 PAGE FRAME ADDRESS

The page frame address is the base address of a page. In a page table entry, the upper
20 bits are used to specify a page frame address, and the lowest 12 bits specify control
and status bits for the page. In a page directory, the page frame address is the address of
a page table. In a second-level page table, the page frame address is the address of a
page containing instructions or data.

5.3.4.2 PRESENT BIT

The Present bit indicates whether the page frame address in a page table entry maps to
a page in physical memory. When set, the page is in memory.

When the Present bit is clear, the page is not in memory, and the rest of the page table
entry is available for the operatmg system, for example, to store information regarding
the whereabouts of the missing page. Figure 5-15 illustrates the format of a page table
entry when the Present bit is clear.

3 11
1 21 876543210
P|P(UIR
PAGE FRAME ADDRESS 31...12 AVAIL(O|O(D|AIC|W|/|/|P
D(T|S|W

AAAA

AVAILABLE FOR SYSTEMS
PROGRAMMER USE

INTEL RESERVED. DO NOT DEFINE
INTEL RESERVED. NOT NOT DEFINE
DIRTY
ACCESSED
PAGE CACHE DISABLE
PAGE WRITE TRANSPARENT
USER/SUPERVISOR
READ/WRITE
PRESENT

240486i5-14

Figure 5-14. Format of a Page Table Entry

5-20

|nte|® ' MEMORY MANAGEMENT

31 10

AVAILABLE 0

240486i5-15

Figure 5-15. Format of a Page Table Entry for a Not-Present Page

If the Present bit is clear in either level of page tables when an attempt is made to use a
page table entry for address translation, a page-fault exception is generated. In systems
which support demand-paged virtual memory, the following sequence of events then
occurs:

1. The operating system copies the page from disk storage into physical memory.

2. The operating system loads the page frame address into the page table entry and
sets its Present bit. Other bits, such as the R/W bit, may be set, too.

3. Because a copy of the old page table entry may still exist in the translation lookaside
buffer (TLB), the operating system empties it. See Section 5.3.5 for a discussion of
the TLB and how to empty it.

4. The program which caused the exception is then restarted.

Since there is no Present bit in CR3 to indicate when the page directory is not resident
in memory, the page directory pointed to by CR3 should always be present in physical
memory.

5.3.4.3 ACCESSED AND DIRTY BITS

These bits provide data about page usage in both levels of page tables. The Accessed bit
is used to report read or write access to a page or second-level page table. The Dirty bit
is used to report write access to a page.

With the exception of the Dirty bit in a page directory entry, these bits are set by the
hardware; however, the processor does not clear either of these bits. The processor sets
the Accessed bits in both levels of page tables before a read or write operation to a page.
The processor sets the Dirty bit in the second-level page table before a write operation
to an address mapped by that page table entry. The Dirty bit in directory entries is
undefined.

The operating system may use the Accessed bit when it needs to create some free mem-
ory by sending a page or second-level page table to disk storage. By periodically clearing
the Accessed bits in the page tables, it can see which pages have been used recently
Pages which have not been used are candldates for sending out to disk.

5-21

lntel o MEMORY MANAGEMENT

The operating system may use the Dirty bit when a page is sent back to disk. By clearing
the Dirty bit when the page is brought into memory, the operating system can see if it
has received any write access. If there is a copy of the page on disk and the copy in
memory has not received any writes, there is no need to update disk from memory.

See Chapter 13 for how the Intel486 processor updates the Accessed and Dirty bits in
multiprocessor systems. ’

5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS

The Read/Write and User/Supervisor bits are used for protection checks applied to
pages, which the processor performs at the same time as address translation. See Chap-
ter 6 for more information on protection.

5.3.4.5 PAGE-LEVEL CACHE CONTROL BITS

The PCD and PWT bits are used for page-level cache management. Software can control
the caching of individual pages or second-level page tables using these bits. See
Chapter 12 for more information on caching.

5.3.5 Translation Lookaside Buffer

The processor stores the most recently used page table entries in an on-chip cache called
the translation lookaside buffer or TLB. Most paging is performed using the contents of
the TLB. Bus cycles to the page tables are performed only when a new page is used.

The TLB is invisible to application programs, but not to operating systems. Operating-
system programmers must flush the TLB (dispose of its page table entries) when entries
in the page tables are changed. If this is not done, old data which has not received the

- changes might get used for address translation. A change to an entry for a page which is
not present in memory does not require flushing the TLB, because entries for not-
present pages are not cached.

The TLB is flushed when the CR3 register is loaded. The CR3 register can be loaded in
either of two ways:

1. Explicit loading using MOV instructions, such as:
MOV CR3, EAX

2. Implicit loading by a task switch which changes the contents of the CR3 register.
(See Chapter 7 for more information on task switching.)

An individual entry in the TLB can be flushed using an INVLPG instruction. ThlS is
useful when the mapping of an individual page is changed.

5-22

|nte| o MEMORY MANAGEMENT

5.4 COMBINING SEGMENT AND PAGE TRANSLATION

Figure 5-16 combines Figure 5-5 and Figure 5-13 to summarize both stages of translation
from a logical address to a physical address when paging is enabled. Options available in
both stages of address translation can be used to support several different styles of
memory management.

5.4.1 Flat Model

When the Intel486 processor is used to run software written without segments, it may be
desirable to remove the segmentation features of the Intel486 processor. The Intel486
processor does not have a mode bit for disabling segmentation, but the same effect can
be achieved by mapping the stack, code, and data spaces to the same range of linear
addresses. The 32-bit offsets used by Intel486 processor instructions can cover the entire
linear address space.

When paging is used, the segments can be mapped to the entire linear address space. If
more than one program is being run at the same time, the paging mechanism can be
used to give each program a separate address space.

0 32 0

16
Lo s [SELECTOR | OFFSET]

DESCIPTOR TABLE

SEGMENT

DESCRIPTOR K
: PAGE FRAME
LINEAR
ADDRESS [PIRECTORY | TABLE | OFFsET |
»! OPERAND
PAGE DIRECTORY PAGE TABLE
»[PG TBL ENTRY

PG DIR ENTRY ~]
CR3

Figure 5-16. Combined Segment and Page Address Translation

240486i5-16

5-23

lntel . MEMORY MANAGEMENT

5.4.2 Segments Spanning Several Pages

The architecture allows segments which are larger than the size of a page (4K bytes). For
example, a large data structure may span thousands of pages. If paging were not used,
access to any part of the data structure would require the entire data structure to be
present in physical memory. With paging, only the page containing the part being
accessed needs to be in memory.

5.4.3 Pages Spanning Several Segments

Segments also may be smaller than the size of a page. If one of these segments is placed
in a page which is not shared with another segment, the extra memory is wasted. For
example, a small data structure, such as a 1-byte semaphore, occupies 4K bytes if it is
placed in a page by itself. If many semaphores are used, it is more efficient to pack them
into a single page.

5.4.4 Non-Aligned Page and Segment Boundaries

The architecture does not enforce any correspondence between the boundaries of pages
and segments. A page may contain the end of one segment and the beginning of another.
Likewise, a segment may contain the end of one page and the beginning of another.

5.4.5 Aligned Page and Segment Boundaries

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which may
fit in one page is placed in two pages, there may be twice as much paging overhead to
support access to that segment.

5.4.6 Page-Table Per Segment

An approach to combining paging and segmentation which simplifies memory-
management software is to give each segment its own page table, as shown in
Figure 5-17. This gives the segment a single entry in the page directory which provides
the access control information for paging the segment.

5-24

MEMORY MANAGEMENT

PAGE FRAMES

LDT PAGE DIRECTORY PAGE TABLES
PTE -—|
PTE >
PTE
DESCRIPTOR PDE |
DESCRIPTOR PDE
PTE
PTE
LDT PAGE DIRECTORY PAGE TABLES

PAGE FRAMES

240486i5-17

Figure 5-17. Each Segment Can Have Its Own Page Table

5-25

Protection

CHAPTER 6
PROTECTION

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks
from interfering with each other. For example, protection can keep one task from over-
writing the instructions or data of another task.

During program development, the protection mechanism can give a clearer picture of
program bugs. When a program makes an unexpected reference to the wrong memory
space, the protection mechanism can block the event and report its occurrence.

In end-user systems, the protection mechanism can guard against the possibility of soft-
ware failures caused by undetected program bugs. If a program fails, its effects can be.
confined to a limited domain. The operating system can be protected against damage, so
diagnostic information can be recorded and automatic recovery may be attempted.

Protection may be applied to segments and pages. Two bits in a processor register define
the privilege level of the program currently running (called the current privilege level or
CPL). The CPL is checked during address translation for segmentation and paging.

Although there is no control register or mode bit for turning off the protection mecha-
nism, the same effect can be achieved by assigning privilege level 0 (the highest level of
privilege) to all segment selectors, segment descriptors, and page table entries.

6.1 SEGMENT-LEVEL PROTECTION

Protection provides the ability to limit the amount of interference a malfunctioning pro-
gram can inflict on other programs and their data. Protection is a valuable aid in soft-
ware development because it allows software tools (operating system, debugger, etc.) to
survive in memory undamaged. When an application program fails, the software is avail-
able to report diagnostic messages, and the debugger is available for post-mortem anal-
ysis of memory and registers. In production, protection can make software more reliable
by giving the system an opportunity to initiate recovery procedures. .

Each memory reference is checked to verify that it satisfies the protection checks. All
checks are made before the memory cycle is started; any violation prevents the cycle
from starting and results in an exception. Because checks are performed in parallel with
address translation, there is no performance penalty. There are five protection checks:
Type check

Limit check

Restriction of addressable domain

Restriction of procedure entry points

Restriction of instruction set

ARl o O B

6-1

In'l'el 0 PROTECTION

A protection violation results in an exception. See Chapter 9 for an explanation of the
exception mechanism. This chapter describes the protection violations which lead to
exceptions.

6.2 SEGMENT DESCRIPTORS AND PROTECTION

Figure 6-1 shows the fields of a segment descriptor which are used by the protection
mechanism. Individual bits in the Type field also are referred to by the names of their
functions.

Protection parameters are placed in the descriptor when it is created. In general, appli-
cation programmers do not need to be concerned about protection parameters.

DATA SEGMENT DESCRIPTOR

21111111111
31 09876543210987 0
D
BASE 31:24 LiMiT P |1]olelw|a]| BASE23:16 +4
19:16 L
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0

CODE SEGMENT DESCRIPTOR

21111111111
31 09876543210987 0
LIMIT o
BASE 31:24 1916 P [1{1|c|r|a| BASE23:16 |.a
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0
A ACCESSED
c CONFORMING
DPL DESCRIPTOR PRIVILEGE LEVEL
E EXPAND-DOWN
R READABLE
LIMIT SEGMENT WRITE
w WRITABLE

240486i6-10f1

Figure 6-1. Descriptor Fields Used for Protection (Part 1 of 2)

6-2

|nte| o PROTECTION

SYSTEM SEGMENT DESCRIPTOR
21111111111
31 098765432100987 0
LMt D '
BASE 31:24 1916 p lo| TYPE BASE 23:16 +4
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0
DPL DESCRIPTOR PRIVILEGE LEVEL
LIMIT SEGMENT LIMIT
240486i6-10f2

Figure 6-1. Descriptor Fields Used for Protection (Part 2 of 2)

When a program loads a segment selector into a segment register, the processor loads
both the base address of the segment and the protection information. The invisible part
of each segment register has storage for the base, limit, type, and privilege level. While
this information is resident in the segment register, subsequent protection checks on the
same segment can be performed with no performance penalty.

6.2.1 Type Checking

In addition to the descriptors for application code and data segments, the Intel486 pro-
cessor has descriptors for system segments and gates. These are data structures used for
managing tasks (Chapter 7) and exceptions and interrupts (Chapter 9). Table 6-1 lists all
the types defined for system segments and gates. Note that not all descriptors define
segments; gate descriptors hold pointers to procedure entry points.

The Type fields of code and data segment descriptors include bits which further define
the purpose of the segment (see Figure 6-1):

¢ The Writable bit in a data-segment descriptor controls whether programs can write to
the segment.

o The Readable bit in an executable-segment descriptor specifies whether programs
can read from the segment (e.g., to access constants stored in the code space). A
readable, executable segment may be read in two ways:

1. With the CS register, by using a CS override prefix.

2. By loading a selector for the descriptor into a data-segment register (the DS, ES,
FS, or GS registers).

lntel® PROTECTION

Table 6-1. System Segment and Gate Types

Type Description

0 reserved

1 Available 80286 TSS

2 LDT

3 Busy 80286 TSS

4 Call Gate

5 Task Gate)

6 80286 Interrupt Gate

7 80286 Trap Gate

8 reserved

9 . Available Intel486™ CPU TSS
10 reserved
11 Busy Intel486 CPU TSS
12 Intel486 CPU Call Gate
13 reserved
14 Intel486 CPU Interrupt Gate
15 Intel486 CPU Trap Gate

Type Checking can be used to detect programming errors which would attempt to use
segments in ways not intended by the programmer. The processor examines type 1nfor-
mation on two kinds of occasions:

1. When a selector for a descriptor is loaded into a segment register. Certain segment
registers can contain only certain descriptor types; for example:

o The CS register only can be loaded with a selector for an executable segment.

o Selectors of executable segments which are not readable cannot be loaded into
data-segment registers.

e Only selectors of writable data segments can be loaded into the SS register.

2. Certain segments can be used by 1nstruct10ns only in certain predeflned ways; for
example:

e No instruction may write into an executable segment.
¢ No instruction may write into a data segment if the writable bit is not set.
e No instruction may read an executable segment unless the readable bit is set.

6.2.2 Limit Checking

The Limit field of a segment descriptor prevents programs from addressing outside the
segment. The effective value of the limit depends on the setting of the G bit (Granularity
bit). For data segments, the limit also depends on the E bit (Expansion Direction bit).
The E bit is a designation for one bit of the Type field, when referring to data segment
descriptors.

64

Intel o PROTECTION

When the G bit is clear, the limit is the value of the 20-bit Limit field in the descriptor.
In this case, the limit ranges from 0 to OFFFFFH (22° — 1 or 1 megabyte). When the
G bit is set, the processor scales the value in the Limit field by a factor of 2'2 In this case
the limit ranges from OFFFH (22 — 1 or 4K bytes) to OFFFFFFFFH (2** — 1 or
4 gigabytes). Note that when scaling is used, the lower twelve bits of the address are not
checked against the limit; when the G bit is set and the segment limit is 0, valid offsets
within the segment are 0 through 4095.

For all types of segments except expand-down data segments (stack segments), the value
of the limit is one less than the size, in bytes, of the segment. The processor causes a
general-protection exception in any of these cases:

e Attempt to access a memory byte at an address > limit
e Attempt to access a memory word at an address > (limit — 1)

o Attempt to access a memory doubleword at an address > (limit — 3)

For expand-down data segments, the limit has the same function but is interpreted
differently. In these cases the range of valid offsets is from (limit + 1) to 232 —1 if
Bbit=1 and 2'%-1 if Bbit=0. An expand-down segment has maximum size when the
segment limit is 0.

Limit checking catches programming errors such as runaway subscripts and invalid
pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking, these errors could overwrite critical memory in
another module, and the existence of these errors would not be discovered until the
damaged module crashed, an event which may occur long after the actual error. Protec-
tion can block these errors and report their source.

In addition to limit checking on segments, there is limit checking on the descriptor
tables. The GDTR and IDTR registers contain a 16-bit limit value. It is used by the
processor to prevent programs from selecting a segment descriptor outside the descrip-
tor table. The limit of a descriptor table identifies the last valid byte of the table.
Because each descriptor is eight bytes long, a table which contains up to N descriptors*
should have a limit of 8N — 1.

A descriptor may be given a zero value. This refers to the first descriptor in the GDT,
which is not used. Although this descriptor may be loaded into a segment register, any
attempt to reference memory using this descriptor will generate a general-protection
exception.

6.2.3 Privilege Levels

The protection mechanism recognizes four privilege levels, numbered from O to 3. The
greater numbers mean lesser privileges. If all other protection checks are satisfied, a
general-protection exception is generated if a program attempts to access a segment
using a less privileged level (greater privilege number) than that applied to the segment.

6-5

|nte| o PROTECTION

Although no control register or mode bit is provided for turning off the protection
mechanism, the same effect can be achieved by assigning all privilege levels the value of
0. (The PE bit in the CRO register is not an enabling bit for the protection mechanism
alone; it is used to enable “protected mode,” the mode of program execution in which
the full 32-bit architecture is available. When protected mode is disabled, the processor
operates in “real-address mode,” where it appears as a fast, enhanced 8086 processor.)

Privilege levels can be used to improve the reliability of operating systems. By giving the
operating system the highest privilege level, it is protected from damage by bugs in other
programs. If a program crashes, the operating system has a chance to generate a dlag-
nostic message and attempt recovery procedures.

Another level of privilege can be established for other parts of the system software, such
as the programs which handle peripheral devices, called device drivers. If a device driver
crashes, the operating system should be able to report a diagnostic message, so it makes
sense to protect the operating system against bugs in device drivers. A device driver,
however, may service an important peripheral such as a disk drive. If the application
program crashed, the device driver should not corrupt the directory structure of the disk,
so it makes sense to protect device drivers against bugs in applications. Device drivers
should be given an intermediate privilege level between the operating system and the
application programs. Application programs are given the lowest privilege level.

Figure 6-2 shows how these levels of privilege can be interpreted as rings of protection.
The center is for the segments containing the-most critical software, usually the kernel of
an operatmg system. Outer rlngs are for less critical software.

The following data structures contain privilege levels:

o The lowest two bits of the CS segment register hold the current privilege level (CPL).
This is the privilege level of the program being run. The lowest two bits of the SS
register also hold a copy of the CPL. Normally, the CPL is equal to the privilege level
of the code segment from which instructions are being fetched. The CPL changes
when control is transferred to a code segment with a different privilege level.

e Segment descriptors contain a field called the descriptor privilege level (DPL). The
DPL is the privilege level applied to a.segment.

e Segment selectors contain a field called the requestor privilege level (RPL). The RPL is
intended to represent the privilege level of the procedure which created the selector.
If the RPL is a less privileged level than the CPL, it overrides the CPL. When a more
privileged program receives a segment selector from a less privileged program, the
RPL causes the memory access to take place at the less privileged level.

Privilege levels are checked when the selector of a descriptor is loaded into a segment
register. The checks used for data access differ from those used for transfers of execu-
tion among executable segments; therefore, the two types of access are considered. sep-
arately in the following sections.

6-6

Intel 0 PROTECTION

PROTECTION RINGS

OPERATING SYSTEM KERNAL

OPERATING SYSTEM
SERVICES (DEVICE
DRIVERS, ETC.)

APPLICATIONS

240486i6-2

Figure 6-2. Protection Rings
6.3 RESTRICTING ACCESS TO DATA

To address operands in memory, a segment selector for a data segment must be loaded
into a data-segment register (the DS, ES, FS, GS, or SS registers). The processor checks
the. segment’s privilege levels. The check is performed when the segment selector is
loaded. As Figure 6-3 shows, three different privilege levels enter into this type of priv-
ilege check.

The three privilege levels which are checked are:

1. The CPL (current privilege levél) of the program. This is held in the two least-
significant bit positions of the CS register.

2. The DPL (descriptor privilege level) of the segment descriptor of the segment con-
taining the operand.

3. The RPL (requestor’s privilege level) of the selector used to specify the segment
containing the operand. This is held in the two lowest bit positions of the segment
register used to access the operand- (the SS, DS, ES, FS, or GS registers). If the
operand is in the stack segment, the RPL is the same as the CPL.

6-7

|nte| o PROTECTION

OPERAND SEGMENT DESCRIPTOR

YX)
-
-

D
P +4
anins

+0

CURRENT CODE SEGMENT REGISTER

CPL

OPERAND SEGMENT SELECTOR

RPL

\4 47 Y
CPL CURRENT PRIVILEGE LEVEL PRIVILEGE
DPL DESCRIPTOR PRIVILEGE LEVEL CHECK
RPL REQUESTOR'S PRIVILEGE LEVEL

240486i6-3

Figure 6-3. Privilege Check for Data Access

Instructions may load a segment register only if the DPL of the segment is the same or a
less privileged level (greater privilege number) than the less privileged of the CPL and
the selector’s RPL.

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data
segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3-are accessible; when the CPL is 3, only data segments at
privilege level 3 are accessible.

6.3.1 Accessing Data in Code Segments

It may be desirable to store data in a code segment, for example, when both code and
data are provided in ROM. Code segments may. legitimately hold constants; it is not
possible to write to a segment defined as a code segment, unless a data segment is

6-8

Intel o PROTECTION

mapped to the same address space. The following methods of accessing data in code
segments are possible:

1. Load a data-segment register with a segment selector for a nonconforming, read-
able, executable segment.

2. Load a data-segment register with a segment selector for a conforming, readable,
executable segment.

3. Use a code-segment override prefix to read a readable, executable segment whose
selector already is loaded in the CS register.

The same rules for access to data segments apply to case 1. Case 2 is always valid
because the privilege level of a code segment with a set Conforming bit is effectively the
same as the CPL, regardless of its DPL. Case 3 is always valid because the DPL of the
code segment selected by the CS register is the CPL.

6.4 RESTRICTING CONTROL TRANSFERS

With the Intel486 processor, control transfers are provided by the JMP, CALL, RET,
INT, and IRET instructions, as well as by the exception and interrupt mechanisms.
Exceptions and interrupts are special cases discussed in Chapter 9. This chapter dis-
cusses only the JMP, CALL, and RET instructions.

The “near” forms of the JMP, CALL, and RET instructions transfer program control
within the current code segment, and therefore are subject only to limit checking. The
processor checks that the destination of the JMP, CALL, or RET instruction does not
exceed the limit of the current code segment. This limit is cached in the CS register, so
protection checks for near transfers require no performance penalty.

The operands of the “far” forms of the JMP and CALL instruction refer to other seg-
ments, so the processor performs privilege checking. There are two ways a JMP or
CALL instruction can refer to another segment: ‘

1. The operand selects the descriptor of another executable segmient.
2. The operand selects a call gate descriptor. This gated form of transfer is discussed in
Chapter 7.

As Figure 6-4 shows, two different privilege levels enter into a privilege check for a
control transfer which does not use a call gate:

1. The CPL (current privilege level).

2. The DPL of the descriptor of the destination code segment.
Normally the CPL is equal to the DPL of the segment which the processor is currently

executing. The CPL may, however, be greater (less privileged) than the DPL if the
current code segment is a conforming segment (as indicated by the Type field of its

6-9

Intel ° PROTECTION

DESTINATION CODE SEGMENT DESCRIPTOR
111111

31 543210987 0
D TYPE
P + 4
L 1|1|C|R|A
| o

CURRENT CODE SEGMENT REGISTER

CPL
Cc CONFORMING BIT PRIVILEGE
CPL CURRENT PRIVILEGE LEVEL CHECK
DPL DESCRlPTOR PRIVILEGE LEVEL

240486i6-4

Figure 6-4. Privilege Check for Control Transfer Without Gate

segment descriptor). A conforming segment runs at the privilege level of the calling
procedure. The processor keeps a record of the CPL cached in the CS register; this value
can be different from the DPL in the segment descriptor of the current code segment.

The processor only permits a JMP or CALL instruction directly into another segment if
one of the following privilege rules is satisfied:

o The DPL of the segment is equal to the current CPL.

o The segment is a conforming code segment, and its DPL is less (more privileged) than
the current CPL.

Conforming segments are used for programs, such as math libraries and some kinds of
exception handlers, which support applications but do not require access to protected
system facilities. When control is transferred to a conforming segment, the CPL does not
change, even if the selector used to address the segment has a different RPL. This is the
only condition in which the CPL may be different from the DPL of the current code
segment.

Most code segments are not conforming. For these segments, control can be transferred
without a gate only to other code segments at the same level of privilege. It is sometimes
necessary, however, to transfer control to higher privilege levels. This is accomplished

6-10

|nte| o PROTECTION

with the CALL instruction using call-gate descriptors, which is explained in Chapter 7.
The JMP instruction may never transfer control to a nonconforming segment whose
DPL does not equal the CPL.

6.5 GATE DESCRIPTORS

To provide protection for control transfers among executable segments at different priv-
ilege levels, the Intel486 processor uses gate descriptors. There are four kinds of gate
descriptors:

e Call gates

e Trap gates

e Interrupt gates

e Task gates

Task gates are used for task switching and are discussed in Chapter 7. Chapter 9 explains
how trap gates and interrupt gates are used by exceptions and interrupts. This chapter is
concerned only with call gates. Call gates are a form of protected control transfer. They
are used for control transfers between different privilege levels. They only need to be

used in systems in which more than one privilege level is used. Figure 6-5 illustrates the
format of a call gate.

A call gate has two main functions:
1. To define an entry point of a procedure.

2. To specify the privilege level required to enter a procedure.

32:BIT CALL GATE

1111111
31 65432109876543 0
D DWORD

OFFSET IN SEGMENT 31:16 pl p |o|1|1]o]o]ofoo]o +4
L COUNT

SEGMENT SELECTOR OFFSET IN SEGMENT 15:00 +0

DPL DESCRIPTOR PRIVILEGE LEVEL
P SEGMENT PRESENT

240486i6-5

Figure 6-5. Call Gate

6-11

|nte| o PROTECTION

Call gate descriptors are used by CALL and JUMP instructions in the.same manner as
code segment descriptors. When the hardware recognizes that the segment selector for
the destination refers to a gate descriptor, the operation of the instruction is determined
by the contents of the call gate. A call gate descriptor may reside in the GDT or in an
LDT, but not in the interrupt descriptor table (IDT).

The selector and offset fields of a gate form a pointer to the entry point of a procedure.
A call gate guarantees that all control transfers to other segments go to a valid entry
point, rather than to the middle of a procedure (or worse, to the middle of an instruc-
tion). The operand of the control transfer instruction is not the segment selector and
offset within the segment to the procedure’s entry point. Instead, the segment selector
points to a gate descriptor, and the offset is not used. Figure 6-6 shows this form of
addressing.

«———— DESTINATION ADDREss——>|

15 0 31 0

SELECTOR ' OFFSET WITHIN SEGMENT

1

NOT USED

DESCRIPTOR TABLE

OFFSET DPL I COUNT GATE
DESCRIPTOR

SELECTOR OFFSET

BASE DPL BASE CODE SEGMENT

DESCRIPTOR
@‘7 BASE

y
PROCEDURE ENTRY POINT

240486i6-6

Figure 6-6. Call Gate Mechanism

6-12

|nte| 0 PROTECTION

As shown in Figure 6-7, four different privilege levels are used to check the validity of a
control transfer through a call gate.

The privilege levels checked during a transfer of execution through a call gate are:

1. The CPL (current privilege level).

2. The RPL (requestor’s privilege level) of the segment selector used to specify the call
gate.

3. The DPL (descriptor privilege level) of the gate descriptor.

4. The DPL of the segment descriptor of the destination code segment.

The DPL field of the gate descriptor determines from which privilege levels the gate may
be used. One code segment can have several procedures which are intended for use from
different privilege levels. For example, an operating system may have some services
which are intended to be used by both the operating system and application software,
such as routines to handle character I/O, while other services may be intended only for
use by operating system, such as routines which initialize device drivers.

Gates can be used for control transfers to more privileged levels or to the same privilege
level (though they are not necessary for transfers to the same level). Only CALL instruc-
tions can use gates to transfer to more privileged levels. A JMP instruction may use a
gate only to transfer control to a code segment with the same privilege level, or to a
conforming code segment with the same or a more privileged level.

For a JMP instruction to a nonconforming segment, both of the following privilege rules
must be satisfied; otherwise, a general-protection exception is generated.

MAX (CPL,RPL) < gate DPL
destination code segment DPL = CPL

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the
following privilege rules must be satisfied; otherwise, a general-protection exception is
generated.

MAX (CPL,RPL) = gate DPL
destination code segment DPL < CPL

6.5.1 Stack Switching

A procedure call to a more privileged level does the following:
1. Changes the CPL.
"2. Transfers control (execution).

3. Switches stacks.

6-13

-
Intel o PROTECTION
CALL GATE
3 1
1 5. 7 0
D
P +4
L
+0
".." DESTINATION CODE SEGMENT DESCRIPTOR
3 : ' 1 » : :
1 5 7 0
D
P +4
L
+0
CURRENT CODE SEGMENT REGISTER
CPL
CALL GATE SELECTOR
RPL
Y V VY
CPL CURRENT PRIVILEGE LEVEL PRIVILEGE
DPL DESCRIPTOR PRIVILEGE LEVEL CHECK
RPL REQUESTOR'S PRIVILEGE LEVEL

240486i6-7

Figure 6-7. Privilege Check for Control Transfer with Call Gate

6-14

Inte|® PROTECTION

All inner protection rings (privilege levels 0, 1, and 2), have their own stacks for receiv-
ing calls from less privileged levels. If the caller were to provide the stack, and the stack
was too small, the called procedure might crash as a result of insufficient stack space.
Instead, less privileged programs are prevented from crashing more privileged programs
by creating a new stack when a call is made to a more privileged level. The new stack is
created, parameters are copied from the old stack, the contents of registers are saved,
and execution proceeds normally. When the procedure returns, the contents of the saved
registers restore the original stack. A complete description of the task switching mecha-
nism is provided in Chapter 7.

The processor finds the space to create new stacks using the task state segment (TSS), as
shown in Figure 6-8. Each task has its own TSS. The TSS contains initial stack pointers
for the inner protection rings. The operating system is responsible for creating each TSS
and initializing its stack pointers. An initial stack pointer consists of a segment selector
and an initial value for the ESP register (an initial offset into the segment). The initial
stack pointers are strictly read-only values. The processor does not change them while
the task runs. These stack pointers are used only to create new stacks when calls are
made to more privileged levels. These stacks disappear when the called procedure
returns. The next time the procedure is called, a new stack is created using the initial
stack pointer.

32-BIT TASK STATE SEGMENT
31 0
64
| Ss2 18
ESP2 14
| SSt1 10
ESP1 oc
I . SS0 8
ESPO 4
0
NdTE: ADDRESSES ARE IN HEXADECIMAL
240486i6-8

Figure 6-8. Initial Stack Pointers in a TSS

6-15

Intel o PROTECTION

When a call gate is used to change privilege levels, a new stack is created by loading an
address from the TSS. The processor uses the DPL of the destination code segment (the
new CPL) to select the initial stack pointer for privilege level 0, 1, or 2.

The DPL of the new stack segment must equal the new CPL; if not, a stack-fault excep-
tion is generated. It is the responsibility of the operating system to create stacks and
stack-segment descriptors for all privilege levels which are used. The stacks must be
read/write as specified in the Type field of their segment descriptors. They must contain
enough space, as specified in the Limit field, to hold the contents of the SS and ESP
registers, the return address, and the parameters and temporary variables required by
the called procedure.

As with calls within a privilege level, parameters for the procedure are placed on the
stack. The parameters are copied to the new stack. The parameters can be accessed
within the called procedure using the same relative addresses which would have been
used if no stack switching had occurred. The count field of a call gate tells the processor
how many doublewords (up to 31) to copy from the caller’s stack to the stack of the
called procedure. If the count is 0, no parameters are copied.

If more than 31 doublewords of data need to be passed to the called procedure, one of
the parameters can be a pointer to a data structure, or the saved contents of the SS and
ESP registers may be used to access parameters in the old stack space.

The processor performs the following stack-related steps in executing a procedure call
between privilege levels.

1. The stack of the called procedure is checked to make certain it is large enough to
hold the parameters and the saved contents of registers; if not, a stack exception is
generated.

2. The old contents of the SS and ESP registers are pushed onto the stack of the called
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the
zero-extended upper word is Intel reserved; do not use).

3. The parameters are copied from the stack of the caller to the stack of the called
procedure.

4. A pointer to the instruction after the CALL instruction (the old contents of the CS
and EIP registers) is pushed onto the new stack. The contents of the SS and ESP
registers after the call point to this return pointer on the stack.

Prmrrfa 6-9 illustrates the stack
S austrates the stacxk

procedure call and return.

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure
at privilege level 3 cannot be called by a less privileged procedure. The stack for privilege
level 3 is preserved by the contents of the SS and EIP registers which have been saved on
the stack of the privilege level called from level 3.

6-16

|nte| o PROTECTION

OLD STACK, NEW STACK, OLD STACK,
BEFORE CALL: AFTER CALL, AFTER RETURN:
BEFORE RETURN:

OLD ss

OLD ESP fe— ESP

PARM 1 PARM 1

PARM 2 PARM 2

PARM 3 [<— ESP PARM 3

oLD Cs

OLD EIP <« ESP

240486i6-9

Figure 6-9. Stack Frame During Interlevel Call

A call using a call gate does not check the values of the words copied onto the new stack.
The called procedure should check each parameter for validity. A later section discusses
how the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check
pointer values.

6.5.2 Returning from a Procedure

The “near” forms of the RET instruction only transfer control within the current code
segment, therefore are subject only to limit checking. The offset to the instruction fol-
lowing the CALL instruction is popped from the stack into the EIP register. The proces-
sor checks that this offset does not exceed the limit of the current code segment.

The “far” form of the RET instruction pops the return address which was pushed onto
the stack by an earlier far CALL instruction. Under normal conditions, the return
pointer is valid, because it was generated by a CALL or INT instruction. Nevertheless,
the processor performs privilege checking because of the possibility that the current
procedure altered the pointer or failed to maintain the stack properly. The RPL of the
code-segment selector popped off the stack by the return instruction should have the
privilege level of the calling procedure.

Inte| o PROTECTION

A return to another segment can change privilege levels, but only toward less privileged
levels. When a RET instruction encounters a saved CS value whose RPL is numerically
greater than the CPL (less privileged level), a return across privilege levels occurs. A

return of this kind performs these steps:

1. The checks shown in Table 6-2 are made, and the CS, EIP, SS, and ESP registers
are loaded with their former values, which were saved on the stack.

2. The old contents of the SS and ESP registers (from the top of the current stack) are
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP
value is not checked against the limit of the stack segment. If the ESP value is

Table 6-2. Interlevel Return Checks

Type of Check Exception Type Error Code
top-of-stack +. 7 must be within stack seg- stack 0
ment limit :
RPL of return code segment must be : protection Return CS
greater than the CPL
Return code segment selector must be protection - Return CS
non-null
Return code segment descriptor must be protection Return CS
within descriptor table limit
Return segment descriptor must be a protection Return CS
code segment .
Return code segment is present ‘'segment not present Return CS
DPL of return non-conforming code seg- protection Return CS
ment must equal RPL of return code seg-
ment selector, or DPL of return conforming
~rnde eanmant miiet - ha lace than Ar.amnal
AUUIT OTYITITIHIL 1TTUOL WT 1000 iais ui G\.{uﬂl
to RPL of return code segment selector
ESP + N + 15* must be within the stack stack fault 0
segment limit
segment selector at ESP + N + 12* must protection Return SS
be non-null
segment descriptor at ESP + N + 12* protection Return SS
must be within descriptor table limit
stack segmént descriptor must be read/ protection Return SS
write) _
stack segment must be present not present Return SS
v stack fault

_ old stack segment DPL must be equalto = protection Return'SS
RPL of old code segment
old stack segmént ‘'selector must have an protection Return SS
RPL equal to the DPL of the old stack
segment)

*N is the value of the immediate operand supplied with the RET instruction.

6-18

Intel 0 : PROTECTION

beyond the limit, that fact is not recognized until the next stack operation. (The
contents of the SS and ESP registers for the returning procedure are not preserved;
normally, their values are the same as those contained in the TSS.)

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of
these registers refer to segments whose DPL is less than the new CPL (excluding
conforming code segments), the segment register is loaded with the null selector
(Index = 0, TI = 0). The RET instruction itself does not signal exceptions in these
cases; however, any subsequent memory reference using a segment register contain-
ing the null selector will cause a general-protection exception. This prevents less
privileged code from accessing more privileged segments using selectors left in the
segment registers by a more privileged procedure.

6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM

Instructions which can affect the protection mechanism or influence general system per-
formance can only be executed by trusted procedures. The Intel486 processor has two
classes of such instructions:

1. Privileged instructions —those used for system control.
2. Sensitive instructions —those used for I/O and I/O-related activities.

6.6.1 Privileged Instructions

The instructions which affect protected facilities can be executed only when the CPL is 0
(most privileged). If one of these instructions is executed when the CPL is not 0, a
general-protection exception is generated. These instructions include:

CLTS —Clear Task-Switched Flag
HLT —Halt Processor

INVD —Invalidate Cache

INVLPG —Invalidate TLB Entry
LGDT —Load GDT Register

LIDT —Load IDT Register

LLDT —Load LDT Register
LMSW —Load Machine Status Word
LTR —Load Task Register

MOV to/from CRO —Move to Control Register 0
MOV to/from DRn —Move to Debug Register n
MOV to/from TRn —Move to Test Register n
WBINVD — Write Back and Invalidate Cache

6.6.2 Sensitive Instructions
Instructions which deal with I/O need to be protected, but they also need to be used by

procedures executing at privilege levels other than 0 (the most privileged level). The
mechanisms for protection of I/O operations are covered in detail in Chapter 8.

6-19

Intel o PROTECTION

6.7 INSTRUCTIONS FOR POINTER VALIDATION

Pointer validation is necessary for maintaining isolation between privilege levels. It con-
sists of the following steps:

1. Check if the supplier of the pointer is allowed to access the segment.
2. Check if the segment type is compatible with its use.

3. Check if the pointer offset exceeds the segment limit.

Although the Intel486 processor automatically performs checks 2 and 3 during instruc-
tion execution, software must assist in performing the first check. The ARPL instruction
is provided for this purpose. Software also can use steps 2 and 3 to check for potential
violations, rather than waiting for an exception to be generated. The LAR LSL, VERR,
and VERW instructions are prov1ded for this purpose.

An additional check, the alignment check, can be applied in user mode. When both the
AM bit in CRO and the AC flag are set, unaligned memory references generate excep-
tions. This is useful for programs which use the low two bits of pointers to identify the
type of data structure they address. For example, a subroutine in a math library may
accept pointers to numeric data structures. If the type of this structure is assigned a code
of 10 (binary) in the lowest two bits of pointers to this type, math subroutines can correct
for the type code by adding a displacement of —10 (binary). If the subroutine should
ever receive the wrong pointer type, an unaligned reference would be produced, which
would generate an exception. Alignment checking accelerates the processing of pro-
grams written in symbolic-processing (i.e., Artificial Intelligence) languages such as Lisp,
Prolog, Smalltalk, and C+ +. It can be used to speed up pointer tag type checking.

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a
compatible privilege level and type. The LLAR instruction has one operand —a segment
selector for a descriptor whose access rights are-to be checked. The segment descriptor
must be readable at a privilege level which is numerically greater (less privileged) than
the CPL and the selector’s RPL. If the descriptor is readable, the LAR instruction gets
the second doubleword of the descriptor, masks this value with 00FxFF00H, stores the
result into the specified 32-bit destination register, and sets the ZF flag. (The x indicates
that the corresponding four bits of the stored value are undefined.) Once loaded, the
access rights can be tested. All valid descriptor types can be tested by the LAR instruc-
tion. If the RPL or CPL is greater than the DPL, or if the segment selector would exceed
the limit for the descriptor table, no access rights are returned, and the ZF flag is
cleared. Conforming code segments may be accessed from any privilege level.

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If
the descriptor referenced by the segment selector (in memory or a register) is readable
at the CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte
granular limit calculated from the concatenated limit fields and the G bit of the descrip-
tor. This only can: be done for descriptors which describe segments (data, code, task
state, and local descriptor tables); gate descriptors are inaccessible. (Table 6-3 lists in
detail which types are valid and which are not.) Interpreting the limit is a function of the

6-20

|nte| o PROTECTION

Table 6-3. Valid Descriptor Types for LSL Instruction

Type Code Descriptor Type Valid?
0 reserved) no
1 reserved no
2 LDT . yes
3 reserved no
4 reserved no
5 Task Gate no
6 reserved no
7 reserved no
8 reserved no
9 Available Intel486™ CPU TSS yes
A reserved no
B Busy Intel486 CPU TSS yes
o] Intel486 CPU Call Gate no
D reserved no
E Intel486 CPU Interrupt Gate no
F Intel486 CPU Trap Gate no

segment type. For example, downward-eﬁ(pandable data segments (stack segments) treat
the limit differently than other kinds of segments. For both the LAR and LSL instruc-
tions, the ZF flag is set if the load was successful; otherwise, the ZF flag is cleared.

6.7.1 Descriptor Validation
T

ntel486 processor has t 0 instructions, VERR and VERW, whmh dere rmine

CPL. Neither mstructlon causes a protection fault if the segment cannot be accessed.
VERR (Verify for Reading) verifies a segment for reading and sets the ZF flag if that
segment is readable using the CPL. The VERR instruction checks the following:

o The segment selector points to a segment descriptor within the bounds of the GDT or
an LDT.

o The segment selector indexes to a code or data segment descriptor.
e The segment is readable and has a compatible privilege level.
The privilege check for data segments and nonconforming code segments verifies that

~ the DPL must be a less privileged level than either the CPL or the selector’s RPL.
Conforming segments are not checked for privilege level.

VERW (Verify for Writing) provides the same capability as the VERR instruction for

verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag
if the segment can be written. The instruction verifies the descriptor is within bounds, is

6-21

lnte|® PROTECTION

a segment descriptor, is writable, and has a DPL which is a less privileged level than
either the CPL or the selector’s RPL. Code segments are never writable, whether con-
forming or not.

6.7.2 Pointer Integrity and RPL

The requestor’s privilege level (RPL) can prevent accidental use of pointers which crash
more privileged code from a less privileged level.

A common example is a file system procedure, FREAD (file_id, n_bytes, buffer_ptr).
This hypothetical procedure reads data from a disk file into a buffer, overwriting what-
ever is already there. It services requests from programs operating at the application
level, but it must run in a privileged mode in order to read from the system I/O buffer. If
the application program passed this procedure a bad buffer pointer, one which pointed
at critical code or data in a privileged address space, the procedure could cause damage
which would crash the system.

Use of the RPL can avoid this problem. The RPL allows a privilege override to be
assigned to a selector. This privilege override is intended to be the privilege level of the
code segment which generated the segment selector. In the above example, the RPL
would be the CPL of the application program which called the system level procedure.
The Intel486 processor automatically checks any segment selector loaded into a segment
register to determine whether its RPL allows access.

To take advantage of the processor’s checking of the RPL, the called procedure need
only check that all segment selectors passed to it have an RPL for the same or a less
privileged level as the original caller’s CPL. This guarantees that the segment selectors
are not more privileged than their source. If a selector is used to access a segment which
the source would not be able to access d1rectly, i.e. the RPL is less privileged than the
segment’s DPL, a general-protection exception is generated when the selector is loaded
into a segment register.

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector to
be the larger (less privileged) of its original value and the value of the RPL field for a
segment selector stored in a general register. The RPL fields are the two least significant
bits of the segment selector and the register. The latter normally is a copy of the caller’s
CS register on the stack. If the adjustment changes the selector’s RPL, the ZF flag is set;
otherwise, the ZF flag is cleared.

6.8 PAGE-LEVEL PROTECTION

Protection applies to both segments and pages. When the flat model for memory seg-
mentation has been used, page-level protection prevents programs from mterfermg with
each other.

6-22

|nte| 0 PROTECTION

Each memory reference is checked to verify that it satisfies the protection checks. All
checks are made before the memory cycle is started; any violation prevents the cycle
from starting and results in an exception. Because checks are performed in parallel with
address translation, there is-no performance penalty. There are two page-level protec--
tion checks:

1. Restriction of addressable domain.
2. Type checking.
A protection violation results in an exception. See Chapter 9 for an explanation of the

exception mechanism. This chapter describes the protection violations which lead to
exceptions.

6.8.1 Page-Table Entries Hold Protection Parameters

Figure 6-10 highlights the fields of a page table entry'which control access to pages. The
protection checks are applied for both first- and second-level page tables.

6.8.1.1 RESTRICTING ADDRESSABLE DOMAIN

Privilege is interpreted differently for pages and segments. With segments, there are four
privilege levels, ranging from 0 (most privileged) to 3 (least privileged). With pages,
there are two levels of privilege:

1. Supervisor level (U/S=0)—for the operating system, other system software (such as
device drivers), and protected system data (such as page tables).

2. User level (U/S=1)—for application code and data.

The privilege levels used for segmentation are mapped into the privilege levels used for
paging. If the CPL is 0, 1, or 2, the processor is running at supervisor level. If the CPL is
3, the processor is running at user level. When the processor is running at supervisor
level, all pages are accessible. When the processor is running at user level, only pages
from the user level are accessible. '

31 12 11

_PASE FRANE BUURESS % FAVAIL]
RIW

READ/WRITE
uis USER/SUPERVISOR

N\
N\ O\
AN
[¢)
2

240486i6-10

Figure 6-10. Protection Fields of a Page Table Entry

6-23

Inte|® PROTECTION

6.8.1.2 TYPE CHECKING

Only two types of pages are recognized by the protection mechanism:
1. Read-only access (R/W=0).
2. Read/write access (R/'W=1).

When the processor is running at supervisor level with the WP bit in the CRO register
clear (its state following reset initialization), all pages are both readable and writable
(write-protection is ignored). When the processor is running at user level, only pages
which belong to user level and are marked for read/write access are writable. User-level
pages which are read/write or read-only are readable. Pages from the supervisor level are
neither readable nor writable from user level. A general-protection exception is gener-
ated on any attempt to violate the protection rules.

Unlike the Intel386 DX processor, the Intel486 processor allows user-mode pages to be
write-protected against supervisor mode access. Setting the WP bit in the CRO register
enables supervisor-mode sensitivity to user-mode, write-protected pages. This feature is
useful for implementing the copy-on-write strategy used by some operating systems, such
as UNIX, for task creation (also called forking or spawning).

When a new task is created, it is possible to copy the entire address space of the parent
task. This gives the child task a complete, duplicate set of the parent’s segments and
pages. The copy-on-write strategy saves memory space and time by mapping the child’s
segments and pages to the same segments and pages used by the parent task. A private
copy of a page gets created only when one of the tasks writes to the page.

6.8.2 Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page directory entry (first-level page
table) may differ from those of its second-level page table entry. The Intel486 processor
checks the protection for a page by examining the protection specified in both the page
directory (first-level page table) and the second-level page table. Table 6-4 shows the
protection provided by the possible combinations of protection attributes when the WP
bit is clear.

6.8.3 Overrides to Page Protection

Certain accesses are checked as if they are privilege-level 0 accesses, for any value
of CPL:

e Access to segment descriptors (LDT, GDT, TSS and IDT).

e Access to inner stack during a CALL instruction, or exceptions and interrupts, when
a change of privilege level occurs. '

6-24

lntel o PROTECTION

Table 6-4. Combined Page Directory and Page Table Protection

Page Directory Entry Page Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User " Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write
User Read-Only Supervisor Read-Write Supervisor Read/Write
User Read-Write Supervisor Read-Only Supervisor Read/Write.
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write
Supervisor Read-Only User Read-Write Supervisor Read/Write
Supervisor Read-Write User Read-Only Supervisor Read/Write
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

6.9 COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the Intel486 processor first evaluates segment protection, then
evaluates page protection. If the processor detects a protection violation at either the
segment level or the page level, the operation does not go through; an exception occurs
instead. If an exception is generated by segmentation, no paging exception is generated
for the operation.

For example, it is possible to define a large data segment which has some parts which are
read-only and other parts which are read-write. In this case, the page directory (or page
table) entries for the read-only parts would have the U/S and R/W bits specifying no
write access for all the pages described by that directory entry (or for individual pages
specified in the second-level page tables). This technique might be used, for example, to
define a large data segment, part of which is read-only (for shared data or ROMmed
constants). This defines a “flat” data space as one large segment, with “flat” pointers
used to access this “flat” space, while protecting shared data, shared files mapped into
the virtual space, and supervisor areas.

6-25

Multitasking

CHAPTER 7
MULTITASKING

The Intel486 processor provides hardware support for multltaskmg A task is a program
which is running, or waltmg to run while another program is running. A task is invoked
by an interrupt, exception, jump, or call. When one of these forms of transferring exe-
cution is used with a destination specified by an entry in one of the descriptor tables, this
descriptor can be a type which causes a new task to begin execution after saving the state
of the current task. There are two types of task-related descriptors which can occur in a
descriptor table: task state segment descriptors and task gates. When execution is passed
to either kind of descriptor, a task switch occurs.

A task switch is like a procedure call, but it saves more processor state information. A
procedure call only saves the contents of the general registers, and it might save the
contents of only one register (the EIP register). A procedure call pushes the contents of
the saved registers on the stack, in order that a procedure may call itself. When a
procedure calls itself, it is said to be re-entrant.

A task switch transfers execution to a completely new environment, the environment of a
task. This requires saving the contents of nearly all the processor registers, such as the
EFLAGS register. Unlike procedures, tasks are not re-entrant. A task switch does not
push anything on the stack. The processor state information is saved in a data structure
in memory, called a task state segment.

The registers and data structures which support multitasking are:
o Task state segment.

o Task state segment descriptor.

o Task register.

o Task gate descriptor.

With these structures, the Intel486 processor can switch execution from one task to
another, with the context of the original task saved to allow the task to be restarted. In
addition to the simple task switch, the Intel486 processor offers two other task-
management features:

1. Interrupts and exceptions can cause task switches (if needed in the system design).
The processor not only performs a task switch to handle the interrupt or exception,
but it automatically switches back when the interrupt or exception returns. Inter-

rupts may occur during interrupt tasks.

2. With each switch to another task, the Intel486 processor also can switch to another
LDT. This can be used to give each task a different logical-to-physical address map-
ping. This is an additional protection feature, because tasks can be isolated and
prevented from interfering with one another. The PDBR register also is reloaded.
This allows the paging mechanism to be used to enforce the isolation between tasks.

7-1

Intei ® MULTITASKING

Use of the multitasking mechanism is optional. In some applications, it may not be the
best way to manage program execution. Where extremely fast response to interrupts is
needed, the time required to save the processor state may be too great. A possible
compromise in these situations is to use the task-related data structures, but perform
task switching in software. This allows a smaller processor state to be saved. This tech-
nique can be one of the optimizations used to enhance system performance after the
basic functions of a system have been implemented. :

7.1 TASK STATE SEGMENT

The processor state information needed to restore a task is saved in a type of segment,
called a fask state segment or TSS. Figure 7-1 shows the format of a TSS for an Intel486
CPU task (compatibility with 80286 tasks is provided by a different kind of TSS; see
Chapter 21). The fields of a TSS are divided into two main categories: ,

1. Dynamic fields the processor updates with each task switch. These fields store:
e The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI)
o The segment registers (ES, CS, SS, DS, FS, and GS).
.o The flags register (EFLAGS).
e The instruction pointer (EIP).

e The selector for the TSS of the previous task (updated only when a return is
expected).

2. Static fields the processor reads, but does not change. These fields are set up when
a task is created. These fields store:

o The selector for the task’s LDT.
o The logical address of the stacks for privilege levels 0, 1, and 2.

o The T-bit (debug trap bit) which, when set, causes the processor to raise a debug
exception when a task switch occurs. (See Chapter 11 for more 1nf0rmat10n on
debugging.)

e The base address for the I/O permission bit map. If present, this map is stored in
the TSS at higher addresses. The base address points to the beginning of the
map. (See Chapter 8 for more information about the I/O permission bit map.)

If paging is used, it is important to avoid placing a page boundary within the -part of the
TSS which is read by the processor during a task switch (the first 108 bytes). If-a page
boundary is placed within this part of the TSS, the pages on either side of the boundary
must be present at the same time. In addition, if paging is used, the pages correspondmg
to the old task’s TSS, the new task’s TSS, and the descriptor table entries for each
should be marked as present and read/write. It is an unrecoverable error to receive a
page fault or general-protection exception after the processor has started to read the
TSS.

7-2

MULTITASKING

31

15

o

nannnnnnannnnon
UUUUUUUUUUUUUUVU

-4

0000000000000000 SELECTOR FOR TASK’S LDT
0000000000000000 GS
0000000000000000 FS
0000000000000000 DS
0000000000000000 sS
0000000000000000 cs
0000000000000000 ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS
EIP
RESERVED

0000000000000000 | SS2

ESP2
0000000000000000 | SS1

ESP1
0000000000000000 l SS0

ESPO

0000000000000000

LINK (OLD TSS SELECTOR)

ADDRESSES ARE SHOWN IN HEXADECIMAL.

NOTE: BITS MARKED AS 0 ARE RESERVED. DO NOT USE.

[-d
H

5C
58
54
50

ac
a8
a4

40

3c
38

34

30
2c
28
24
20
1c
18
14
10

240486i7-1

Figure 7-1. Task State Segment

7-3

Intel o | MULTITASKING

7.2 TSS DESCRIPTOR

The task state segment, like all other segments, is defined by a descriptor. Figure 7-2
shows the format of a TSS descriptor.

The Busy bit in the Type field indicates whether the task is busy. A busy task is currently
running or waiting to run. A Type field with a value of 9 indicates an inactive task; a
value of 11 (decimal) indicates a busy task. Tasks are not recursive. The Intel486 pro-
cessor uses the Busy bit to detect an attempt to call a task whose execution has been
interrupted.

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions
similar to their use in data-segment descriptors. The Limit field must have a value equal
to or greater than 67H, one byte less than the minimum size of a task state. An attempt
to switch to a task whose TSS descriptor has a limit less than 67H generates an excep-
tion. A larger limit is required if an I/O permission map is used. A larger limit also may
be required for the operating system, if the system stores additional data in the TSS.

A procedure with access to a TSS descriptor can cause a task switch. In most systems,
the DPL fields of TSS descriptors should be clear, so only privileged software can per-
form task switching.

Access to a TSS descriptor does not give a procedure the ability to read or modify the
descriptor. Reading and modification only can be done using a data descriptor mapped

TSS DESCRIPTOR
3 222221111111111
1 432109876543210987 (]
Al LimiT D TYPE
BASE31:24 |G[D[O|V| Lo o [P| P BASE 23:16 +4
L o/1]o[B]1
BASE ADDRESS 15:00 SEGMENT LIMIT 15:00 +0

AVL AVAILABLE FOR USE BY SYSTEM SOFTWARE
B BUSY BIT

BASE SEGMENT BASE ADDRESS

DPL DESCRIPTOR PRIVILEGE LEVEL

G GRANULARITY

LIMIT SEGMENT LIMIT

P SEGMENT PRESENT

TYPE SEGMENT TYPE

240486i7-2

Figure 7-2. TSS Descriptor

7-4

Intel o MULTITASKING

to the same location in memory. Loading a TSS descriptor into a segment register gen-
erates an exception. TSS descriptors only may reside in the GDT. An attempt to access
a TSS using a selector with a set TI bit (which indicates the current LDT) generates an
exception.

7.3 TASK REGISTER

The task register (TR) is used to find the current TSS. Figure 7-3 shows the path by
which the processor accesses the TSS.

The task register has both a “visible” part (i.e., a part which can be read and changed by
software) and an “invisible” part (i.e., a part maintained by the processor and inaccessi-
ble to software). The selector in the visible portion indexes to a TSS descriptor in the
GDT. The processor uses the invisible portion of the TR register to retain the base and
limit values from the TSS descriptor. Keeping these values in a register makes execution
of the task more efficient, because the processor does not need to fetch these values
from memory to reference the TSS of the current task.

The LTR and STR instructions are used to modify and read the visible portion of the
task register. Both instructions take one operand, a 16-bit segment selector located in
memory or a general register.

LTR (Load task register) loads the visible portion of the task register with the operand,
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the
invisible portion with information from the TSS descriptor. The LTR instruction is a
privileged instruction; it may be executed only when the CPL is 0. The LTR instruction
generally is used during system initialization to put an initial value in the task register;
. afterwards, the contents of the TR register are changed by events which cause a task
switch. :

STR (Store task register) stores the visible portion of the task register in a general
register or memory. The STR instruction is privileged.

7.4 TASK GATE DESCRIPTOR

A task gate descriptor provides an indirect, protected reference to a task. Figure 7-4
illustrates the format of a task gate. :

The Selector field of a task gate indexes to a TSS descriptor. The RPL in this selector is
not used.

The DPL of a task gate controls access to the descriptor for a task switch. A procedure
may not select a task gate descriptor unless the selector’s RPL and the CPL of the
procedure are numerically less than or equal to the DPL of the descriptor. This prevents
less privileged procedures from causing a task switch. (Note that when a task gate is
used, the DPL of the destination TSS descriptor is not used.)

7-5

MULTITASKING

TASK STATE SEGMENT

-
VISIBLE PART INVISIBLE PART
L SELECTOR BASE ADDRESS . SEGMENT LIMIT I TR
A
GLOBAL
DESCRIPTOR TABLE
| N
|
1
L}
TSS DESCRIPTOR. ©
|
|
|
I - i
0
240486i7-3

Figure 7-3. TR Register

7-6

ﬂnu o MULTITASKING

TASK GATE DESCRIPTOR

3 iiiiiii
1 6543210987 0
D
RESERVED PP (00101 RESERVED +4
L
TSS SEGMENT SELECTOR RESERVED +0

DPL DESCRIPTOR PRIVILEGE LEVEL
P SEGMENT PRESENT

240486i7-4

Figure 7-4. Task Gate Descriptor

A procedure with access to a task gate can cause a task switch, as can a procedure with
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy
three needs:

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the
TSS descriptor, each task should have only one such descriptor. There may, how-
ever, be several task gates which select a single TSS descriptor.

2. The need to provide selective access to tasks. Task gates fill this need, because they
can reside in an LDT and can have a DPL which is different from the TSS descrip-
tor’s DPL. A procedure which does not have sufficient privilege to use the TSS
descriptor in the GDT (which usually has a DPL of 0) can still call another task if it
has access to a task gate in its LDT. With task gates, the operating system can limit
task switching to specific tasks.

3. The need for an interrupt or exception to cause a task switch. Task gates also may
reside in the IDT, which allows interrupts and exceptions to cause task switching.
When an interrupt or exception supplies a vector to a task gate, the Intel486 proces-
sor switches to the indicated task.

Figure 7-5 illustrates how both a task gate in an LDT and a task gate in the IDT can
identify the same task.

MULTITASKING

VUESUHIFITUR TABLE

L
[—— TASK GATE

TASK STATE
SEGMENT

I

I
TSS DESCRIPTOR

.

INTERRUPT

DESCRIPTOR TABLE

I
[—— TASK GATE

I

I

I

240486i7-5

7.5 TASK SWITCHING

Figure 7-5. Task Gates Reference Tasks

The Intel486 processor transfers execution to another task in any of four cases:
1. The current task executes a JMP or CALL to a TSS descriptor.
2. The current task executes a JMP or CALL to a task gate.

3. An interrupt or exception indexes to a task gate in the IDT.

A g B T R R | - — P - TT
4. 10€ curreént tasK €xeCui€s an i1xp

o AR | a1 AT
1 1

wnen tne |

1 _ e aad
1iag 1s set.

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all
ordinary mechanisms of the Intel486 processor which can be used in circumstances in
which no task switch occurs. The descriptor type (when a task is called) or the NT flag
(when the task returns) make the difference between the standard mechanism and the

form which causes a task switch.

7-8

Intel o MULTITASKING

To cause a task switch, a JMP or CALL instruction can transfer execution to either a
TSS descriptor or a task gate. The effect is the same in either case: the Intel486 proces-
sor transfers execution to the specified task.

An exception or interrupt causes a task switch when it indexes to a task gate in the IDT.
If it indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See
Chapter 9 for more information on the interrupt mechanism.

An interrupt service routine always returns execution to the interrupted procedure,
which may be in another task. If the NT flag is clear, a normal return occurs. If the NT
flag is set, a task switch occurs. The task receiving the task switch is specified by the TSS
selector in the TSS of the interrupt service routine.

A task switch has these steps:

1. Check that the current task is allowed to switch to the new task. Data-access privi-
lege rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and
the task gate must be numerically greater (e.g., lower privilege level) than or equal
to both the CPL and the RPL of the gate selector. Exceptions, interrupts, and IRET
instructions are permitted to switch tasks regardless of the DPL of the destination
task gate or TSS descriptor.

2. Errors restore any changes made in the processor state when an attempt is made to
execute the error-generating instruction. This lets the return address for the excep-
tion handler point to the error-generating instruction, rather than the instruction
following the error-generating instruction. The exception handler can fix the condi-
tion which caused the error, and restart the task. The intervention of the exception
handler can be completely transparent to the application program.

3. Save the state of the current task. The processor finds the base address of the
current TSS in the task register. The processor registers are copied into the current
TSS (the EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS,
and EFLAGS registers).

4. Load the TR register with the selector to the new task’s TSS descriptor, set the new
task’s Busy bit, and set the TS bit in the CRO register. The selector is either the
operand of a JMP or CALL instruction, or it is taken from a task gate.

5. Load the new task’s state from its TSS and continue execution. The registers loaded
are the LDTR register; the EFLAGS register; the general registers EIP, EAX,
ECX, EDX, EBX, ESP, EBP, ESI, EDI; and the segment registers ES, CS, SS, DS,
FS, and GS. Any errors detected in this step occur in the context of the new task. To
an exception handler, the first instruction of the new task appears not to have
executed.

Note that the state of the old task is always saved when a task switch occurs. If the task
is resumed, execution starts with the instruction which normally would have been next.
The registers are restored to the values they held when the task stopped running.

7-9

Intel o MULTITASKING

Every task switch sets the TS (task switched) bit in the CRO register. The TS bit is useful
to system software for coordinating the operations of the integer unit with the floating-
point unit or a coprocessor. The TS bit indicates that the context of the floating-point
unit or coprocessor may be different from that of the currént task. Chapter 10 discusses
the TS bit and coprocessors in more detail.

Exception service routines for exceptions caused by task switching (exceptions resulting
from steps 5 through 17 shown in Table 7-1) may be subject to recursive calls if they
attempt to reload the segment selector which generated the exception. The cause of the
exception (or the first of multiple causes) should be fixed before reloading the selector.

The privilege level at which the old task was running has no relation to the privilege level
of the new task. Because the tasks are isolated by their separate address spaces and-task
state segments, and because privilege rules control access to a TSS, no privilege checks
are needed to perform a task switch. The new task begins executing at the privilege level
indicated by the RPL of new contents of the CS register, which are loaded from the TSS.

7.6 TASK LINKING

The Link field of the TSS and the NT flag are used to return execution to the previous
task. The NT flag indicates whether the currently executing task is nested within the
execution of another task, and the Link field of the current task’s TSS holds the TSS
selector for the hlgher—level task, if there is one (see Figure 7-6).

When an interrupt, exception, jump, or call causes a task switch, the Intel486 processor
copies the segment selector for the current task state segment into the TSS for the new
task and sets the NT flag. The NT flag indicates the Link field of the TSS has been
loaded with a saved TSS selector. The new task releases control by executing an IRET
instruction. When an IRET instruction is executed, the NT flag is checked. If it is set,
the processor does a task switch to the previous task. Table 7-2 summarizes the uses of
the fields in a TSS which are affected by task switching. . '

Note that the NT flag may be modified by software executing at any privilege level. It is
possible for a program to set its NT bit and execute an IRET instruction, which would
have the effect of invoking the task specified in the Link field of the current task’s TSS.
To keep spurious task switches from succeeding, the operating system should initialize
the Link field of every TSS it creates.

7.6.1 Busy Bit Prevents Loops

The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one
saved task context, the context saved in the TSS, therefore a task only may be called
once before it terminates. The chain of suspended tasks may grow to any length, due to
multiple interrupts exceptions, jumps, and calls. The Busy bit prevents a task from being
called if it is in this chain. A re-entrant task switch would overwrite the old TSS for the
task, which would break the chain.

7-10

intel o MULTITASKING

Table 7-1. Checks Made during a Task Switch

Step Condition Checked Exception’ Error Code Reference
1 TSS descriptor is present in NP New Task’s TSS
memory
2 TSS descriptor is not busy GP, IRET, TS, Task’s backlink TSS
Jmp call Int.
Registers are loaded from the values in the TSS
TSS segment limit greater TS New Task’s TSS
than or equal to 108
5 LDT selector of new task is TS New Task’s TSS
valid?
6 Code segment DPL matches TS New Code Segment
selector RPL
SS selector is valid® TS New Stack Segment
Stack segment is present in SF New Stack Segment
memory
9 - Stack segment DPL matches TS Stack not present
CPL
10 LDT of new task is present in TS New Task’s TSS
memory
11 CS selector is valid? TS New Code Segment
12 Code segment is present in NP New Code Segment
memory
13 Stack segment DPL matches TS New Stack Segment
selector RPL
14 DS, ES, FS, and GS selec- TS New Data Segment
tors are valid®
15 DS, ES, FS, and GS seg- TS New Data Segment
ments are readable
16 DS, ES, FS, and GS seg- NP New Data Segment
ments are present in memory
17 DS, ES, FS, and GS segment TS New Data Segment
DPL greater than or equal to
CPL (unless these are con-
forming segments)

NOTES: Future Intel processors may use a different order of checks.

1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS exception,
SF = Stack exception.

2. A selector is valid if it is in a compatible type of table (e.g., an LDT selector may not be in any table
except the GDT), occupies an address within the table’s segment limit, and refers to a compatible type of
descriptor (e.g., a selector in the CS register only is valid when it indexes to a descriptor for a code

. segment; the descriptor type is specified in its Type field).

7-11

intal.

MULTITASKING

TOP LEVEL NESTED MORE DEEPLY CURRENTLY
TASK TASK NESTED EXECUTING

TASK TASK

TSS TSS TSS EFLAGS
NT = 1
NT =0 NT =1 NT = 1

LINK LINK LINK I TR REGISTER

240486i7-6

Figure 7-6. Nested Tasks

Table 7-2. Effect of a Task Switch on Busy, NT, and Link Fields

Field

Effect of Jump

Effect of CALL
Instruction or
Interrupt

Effect of IRET
Instruction

Busy bit of new task

Busy bit of old task

NT flag of new task
NT flag of old task

Link field of new task.

Link field of old task.

Bit is set. Must have
been clear before.

Bit is cleared.

No change.
No change.

No change.

No change.

Bit is set. Must have

been clear before.

No change. Bit is cur-
rently set.

Flag is set.
No change.

Loaded with selector
for old task’s TSS.

No change.

No change.. Must be
set.

Bit is cleared.

No change.
Flag is cleared.
No change.

No change.

InU o MULTITASKING

The processor manages the Busy bit as follows:
1. When switching to a task, the processor sets the Busy bit of the new task.

2. When switching from a task, the processor clears the Busy bit of the old task if that
task is not to be placed in the chain (i.e., the instruction causing the task switch is a
JMP or IRET instruction). If the task is placed in the chain, its Busy bit remains set.

3. When switching to a task, the processor generates a general-protection exception if
the Busy bit of the new task already is set.

In this way, the processor prevents a task from switching to itself or to any task in the
chain, which prevents re-entrant task switching.

The Busy bit may be used in multiprocessor configurations, because the processor
asserts a bus lock when it sets or clears the Busy bit. This keeps two processors from
invoking the same task at the same time. (See Chapter 13 for more information on
multiprocessing.) '

7.6.2 Modifying Task Linkages

Modification of the chain of suspended tasks may be needed to resume an interrupted
task before the task which interrupted it. A reliable way to do this is:

1. Disable interrupts.

2. First change the Link field in the TSS of the interrupting task, then clear the Busy
bit in the TSS descriptor of the task being removed from the chain.

3. Re-enable interrupts.

7.7 TASK ADDRESS SPACE

The LDT selector and PDBR (CR3) field of the TSS can be used to give each task its
own LDT and page tables. Because segment descriptors in the LDTs are the connections
between tasks and segments, separate LDTs for each task can be used to set up individ-
ual control over these connections. Access to any particular segment can be given to any
particular task by placing a segment descriptor for that segment in the LDT for that task.
If paging is enabled; each task can have its own set of page tables for mapping linear
addresses to physical addresses.

It also is possible for tasks to have the same LDT. This is a simple and memory-efficient
way to allow some tasks to communicate with or control each other, without dropping
the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments
accessed through segment descriptors in this table.

7-13

Intel o MULTITASKING

7.7.1 Task Linear-to-Physical Space Mapping

The choices for arranging the linear-to-physical mappings of tasks fall into two general
classes:

1. One linear-to-physical mapping shared among all tasks. When paging is not enabled,
this is the only choice. Without paging, all linear addresses map to the same physical
addresses. When paging is enabled, this form of linear-to-physical mapping is
obtained by using one page directory for all tasks. The linear space may exceed the
available physical space if demand-paged virtual memory is supported.

2. Independent linear-to-physical mappings for each task. This form of mapping comes
from using a different page directory for each task. Because the PDBR (page direc-
tory base register) is loaded from the TSS with each task switch, each task may have
a different page directory.

The linear address spaces of different tasks may map to completely distinct physical
addresses. If the entries of different page directories point to different page tables and
the page tables point to different pages of physical memory, then the tasks do not share
any physical addresses.

The task state segments must lie in a space accessible to all tasks so that the mapping of
TSS addresses does not change while the processor is reading and updating the TSSs
during a task switch. The linear space mapped by the GDT also should be mapped to a
shared physical space; otherwise, the purpose of the GDT is defeated. Figure 7-7 shows
how the linear spaces of two tasks can overlap in the physical space by sharing page
tables.

7.7.2 Task Logical Address Space

By itself, an overlapping linear-to-physical space mapping does not allow sharing of data
among tasks. To share data, tasks must also have a common logical-to-linear space map-
ping; i.e., they also must have access to descriptors which point into a shared linear
address space. There are three ways to create shared logical-to-physical address-space
mappings: :

1. Through the segment descriptors in the GDT. All tasks have access to the descrip-
tors in the GDT. If those descriptors point into a linear-address space which is
mapped to a common physical-address space for all tasks, then the tasks can share
data and instructions.

2. Through shared LDTs. Two or more tasks can use the same LDT if the LDT selec-
tors in their TSSs select the same LDT for use in address translation. Segment
descriptors in the LDT addressing linear space mapped to overlapping physical
space provide shared physical memory. This method of sharing is more selective
than sharing by the GDT; the sharing can be limited to specific tasks. Other tasks in
the system may have different LDTs which do not give them access to the shared
areas. :

7-14

Inte| o MULTITASKING

3. Through segment descriptors in the LDTs which map to the same linear address
space. If the linear address space is mapped to the same physical space by the page
mapping of the tasks involved, these descriptors permit the tasks to share space.
Such descriptors are commonly called “aliases.” This method of sharing is even
more selective than those listed above; other descriptors in the LDTs may point to
independent linear addresses which are not shared.

PAGE FRAMES

TSSe
PAGE PAGE TASK A
TASKATSS DIRECTORIES TABLES PAGE
PTE —l TASK A
PTE PAGE
PDBR || PDE > PTE
PDE | TASK A
T
: SHARED P ek
| sHARED
PTE PAGE
PTE
TASK B TSS SHARED
PAGE
TASK B
ppBR || PDE | PTE PAGE
PDE >l PTE
TSSe PAGE PAGE TABLES TASK B
DIRECTORIES PAGE

PAGE FRAMES

240486i7-7

Figure 7-7. Overlapping Linear-to-Physical Mappings

7-15

Input/Output

CHAPTER 8
INPUT/OUTPUT

This chapter explains the input/output architecture of the Intel486 processor. Input/
output is accomplished through I/O ports, which are registers connected to peripheral
devices. An 1/O port can be an input port, an output port, or a bidirectional port. Some
1/O ports are used for carrying data, such as the transmit and receive registers of a serial
interface. Other I/O ports are used to control peripheral devices, such as the control
registers of a disk controller.

The Intel486 processor always synchronizes I/O instruction execution with external bus
activity. All previous instructions are completed before an I/O operation begins. In par-
ticular, all writes held pending in the Intel486 CPU write buffers will be completed
before an I/O read or write is performed.

The input/output architecture is the programmer’s model of how these ports are
accessed. The discussion of this model includes:

e Methods of addressing I/O ports.
o Instructions which perform I/O operations.
o The I/O protection mechanism.

8.1 1/0 ADDRESSING

The Intel486 processor allows I/O ports to be addressed in either of two ways:
o Through a separate I/O address space accessed using I/O instructions.

e Through memory-mapped I/O, where 1/O ports appear in the address space of phys-
ical memory.

The use of a separate I/O address space is supported by special instructions and a
hardware protection mechanism. When memory-mapped I/O is used, the general-
purpose instruction set can be used to access I/O ports, and protection is provided using
segmentation or paging. Some system designers may prefer to use the I/O facilities built
into the processor, while others may prefer the simplicity of a single physical address
space.

If segmentation or paging is used for protection of the I/O address space, the AVL fields
in segment descriptors or page table entries may be used to mark pages containing I/O
as unrelocatable and unswappable. The AVL fields are provided for this kind of use,
where a system programmer needs to make an extension to the address translation and
protection mechanisms.

Hardware designers use these ways of mapping I/O ports into the address space when
they design the address decoding circuits of a system. I/O ports can be mapped so that
they appear in the I/O address space or the address space of physical memory (or both).
System programmers may need to discuss with hardware designers the kind of I/O
addressing they would like to have.

Intel o INPUT/OUTPUT

8.1.1 1/0 Address Space

The Intel486 processor provides a separate I/O address space, distinct from the address
space for 6physwal memory, where I/O ports can be placed. The I/O address space con-
sists of 2'® (64K) individually addressable 8-bit ports; any two consecutive 8-bit ports can
be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port. Extra bus
cycles are required if a port crosses the boundary between two doublewords i in physical
memory.

The M/IO# pin on the Intel486 processor indicates when a bus cycle to the I/O address
space occurs. When a separate I/O address space is used, it is the responsibility of the
hardware designer to make use of this signal to select I/O ports rather than memory. In
fact, the use of the separate I/O address space simplifies the hardware design because
these ports can be selected by a single signal; unlike other processors, it is not necessary
to decode a number of upper address lines in order to set up a separate I/O address
space.

A program can specify the address of a port in two ways. ‘With an 1mmed1ate byte
constant, the program can specify:

o 256 8-bit ports numbered 0 through 255.
e 128 16-bit ports numbered 0, 2, 4, . . ., 252, 254.
o 64 32-bit ports numbered 0, 4, 8, . . ., 248, 252.

Using a value in the DX register, the program can specify:
e 8-bit ports numbered 0 through 65535.

e 16-bit ports numbered 0, 2, 4, . . . , 65532, 65534.

o 32-bit ports numbered 0, 4, 8, . . . , 65528, 65532.

The Intel486 processor can transfer 8, 16, or 32 bits to a device in the I/O space. Like
words in memory, 16-bit ports should be aligned to even addresses so that all 16 bits can
be transferred in a single bus cycle. Like doublewords in memory, 32-bit ports should be
aligned to addresses which are multiples of four. The processor supports data transfers
to unaligned ports, but there is a performance penalty because an extra bus cycle must
be used.

The IN and OUT instructions move data between a register and a port in the I/O
address space. The instructions INS and OUTS move strings of data between the mem-
ory address space and ports in the I/O address space.

I/O port addresses 0OF8H through OFFH are reserved for use by Intel®. Do not assign 1/0O
ports to these addresses.

The exact order of bus cycles used to access ports which require more than one bus cycle
is undefined. For example, an OUT instruction which loads an unaligned doubleword
port at location 2H accesses the word at 4H before accessing ‘the word at 2H. This
behavior is neither defined, nor guaranteed to remain the same in future Intel products.

8-2

Intel o INPUT/OUTPUT

If software needs to produce a particular order of bus cycles, this order must be specified
explicitly. For example, to load a word-length port at 4H followed by loading a word port
at 2H, two word-length instructions must be used, rather than a single doubleword
instruction.

ity
types of bus cycles, such as interrupt acknowledge cycles, it does not mask parity for bus
cycles to the I/O address space. Programmers may need to be aware of this behavior as a
possible source of spurious parity errors.

Note that although the Intel486 processor automatically masks parity errors for certain

L)
-t
=

8.1.2 Memory-Mapped 1/0

I/O devices may be placed in the address space for physical memory. This is called
memory-mapped I/O. As long as the devices respond like memory components, they can
be used with memory-mapped I/O.

Memory-mapped I/O provides additional programming flexibility. Any instruction which
references memory may be used to access an I/O port located in the memory space. For
example, the MOV instruction can transfer data between any register and a port. The
AND, OR, and TEST instructions may be used to manipulate bits in the control and
status registers of peripheral devices (see Figure 8-1). Memory-mapped 1/O can use the
full instruction set and the full complement of addressing modes to address I/O ports.

PHYSICAL MEMORY

ROM

INPUT/OUTPUT PORT

INPUT/OUTPUT PORT

INPUT/OUTPUT PORT

RAM

240486i8-1

Figure 8-1. Memory-Mapped /O

8-3

Intei® INPUT/OUTPUT

To optimize performance, the Intel486 CPU allows reads to be re-ordered ahead of
buffered writes in certain precisely-defined circumstances. (See the Intel486™ Processor
Hardware Reference Manual for further details about the operation of the write buffer.)
Using memory-mapped 1/O on the Intel486 CPU therefore creates the possibility that an
I/O read will be performed before the memory write of a previous instruction. To elim-
inate this possibility, use an I/O instruction for the read.

Using an I/O instruction for an I/O write can also be advantageous because it guarantees
that the write will be completed before the next-instruction begins execution. If 1/O
writes are used to control system hardware, then this sequence of events is desirable,
since it guarantees that the next instruction will be executed in the new state.

If caching is enabled, either external hardware or the paging mechanism (the PCD bit in
the page table entry) must be used to prevent caching of I/O data.

Memory-mapped 1/0O, like any other memory reference, is subject to access protection
and control. See Chapter 6 for a discussion of memory protection.

8.2 1/0 INSTRUCTIONS

The 1/O instructions of the Intel486 processor provide access to the processor’s I/O ports
for the transfer of data. These instructions have the address of a port in the 1/O address
space as an operand. There are two kinds of 1/O instructions:

1. Those which transfer a single item (byte, word; or doubleword) to or from a register.

2. Those which transfer strings of items (strings of bytes, words, or doublewords)
located in memory. These are known as “string I/O instructions” or “block I/O
instructions.”

These instructions cause the M/IO# signal to be driven low (logic 0) during a bus cycle,
which indicates to external hardware that access to the I/O address space is taking place.
If memory-mapped I/O is used, there is no reason to use I/O instructions.

8.2.1 Register I/O Instructions

The I/O instructions IN and OUT move data between I/O ports and the EAX register
(32-bit 1/0), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The IN and
OUT instructions address I/O ports either directly, with the address of one of 256 port
addresses coded in the instruction, or indirectly using an address in the DX register to
select one of 64K port addresses. These instructions synchronize program execution to
external hardware. The Intel486 processor write buffers are cleared and program execu-
tion delayed until the last ready of the last bus cycle has been returned.

8-4

lnteL INPUT/OUTPUT

IN (Input from Port) transfers a byte, word, or doubleword from an input port to the
AL, AX, or EAX registers. A byte IN instruction transfers 8 bits from the selected port
to the AL register. A word IN instruction transfers 16 bits from the port to the AX
register. A doubleword IN instruction transfers 32 bits from the port to the EAX
register.

OUT (Output from Port) transfers a byte, word, or doubleword from the AL, AX, or
EAX registers to an output port. A byte OUT instruction transfers 8 bits from the AL
register to the selected port. A word OUT instruction transfers 16 bits from the AX
register to the port. A doubleword OUT instruction transfers 32 bits from the EAX
register to the port.

8.2.2 Block I/O Instructions

The INS and OUTS instructions move blocks of data between I/O ports and memory.
Block I/O instructions use an address in the DX register to address a port in the I/O
address space. These instructions use the DX register to specify:

o 8-bit ports numbered 0 through 65535.
o 16-bit ports numbered 0, 2, 4, . . ., 65532, 65534.
o 32-bit ports numbered 0, 4, 8, . . ., 65528, 65532.

Block I/O instructions use either the SI or DI register to address memory. For each
transfer, the SI or DI register is incremented or decremented, as specified by the DF
flag.

The INS and OUTS instructions, when used with repeat prefixes, perform block input or
output operations. The repeat prefix REP modifies the INS and OUTS instructions to
transfer blocks of data between an I/O port and memory. These block I/O instructions
are string instructions (see Chapter 3 for more on string instructions). They simplify
programming and increase the speed of data transfer by eliminating the need to use a
separate LOOP instruction or an intermediate register to hold the data.

The string I/O instructions operate on byte strings, word strings, or doubleword strings.
After each transfer, the memory address in the ESI or EDI registers is incremented or
decremented by 1 for byte operands, by 2 for word operands, or by 4 for doubleword
operands. The DF flag controls whether the register is incremented (the DF flag is
clear) or decremented (the DF flag is set).

INS (Input String from Port) transfers a byte, word, or doubleword string element from
an input port to memory. The INSB instruction transfers a byte from the selected port to
the memory location addressed by the ES and EDI registers. The INSW instruction
transfers a word. The INSD instruction transfers a doubleword. A segment override
prefix cannot be used to specify an alternate destination segment. Combined with a REP
prefix, an INS instruction makes repeated read cycles to the port, and puts the data into
consecutive locations in memory.

8-5

|nte| ° INPUT/OUTPUT

OUTS (Output String from Port) transfers a byte, word, or doubleword string element
from memory to an output port. The OUTSB instruction transfers a byte from the mem-
ory location addressed by the DS and ESI registers to the selected port. The OUTSW
instruction transfers a word. The OUTSD instruction transfers a doubleword. A segment
override prefix cannot be used to specify an alternate source segment. Combined with a
REP prefix, an OUTS instruction reads consecutive locations in memory, and writes the
data to an output port.

8.3 PROTECTION AND 1I/O

The I/O architecture has two protection mechanisms:
1. The IOPL field in the EFLAGS register controls access to the I/O instructions.

2. The I/O permission bit map of a TSS segment controls access to individual ports in
the I/O address space. :

These protection mechanisms are available only when a separate I/O address space is
used. When memory-mapped I/O is used, protection is provided usmg segmentation or

paging.

8.3.1 1/0 Privilege Level

In systems where I/O protection is used, access to I/O instructions is controlled by the
IOPL field in the EFLAGS register. This permits the operating system to ‘adjust the
privilege level needed to perform I/O. In a typical protection ring model, privilege levels
0.and 1 have access to the I/O instructions. This lets the operating system and the device
drivers perform I/O, but keeps applications and less privileged device drivers from
accessmg the I/O, address space. Applications access I/O through the operating system

The followmg instructions can be executed only 1f CPL = IOPL:

IN —Input

INS —Input String

OUT —Output

OUTS —Output String

CLI —Clear Interrupt-Enable Flag
STI —Set Interrupt-Enable Flag

These instructions are called “sensitive” instructions, because they are sensitive to the
IOPL field. In virtual-8086 mode, IOPL is not used; only the I/O permission bit map
limits access to I/O ports (see Chapter 23).

To use sensitive instructions, a procedure must run at a privilege level at least as privi-
leged as that specified by the IOPL field. Any attempt by a less privileged procedure to
use a sensitive instruction results in a general-protection exception. Because each task
has its own copy of the EFLAGS register, each task can have a different IOPL.

8-6

|nte| o INPUT/OUTPUT

A task can change IOPL only with the POPF instruction; however, such changes are
privileged. No procedure may change its IOPL unless it is running at privilege level 0.
An attempt by a less privileged procedure to change the IOPL does not result in an
exception; the IOPL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the
CLI and STI instructions); however, changes to the IF flag using the POPF instruction
are IOPL-sensitive. A procedure may change the setting of the IF flag with a POPF
instruction. only if it runs with a CPL at least as privileged as the IOPL. An attempt by a
less privileged procedure to change the IF flag does not result in an exception; the IF
flag simply remains unchanged.

8.3.2 1/O Permission Bit Map

The Intel486 processor can generate exceptions for references to specific I/O addresses.
These addresses are specified in the I/O permission bit map in the TSS (see Figure 8-2).
The size of the map and its location in the TSS are variable. The processor finds the 1/O

TASK STATE SEGMENT

11111111

1/0 PERMISSION
BIT MAP

110 MAP BASE

NOTE: BASE ADDRESS FOR I/0 BIT MAP
MUST NOT EXCEED DFFF (HEXA-
DECIMAL)

LAST BYTE OF BIT MAP MUST BE
FOLLOWED BY A BYTE WITH ALL
BITS SET.

240486i8-2

Figure 8-2. 1/O Permission Bit Map

8-7

Inte|@ INPUT/OUTPUT

permission bit map with the I/O map base address in the TSS. The base address is a
16-bit offset into the TSS.:This is an'offset to the beginning of the bit map The: 11m1t of
the TSS is the limit on the size of the I/O permission b1t map.

Because each task has its own TSS, each task has its own I/O permlssmn b1t map. Access
to individual I/O ports:can be granted to individual tasks. v

If CPL < IOPL in protected mode then the processor allows I/O operatlons to proceed
If CPL >IOPL, or if the processor is operating.in virtual 8086 mode, then the processor
checks the I/O permission map. .Each bit in the map corresponds-to an I/O port byte
address; for example, the control bit for address 41 (decimal):in the I/O address space is
found at bit position 1 of the sixth byte in the bit map. The processor tests all the bits
corresponding to the I/O port being addressed; for example, a doubleword operation
tests four bits corresponding to four adjacent byte addresses. If any tested bit is set, a
general-protection exception is generated. If all tested bits are clear, the I/O operation
proceeds.

Because I/O ports. Wthh are not allgned to word and doubleword boundaries are per-
mitted, it is pos51ble that the processor may need to access two bytes in the bit map when
I/O permission is checked. For maximum speed, the processor has been designed to read
two bytes for every access to an I/O port. To prevent exceptions from being generated
when the ports with the highest addresses are accessed, an extra byte needs to come
after the table. This byte must have all of its bits set, and it must be within the segment
limit. .

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/0
addresses not spanned by the map are treated as if they had set bits in the map. For
example, if the TSS segment limit is 10 bytes past the bit map base address, the map has
11 bytes and the first 80 I/O ports are mapped ngher addresses in the I/O address
Space generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there

is no I/O permission map, and all I/O instructions generate exceptlons The base address
must be less than or equal to ODFFFH '

8-8

Exceptions and Interrupts 9

CHAPTER 9
EXCEPTIONS AND INTERRUPTS

Exceptions and interrupts are forced transfers of execution to a task or a procedure. The
task or procedure is called a handler. Interrupts occur at random times during the exe-
cution of a program, in response to signals from hardware. Exceptions occur when
instructions are executed which provoke exceptions. Usually, the servicing of interrupts
and exceptions is performed in a manner transparent to application programs. Interrupts
are used to handle events external to the processor, such as requests to service periph-
eral devices. Exceptions handle conditions detected by the processor in the course of
executing instructions, such as division by 0.

There are two sources for interrupts and two sources for exceptions:

1. Interrupts

o Maskable interrupts, which are received on the INTR input of the Intel486 pro-
cessor. Maskable interrupts do not occur unless the interrupt-enable flag (IF) is
set.

o Nonmaskable interrupts, which are received on the NMI (Non-Maskable Inter-
rupt) input of the processor. The processor does not provide a mechanism to
prevent nonmaskable interrupts.

2. Exceptions

o Processor-detected exceptions. These are further classified as faults, traps, and
aborts.

3. Programmed exceptions. The INTO, INT 3, INT n, and BOUND instructions may
trigger exceptions. These instructions often are called “software interrupts,” but the
processor handles them as exceptions. .

This chapter explains the features of the Intel486 processor which control and respond
to interrupts. ’

9.1 EXCEPTION AND INTERRUPT VECTORS

The processor associates an identifying number with each different type of interrupt or
exception. This number is called a vector.

The NMI interrupt and the exceptions are assigned vectors in the range 0 through 31.
Not all of these vectors are currently used by the processor; unassigned vectors in this
range are reserved for possible future uses. Do not use unassigned vectors.

The vectors for maskable interrupts are determined by hardware. External interrupt
controllers (such as Intel’s 8259A Programmable Interrupt Controller) put the vector on
the bus of the Intel486 processor during its interrupt-acknowledge cycle. Any vectors in
the range 32 through 255 can be used. Table 9-1 shows the assignment of exception and
interrupt vectors.

9-1

Intel o EXCEPTIONS AND INTERRUPTS

Table 9-1. Exception and Interrupt Vectors

Vector Number Description
0 Divide Error
1 Debug Exception
2 NMI Interrupt
'3 Breakpoint
4 INTO-detected Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
8 Double Fault
9 CoProcessor Segment Overrun.
10 Invalid Task State Segment
11 Segment Not Present
12 Stack Fault
13 General Protection
14 Page Fault
15 (Intel reserved. Do not use.)
16 Floating-Point Error
17 Alignment Check
18-31 (Intel reserved. Do not use.)
32-255 Maskable Interrupts

Exceptions are classified as faults, traps, or aborts depending on the way they are
reported and whether restart of the instruction which caused the exception is supported.

Faults— A fault is an exception which is reported at the instruction boundary prior to the
instruction in which the exception was detected. The fault is reported with the machine
restored to a state which permits the instruction to be restarted. The return address for

the fault handler points to the instruction which generated the fault, rather than the

instruction following the faulting instruction.

Traps— A trap is an exception which is reported at the instruction boundary immediately
after the instruction in which the exception was detected.

Aborts—An abort is an exception which does not always report the location of the
instruction causing the exception and does not allow restart of the program which caused
the exception. Aborts are used to report severe errors, such as hardware errors and
inconsistent or illegal values in system tables.

9.2 INSTRUCTION RESTART

For most exceptions and interrupts, transfer of execution does not take place until the
end of the current instruction. This leaves the EIP register pointing at the instruction
which comes after the instruction which was being executed when the exception or inter-
rupt occurred. If the instruction has a repeat prefix, transfer takes place at the end of

9-2

|nte| o EXCEPTIONS AND INTERRUPTS

the current iteration with the registers set-to execute the next iteration. But if the excep-
tion is a fault, the processor registers are restored to the state they held before execution
of the instruction began. This permits instruction restart.

Instruction restart is used to handle exceptions which block access to operands. For
example, an application program could make reference to data in a segment which is not
present in memory. When the exception occurs, the exception handler must load the
segment (probably from a hard disk) and resume execution beginning with the instruc-
tion which caused the exception. At the time the exception occurs, the instruction may
have altered the contents of some of the processor registers. If the instruction read an
operand from the stack, it is necessary to restore the stack pointer to its previous value.
All of these restoring operations are performed by the processor in a manner completely
transparent to the application program.

When a fault occurs, the EIP register is restored to point to the instruction which
received the exception. When the exception handler returns, execution resumes with this
instruction.

9.3 ENABLING AND DISABLING INTERRUPTS

Certain conditions and flag settmgs cause the processor to inhibit certain kinds of inter-
rupts and exceptions.

9.3.1 NMI Masks Further NMNils

While an NMI interrupt handler is executing, the processor disables additional calls to
the procedure or task which handles the interrupt until the next IRET instruction is
executed. This prevents stacking up calls to the interrupt handler. It is recommended
that interrupt gates be used for NMI’s in order to disable nested maskable interrupts,
since an IRET instruction from the maskable-interrupt handler would re-enable NMI.

9.3.2 IF Masks INTR

The IF flag can turn off servicing of interrupts received on the INTR pin of the proces-
sor. When the IF flag is clear, INTR interrupts are ignored; when the IF flag is set,
INTR interrupts are serviced. As with the other flag bits, the processor clears the IF flag
in response to a RESET signal. The STI and CLI instructions set and clear the IF flag.

CLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) put the IF flag
(bit 9 in the EFLAGS register) in-a known state. These instructions may be executed
only if the CPL is an equal or more privileged level than the IOPL. A general-protection
exception is generated if they are executed with a lesser privileged level.

9-3

Intel o EXCEPTIONS AND INTERRUPTS

The IF flag also is affected by the following operations:

o The PUSHF instruction stores all flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified form back into the
EFLAGS register.

e Task switches and the POPF and IRET instructions load the EFLAGS register;
therefore, they can be used to modify the setting of the IF flag.

o Interrupts through interrupt gates automatically clear the IF flag, _which disables
interrupts. (Interrupt gates are explained later in this chapter).

9.3.3 RF Masks Debug Faults

The RF flag in the EFLAGS register can be used to turn off servicingvof debug faults. If
it is clear, debug faults are serviced; if it is set, they are ignored. This is used to suppress
multiple calls to the debug exception handler when a breakpoint occurs.

For example, an instruction breakpoint may have been set for an instruction which ref-
erences data in a segment which is not present in memory. When the instruction is
executed for the first time, the breakpoint generates a debug exception. Before the
debug handler returns, it should set the RF flag in the copy of the EFLAGS register
saved on the stack. This allows the segment-not-present fault to be reported after the
debug exception handler transfers execution back to the instruction. If the flag is not set,
another debug exception occurs after the debug exception handler returns.

The processor sets the RF bit in the saved contents of the EFLAGS register when the
other faults occur, so multiple debug exceptions are not generated when the instruction
is restarted due to the segment-not-present fault. The processor clears its RF flag when
the execution of the faulting instruction completes. This allows an instruction breakpoint
to be generated for the following instruction. (See Chapter 11 for more information on
debugging:) ‘

9.3.4 MOV or POP to SS Masks Some Exceptions and Interrupts .

Software which needs to change stack segments often uses a pair of instructions; for
example: ‘ ,

Mov 8§, AX
MoV~ ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded but before
the ESP register has been loaded, these two parts of the logical address into the stack
space are inconsistent for the duration of the interrupt or exception handler.

94

IntQI ® EXCEPTIONS AND INTERRUPTS

To prevent this situation, the Intel486 processor inhibits interrupts, debug exceptions,
and single-step trap exceptions after either a MOV to SS instruction or a POP to SS
instruction, until the instruction boundary following the next instruction is reached.
General-protection faults may still be generated. If the LSS instruction is used to modify
the contents of the SS register, the problem does not occur.

9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the pro-
cessor services them in a predictable order. The priority among classes of exception and
interrupt sources is shown in Table 9-2. The processor first services a pending exception
or interrupt from the class which has the highest priority, transferring execution to the
first instruction of the handler. Lower priority exceptions are discarded; lower priority
interrupts are held pending. Discarded exceptions are re-issued when the interrupt han-
dler returns execution to the point of interruption.

9.5 INTERRUPT DESCRIPTOR TABLE

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a
descriptor for the procedure or task which services the associated event. Like the GDT
and LDTs, the IDT is an array of 8-byte descriptors. Unlike the GDT, the first entry of
the IDT may contain a descriptor. To form an index into the IDT, the processor scales
the exception or interrupt vector by eight, the number of bytes in a descriptor. Because

Table 9-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Descriptions

Highest Debug Trap Exceptions from the last instruction

(TF flag set, T bit in TSS set, or data breakpoint)

Debug Fault Exceptions for the next instruction (code breakpoint)

Faults from fetching next instruction (Segment-Not-Present Fault or General-
Protection Fault)

Non-Maskable Interrupt

Maskable Interrupt

Faults from instruction decoding (lllegal Opcode, instruction too long, or
privilege violation) if WAIT instruction, Coprocessor-Not-Available

Exception (TS and.MP bits of CRO set) if ESC instruction, Coprocessor-Not-
Available

Exception (EM or TS bits of CRO set) if WAIT or ESC instruction,
Coprocessor-Error

Exception (Error# pin asserted)

Segment-Not-Present Faults, Stack Faults, and General-Protection Faults for
memory operands

Alignment Faults for memory operands

Lowest Page Faults for memory operands

9-5

Intel o EXCEPTIONS AND INTERRUPTS

there are only 256 vectors, the IDT need not contain more than 256 descriptors. It can
contain fewer than 256 descriptors; descriptors are required only for the interrupt vec-
tors which may occur. :

The IDT may reside anywhere in physical memory. As Figure 9-1 shows, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address
and 16-bit limit for the IDT. The LIDT and SIDT instructions load and store the con-
tents of the IDTR register. Both instructions have one operand, which is the address of
six bytes in memory. '

If a vector references a descriptor beyond the limit, the processor enters shutdown
mode. In this mode, the processor stops executing instructions until an NMI interrupt is
received or reset initialization is invoked. The processor generates a special bus cycle to

IDTR REGISTER

a7 16 15 0

IDT BASE ADDRESS IDT LIMIT

INTERRUPT |
DESCRIPTOR TABLE

|
\"lT INTERRUPT

INTERRUPT #N

GATE FOR
INTERRUPT #3

!

GATE FOR
INTERRUPT #2

L
'GATE FOR
[~ INTERRUPT #1

240486i9-1

Figure 9-1. IDTR Register Locates IDT in Memory

9-6

ﬂteﬁ ° EXCEPTIONS AND INTERRUPTS

indicate it has entered shutdown mode. Software designers may need to be aware of the
response of hardware to receiving this signal. For example, hardware may turn on an
indicator light on the front panel, generate an NMI interrupt to record diagnostic infor-
mation, or invoke reset initialization.

- LIDT (Load IDT register) loads the IDTR register with the base address and limit held
in the memory operand. This instruction can be executed only when the CPL is 0. It
normally is used by the initialization code of an operating system when creating an IDT.
An operating system also may use it to change from one IDT to another.

SIDT (Store IDT register) copies the base and limit value stored in IDTR to memory.
This instruction can be executed at any privilege level.

9.6 IDT DESCRIPTORS

The IDT may contain any of three kinds of descriptors:
o Task gates
o Interrupt gates

o Trap gates

Figure 9-2 shows the format of task gates, interrupt gates, and trap gates. (The task gate
in an IDT is the same as the task gate in the GDT or an LDT already discussed in
Chapter 7.)

9.7 INTERRUPT TASKS AND INTERRUPT PROCEDURES

Just as a CALL instruction can call either a procedure or a task, so an exception or
interrupt can “call” an interrupt handler as either a procedure or a task. When respond-
ing to an exception or interrupt, the processor uses the exception or interrupt vector to
index to a descriptor in the IDT. If the processor indexes to an interrupt gate or trap
gate, it calls the handler in a manner similar to a CALL to a call gate. If the processor
finds a task gate, it causes a task switch in a manner similar to a CALL to a task gate.

9.7.1 Interrupt Procedures

An interrupt gate or trap gate indirectly references a procedure which runs in the con-
text of the currently executing task, as shown in Figure 9-3. The seiector of the gate
points to an executable-segment descriptor in either the GDT or the current LDT. The
offset field of the gate descriptor points to the beginning of the exception or interrupt
handling procedure.

The Intel486 processor calls an exception or interrupt handling procedure in much the
same manner as a procedure call; the differences are explained in the following sections.

9-7

EXCEPTIONS AND INTERRUPTS

TASK GATE
3 S I B B
1 6543210987 0
D
. RESERVED P E 00101 RESERVED
TSS SEGMENT SELECTOR RESERVED
INTERRUPT GATE
3 2222211111111 11 .
1 4321098765432109876514 0
D
OFFSET 31:16 P f 01110(0 0 0|RESERVED
SEGMENT SELECTOR OFFSET 15:00
TRAP GATE
3 1111111
1 6543210987654 0
D
OFFSET 31:16 P E 0111100 0 RESERVED
SEGMENT SELECTOR OFFSET 15:00
DPL DESCRIPTOR PRIVILEGE LEVEL
OFFSET OFFSET TO PROCEDURE ENTRY POINT
P SEGMENT PRESENT BIT
RESERVED DO NOT USE
SELECTOR SEGMENT SELECTOR FOR DESTINATION

CUDE SEGMENI

+4

+0

+4

+0

+4

+0

240486i9-2

Figure 9-2. IDT Gate Descriptors

9-8

tel.

EXCEPTIONS AND INTERRUPTS

INTERRUPT
VECTOR

IDT

INTERRUPT OR
TRAP GATE

OFFSET

DESTINATION
CODE SEGMENT

INTERRUPT
PROCEDURE

SEGMENT SELECTOR

GDT OR LDT

[

SEGMENT
DESCRIPTOR

\
q‘J

[

l

BASE ADDRESS

Figure 9-3. Interrupt Procedure Call

9-9

lntel 0 EXCEPTIONS AND INTERRUPTS

9.7.1.1 STACK OF INTERRUPT PROCEDURE

Just as with a transfer of execution using a CALL instruction, a transfer to an exception
or interrupt handling procedure uses the stack to store the processor state. As Figure 9-4
shows, an interrupt pushes the contents of the EFLAGS register onto the stack before
pushing the address of the interrupted instruction.

Certain types of exceptions also push an error code on the stack. An exception handler
can use the error code to help diagnose the exception.

NO PRIVILEGE LEVEL . NO PRIVILEGE LEVEL
CHANGE, NO ERROR CODE CHANGE, WITH ERROR CODE
l«—— OLD ESP , l«— OLD ESP
OLD EFLAGS OLD EFLAGS
oLD CS oLD CS
OLD EIP l«—— NEW ESP OLD EIP
ERROR CODE «— NEW ESP
PRIVILEGE LEVEL PRIVILEGE LEVEL
CHANGE, NO ERROR CODE CHANGE, WITH ERROR CODE
UNUSED |<=— ESP FROM UNUSED l«— ESP FROM
TSS TSS
OLD SS oLD SS
OLD ESP OLD ESP
OLD EFLAGS OLD EFLAGS
‘oLb cs oLbCs
OLD EIP l«— NEW ESP OLD EIP
ERROR CODE l«—— NEW ESP
240486i9-4

Figure 9-4. Stack Frame After Exception or Interrupt

9-10

Intei 0 EXCEPTIONS AND INTERRUPTS

9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE

An interrupt procedure differs from a normal procedure in the method of leaving the
procedure. The IRET instruction is used to exit from an interrupt procedure. The IRET
instruction is similar to the RET instruction except that it increments the contents of the
ESP register by an extra four bytes and restores the saved flags into the EFLAGS reg-
ister. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF
flag is changed only if CPL < IOPL.

9.7.1.3 FLAG USAGE BY INTERRUPT PROCEDURE

Interrupts using either interrupt gates or trap gates cause the TF flag to be cleared after
its current value is saved on the stack as part of the saved contents of the EFLAGS
register. In so doing, the processor prevents instruction tracing from affecting interrupt
response. A subsequent IRET instruction restores the TF flag to the value in the saved
contents of the EFLAGS register on the stack.

The difference between an interrupt gate and a trap gate is its effect on the IF flag. An
interrupt which uses an interrupt gate clears the IF flag, which prevents other interrupts
from interfering with the current interrupt handler. A subsequent IRET instruction
restores the IF flag to the value in the saved contents of the EFLAGS register on the
stack. An interrupt through a trap gate does not change the IF flag.

9.7.1.4 PROTECTION IN INTERRUPT PROCEDURES

The privilege rule which governs interrupt procedures is similar to that for procedure
calls: the processor does not permit an interrupt to transfer execution to a procedure in
a less privileged segment (numerically greater privilege level). An attempt to violate this
rule results in a general-protection exception.

Because interrupts generally do not occur at predictable times, this privilege rule effec-
- tively imposes restrictions on the privilege levels at which exception and interrupt han-
dling procedures can run. Either of the following techniques can be used to keep the
privilege rule from being violated.

o The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used by handlers for certain exceptions (divide error, for example).
These handlers must use only the data available on the stack. If the handler needs
data from a data segment, the data segment would have to have privilege level 3,
which would make it unprotected.

o The handler can be placed in a code segment with privilege level 0. This handler
would always run, no matter what CPL the program has.

9-11

intel.

EXCEPTIONS AND INTERRUPTS

9.7.2 Interrupt Tasks

A task gate in the IDT indirectly references a task, as Figure 9-5 illustrates. The segment
selector i in the task gate addresses a TSS descrlptor in the GDT.

IDT

TSS

INTERRUPT >

I
TASK GATE

VECTOR

I

TSS SELECTOR

GDT

TSS BASE ADDRESS

l

T
1SS
DESCRIPTOR

240486i9-5

Figure 9-5. Interrupt Task Switch

9-12

Intel o EXCEPTIONS AND INTERRUPTS

When an exception or interrupt calls a task gate in the IDT, a task switch results.
Handling an interrupt with a separate task offers two advantages:

e The entire context is saved automatically.

e The interrupt handler can be isolated from other tasks by giving it a separate address
space. This is done by giving it a separate LDT.

A task switch caused by an interrupt operates in the same manner as the other task
switches described in Chapter 7. The interrupt task returns to the interrupted task by
executing an IRET instruction.

Some exceptions return an error code. If the task switch is caused by one of these, the
processor pushes the code onto the stack corresponding to the privilege level of the
interrupt handler.

When interrupt tasks are used in an operating system for the Intel486 processor, there
are actually two mechanisms which can create new tasks: the software scheduler (part of
the operating system) and the hardware scheduler (part of the processor’s interrupt
mechanism). The software scheduler needs to accommodate interrupt tasks which may
be generated when interrupts are enabled.

9.8 ERROR CODE

With exceptions related to a specific segment, the processor pushes an error code onto
the stack of the exception handler (whether it is a procedure or task). The error code
has the format shown in Figure 9-6. The error code resembles a segment selector; how-
ever instead of an RPL field, the error code contains two one-bit fields:

1. The processor sets the EXT bit if an event external to the program caused the
exception.

2. The processor sets the IDT bit if the index portion of the error code refers to a gate.
descriptor in the IDT.

If the IDT bit is not set, the TI bit indicates whether the error code refers to the GDT
(TI bit clear) or to the LDT (TI bit set). The remaining 13 bits are the upper bits of the
selector for the segment. In some cases the error code is null (i.e., all bits in the lower
word are clear).

3 1

1 5 3210
UNDEFINED SELECTOR T [') 5
DURING TEST INDEX 12X

240486i9-6

Figure 9-6. Error Code

9-13

Inte| ® EXCEPTIONS AND INTERRUPTS

The error code is pushed on the stack as a doubleword. This is done to keep the stack
aligned on addresses which are multiples of four. The upper half of the doubleword is
reserved.

9.9 EXCEPTION CONDITIONS

The following sections describe conditions which generate exceptions. Each description
classifies the exception as a fault, trap, or abort. This classification provides information
needed by system programmers for restarting the procedure in which the exception
occurred:

Faults — The saved contents of the CS and EIP registers pomt to the 1nstruct10n which
generated the fault.

Traps—The saved contents of the CS and EIP registers stored when the trap occurs
point to the instruction to be executed after the instruction which generated the trap.
If a trap is detected during an instruction which transfers execution, the saved con-

‘tents of the CS and EIP registers reflect the transfer. For example, if a trap is
‘detected in a JMP instruction, the saved contents of the CS and EIP registers point to

the destination of the JMP instruction, not to the instruction at the next address
above the JMP instruction.

Aborts—An abort is an exception which permits neither precise location of the
instruction causing the exception nor restart of the program which caused the excep-
tion. Aborts are used to report severe errors, such as hardware errors and inconsis-
tent or illegal values in system tables.

9.9.1 ‘Interrupt 0—Divide Error

The divide-error fault occurs during a DIV or an IDIV instruction when the divisor is 0.

9.9.2 Interrupt 1—Debug Exceptions

The processor generates a debug exception for a number of conditions; whether the
exception is a fault or a trap depends on the condition, as shown below:

Instruction address breakpoint fault
Data address breakpoint trap
General detect fault

Single-step trap

Task-switch breakpoint trap

The processor does not push an error code for this exception. An exception handler can
examine the debug registers to determine which condition caused the exception. See
Chapter 11 for more detailed information about debugging and the debug registers.

9-14

lntel o EXCEPTIONS AND INTERRUPTS

9.9.3 Interrupt 3 —Breakpoint

The INT 3 instruction generates a breakpoint trap. The INT 3 instruction is one byte
long, which makes it easy to replace an opcode in a code segment in RAM with the
breakpoint opcode. The operating system or a debugging tool can use a data segment
mapped to the same physical address space as the code segment to place an INT 3
instruction in places where it is desired to call the debugger. Debuggers use breakpoints
as a way to suspend program execution in order to examine registers, variables, etc.

The saved contents of the CS and EIP registers point to the byte following the break-
point. If a debugger allows the suspended program to resume execution, it replaces the
INT 3 instruction with the original opcode at the location of the breakpoint, and it
decrements the saved contents of the EIP register before returning. See Chapter 11 for
more information on debugging.

9.9.4 Interrupt 4 —Overflow

The overflow trap occurs when the processor executes an INTO instruction with the OF
flag set. Because signed and unsigned arithmetic both use some of the same instructions,
the processor cannot determine when overflow actually occurs. Instead, it sets the OF
flag when the results, if interpreted as signed numbers, would be out of range. When
doing arithmetic on signed operands, the OF flag can be tested directly or the INTO
instruction can be used.

9.9.5 Interrupt 5—Bounds Check

The bounds-check fault is generated when the processor, while executing a BOUND
instruction, finds that the operand exceeds the specified limits. A program can use the
BOUND instruction to check a signed array index against signed limits defined in a
block of memory.

9.9.6 Interrupt 6—Invalid Opcode

The invalid-opcode fault is generated when an invalid opcode is detected by the execu-
tion unit. (The exception is not detected until an attempt is made to execute the invalid
opcode; i.e., prefetching an invalid opcode does not cause this exception.) No error code
is pushed on the stack. The exception can be handled within the same task.

This exception also occurs when the type of operand is invalid for the given opcode.
Examples include an intersegment JMP instruction using a register operand, or an LES
instruction with a register source operand.

9-15

|nte| o EXCEPTIONS AND INTERRUPTS

A third condition which generates this exception is the use of the LOCK prefix with an
instruction which may not be locked. Only certain instructions may be used with bus
locking, and only forms of these instructions which write to a destination in memory may
be used. All other uses of the LOCK prefix generate an invalid-opcode exception.

NOTE

Table 9-3 is a list of undefined ‘opcodes that are reserved by Intel. These opcode.s
do not generate interrupt 6.

9.9.7 Interrupt 7—Device Not Available

The device-not-available fault is generated by either of two conditions:
o The processor executes an ESC instruction, and the EM bit of the CRO register is set.

o The processor executes a WAIT instruction (with MP=1) or ESC instruction, and
the TS bit of the CRO register is set.

Interrupt 7 thus occurs when the programmer wants ESC instructions to be handled by
software (EM set), or when a WAIT or ESC instruction is encountered and the context
of the floating-point unit is different from that of the current task.

On the 286 and Intel386 processors, the MP bit in the CRO register is used with the TS
bit to determine if WAIT instructions should generate exceptions. For programs running
on the Intel486 processor, the MP bit should always be set.

Table 9-3. Intel Reserved Opcodes

Single Byte

82
Dé
F1

Double Byte

OF 07
OF 10
OF 11
OF 12
OF 13

F6 XX
F7 XX

CO0 XX
C1 XX
DO XX
D1 XX
D2 XX
D3 XX

9-16

|nte| o EXCEPTIONS AND INTERRUPTS

9.9.8 Interrupt 8 —Double Fault

Normally, when the processor detects an exception while trying to call the handler for a
prior exception, the two exceptions can be handled serially. If, however, the processor
cannot handle them serially, it signals the double-fault exception instead. To determine
when two faults are to be signalled as a double fault, the Intel486 processor divides the
exceptions into three classes: benign exceptions, contributory exceptions, and page
faults. Table 9-4 shows this classification.

When two benign exceptions or interrupts occur, or one benign and one contributory,
the two events can be handled in succession. When two contributory events occur, they
cannot be handled, and a double-fault exception is generated.

If a benign or contributory exception is followed by a page fault, the two events can be
handled in succession. This is also true if a page fault is followed by a benign exception.
However if a page fault is followed by a contributory exception or another page fault a
double-fault abort is generated.

An initial segment or page fault encountered while prefetching instructions is outside
the domain of Table 9-4. Any further faults generated while the processor is attempting
to transfer control to the appropriate fault handler could still lead to a double-fault
sequence.

The processor always pushes an error code onto the stack of the double-fault handler;
however, the error code is always 0. The faulting instruction may not be restarted. If any
other exception occurs while attempting to call the double-fault handler, the processor
enters shutdown mode. This mode is similar to the state following execution of a HLT
instruction. No instructions are executed until an NMI interrupt or a RESET signal is

Table 9-4. Interrupt and Exception Classes

Class Vector Number Description
1 Debug Exceptions
2 NMI Interrupt
Benign 3 Breakpoint
Exceg tion 4 Overflow
and laterrj ts S Bounds Check
P 6 Invalid Opcode
7 Device Not Available
16 Floating-Point Error
0 Divide Error
. 10 Invalid TSS
g)c():;n:gtniry 11 : Segment Not Present
P 12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Inbl ® EXCEPTIONS AND INTERRUPTS

received. If the shutdown occurs while the processor is executing an NMI interrupt
handler, then only a RESET can restart the processor. The processor generates a special
bus cycle to indicate it has entered shutdown mode.

9.9.9 Interrupt 9— (Intel reserved. Do not use.)

Interrupt 9, the coprocessor-segment overrun abort, is generated in Intel386 CPU/
Intel387 math coprocessor systems when the Intel386 CPU detects a page or segment
violation while transferring the middle portion of an Intel387 math coprocessor operand.
This interrupt is not generated by the Intel486 processor; interrupt 13 occurs instead.

9.9.10 Interrupt 10—Invalid TSS

An invalid-TSS fault is generated if a task switch to a segment with an invalid TSS is
attempted. A TSS is invalid in the cases shown in Table 9-5. An error code is pushed
onto the stack of the exception handler to help identify the cause of the fault. The EXT
bit indicates whether the exception was caused by a condition outside the control of the
program (e.g., if an external interrupt using a task gate attempted a task switch to an
invalid TSS).

This fault can occur either in the context of the original task or in the context of the new
task. Until the processor has completely verified the presence of the new TSS, the excep-
tion occurs in the context of the original task. Once the existence of the new TSS is
verified, the task switch is considered complete; i.e., the TR register is loaded with a
selector for the new TSS and, if the switch is due to a CALL or interrupt, the Link field
of the new TSS references the old TSS. Any errors discovered by the processor after this
point are handled in the context of the new task. '

To ensure a TSS is available to process the exception, the handler for an invalid-TSS
exception must be a task called using a task gate.

Table 9-5. Invalid TSS Conditions

Error Code Index Description

TSS segment TSS segment limit less than 67H

LDT segment Invalid LDT or LDT not present

Stack segment Stack segment selector exceeds descriptor table limit
Stack segment Stack segment is not writable

Stack segment Stack segment DPL not compatible with CPL

Stack segment Stack segment selector RPL not compatible with CPL
Code segment Code segment selector exceeds descriptor table limit
Code segment Code segment is not executable

Code segment Non-conforming code segment DPL not equal to CPL
Code segment Conforming code segment DPL greater than CPL
Data segment Data segment selector exceeds descriptor table limit
Data segment Data segment not readable

Intel o EXCEPTIONS AND INTERRUPTS

9.9.11 Interrupt 11 —Segment Not Present

The segment-not-present fault is generated when the processor detects that the present
bit of a descriptor is clear. The processor can generate this fault in any of these cases:

= While attempting to load the CS, DS, ES, FS, or

10 auiciil Priiig 1] ’ ’ ’ ~

however, causes a stack fault.

o While attempting to load the LDT register using an LLDT instruction; loading the
LDT register during a task switch operation, however, causes an invalid-TSS
exception.

e While attempting to use a gate descriptor which is marked segment-not-present.

This fault is restartable. If the exception handler loads the segment and returns, the
interrupted program resumes execution.

If a segment-not-present exception occurs during a task switch, not all the steps of the
task switch are complete. During a task switch, the processor first loads all the segment
registers, then checks their contents for validity. If a segment-not-present exception is
discovered, the remaining segment registers have not been checked and therefore may
not be usable for referencing memory. The segment-not-present handler should not rely
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. The exception handler should check all
segment registers before trying to resume the new task; otherwise, general protection
faults may result later under conditions which make diagnosis more difficult. There are
three ways to handle this case:

1. Handle the segment-not-present fault with a task. The task switch back to the inter-
rupted task causes the processor to check the registers as it loads them from the
TSS.

2. Use the PUSH and POP instructions on all segment registers. Each POP instruction
causes the processor to check the new contents of the segment register.

3. Check the saved contents of each segment register in the TSS, simulating the test
which the processor makes when it loads a segment register.

This exception pushes an error code onto the stack. The EXT bit of the error code is set
if an event external to the program caused an interrupt which subsequently referenced a
not-present segment. The IDT bit is set if the error code refers to an IDT entry (e.g., an

TATT Sancdoi nddnn e Lnan 2l o o o d e o e PUPIAY
INT instruction referencing a not-present gate).

An operating system typically uses the segment-not-present exception to implement vir-
tual memory at the segment level. A not-present indication in a gate descriptor, however,
usually does not indicate that a segment is not present (because gates do not necessarily
correspond to. segments). Not-present gates may be used by an operating system to
trigger exceptions of special significance to the operating system.

9-19

Intel 0 EXCEPTIONS AND INTERRUPTS

9.9.12 Interrlj pt 12— Stack Exception

A stack fault is generated under two conditions:

e As a result of a limit violation in any operation which refers to the SS register. This
includes stack-oriented instructions such as POP, PUSH, ENTER, and LEAVE, as

£, hich 1 linitl th tonl- (f, 1 MOV
well as other memory references which implicitly use the stack (for example, MOV

AX, [BP+6]). The ENTER instruction generates this exception when there is too
little space for allocating local variables.

e When attempting to load the SS register with a descriptor which is marked segment-
not-present but is otherwise valid. This can occur in a task switch, a CALL instruction
to a different privilege level, a return to a different privilege level, an LSS instruction,
or a MOV or POP instruction to the SS register.

When the processor detects a stack exception, it pushes an error code onto the stack of
the exception handler. If the exception is due to a not-present stack segment or to
overflow of the new stack during an interlevel CALL, the error code contains a selector
to the segment which caused the exception (the exception handler can test the present
bit in the descriptor to determine which exception occurred); otherwise, the error code
is 0. : :

An instruction generating this fault is restartable in all cases. The return address pushed
onto the exception handler’s stack points to the instruction which needs to be restarted.
This instruction usually is the one which caused the exception; however, in the case of a
stack exception from loading a not-present stack-segment descriptor during a task
switch, the indicated instruction is the first instruction of the new task.

When a stack exception occurs during a task switch, the segment registers may not be
usable for addressing memory. During a task switch, the selector values are loaded
before the descriptors are checked. If a stack exception is generated, the remaining
segment registers have not been checked and may cause exceptions if they are used. The
stack fault handler should not expect to use the segment selectors found in the CS, SS,
DS, ES, FS, and GS registers without causing another exception. The exception handler
should check all segment registers before trying to resume the new task; otherwise,
general protection faults may result later under conditions where diagnosis is more
difficult.

9.9.13 Interrupt 13 —General Protection

All protection violations which do ‘not cause another exception cause a general-
protection exception. This includes (but is not limited to):

o Exceeding the segment limit when using the CS, DS, ES, FS, or GS segments.

o Exceeding the segment limit when referencing a descriptor table.

o Transferring execution to a segment which is not executable.

o Writing to a read-only data ségment or a code segment. v

o Reading from an execute-only code segment.

9-20

Iﬂ'l'e' 0 EXCEPTIONS AND INTERRUPTS

e Loading the SS register with a selector for a read-only segment (unless the selector
comes from a TSS during a task switch, in which case an invalid-TSS exception
occurs).

e Loading the SS, DS, ES, FS, or GS register with a selector for a system segment.

o Loading the DS, ES, FS, or GS register with a selector for an execute-only code
segment.

o Loading the SS register with the selector of an executable segment.

o Accessing memory using the DS, ES, FS, or GS register when it contains a null
selector.

o Switching to a busy task.
o Violating privilege rules.

o Exceeding the instruction length limit of 15 bytes (this only can occur when redun-
dant prefixes are placed before an instruction).

o Loading the CRO register with a set PG bit (paging enabled) and a clear PE bit
(protection disabled).

o Interrupt or exception through an interrupt or trap gate from virtual-8086 mode to a
handler at a privilege level other than 0.

The general-protection exception is a fault. In response to a general-protection excep-
~ tion, the processor pushes an error code onto the exception handler’s stack. If loading a
descriptor causes the exception, the error code contains a selector to the descriptor;
otherwise, the error code is null. The source of the selector in an error code may be any
‘of the following:

1. An operand of the instruction.
2. A selector from a gate which is the operand of the instruction.

3. A selector from a TSS involved in a task switch.

9.9.14 Interrupt 14 —Page Fault

A page fault occurs when paging is enabled (the PG bit in the CRO register is-set) and
the processor detects one of the following conditions while translating a linear address to
a physical address:

o The page-directory or page-table entry needed for the address translation has a clear
Present bit, which indicates that a page table or the page containing the operand is
not present in physical memory.

o The procedure does not have sufficient privilege to access the indicated page.

If a page fault is caused by a page level protection violation, the access bits in both the
page-table and page-directory are set when the faults occur.

9-21

Intel o EXCEPTIONS AND INTERRUPTS

The processor provides the page fault handler two items of information which aid in
diagnosing the exception and recovering from it:

e An error code on the stack. The error code for a page fault has a format different

from that for other exceptions (see Figure 9-7). The error code tells the exception
handler three thinos:

AQLCL LAUICT LAES.

1. Whether the exception was due to a not-present page or to an access rights
violation.

2. Whether the processor was executing at user or supervisor level at the time of the
exception.

3. Whether the memory access which caused the exception was a read or write.

o The contents of the CR2 register. The processor loads the CR2 register with the
32-bit linear address which:generated the exception. The exception handler can use
this address to locate the corresponding page directory and page table entries. If
another page fault occurs during execution of the page fault handler, the handler will
push the contents of the CR2 register onto the stack.

FIELD VALUE DESCRIPTION
uis 0 The access causing the fault originated when
} the processor was executing in supervisor mode.
1 The access causing the fault originated when

the processor was executing in user mode.

WR 0 The access causing the fault was a read.
1 The access causing the fault was a write.
P 0 The fault was caused by a not-present page.
1 The fault was caused by a page-level

protection violation

3

. /////////////////// ’”””’7///////////

LLLLLLLLL

(n*c N
D~ =
o

240486i9-7

Figure 9-7. Page Fault Error Code

9-22

|nte| 0 EXCEPTIONS AND INTERRUPTS

9.9.14.1 PAGE FAULT DURING TASK SWITCH

These operations during a task switch cause access to memory:

1. Write the state of the original task in the TSS of that task.

MNand sl
NCdld e

3. Read the
TSS.

4. May read the LDT of the new task in order to verify the segment registers stored in
the new TSS.

YT b Vb a £ ool o o nees bl
D1 10 10cate tne i th€ new task.

@]

QQ Ancrilmbme
DD UCHUI lpl.Ul

Q

o]
L.

—

SS of the new task to check the types of segment descriptors from the

A page fault can result from accessing any of these operations. In the last two cases the
exception occurs in the context of the new task. The instruction pointer refers to the next
instruction of the new task, not to the instruction which caused the task switch (or the
last instruction to be executed, in the case of an interrupt). If the design of the operating
system permits page faults to occur during task-switches, the page-fault handler should
be called through a task gate.

9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTER

Special care should be taken to ensure that a page fault does not cause the processor to
use an invalid stack pointer (SS:ESP). Software written for Intel 16-bit processors often
uses a pair of instructions to change to a new stack; for example:

MOV SS, AX
MOV SP, StackTop

With the Intel486 processor, because the second instruction accesses memory, it is pos-
sible to get a page fault after the selector in the SS segment register has been changed
but before the contents of the SP register have received the corresponding change. At
this point, the two parts of the stack pointer SS:SP (or, for 32-bit programs, SS:ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the handling of the page
fault causes a stack switch to a well defined stack (i.e., the handler is a task or a more
privileged procedure). However, if the page fault occurs at the same privilege level and
in the same task as the page fault handler, the processor will attempt to use the stack
indicated by the inconsistent stack pointer.

In systems which use paging and handle page faults within the faulting task (with trap or
interrupt gates), software executing at the same privilege level as the page fault handler
should initialize a new stack by using the LSS instruction rather than an instruction pair
shown above. When the page fault handler is running at privilege level 0 (the normal
case), the problem is limited to programs which run at privilege level 0, typically the
kernel of the operating system.

9-23

lntel o EXCEPTIONS AND INTERRUPTS

9.9.15 Interrupt 16 —Floating-Point Error

A floating-point-error fault signals an error generated by a floating-point arithmetic
instruction. Interrupt 16 can occur only if the NE bit in the CRO register is set. See
Chapter 16 for more information on floating-point error reporting.

9.9.16 Interrupt 17 —Alignment Check

An alignment-check fault can be generated for access to unaligned operands. For exam-
ple, a word stored at an odd byte address, or a doubleword stored at an address which is
not an integer multiple of four.- Table 9-6 lists the alignment requirements by data type.
To enable alignment checking, the following conditions must be true:

¢ AM bit in the CRO register is set
o AC flag is set
« CPLis3 (user mode)

Alignment checking is useful for programs which use the low two bits of pointers to
identify the type of data structure they address. For ‘example, a subroutine in a math
library may accept pointers to numeric data structures. If the type of this structure is
assigned a code of 10 (binary) in the lowest two bits of pointers to this type, math
subroutines can correct for the type code by adding a displacement of —10 (binary). If
the subroutine should ever receive the wrong pointer type, an unaligned reference would
be produced, which would generate an exception.

Alignment-check faults are generated only in user mode (privilege level 3). Memory
references which default to privilege level 0, such as segment descriptor loads, do not
generate alignment-check faults, even when caused by a memory reference made in user
mode.

Table 9-6. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

"WORD

DWORD

Short REAL

Long REAL

TEMPREAL

Selector

48-bit Segmented Pointer
32-bit Flat Pointer

32-bit Segmented Pointer
48-bit “Pseudo-Descriptor”
FSTENV/FLDENV save area 4 or 2, depending on operand size
FSAVE/FRSTOR save area 4 or 2, depending on operand size
Bit String . 4

ANBDBNDO®OD BN

9-24

Intel 0 EXCEPTIONS AND INTERRUPTS

Storing a 48-bit pseudo-descriptor (the memory image of the contents of a descriptor
table base register) in user mode can generate an alignment-check fault. Although user-
mode programs do not normally store pseudo-descriptors, the fault can be avoided by
aligning the pseudo-descriptor to an odd word address (i.e., an address which is
2 MOD 4).

FSAVE and FRSTOR instructions generate unaligned references which can cause -
alignment-check faults. These instructions are rarely needed by application programs.

9.10 EXCEPTION SUMMARY

Table 9-7 summarizes the exceptions recognized by the Intel486 processor.

9.11 ERROR CODE SUMMARY

Table 9-8 summarizes the error information which is available with each exception.

9-25

mteL,

EXCEPTIONS AND INTERRUPTS

Table 9-7. Exception. Summary

_'Return Address

i Sdurce of the

T Vector . :) Exception
Descrlptlon Number Points to F_aultlng Type Exception
Instruction?

Division by Zero 0 Yes FAULT DIV and IDIV instruc-
tions

Debug Exceptions 1 *1 Wl Any code or data refer-
ence

Breakpoint 3 No TRAP INT 3 instruction

Overflow 4 No TRAP INTO instruction

Bounds Check 5 Yes FAULT BOUND instruction

Invalid Opcode 6 Yes FAULT Reserved Opcodes

Device Not 7 Yes FAULT ESC and WAIT instruc-

Available tions

Double Fault 8 " Yes ABORT Any instruction

Invalid TSS 10 Yes? FAULT JMP, CALL, IRET
instructions, interrupts,
and exceptions

Segment Not Present 11 Yes? FAULT Any instruction which
changes segments

Stack Fault- 12 Yes FAULT Stack operations

General Protection 13 Yes FAULT/TRAP® | Any code or data refer-
ence

Page Fault 14 Yes FAULT Any code or data refer-
ence

Floating-Point Error 16 Yes FAULT ESC and WAIT instruc-
tions

Alignment Check 17 Yes FAULT Any data reference

Software Interrupt 0 to 255 No TRAP INT n instructions

e

w

faults by examining the contents of the DR6 register.
Restartability is conditional during task switches as documented in section 7.5.

interrupted program is restartable, but the interrupt may be lost.

which generated the error.

9-26

. Debug exceptions are either traps or faults. The exception handler can distinguish between traps and

. All general-protection faults are restartable. If the fault occurs while attempting to call the handler, the

. Floating-point errors are not reported until the first ESC or WAIT instruction following the ESC instruction

in

tel.

EXCEPTIONS AND INTERRUPTS

Table 9-8. Error Code Summary

Description Vector Is an Error
Number Code Generated?
Divide Error 0 No
Debug Exceptions 1 No
Breakpoint 3 No
Overflow 4 No
Bounds Check 5 No
Invalid Opcode 6 No
Device Not Available 7 No
Double Fault 8 Yes (always zero)
Invalid TSS 10 Yes
Segment Not Present 11 Yes
Stack Fault 12 Yes
General Protection 13 Yes
Page Fault 14 Yes
Floating-Point Error 16 No
Alignment Check 17 Yes (always zero)
Software Interrupt 0-255 No

9-27

Initialization

10

CHAPTER 10
INITIALIZATION

The Intel486 processor has an input, called the RESET pin, which invokes reset initial-
ization. After RESET is asserted, some registers of the Intel486 processor are set to.
known states. These known states, such as the contents of the EIP register, are sufficient
to allow software to begin execution. Software then can build the data structures in
memory, such as the GDT and IDT tables, which are used by system and application
software. :

Hardware asserts the RESET signal at power-up. Hardware may assert this -signal at
other times. For example, a button may be provided for manually invoking reset initial-
ization. Reset also may be the response of hardware to receiving a halt or shutdown
indication.

After reset initialization, the DH register holds a number which identifies the processor
type. Binary object code can be made compatible with other Intel processors by using
this number to select the correct initialization software. Note the Intel486 processor has
several processing modes. It begins execution in a mode which emulates an 8086 proces-
sor, called real-address mode. If protected mode is to be used (the mode in which the
32-bit instruction set is available), the initialization software changes the setting of a
mode bit in the CRO register.

10.1 PROCESSOR STATE AFTER RESET

A self test may be requested at power-up. The self test is requested by asserting the
AHOLD input during the falling edge of the RESET signal. It is the responsibility of the
hardware designer to provide the request for self test, if desired. If the self test is
selected, it takes about 22 clock periods to complete. (Intel reserves the right to change
the exact number of periods without notification.)

The EAX register is clear if the Intel486 processor passed the test. A non-zero value in
the EAX register after self test indicates the processor is faulty. If the self test is not
requested, the contents of the EAX register after reset initialization are undefined (pos-
sibly non-zero). The DX register holds a component identifier and revision number after
reset initialization, as shown in Figure 10-1. The DH register contains the value 4, which
indicates an Intel486 processor. The DL register contains a unique identifier of the
revision level. o

The state of the CRO register foliowing power-up is shown in Figure 10-2. These states
put the processor into real-address mode with paging disabled.

The state of the EBX, ECX, ESI, EDI, EBP, ESP, GDTR, LDTR, TR, debug registers
(other than DR?7), and floating-point operand stack is undefined following power-up.
Software should not depend on any undefined states. The state of the flags and other
registers following power-up is shown in Table 10-1.

10-1

"Ttel o INITIALIZATION

A

EDX REGISTER },

<«— DXREGISTER ——— >

3 11
1 6 5 8 7 0
RESERVED DEVICE ID STEPPING ID
240486i10-1
Figure 10-1. Contents of the EDX Register After Reset
0 PAGING DISABLED '
1 CACHING DISABLED 0 ALIGNMENT CHECK DISABLED
1 NOT WRITE-THROUGH 0 WRITE-PROTECT DISABLED
f DISABLED f
332 11
109 8 6 543210
P|C|N Al |w N ; T|E|M|P
G(D|w M| [P E| [s(mM|P|E
T T A T T A
0 EXTERNAL FLOATING-POINT ERROR REPORTING "~ |
1 (NOT USED)
0 NO TASK SWITCH
0 ESC INSTRUCTIONS NOT TRAPPED
0 WAIT INSTRUCTIONS NOT TRAPPED
0 REAL MODE
240486i10-2

Figure 10-2. Contents of the CRO Register After Reset

Note that the invisible parts of the CS and DS segment registers are initialized to values
which allow execution to begin, even though segments have not been defined. The base
address for the code segment is set to 64K below the top of the physical address space,
which allows room for a ROM to hold the initialization software. The base address for
the data segments are set to the bottom of the physical address space (address 0), where
RAM is expected to be. To preserve these addresses, no instruction which loads the
segment registers should be executed until a descriptor table has been defined and its
base address and limit have been loaded into the GDTR register. If CS is reloaded while
in real mode, it will point to the lowest 1 Megabyte of physical memory.

10-2

|nte| 0 INITIALIZATION

Table 10-1. Processor State Following Power-Up

Register State (hexadecimal)
EFLAGS : 00000002H'
EIP 0000FFFOH
CS OF000H?
DS 0000H?

SS 0000H
ES 0000H?
FS 0000H
GS 0000H
IDTR (base) 00000000H
IDTR (limit) 03FFH
DR6 : FFFFOFFOH
DR7 00000000H

Floating-Point Unit Registers®

Control Word 037FH
Status Word 0000H

Tag Word OFFFFH

IP Offset 00000000H
Data Operand Offset 00000000H
CS Selector 0000H
Operand Selector 0000H
Opcode 000H

NOTE: Undefined bits are reserved. Software should not depend on the states of any of these bits.

1. The high fourteen bits of the EFLAGS register are undefined following power-up. All of the flags are clear.
2. The invisible part of the CS register holds a base address of OFFFFO000H and a limit of OFFFFH.

3. The invisible parts of the DS and ES registers hold a base address of 0 and a limit of OFFFFH.

4. The registers of the floating-point unit are not initialized unless the built-in self-test is invoked.

10.2 Intel486 SX MICROPROCESSOR/Intel487 SX MATH
COPROCESSOR INITIALIZATION

This interface is designed for two distinct sockets: one for the Intel486 SX CPU and one
for end-user/dealer upgrade with Intel487 SX Math CoProcessor. Refer to the Intel486™
SX Microprocessor/Intel487™ SX Math CoProcessor Data Book for more details. The fol-
lowing should be considered when designing an Intel486 SX CPU/Intel487 SX MCP
system.

1. The timing loops should be independent of the cpi. One way to attain this is to
implement these loops in hardware and not in software (e.g., BIOS).

2. Initialization routine should check the presence of a math coprocessor (e.g.,
Intel487 SX math coprocessor) and should set the floating point related bits in the
CRO register accordingly. Recommended bit pattern is given in Table 10-2. The
FSTCW instruction will give a value of FFFFh for the Intel486 SX microprocessor
and 037Fh for the Intel487 SX math coprocessor.

10-3

|nte| ® INITIALIZATION

Table 10-2. Recommended Values of the FP Related Bits for Intel486™ SX
Microprocessor/Intel487™ SX Math CoProcessor System

CRO Bit Intel486™ SX Microprocessor Intel487™ SX Math CoProcessor
EM 1 0
MP 0 1
NE 1 0, for DOS systems
1, for user-defined exception handler

Following is an example code to initialize the system and check for the presence of
Intel486 SX microprocessor/Intel487 SX math coprocessor.

fninit

fstcw - mem_loc

mov ax, mem_loc

cmp ax, 037fh

jz Intel4d? SX Math CoProcessor_present ;ax=g37fh
jmp Intel48k SX microprocessor_present sax=ffffh

If the Intel487 SX math coprocessor is not present, the following code can be run to set
the CRO register for the Intel486 SX microprocessor.

mov eax, cr@

and eax, fffffffdh smake MP=0

or eax, 0024h smake EM=1, NE=1
mov crd, eax

The above initialization will cause any floating point instruction to generate the inter-
rupt 7. The software emulation will then take control to execute these instructions. This
code is not required if Intel487 SX math coprocessor is present in the system, thereupon
the typical intialization routine for the Intel486 SX microprocessor will be adequate.

The interpretation of different combinations of the EM and MP bits is shown in
Table 10-3.

Table 10-3. EM and MP Bits Interpretations

EM MP Interpretation

Numeric instructions are passed to FPU; WAIT ignores TS
Numeric instructions are passed to FPU; WAIT tests TS
Numeric instructions trap to emulator; WAIT ignores TS

- a4 o o
- O =+ O

Numeric instructions trap to emulator, WAIT tests TS

10-4

Intel ® INITIALIZATION

10.3 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE

After reset initialization, software sets up data structures needed for the processor to
perform basic system functions, such as handling interrupts. If the processor remains in
real-address mode, software sets up data structures in the form used by the 8086 proces-
sor. If the processor is going to operate in protected mode, software sets up data struc-
tures in the form used by the 286 and Intel486 processors, then switches modes. See
Section 10.7 for an example. :

10.3.1 System Tables

In real-address mode, no descriptor tables are used. The interrupt vector table, which
starts at address 0, needs to be loaded with pointers to exception and interrupt handlers
before interrupts can be enabled. The NMI interrupt is always enabled. If the interrupt
vector table and the NMI interrupt handler need to be loaded into RAM, there will be a
period of time following reset initialization when an NMI interrupt cannot be handled.

10.3.2 NMI Interrupt

Hardware must provide a.mechanism to prevent an NMI interrupt from being generated
while software is unable to handle it. For example, the interrupt vector table and NMI
interrupt handler can be provided in ROM. This allows an NMI interrupt to be handled
immediately after reset initialization. Another solution would be to provide a mechanism
which passes the NMI signal through an AND gate controlled by a bit in an I/O port.
Hardware can clear the bit when the processor is reset, and software can set the bit
when it is ready to handle NMI interrupts. System software designers should be aware of
the mechanism used by hardware to protect software from NMI interrupts following
reset.

10.3.3 First Instruction

Execution begins with the instruction addressed by the initial contents of the CS and IP
registers. To allow the initialization software to be placed in a ROM at the top of the
address space, the high 12 bits of addresses issued for the code segment are set, until the
first instruction which loads the CS register, such as a far jump or call. As a result,
instruction fetching begins from address OFFFFFFFOH. Because the size of the ROM is
unknown, the first instruction is intended to be a jump to the beginning of the initializa-
tion software. If protected mode will be used and the processor is still in real mode, then
only near jumps should be performed within the ROM-based software. After a far jump
is executed, addresses issued for the code segment are clear in their high 12 bits.

10.3.4 Enabling Caching
The cache is enabled by clearing the CD and NW bits in the CRO register. This enables

caching, write-through, and cache invalidation cycles. Because all cache lines are invalid
following reset initialization, it is unnecessary to flush the cache before enabling caching.

10-5

Intel o INITIALIZATION

Under circumstances where cache lines may be marked as valid, the cache may need to
be flushed before enabling caching. This may occur as a result of using the test registers
to run test patterns through the cache memory as part of confidence testing during
software initialization. .

10.4 SWITCHING TO PROTECTED MODE

Before switching to protected mode, a minimum set of system data structures must be
created, and a minimum number of registers must be initialized.

10.4.1 System Tables

To allow protected mode software to access programs and data, at least one descriptor
table, the GDT, and two descriptors must be created. Descriptors are needed for a code
segment and a data segment. The stack can be be placed in a normal read/write data
segment, so no descriptor for the stack is required. Before the GDT can be used, the
base address and limit for the GDT must be loaded into the GDTR register using an
LGDT instruction.

10.4.2 NMI Interrupt

If hardware allows NMI interrupts to be generated, the IDT and a gate for the NMI
interrupt handler need to be created. Before the IDT can be used, the base address and
limit for the IDT must be loaded into the IDTR register using an LIDT instruction.

10.4.3 PE Bit

Protected mode is entered by setting the PE bit in the CRO register. Either an LMSW or
MOV CRO instruction may be used to set this bit (the MSW register is part of the CRO
register). Because the processor overlaps the interpretation of several instructions, it is
necessary to discard the instructions which already have been read into the processor. A
JMP instruction immediately after the LMSW instruction changes the flow of execution,
so it has the effect of emptying the processor of instructions which have been fetched or
decoded.

After entering protected mode, the segment registers continue to hold the contents they
had in real address mode. Software should reload all the segment registers. Execution in
protected mode begins with a CPL of 0.

10.5 SOFTWARE INITIALIZATION IN PROTECTED MODE

The data structures needed in protected mode are determined by the memory manage-
ment features which are used. The processor supports segmentation models which range
from a single, uniform .address space (flat model) to a highly structured model with
several independent, protected address spaces for each task (multi-segmented model).

10-6

|ntei 0 INITIALIZATION

Paging can be enabled for allowing access to large data structures which are partly in
memory and partly on disk. Both of these forms of address translation require data
structures which are set up by the operating system and used by the memory manage-
ment hardware.

10.5.1 Segmentation

A flat model without paging only requires a GDT with one code and one data segment
descriptor. A flat model with paging requires code and data descriptors for supervisor
mode and another set of code and data descriptors for user mode. In addition, it
requires a page directory and at least one second-level page table.

A multi-segmented model may require additional segments for the operating system, as
well as segments and LDTs for each application program. LDTs require segment
descriptors in the GDT. Most operating systems, such as OS/2, allocate new segments
and LDTs as they are needed. This provides maximum flexibility for handling a dynamic
programming environment, such as an engineering workstation. An embedded system,
such as a process controller, might pre-allocate a fixed number of segments and LDTs
for a fixed number of application programs. This would be a simple and efficient way to
structure the software environment of a system which requires fast real-time
performance.

10.5.2 Paging

Unlike segmentation, paging is controlled by a mode bit. If the PG bit in the CRO
register is clear (its state following reset initialization), the paging mechanism is com-
pletely absent from the processor architecture seen by programmers.

If the PG bit is set, paging is enabled. The bit may be set using a MOV CRO instruction.
Before setting the PG bit, the following conditions must be true:

o Software has created at least two page tables, the page directory and at least one
second-level page table.

o The PDBR register (same as the CR3 register) is loaded with the base address of the
page directory.

e The processor is in protected mode (paging is not available in real-address mode). If
all other restrictions are met, the PG and PE bits can be set at the same time.
As with the PE bit, setting the PG bit must be followed immediately with a JMP instruc-

tion. Also, the code which sets the PG bit must come from a page which has the same
physical address after paging is enabled.

10.5.3 Tasks

If the multitasking mechanism is not used, it is unnecessary to initialize the TR register.

10-7

Intel o INITIALIZATION

If the multitasking mechanism is used, a TSS and a TSS descriptor for the initialization
software must be created. TSS descriptors must not be marked as busy when they are
created; TSS descriptors should be marked as busy only as a side-effect of performing a
task switch. As with descriptors for LDTs, TSS descriptors reside in the GDT. The LTR
instruction is used to load a selector for the TSS descriptor of the initialization software
into the TR register. This instruction marks the TSS descriptor as busy, but does not
perform a task switch. The selector must be loaded before performing the first task
switch, because a task switch copies the current task state into the TSS. After the LTR
instruction has been used, further operations on the TR register are performed by task
switching. As with segments and LDTs, TSSs and TSS descriptors can be. either pre-
allocated or allocated as needed.

10.6 TLB TESTING

The Intel486 processor provides a mechanism for testing the translation lookaside buffer
(TLB), the cache used for translating linear addresses to physical addresses. Although
failure of the TLB hardware is extremely unlikely, users may wish to include TLB con-
fidence tests among other power-up tests for the Intel486 processor.

NOTE

This TLB testing mechanism is unique to the Intel486 processor and may not be
continued in the same way in future processors. Software which uses this mechanism
may be incompatible with future processors.

10.6.1 Structure of the TLB

The TLB is a four-way set-associative memory. Figure 10-3 illustrates its structure. In the
data block, there are eight sets of four data entries each. A data entry in the TLB
consists of the 20 high-order bits of a physical address. These 20 bits can be interpreted
as the base address of a page, which is by definition clear in its 12 low-order bits.

The TLB translates a linear address into a physical address, and so is only concerned
with the high-order 20 bits of either; the low-order 12 bits (these constitute the offset into
the page) are the same in both the linear and the physical address.

Corresponding to the block of data entries is a block of valid, attribute and tag entries.
The tag entry consists of the 17 high-order bits of a linear address. In translating
addresses, the processor uses bits 12, 13, and 14 of the linear address to select one of the
eight sets, and then checks the four tags of that set for a match with the high-order 17
bits of the linear address..If a match is found among the tags of the selected set, and the
corresponding valid bit equals 1, then the linear address is translated by replacing its
high-order 20 bits with the 20 bits of the corresponding data entry.

Three LRU bits are provided with each set; they track the use of the data in the set, and

are checked when a new entry is needed (and none of the entries in the set is mvalld) A
pseudo-LRU replacement algorithm is used.

10-8

"'\tei o INITIALIZATION

LRU VALID, ATTRIBUTE DATA
BLOCK AND TAG BLOCK BLOCK
WAY 0 WAY 1 WAY 2 WAY 3 WAYO0 WAY1 WAY2 WAY3
SET 0
SET 1
SET 2
SET 3
IR, SET 4 IR
\ SET 5] N
, \ SET 6 I N
L \ SET7 | N
7 \ T AN
/ \ AN
A
|VALID[ATTRIBUTE] TAG | |SET SELECT} DATA |
1BIT 3BITS \\ 17 BITS \\ I’ 3BITS , | 20 BITS :
\31 18\ 14 12,7 131 12,
| 1 L |

LINEAR ADDRESS PHYSICAL ADDRESS

240486i10-3

Figure 10-3. TLB Structure

10.6.2 Test Registers

Two test registers, shown in Figure 10-4, are provided for the purpose of testing. The
TR6 register is the TLB test command register, and the TR7 register is the TLB test
data register. These registers are accessed by forms of the MOV instruction. The MOV
instructions are defined in both real-address mode and protected mode. The test regis-
ters are privileged resources; in protected mode, the MOV instructions which access
them can be executed only at privilege level 0 (most privileged). An attempt to read or
write the test registers from any other privilege level causes a general-protection
exception.

Unlike the TLB of the Intel386 DX processor, the TLB of the Intel486 processor can be
accessed without disabling paging. Also unlike the Intel386 DX processor, the TLB of
the Intel486 processor uses a pseudo-LRU cache replacement algorithm to select entries
for de-allocation when a new entry is needed and the TLB is full.

10-9

|nte| ® INITIALIZATION

111
31 2109876543210
Plp p| R
PHYSICAL ADDRESS CIWILRU[0OO| | E |00O] TR
DT P
D|. (U], IW
LINEAR ADDRESS V[D|y4|U[y4|W| 40 O 00O|C} TRE

240486i10-4

Figure 10-4. TLB Test Registers

The TLB test command register (TR6) contains a command and an address tag:
¢ C This is the Command bit. There are two TLB testing commands: write entries into-

the TLB, and perform TLB lookups. To cause a write into the TLB entry, move a
doubleword into the TR6 register which contains a clear C bit. To cause an TLB
lookup (read), move a doubleword into the TR6 register which contains a set C bit.
TLB operations are triggered by writing to the TR6 register.

Linear Address On a TLB write, a TLB entry is allocated to this linear address; the
rest of that TLB entry is assigned using the value of the TR7 register and the value
just written into the TR6 register. On a TLB lookup, the TLB is interrogated with this
value; if one and only one TLB entry matches, the rest of the fields of the TR6 and
TR7 registers are set from the matching TLB entry.

V This bit indicates the TLB entry contains valid data. Entries in the TLB which are
not loaded with page table entries have a clear V bit. All V bits are cleared by writing
to the CR3 register, which has the effect of emptying or “flushing” the TLB. The
TLB must be flushed after modifying the page tables, because otherwise unmodified
data might get used for address translation.

D, D# The D bit (and its complement).
U, U# The U/S bit (and its complement).
W, W# The R/W bit (and its complement).

These bits are provided in both true and complement form for extra flexibility during
TLB lookups. The meaning of these pairs of bits is given in Table 10-4.

Table 10-4. Meaning of Bit Pairs in the TR6 Register

Bit Bit# Effect on TLB Lookup Effect on TLB Write
0 0 Do not match undefined

0 1 Match if the bit is clear Clear the bit

1 0 Match if the bit is set Set the bit

1 1 Match if set or clear undefined

10-10

Intel o INITIALIZATION

The TLB test data register (TR7) holds data read from or data to be written to the TLB:

e Physical Address This is the data field of the TLB. On a write to the TLB, the TLB
entry allocated to the linear address in the TR6 register is set to this value. On a TLB
lookup (read), the data field (physical address) from the TLB is loaded into this field.

e PCD Corresponds to the PCD bit of a page table entry. .
e PWT Corresponds to the PWT bit of a page table entry.

e LRU On a TLB read, corresponds to the bits used in the pseudo-LRU cache replace-
ment algorithm. The states which are reported are the value of these bits before the
TLB lookup. TLB lookups which result in hits and TLB writes can change these bits.

o PL On a TLB write, a set PL bit causes the REP field of the TR7 register to be used
for selecting which of four associative blocks of the TLB entry is loaded. If the PL bit
is clear, the internal pointer of the paging unit is used to select the block. The internal
pointer is driven by the pseudo-LRU cache replacement algorithm. On a TLB lookup
(read), the PL bit indicates whether the read was a hit (the PL bit is set) or a miss
(the PL bit is clear).

e REP For a TLB write, selects which of four associative blocks of the TLB is to be
written. For a TLB read, if the PL bit is set, REP reports in which of the four
associative blocks the tag was found; if the PL bit is clear, the contents of this field
are undefined.

10.6.3 Test Operations

To write a TLB entry:

1. Move a doubleword to the TR7 register which contains the desired physical address,
PCD, PWT, PL, and REP values. If the PL bit is set, the REP field selects the
associative block in which to place the entry. If the PL bit is clear, the internal
pointer is used.

2. Move a doubleword to the TR6 register which contains the appropriate linear
address, and values for the V, D, U, and W bits. The C bit must be clear.

Do not write duplicate tags; the results of doing so are undefined.

To lookup (read) a TLB entry:

1. Move a doubleword to the TR6 register which contains the appropriate linear
address and attributes. The C bit must be set.

2. Read the TR7 register. If the PL bit in the TR7 register is set, then the rest of the
register contents report the TLB contents. If the PL bit is clear then the other
values in the TR7 register, except the LRU bits, are undefined.

For the purposes of testing, the V bit functions as another bit of address. The V bit for
a lookup request should usually be set, so that uninitialized tags do not match. Lookups
with the V bit clear are unpredictable if any tags are uninitialized.

10-11

Intel ® INITIALIZATION

10.7 CACHE TESTING

The Intel486 processor provides a mechanism for testing the cache used for instructions
and data. Although failure of the cache hardware is extremely unlikely, users may wish
to include cache confidence tests among other power-up tests for the Intel486 processor.

NOTE
This cache testing mechanism is unique to the Intel486 processor and may not be

continued in the same way in future processors. Software which uses this mechanism
may be incompatible with future processors.

Caching must be disabled while performing cache testing.

10.7.1 Structure of the Cache

The cache is a four-way set-associative memory. This means that a data block from a
given location in main memory can be stored in any of four locations in the cache.
Four-way association is a compromise between the speed of direct-mapped cache on
cache hits and the high hit ratio of fully associative cache. It permits rapid searches of
the cache to find data while providing a high proportion of cache hits.

The cache consists of three blocks:

Data Block —contains up to 8K-bytes of data and instructions. The data block is
divided into four arrays, each containing 128 cache lines. Each cache line holds data
from 16 successive memory addresses, beginning with an address divisible by 16. To
each 7-bit index into the arrays of the data block there correspond four cache lines,
one from each array. Four cache lines with the same index are called a set.

Tag Block — contains one 21-bit tag for each line of data in the cache. The tag block is
therefore also divided into four arrays, each containing 128 tags. The tag consists of
the high-order 21 bits of the physical address of the data stored in the corresponding
cache line.

Valid and LRU Block —contains one 7-bit quantity for each of the 128 sets of cache
lines. Four bits are used to mark the cache lines in the set individually as valid or
invalid. The other three bits track the use of the data in the set, and are checked
when a cache line-fill is needed (and none of the lines in the set is invalid). As in the
TLB, a pseudo-LRU cache replacement algorithm is used.

Cache addressing is performed by splitting the high-order 28 bits of the physical address
into two parts. The highest-order 21 bits are the tag field, and are used to distinguish the
cached data from any other 16-byte data line that could have been stored in the same
set. The next-highest 7 bits are the index field, and determine the set in which the data
can be stored.

10-12

Intel o INITIALIZATION

VALID/ TAG DATA

LRU BLOCK - BLOCK
BLOCK
WAY 0 WAY1 WAY 2 WAY 3 WAYO0 WAY1 WAY2 WAY 3
SETO
SET 1
SET 2

7, 7L, Sl W /7//// W
IR \ \ \ \
HANR [\ \
|} B \ \ \ \
¥ Y \) SET 126 R \
\ \ B \ N SET 127 Y R
| \ \ 1) p)
[ziens I [DATA - 16 BITS |
)
X1XX
LINE IS VALID MATCH INDEXISN SELECTS BYTE
31 11 4 0
| TAGFIELD | INDEXFIELD |XXXX]
PHYSICAL ADDRESS

240486i10-5

-

igure 10-5. Cache Structure

)

10.7.2 Test Registers

Three test registers, shown in Figure 10-6, are provided for the purpose of testing. The
TR3 register is the cache test data register, the TR4 register is the cache test status
register, and the TRS register is the cache test control register. These registers are
accessed by forms of the MOV instruction. The MOV instructions are defined in both
real-address mode and protected mode. The test registers are privileged resources; in
protected mode, the MOV instructions which access them can be executed only at priv-
ilege level 0 (most privileged). An attempt to read or write the test régisters from any
other privilege level causes a general-protection exception.

The cache test data register (TR3) contains a doubleword to write to the cache fill
buffer, or a doubleword read from the cache read buffer. The fill and read buffers each
have storage for four doublewords, which pass through this register one at a time. A
particular doubleword in either buffer is addressed using the 2-bit Entry Select field
(bits 2 and 3) in the TRS register.

10-13

|nte| o INITIALIZATION

; 111
31 . 2109876543210
E|C
UNUSED SETSELECT | N| T | TRS
T|L
TAG V| LRU | VALID |UNUSED] TR4
(RD) (RD))
DATA . TR3
v VALID
CTL CONTROL

ENT ENTRY

240486i10-6

Figure 10-6. Cache Test Registers

The cache test status register (TR4) contains Valid and LRU bits, and a tag:

Valid (bits 3..6). On a cache lookup, these are the four Valid bits of the set which was
accessed.

LRU. On a cache lookup, these are the three LRU bits of the set which was accessed.
On a cache write, these bits are ignored; the LRU bits in the cache are updated by
the pseudo-LRU cache replacement algorithm. '

Valid (bit 10). This is the Valid bit for the particular entry which was accessed. On a
cache lookup, it is a copy of one of the bits reported in bits 3..6. On a cache write, it
becomes the new valid bit for the entry and set selected.

Tag Address. On a cache write, this is the address which becorhes the tag.

The cache test control register (TRS) contains the 7-bit set select, 2-bit entry select, and
a 2-bit control field:

Set Select. Selects one of the 128 sets.

Entry Select. During a cache read or write, selects one of the four entries in the set

addressed by the Set Select; during cache-fill-buffer writes or read-buffer reads,
selects one of the four doublewords in a line.

Control. The functions encoded by these bits are shown in Table 10-5.

10-14

Intel 0 INITIALIZATION

Table 10-5. Encoding of Cache Test Control Bits

Control Bits i
Bit 1 Bit 0 Description
00 Write to cache fill buffer, or read from cache read buffer.
01 Perform cache write.
10 Perform cache read.
11 Flush the cache (mark all entries as invalid).

Writing to TRS with either bit 0 or bit 1 set causes a cache access. TRS cannot be read.

10.7.3 Test Operations

Before cache testing:

1. Disable caching by setting the CD bit in the CRO register.

To write to the cache fill buffer:

1. Load the TRS5 register with a value in the Entry Select field which addresses one of
the four doublewords in the cache fill buffer. The value of the Control ficld must be
00 (binary). :

2. Load the TR3 register with the data to be written to the cache fill buffer. The writc
to the buffer is triggered by loading this register.

3. Repeat steps 1 and 2 above for each of the remaining three doublewords in the
cache fill buffer.

To write to the cache:
1. Load the cache fill buffer, as described above.

2. Load the TR4 register with the tag (bits 11..31) and a valid bit (bit 10). The other
bits of the TR4 register (bits 0..9) have no effect on the cache write.

3. Load the TRS register with Control, Entry Select, and Set Select values. The value
in the Control field must be 01 (binary). The cache write is triggered by loading this
register.

To read from the cache:

1. Load the TRS register with Control, Entry Select, and Set Select values. The value
in the Control field must be 10 (binary). The cache read is triggered by loading this
register. The cache read loads the TR4 register with the tag for the entry which was
read, and the LRU and Valid bits for the entire set which was read. The cache read
loads the cache read buffer with 128 bits of data. The buffer can be read using the
following procedure.

10-15

Intel ® INITIALIZATION

To read from the cache read buffer:

1. Load the TRS register with Control and Entry Select values. The Entry Select value
addresses one of the four doublewords in the cache read buffer. The value in the

Control field must be 00 (binary).

. Read a doubleword from the cache read buffer by unloading the TR3 register. The

read from the buffer is triggered by unloading-this register.

. Repeat steps 1 and 2 above for each of the remaining three doublewords in the

cache read buffer.

To flush the cache:

1. Load the TRS register with a Control value. The value in the Control field must be
11 (binary). None of the other fields have any meaning in this case. The cache flush
is triggered by loading this register. All of the LRU bits and Valid bits are cleared.

10.8 INITIALIZATION EXAMPLE

The following program templates are prbvided by Intel for your benefit-in developing

software for the Intel486 processor.

simpinit.asm

- Initialization code for simple flat (linear) model example

KXRKKKRKKRKKKKKKKKK KKK KK KK KX

Version 2.0

Copyright Intel Corp., 1988

This template is intended for your benefit in developing applications/
systems using Intel Intel48b™ or Intel38k™ family microprocessors.
Intel hereby grants you permission to modify and 1ncorporate it as
needed.

KXRRKKHXXKKKKRKKKKRKKKRIKKKKIKKKKRKKKKKKRKKKKKKRRKKRRRKKKXRKKKRRKKKK K KKK

This is an example of initialization code to put either the iu48k(TM)
processor, Intel38b DX processor, Intel38k SX processor or 37b(TM) processor
into flat mode. All of memory is treated as simple linear RAM.

There are no interrupt routines. The builder creates the GDT

alias and IDT alias and places them, by default, in GDT(1] and GDT(2].

After entering protected mode, this code jumps to an ASM38L/48b startup
routine for a C application. You can change this JMP address to that of

your code, or make the label of your code C_STARTUP.

NAME simpstart ; name of object module
EXTRN c_startup:near ; this is the label jmped to after init_code

10-16

|nte| o INITIALIZATION

pe_flag equ 1 3 for setting PE bit
data_selc equ 2@H ; offset of _phantom_data— in GDT (GDTCY4])
CODEMACRO opprefx 3 macro to change default operand size
db bEH
ENDM

init_code SEGMENT ER PUBLIC

3 GDT_DESC is a public symbol referred to in the build file. The LOCATION
3 definition in the TABLE section of the build file points to this label;
+ the builder stores the basé and limit for the named table at this

; location in memory.

PUBLIC gdt_desc
gdt_desc dp ?
3 START is a label that points to the true beginning of our executable
; code. The BOOTSTRAP control causes the builder to place a short jump
3 to the named label in this case, START) at the component reset vector.
PUBLIC start
3 Since this code initializes either an Intel48b, Intel3db DX, Intel3dk SX or 37k
3 processor into protected mode, the first instructions at START test for component
; type. The Intel48b or Intel38b DX or Intel38k SX processor at reset is in real or
compatibility mode: the PE bit is off and the D bit for (S is not set.
3 Instructions execute in their 1bk-bit form. The 37k processor at reset
; has the PE bit on as well as the D bit, so instructions execute in their
+ 32-bit form. .
nop ; NOPs are for initializing a Intel48t or Intel38b DX

nop 3 or Intel3d8b SX processor
start:
cld . 3 clear direction flag
smsw bx 3 use SMSW rather than MOV for speed
test bl,1 ; check for processor type at reset

jnz pestart

; Loading the GDTR at REALSTART or PESTART depends on user hardware
; returning a READY after a write to. ROM.

realstart: 3 is an Intelli8kb or Intel3ddb DX or Intel38b SX processor
opprefx .) + and in 1lb-bit real mode, use operand prefix to
mov eax,offset gdt_desc ; get 32-bit address of GDT pointer
opprefx i use operand prefix to
and eax,Bffffh ; make address relative to reset area
lgdtw cs:feax] ; load 24 bits of base into GDTR
mov ax,bx 3 copy machine status word
or al,pe_flag ; set PE bit
Imsw ax + load machine status word with PE bit set
jmp next ; flush prefetch queue

10-17

|ntei® INITIALIZATION

pestart: ; is a 37b processor and in 32-bit protected
mode

mov eax,offset gdt_desc ; get 32-bit address of GDT pointer

and eax,B8ffffh ; make address relative to reset area

lgdt cs:leax] ; load 32 bits of base into GDTR
next:

xor eax,eax ; initialize data selectors

mov al,data_selc 3 GDTLY] is _phantom_data_

mov ds,ax

mov Ss,ax

mov es,ax

mov fs,ax

mov gs,ax

test bl,1

jnz pejump

opprefx ; use operand prefix for Inteluakbor Intel3db DX or
pejump: -3 Intel38k SX processor jump

jmp far ptr c_startup ; first far jump causes A31-28 to drop low
init_code ENDS

END
; cstart.asm
; An ASM38b/48b module to initialize the stack and call a € application

KXKKRKKRXKKK KKK KKK

; Version 2.0

i Copyright Intel Corp., 1988

; This template is intended for your benefit in developing applications/
; systems using Intel48b™ or Intel38b™ family microprocessors.

i Intel hereby grants you permission to modify and incorporate it as

; needed.)

H ***************************************X*******************i************

NAME cstart ; name of the object module

EXTRN main:near ; label of the C application to be called
PUBLIC c_startup ; public symbol used 'in processor initialization
code

stack STACKSEG 1@24

data SEGMENT RW PUBLIC
data ENDS
code32 SEGMENT ER PUBLIC

10-18

Intel 0 INITIALIZATION

c_startup:
mov esp,stackstart stack ; initialize stack pointer
call main ; call C application
hlt ; halt processor

code3g ENDS

/% simple.c

(38kL/48L application code for simple flat model example
ERRXXRKXXXKKKRKXRKKKKXXKAKXRRKKKXEKKKXEIKKRKKKKKKKEHKKKKXKKKKXXRKKKKKKKK KK KRK

Version 2.0

Copyright Intel Corp., 1988

This template is intended for your benefit in developing applications/
systems using Intel48b™ or Intel38b™ family microprocessors. Intel
hereby grants you permission to modify and incorporate it as needed.

XXEXKKKKKIKKKKKKKKKKKKKKKKKKKKKKKRKKKKKKKKKKKKRKKRKKKKKKKKKKKKKKKKKKRKKKKKK KRR KK

x/
char messagel]="IT WORKS" ;

main ()
{

int array_count(181;
aray—count(1] = 1;
aray_count(2] = 2;
aray_count(3) = 3;
aray_count[l4] = U;
aray_count[5) = 5;
___________ Y
aray_count(?7] = 7;
aray_count(8] = &

-- simple.bld
-- Build file for input to BLD38b/48b to create simple flat model example

== KKKKRRXRRRKRKRKKKKKKKKK KRR KRR KKKK KK KKK KKK KKK KK KKK KKKKKKK KKK KRR KKK KKk kKX

-- Version 2.0

-- Copyright Intel Corp., 1988

-- This template is intended for your benefit in developing applications/
-- systems using Intel48b™ or Intel38b™ family microprocessors.

-- Intel hereby grants you permission to modify and incorporate it as

-- needed.

== RRKKRRKRRRR KRR RKKKKKK KRR RKKKKI R KKK KKKKKKKKKKKKKKKK KK KKK KRKKKKK KX

simple; -- build program id
SEGMENT

10-19

|nte| o INITIALIZATION

xsegments (DPL = B), -- Give all user segments a DPL of 0.

—phantom_code_ (DPL = @), -- These two segments are created by

—phantom_data— (DPL =), -- the builder when the FLAT control is
-- used.

-- Their default DPL is @; they are listed
-- here for reference only.
init_code -- Put initialization code at reset area.
(BASE = BffffO300H);

TABLE
-- create GDT
GDT == GDT_DESC is a public symbol in the
-- "simpstart" initialization module.
(LOCATION = gdt_desc, -- In a buffer starting at GDT_DESC,
-- BLD3BL/48L places the GDT base and
== GDT limit values. Buffer must be
-- b bytes long. The base and limit
-- values are places in this buffer
-- as two bytes of limit plus
-- four bytes of base in the format
-- required for use by the LGDT
-- instruction.
BASE = Qffffp100H
)3 == end GDT
TASK -- Task is for ¥ICD-48b or ICE™-38b
main_task -- or ICE-37b emulator initialization.
(BASE = 0ffffoceoH,
DATA = data, -- Points to a segment that
-- indicates initial DS value.
CODE = main, -- Entry point is main, which
-- must be a public id.
STACKS = (stack), -- Segment id points to stack
-- segment. Sets the initial SS:ESP.
NO INTENABLED -- Disable interrupts.
)3
TABLE
1dtl (NOT CREATED); -- Builder does not place LDT in object
-- module, but contents appear in listing.
END

10-20

|nte| o INITIALIZATION

-- Note: ICD-48b is an in-circuit debugger for the IntelU8b CPU. This product
-- is scheduled for availability in the fourth quarter of 1989.

echo of f

echo simple.bat

echo A DOS batch file for generating a bootloadable simple flat model

BChO FXXXXXXKRKKKKKKKKKKKKKKKKKKKKKKKKKKXXKKEKKKKKKKKKKKKKKKKXKKEKKKKKK KKK KX

echo
echo
ECHO XXXXXXKKKKKKKKXXKKKKKKKKKKKKKKKKKXKKXXKKKKKKKKKXKKKKKKKKKKKKKKKKKRR KKK K
REM

REM The following two invocations of ASM38b/48L create object modules

REM "simpinit.obj" and "cstart.obj". The assembler issues warnings with

REM each invocation due to the use of privileged instructions in the files.
REM The "debug" control directs ASM38k/48L to include extra information

REM useful in symbolic debugging. The listing files are "simpinit.lst" and
REM "cstart.lst".

echo *echo asm38kL simpinit.asm debug mod48b

asm38b simpinit.asm debug mod48b

echo (1 warning due to use of privileged instructions)

echo %

echo asm38k cstart.asm debug mod4Bb

asm38b cstart.asm debug modiéb

echo (1 warning due to use of privileged instructions)

REM

REM The invocation of (-38b/48L creates an object module "simple.obj". The
REM "regallocate" control directs the compiler to optimize the allocation of
REM register variables. The "code" control causes placement of a pseudo-

REM assembly language listing at the end of the listing file. "Debug"

REM directs (-38b/48b to include extra information useful in symbolic

REM debugging. The listing file is "simple.lst".

echo X

echo c38b simple.c debug regallocate code modi8b

c38b simple.c debug regallocate code mod48b

REM

REN BND3&L/4Bb combines the input segments and resolves symbolic addressing.
REM The "noload" control directs the binder to create a linkable (rather

REM than loadable) file. The "debug" control indicates that the binder does
REM not purge debug information. "Object" directs the output file to be

REM named "simple.bnd". The listing file is "simple.mpi".

echo x

echo bnd38k simple.obj,simpinit.obj,cstart.obj noload debug object

and incorporate it as needed.

echo x X
echo x Version 2.0 X
echo * Copyright Intel Corp., 1988 X
echo ¥ This template is intended for your benefit in developing X
echo * applications/systems using Intel48t™ or Intel3sb™ family *
echo * microprocessors. Intel hereby grants you permission to modify X

X X

X X

10-21

|nte| o INITIALIZATION

(simple.bnd) mod48k

bnd38k simple.obj,simpinit.obj,cstart.obj noload debug object (simple.bnd) modiéb
REM

REM The goal is an absolute bootloadable file (all addresses fixed in

REM memory) suitable for loading into an ICD-48b in-circuit debugger or an ICE-38b
REM or ICE-37b in-circuit emulator. BLD38L/48b creates such an absolute module,
REM necessary descriptor tables, and a task for initializing the emulator. The
REM "buildfile" control identifies "simple.bld" as the build file. The

REM "bootstrap™ control identifies the symbol "start" as the label of the

REM instruction to be jumped to by the bootstrap jump placed at Bfffffff@H.

REM The "flat" control directs the builder to configure the file in a flat

REM model, where all code resides in the _phantom_code_ segment and all data
REM resides in the _phantom_data— segment. The "mod48b" control causes the

REM builder to issue messages to guide creation of the object module for an

REM Intelu8b processor. The "mod37?b" control causes the builder to issue

REM messages to guide creation of the object module for a 37k

REM processor. You can remove either control to create an object module for

REM a Intel38k DX processor. The listing file is "simple.mp2". The final systenm
REM is "simple". : :

echo ¥ .

echo bld38t simple.bnd buildfile (simple.bld) bootstrap (start) flat modldb
bld38b simple.bnd buildfile (simple.bld) bootstrap (start) flat mod48b

10-22

Debugging 11

CHAPTER 11
DEBUGGING

The Intel486 processor has advanced debugging facilities which are particularly impor-
tant for sophisticated software systems, such as multitasking operating systems. The fail-
ure conditions for these software systems can be very complex and time-dependent. The
debugging features of the Intel486 processor give the system programmer valuable tools
for looking at the dynamic state of the processor.

The debugging support is accessed through the debug registers. They hold the addresses -
of memory locations, called breakpoints, which invoke debugging software. An exception
is generated when a memory operation is made to one of these addresses. A breakpoint
is specified for a particular form of memory access, such as an instruction fetch or a
doubleword write operation. The debug registers support both instruction breakpoints
and data breakpoints.

With other processors, instruction breakpoints are set by replacing normal instructions
with breakpoint instructions. When the breakpoint instruction is executed, the debugger
is called. But with the debug registers of the Intel486 processor, this is not necessary. By
eliminating the need to write into the code space, the debugging process is simplificd
(there is no need to set up a data segment mapped to the same memory as the code
segment) and breakpoints can be set in ROM-based software. In addition, breakpoints
can be set on reads and writes to data which allows real-time monitoring of variables.

11.1 DEBUGGING SUPPORT

e Recoerved dehneo interrin
e INESErvea Geoug mnerrup

event for the debugger occurs.
o Debug address registers — Specifies the addresses of up to four breakpoints.
e Debug control register —Specifies the forms of memory access for the breakpoints.

o Debug status register — Reports conditions which were in effect at the time of the
exception.

e Trap bit of TSS (T-bit) — Generates a debug exception when an attempt is made to
perform a task switch to a task with this bit set in its TSS.

¢ Resume flag (RF) — Suppresses multiple exceptions to the same instruction.
e Trap flag (TF) —Generates a debug exception after every execution of an instruction.

e Breakpoint instruction—Calls the debugger (generates a debug exception). This
instruction is an alternative way to set code breakpoints. It is especially useful when
more than four breakpoints are desired, or when breakpoints are being placed in the
source code. '

¢ Reserved interrupt vector for breakpoint exception — Calls a procedure or task when a
breakpoint instruction is executed.

Intel o DEBUGGING

These features allow a debugger to be called either as a separate task or as a procedure
in the context of the current task. The following conditions can be used to call the
debugger:

o Task switch to a specific task.

o Execution of the breakpoint instruction.

o Execution of any instruction.

e Execution of an instruction at a specified address.

e Read or write of a byte, word, or doubleword at a spgcified address.
e Write to a byte, word, or doubleword at a specified address.

o Attempt to change the contents of a debug register.

11.2 DEBUG REGISTERS

Six registers are used to control debugging. These registers are accessed by forms of the
MOV instruction. A debug register may be the source or destination operand for one of
these instructions. The debug registers are privileged resources; the MOV instructions
which access them may be executed only at privilege level 0. An attempt to read or write
the debug registers from any other privilege level generates a general-protection excep-
tion. Figure 11-1 shows the format of the debug registers.

e e e a e

11.2.1 Debug Address Registers (DR0-DR3)

Each of these registers holds the linear address for one of the four breakpoints. That is,
breakpoint comparisons are made before physical address translation occurs. Each
breakpoint condition is specified further by the contents of the DR7 register.

11.2.2 Debug Control Register (DR7)

The debug control register shown in Figure 11-1 specifies the sort of memory access
associated with each breakpoint. Each address in registers DRO to DR3 corresponds to a
field R/WO0 to R/W3.in the DR7 register. The processor interprets these bits as follows:

00 —Break on instruction execution only

01 —Break on data writes only

10 —undefined

11—Break on data reads or writes but not instruction fetches

11-2

Intel ° 'DEBUGGING

DEBUG REGISTERS
3322222222221111111111
10987654321098765432109876543210

el P E[T[ELT|E]D G a|tle|t/slL|e]L]e|L
N[w{N[w|[N]|W|N]|]wW]|%OD[O0 1|E|E[3|3|2{2]1|T[0|0| PR7

s|sflz2|z2]1]1]ofo]
1111111111111 11013(8Blo1 1111 111[58[5[8] ore
RESERVED DR5
RESERVED DR4
BREAKPOINT 3 LINEAR ADDRESS DR3
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 0 LINEAR ADDRESS DRO
HARDWIRED BITS ARE RESERVED. DO NOT DEFINE
240486i11-1

Figure 11-1. Debug Registers

The LENO to LENS3 fields in the DR7 register specify the size of the breakpointed

location in memory. A size of 1, 2, or 4 bytes may be specified. The length fields are
interpreted as follows:

00— one-byte length
01— two-byte length'
10 —undefined

11 —four-byte length

If RWn is 00 (instruction execution), then LENn should also be 00. The effect of using
any other length is undefined.

Intel ° DEBUGGING.

The GD bit enables the debug register protection condition that is flagged by BD of
DR6. Note that GD is cleared at entry to the debug exception handler by the processor.
This allows the handler free access to the debug registers.

The low eight bits of the DR7 register (fields LO to L3 and GO to G3) individually enable
the four address breakpoint conditions. There are two levels of enabling: the local (LO
through L3) and global (GO through G3) levels. The local enable bits are automatically
cleared by the processor on every task switch to avoid unwanted breakpoint conditions in
the new task. They are used to breakpoint conditions in a single task. The global enable
bits are not cleared by a task switch. They are used to enable breakpoint conditions
which apply to all tasks.

The Intel486 processor always uses exact data breakpoint matching in debugging. That
is, if any of the Ln/Gn bits are set, the processor slows execution so that data breakpoints
are reported for the instruction which triggered the breakpoint, rather than the next
instruction to execute. In such a case, one-clock instructions which access memory will
take two clocks to execute.

In the Intel386 DX processor, exact data breakpoint matching will not occur unless it is
enabled by setting either the LE or the GE bit. The Intel486 processor ignores these
bits.

11.2.3 Debug Status Register (DR6)

The debug status register shown in Figure 11-1 reports conditions sampled at the time
the debug exception was generated. Among other information, it reports which break-
point triggered the exception. Update only occurs if the exception is taken, then all bits
will be updated.

When an enabled breakpoint generates a debug exception, it loads the low four bits of
this register (B0 through B3) before entering the debug exception handler. The B bit is
set if the condition described by the DR, LEN, and R/W bits is true, even if the break-
point is not enabled by the L and G bits. The processor sets the B bits.for all breakpoints
which match the conditions present at. the time the debug exception is generated,
whether or not they are enabled.

The BT bit is associated with the T bit (debug trap bit) of the TSS (see Chapter 6 for the
format of a TSS). The processor sets the BT bit before entering the debug handler if a
task switch has occurred to a task with a set T bit in its TSS. There is no bit in the DR7
register to enable or disable this exception; the T bit of the TSS is the only enabling bit.

The BS bit is associated with the TF flag. The BS bit is set if the debug exception was
triggered by the single-step execution mode (TF flag set). The single-step mode is the
highest-priority debug exception; when the BS bit is set, any of the other .debug status
bits also may be set.

The BD bit is set if the next instruction will read or write one of the eight debug registers
while they are being used by in-circuit emulation.

11-4

Inte|® DEBUGGING

Note that the contents of the DRG6 register are never cleared by the processor. To avoid
any confusion in identifying debug exceptions, the debug handler should clear the regis-
ter before returning.

11.2.4 Breakpoint Field Recognition

The address and LEN bits for each of the four breakpoint conditions define a range of
sequential byte addresses for a data breakpoint. The LEN bits permit specification of a
one-, two-, or four-byte range. Two-byte ranges must be aligned on word boundaries
(addresses which are multiples of two) and four-byte ranges must be aligned on double-
word boundaries (addresses which are multiples of four). These requirements are
enforced by the processor; it uses the LEN bits to mask the lower address bits in the
debug registers. Unaligned code or data breakpoint addresses do not yield the expected
results. .

A data breakpoint for reading or writing is triggered if any of the bytes participating in .a
memory access is within the range defined by a breakpoint address register and its LEN
bits. Table 11-1 gives some examples of combinations of addresses and fields with mem-
ory references which do and do not cause traps.

A data breakpoint for an unaligned operand can be made from two sets of entries in the
breakpoint registers where each entry is byte-aligned, and the two entries together cover
the operand. This breakpoint generates exceptions only for the operand, not for any
neighboring bytes.

Table 11-1. Breakpointing Examples

Comment Address (hex) Length (in bytes)

Register Contents DRO Aoo01 1 (LENO
Register Contents DR1 A0002 1 (LENO
Register Contents DR2 B0002 2 (LENO
Register Contents DR3 C0000 4 (LENO

00)
00)
01)
11)

A0001
A0002
A0001
A0002
Memory Operations Which Trap B0002
B0001
C0000
Co001
C0003

= N HPNONON - =

) A0000
Memory Operations Which A0003
Don't Trap B000O
C0004

AN D=

Intel ® DEBUGGING

Instruction breakpoint addresses must have a length specification of one byte (LEN =
00); the behavior of code breakpoints for other operand sizes is undefined. The proces-
sor recognizes an instruction breakpoint address only when it points to the first byte of
an instruction. If the instruction has any prefixes, the breakpoint address must point to
the first prefix.

11.3 DEBUG EXCEPTIONS

Two of the interrupt vectors.of the Intel486 processor are reserved for debug exceptions.
The debug exception is the usual way to invoke debuggers designed for the Intel486
processor; the breakpoint exception is intended for putting breakpoints in debuggers.

11.3.1 Interrupt 1—Debug Exceptions

The-handler for this exception usually is a debugger or part of a debugging system. The
processor generates a debug exception for any of several conditions. The debugger can
check flags in the DR6 and DR?7 registers to determine which condition caused the
exception and which other conditions also might apply. Table 11-2 shows the states of
these bits for each kind of breakpoint condition.

Instruction breakpoints are faults; other debug exceptions are traps. The debug excep-
tion may report either or both at one time. The following sections present details for
each class of debug exception.

11.3.1.1 INSTRUCTION-BREAKPOINT FAULT

' The processor reports an instruction breakpomt before it executes the breakpomted

nnnnnnnnnn inm hannlrcaniag

lubll uuuuu \l C a UCUUE CALCPUUH LdUDCU Uy an lllbl.l ubllUll UlCdl\lJUllll. lb a Ldull}

The RF ﬂag permits the debug exception handler to restart instructions which cause
faults other than debug.faults. When a debug fault occurs, the system software writer
must set the RF bit in the copy of the EFLAGS register which is pushed on the stack in
the debug exception handler routine. This bit is set in preparation of resuming the

Table 11-2. Debug Exception Conditions

Flags Tested Description

BS =1 Single-step trab

BO = 1 and (GEO = 1 or LEO = 1) Breakpoint defined by DRO, LENO, and R/WO0
B1 =1 and (GE1 = 1or LE1 = 1) Breakpoint defined by DR1, LEN1, and R/W1
B2 = 1and (GE2 = 1 or LE2 = 1) . Breakpoint defined by DR2, LEN2, and R/W2
B3 = 1 and (GE3 = 1 or LE3 = 1) Breakpoint defined by DR3, LEN3, and R/W3
BD =1 ' Debug registers in use for in-circuit emulation
BT =1 Task switch

|nte| o DEBUGGING

program’s execution at the breakpoint address without generating another breakpoint
fault on the same instruction. (Note: The RF bit does not cause breakpoint traps to be
ignored, nor other kinds of faults.)

The processor clears the RF flag at the successful completion of every instruction except
after the IRET instruction, the POPF instruction, POPFD instruction, and JMP, CALL,
or INT instructions which cause a task switch. These instructions set the RF flag to the
value specified by the the saved copy of the EFLAGS register.

The processor sets the RF flag in the copy of the EFLAGS register pushed on the stack
before entry into any fault handler. When the fault handler is entered for instruction
breakpoints, for example, the RF flag is set in the copy of the EFLAGS register pushed
on the stack; therefore, the IRET instruction which returns control from the exception
handler will set the RF flag in the EFLAGS register, and execution will resume at the
breakpointed instruction without generating another breakpoint for the same
instruction.

If, after a debug fault, the RF flag is set and the debug handler retries the faulting
instruction, it is possible that retrying the instruction will generate other faults. The
restart of the instruction after these faults also occurs with the RF flag set, so repeated
debug faults continue to be suppressed. The processor clears the RF flag only after
successful completion of the instruction.

11.3.1.2 DATA-BREAKPOINT TRAP

A data-breakpoint exception is a trap; i.e., the processor generates an exception for a
data breakpoint after executing the instruction which accesses the breakpointed memory
location.

The Intel486 processor always does exact data breakpoint matching, regardless of
GE/LE bit settings. Exact reporting is provided by forcing the Intel486 processor execu-
tion unit to wait for completion of data operand transfers before begmmng execution of
the next instruction.

If a debugger needs to save the contents of a write breakpoint location, it should save
the original contents before setting the breakpoint. Because data breakpoints are traps,
the original data is overwritten before the trap exception is generated. The handler can
report the saved value after the breakpoint is triggered. The data in the debug registers
can be used to address the new value stored by the instruction which triggered the
breakpoint.

- 11.3.1.3 GENERAL-DETECT FAULT

The general-detect fault occurs when an attempt is made to use the debug registers at
the same time they are being used by in-circuit emulation. This additional protection
feature is provided to guarantee emulators can have full control over the debug registers
when required. The exception handler can detect this condition by checking the state of
the BD bit of the DRG6 register.

|nte|® DEBUGGING

11.3.1.4 SINGLE-STEP TRAP .

This trap occurs after an instruction is executed if the TF flag was set before the instruc-
tion was executed. Note the exception does not occur after an instruction which sets the
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step
trap does not occur until after the instruction following the POPF instruction:

The processor clears the TF flag before calling the exception handler. If the TF flag was
set in a TSS at the time of a task sw1tch the exception occurs after the first instruction is
executed in the new task

The single-step flag normally is not cleared by privilege changes inside a task. The INT
instructions, however, do clear the TF flag. Therefore, software debuggers which single-
step code must recognize and emulate INT » or INTO instructions rather than executing
them directly.

To maintain protection, the operating system should check the current execution privi-
lege level after any single-step trap to see if single stepping should oontmue at the
current privilege level. :

The interrupt priorities guarantee that if an external interrupt occurs, single stepping
stops. When both an external interrupt and a single step interrupt occur together, the
single step interrupt is processed first. This clears the TF flag. After saving the return
address or switching tasks, the external interrupt input is examined before the first
instruction of the single step handler executes. If the external interrupt is still pending,
then it is serviced. The external interrupt handler does not run in single-step mode. To
single step an interrupt handler, single step an INTn instruction which calls the interrupt
handler.

11.3.1.5 TASK-SWITCH TRAP |

The debug exception also occurs after a task switch if the T bit of the new task’s TSS is
set. The exception occurs after control has passed to the new task, but before the first
instruction of that task is executed. The exception handler can detect this condition by
examining the BT bit of the DR6 register.

Note that if the debug exception handler is a task, the T bit of its TSS should not be set.
Failure to observe this rule will put the processor in a loop.

11.3.2 Interrupt 3—Breakpoint Instruction

The breakpoint trap is caused by execution of the INT 3 instruction. Typically, a debug-
ger prepares a breakpoint by replacing the first opcode byte of an instruction with the
opcode for the breakpoint instruction. When execution of the INT 3 instruction calls the
exception handler, the return address points to the first byte of the instruction following
the INT 3 instruction.

11-8

|n'l'el 0 . DEBUGGING

With older processors, this feature is used extensively for setting instruction breakpoints.
With the Intel486 processor, this use is more-easily handled using the debug registers.
However, the breakpoint exception still is useful for breakpointing debuggers, because
the breakpoint exception can call an exception handler other than itself. The breakpoint
exception also can be useful when it is necessary to set a greater number of breakpoints
than permitted by the debug registers, or when breakpoints are being placed in the
source code of a program under development.

Caching

12

CHAPTER 12
CACHING

The Intel486 processor has an on-chip internal cache for storing 8K bytes of instructions
and data. The cache raises system performance by satisfying an internal read request
more quickly than a bus cycle to memory. This also reduces the processor’s use of the
external bus. The internal cache is transparent to program operation.

The Intel486 processor can use an external second-level cache outside of the processor
chip. An external cache normally improves performance and reduces bus bandwidth
required by the Intel486 processor.

Caches require special consideration in multiprocessor systems. When one processor
accesses data cached in another processor, it must not receive incorrect data. If it mod-
ifies data, all other processors which access that data must receive the modified data.
This property is called cache consistency. The Intel486 processor provides mechanisms
which maintain cache consistency in the presence of multiple processors and external
caches.

The operation of internal and external caches is transparent to application software, but
knowledge of the behavior of these caches may be useful in optimizing software perfor-
mance. In multiprocessor systems, maintenance of cache consistency may require inter-
vention by system software.

The cache is available in all execution modes: real mode, protected mode, and virtual-
8086 mode. For properly designed single-processor systems, the cache can be initially
enabled and not require further control.

12.1 INTRODUCTION TO CACHING -

Caches are often implemented as associative memories.- An associative memory has extra
storage for each unit of memory, called a tag. When an address is applied to an associa-
tive memory, each tag simultaneously compares itself against the address. If a tag
matches the address, access is provided to the unit of memory associated with the tag.
This is called a cache hit. If no match occurs, the cache signals a cache miss. A cache miss
requires a bus cycle to access main memory.

To gain efficiency in the implementation of the internal cache, storage is allocated in
chunks of 128-bits, called cache lines. External caches are not likely to use cache lines
smaller than those of the internal cache. .

The cache of the Intel486 processor does not support partially-filled cache lines, so
caching a single doubleword requires caching four doublewords. This would be an inef-
ficient use of the cache if it were not for the fact that the processor rarely makes access
to random locations in memory. Over any small span of time, the processor usually
accesses a small number of areas in memory, such as the code segment or the stack, and
it usually accesses many neighboring addresses in these areas.

12-1

|nte|® CACHING

To simplify the hardware implementation, cache lines can only be mapped to aligned
128-bit blocks of main memory. (An aligned 128-bit block begins at an address which is
clear in its low four bits.) When a new cache line is allocated, the processor loads a block
from main memory into the cache line. This operation is called a cache line fill. Allocated
cache lines are said to be valid. Unallocated cache lines are invalid.

Caching can be write-through or write-back. On reads, both forms of caching operate as
described above. On writes, write-through caching updates both cache memory and main
memory; write-back caching updates only the cache memory. Write-back caching
updates main memory when a write-back operation is performed. Write-back operations
are triggered when cache lines need to be de-allocated, such as when new cache lines are
being allocated in a cache which is already full. Write-back operations also are triggered
by the mechanisms used to maintain cache consistency.

The internal cache of the Intel486 processor is a write-through cache. It can be used with
external caches which are write-through, write-back, or a mixture of both.

12.2 OPERATION OF THE INTERNAL CACHE

Software controls the operating mode of the cache. Caching can be enabled (its state
following reset initialization), caching can be disabled while valid cache lines exist (a
mode in which the cache acts like a fast, internal RAM), or caching can be fully
disabled.

Precautions must be followed when disabling the cache. Whenever CD is set to 1, the
Intel486 processor will not read external memory if a copy is still in the cache. Whenever
NW is set to 1, the Intei486 processor will not write to external memory if the data is in
the cache. This means stale data can develop in the Intel486 CPU cache. This stale data
will not be written to external memory if NW is later set to 0 or that cache line is later
overwritten as a result of a cache miss. In general, the cache should be ﬂushed when
dlsabled

It is possible to freeze data in the cache by loading it using test regiéters while CD and
NW are set. This is useful to provide guaranteed cache hits for time critical interrupt
code and data.

Note that all segments should start on 16 byte boundaries to allow programs to align
code/data in cache lines.

12.2.1 Cache Disabling Bits

Table 12-1 summarizes the modes enabled by the CD and NW bits.

12-2

|nte|® CACHING

Table 12-1. Cache Operating Modes

CcD NW Description

1 1 Caching is disabled, but valid cache lines continue to
respond. To completely disable the cache, enter this
mode and perform a cache flush. To use the cache as a
fast internal RAM, preload the cache with valid cache
lines by careful choice of memory operations or by using
the test registers. In this mode, writes to valid cache lines
update the cache, but do not update main memory.

1 0 No new cache lines are allocated, but valid cache lines
continue to respond.

0 1 Invalid setting. A general-protection exception with an
error code of zero is generated.

0 0 Caching is enabled.

12.2.2 Cache Management Instructions

The INVD and WBINVD instructions are used to invalidate the contents of the internal
and external caches. The INVD instruction flushes the internal cache and generates a
special bus cycle which indicates that external caches also should be flushed. (The
response of hardware to receiving a cache flush bus cycle is implementation dependent;
hardware might use some other mechanism for maintaining cache consistency.)

There is only one difference between the WBINVD and INVD instructions. The
WBINVD instruction generates a special bus cycle which indicates external, write-back
caches should write-back modified data to main memory. This cycle is produced imme-
diately before the cycle to flush the cache.

12.2.3 Self-Modifying Code

A write to an instruction in the cache will modify it in both cache and memory, but if the
instruction was prefetched before the write, the old version of the instruction could be
the one executed. To prevent this, flush the instruction prefetch unit by coding a jump
instruction immediately after any write that modifies an instruction.

12.3 PAGE-LEVEL CACHE MANAGEMENT

The Intel486 processor defines two bits in entries in the page directory and second-level
page tables which are reserved on Intel386 processors. These bits are used to drive
processor output pins. These bits are used to manage the caching of pages.

123

Inte|® CACHING

12.3.1 Cache Management Bits

The PCD and PWT bits control caching on a page-by-page basis. The PCD bit (page-
level cache disable) affects the operation of the internal cache. Both the PCD bit and the
PWT bit (page-level write-through) drive processor output pins for controlling external
caches. The treatment of these signals by external hardware is implementation-
dependent; for example, some hardware systems may control the caching of pages by
decoding some of the high address bits.

There are three potential-sources of the bits used to drive the PCD and PWT outputs of
the processor: the CR3 register, the page directory, and the second-level page tables.
The processor outputs are driven by the CR3 register for bus cycles where paging is not
used to generate the address, such as the loading of an entry in the page directory. The
outputs are driven by a page directory entry when an entry from a second-level page
table is accessed. The outputs are driven by a second-level page table entry when instruc-
tions or data in memory are accessed. When paging is disabled, these bits are ignored
(CPU assumes PCD=0 and PWT=0). '

12.3.1.1 PCD BIT

When a page table entry has a 'sc_:t PCD bit (bit position 4), caching of the page is
disabled, even if hardware is requesting caching by asserting the KEN# input. When the
PCD bit is clear, caching may be requested by hardware on a cycle-by-cycle basis.

Disabling caching is necessary for pages which contain memory-mapped I/O ports. It
also is useful for pages which do not provide a performance benefit when cached, such as
initialization software.

Regardless of the page-table entries, the Intel486 processor will ignore the PCD output
(assume PCD =0) whenever the CD (Cache Disable) bit in CRO is set.

12.3.1.2 PWT BIT

When a page table entry has a set PWT bit (bit position 3), a write-through caching
policy is specified for data in the corresponding page. Clearing the PWT bit allows the
possibility of using a write-back policy for the page. Since the internal cache of the
Intel486 processor is a write-through cache, it is not affected by the state of the PWT bit.
External caches however may use write-back caching, and so can use the output signal
driven by the PWT bit to control ‘caching policy on a page-by-page basis.

In multiprocessor systems, enabling write-through may be advantageous for shared mem-

ory, particularly for memory locations written infrequently by one processor, but read
often by many processors.

12-4

Multiprocessing

13

CHAPTER 13
MULTIPROCESSING

The Intel486 processor supports multiprocessing on the system bus. Processors on the
system bus can have different bus widths.

Multiprocessors can increase particular aspects of system performance. For example, a
computer graphics system may use an i860 CPU for fast rendering of raster images, while
an Intel486 processor is used to support a standard operating system, such as UNIX or
OS/2. Multiprocessing systems are sensitive to two design issues:

o Maintaining cache consistency —When one processor accesses data cached in another
processor, it must not receive incorrect data. If it modifies data, all other processors
which access that data must receive the modified data.

o Reliable communication — Processors need to be able to communicate with each other
in a way which eliminates interference when more than one processor simultaneously
accesses the same area in memory.

Cache consistency was discussed earlier, in Chapter 12. Reliable communication is dis-
cussed in the following section, which describes the mechanism used to “lock” the bus.

13.1 LOCKED AND PSEUDO-LOCKED BUS CYCLES

While the system architecture of multiprocessor systems varies greatly, they generally
have a need for reliable communication with memory. A processor in the act of updating

the Accessed bit of a se'gment descriptor, for example, should reject other attempts to
undate the descrintor until the oneration is comnlete

el LUC QUSLIIPRUL it opoliauon 1S collipicic.

It also is necessary to have reliable communication with other processors. Bus masters
need to exchange data in a reliable way. For example, a bit in memory may be shared by
several bus masters for use as a signal that some resource, such as a peripheral device, is
idle. A bus master may test this bit, see that the resource is free, and change the state of
the bit. The state would indicate to other potential bus masters that the resource is in
use. A problem could arise if another bus master reads the bit between the time the first
bus master reads the bit and the time the state of the bit is changed. This condition
would indicate to both potential bus masters that the resource is free. They may inter-
fere with each other as they both attempt to use the resource. The processor prevents
this problem through support of locked bus cycles; requests for control of the bus are
ignored during locked cycles. :

The Intel486 processor protects the integrity of certain critical memory operations by
asserting an output signal called LOCK#. Reads and writes of aligned 64-bit operands
and (128-bit) instruction prefetches are protected by an output called PLOCK#. It is the
responsibility of the hardware designer to use these signals to control memory access
among processors.

13-1

||'|'l'e|® MULTIPROCESSING

The processor automatically asserts one of these signals during certain critical memory
operations. Software can specify which other memory operatlons need to have LOCK#
asserted.

The features of the general-purpose multiprocessing interface include:

e The LOCK# signal, which appears on a pin of the processor.

o The PLOCK# signal, which appears on a pin of the processor.

e The LOCK instruction prefix, which allows software to assert LOCK#.

o Automatic assertion of LOCK# for some kinds of memory operations.

o Automatic assertion of PLOCK# for some other kinds of memory operations.

13.1.1 LOCK Prefix and the LOCK# Signal

The LOCK prefix and its bus signal only should be used to prevent other bus masters
from interrupting a data movement operation. The LOCK prefix can be used with the
following Intel486 CPU instructions when they modify memory. An invalid-opcode
exception results from using the LOCK prefix before any other instruction, or with these
instructions when no write operation is made to memory (i.e., when the destination
operand is in a register).

o Bit test and change: the BTS, BTR, and BTC instructions.

o Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is
needed for the XCHG instruction).

. One -operand arithmetic and logical: the INC, DEC, NOT, NEG instructions.

e Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and
XOR instructions.

A locked instruction is guaranteed to lock only the area of memory defined by the desti-
nation operand, but may lock a larger memory area. For example, typical 8086 and 80286
configurations lock the entire physical memory space.

Semaphores (shared memory used for signalling between multiple processors) should be
accessed using identical address and length. For example, if one processor accesses a
semaphore using word access, other processors should not access the semaphore using
byte access.

The integrity of the lock is not affected by the alignment of the memory field. The
LOCK# signal is asserted for as many bus cycles as necessary to update the entire
operand.

13-2

Hntei o MULTIPROCESSING

13.1.2 Automatic Locking

There are some critical memory operations for which the processor automatically asserts
the LOCK# signal. These operations are:

o

Acknowledging interrupts.

After an interrupt request, the interrupt controller uses the data bus to send the
interrupt vector of the source of the interrupt to the processor. The processor asserts
LOCK# to ensure no other data appears on the data bus during this time.

Setting the Busy bit of a TSS descriptor.

The processor tests and sets.the Busy bit in the Type field of the TSS descriptor when
switching to a task. To ensure two different processors do not switch to the same task
simultaneously, the processor asserts the LOCK# signal while testing and setting
this bit.

Updating segment descriptors.

When loading a segment descriptor, the processor will set the Accessed bit if the bit is
clear. During this operation, the processor asserts LOCK# so the descriptor will not
be modified by another processor while it is being updated. For this action to be
effective, operating-system procedures which update descriptors should use the fol-
lowing steps:
- Use a locked operation when updating the access-rights byte to mark the
descriptor not-present, and specify a value for the Type field which indicates the
descriptor is being updated.

- Update the fields of the descriptor. (This may require several memory accesses;
therefore, LOCK cannot be used.)

-~ Use a locked operation when updating the access-rights byte to mark the
descriptor as valid and present.

Note that the Intel386 DX processor always updates the Accessed bit, whether it is
clear or not. The Intel486 processor only updates the Accessed bit if it is not already
set.

Updating page-directory and page-table entries.

When updating page-directory and page-table entries, the processor uses locked
cycles to set the Accessed and Dirty bits.

Executing an XCHG instruction.

The Intel486 processor always asserts LOCK# during an XCHG instruction which
references memory (even if the LOCK prefix is not used).

13.1.3 Pseudo-Locking

The PLOCK# pin indicates that the current bus cycle and the following one should be
treated as an atomic transfer. By implementing the pseudo-lock mechanism, system
hardware can guarantee atomic reads and writes of 64-bit operands. The operand must
be aligned to a doubleword boundary, so that the read or write requires no more than
two bus cycles to be completed.

13-3

Intel o MULTIPROCESSING

The pseudo-lock mechanism can also be used to protect instruction prefetches and other
transfers of more than 32 bits. For a detailed discussion of the PLOCK# signal, its
timing and its various uses, see the Intel486™ Processor Hardware Reference Manual.

13-4

Part llI
Numeric Processing

Introduction to
Numeric Applications

14

CHAPTER 14
INTRODUCTION TO NUMERIC APPLICATIONS

The Intel486 processor contains a high-performance numerics processing element that
provides significant numeric capabilities and direct support for floating-point, extended-
integer, and BCD data types. The Intel486 Floating Point Unit (FPU) easily supports
powerful and accurate numeric applications through its implementation, with radix 2, of
the IEEE Standard 854 for Floating-Point Arithmetic. The Intel486 FPU provides
floating-point performance comparable to that of large minicomputers while offering
compatibility with object code for 8087, Intel287, Intel387 DX and Intel387 SX math
COProcessors.

14.1 HISTORY

The Intel486 FPU is compatible with its predecessors, the earlier Intel 8087, Intel287
and Intel387 DX coprocessor. Programs designed to use the 8087, Intel287 or Intel387
math coprocessor should run unchanged on the Intel486 processor. Refer to Figure 3-23
to identify the floating point unit in your system.

The 8087 NPX was designed for use in 8086-family systems. The 8086 was the first
microprocessor family to partition the processing unit to permit high-performance
numeric capabilities The 8087 NPX for this processor family implemented a complete
numeric processing environment in compliance with an early proposal for IEEE Stan-
dard 754 for Binary Floating-Point Arithmetic.

With the Intel287 Numeric Processor Extension, high-speed numeric computations were
extended to 286 high-performance multitasking and multiuser systems. Multiple tasks
using the numeric processor extension were afforded the full protection of the 286 mem-
ory management and protection features.

The Intel387 DX and SX math coprocessors are Intel’s third generation numerics pro-
cessors. They implement the final IEEE Std 754, adds new trigonometric instructions,
and uses a new design and CHMOS-III process to allow higher clock rates and require
fewer clocks per instruction. Together, the Intel387 math coprocessor with additional
instructions and the improved standard brought even more convenience and reliability to
numerics programming and made this convenience and reliability available to applica-
tions that need the high-speed and large memory capacity of the 32-bit environment of
the Intel386 microprocessor.

The Intel486 FPU is an on-chip equivalent of the Intel387 DX coprocessor conforming
to both IEEE Std 754 and the more recent, generalized IEEE Std 854. Having the FPU
on chip results in a considerable performance improvement in numerics-intensive com-
putation. Figure 14-1 illustrates the relative performance of 5-MHz 8086 CPU/8087
NPX, 8-MHz 286 CPU/Intel287 NPX, 20-MHz Intel386 DX CPU/Intel387 DX systems,
and a 33-MHz Intel486 processor, in executing numerics-oriented applications.

14-1

lnte|® INTRODUCTION TO NUMERIC APPLICATIONS

i486™ CPU (33 MHz)
o

80

70

RELATIVE 50 1
PERFORMANCE 40

20 i386™ DX CPU/i387™ DX NPX (20 MHz)
L]

| sos6/8087 (5 MHz) 80286/80287 (8 MHz)
o

T 1 T 1
1980 1983 1987 1989

240486i14-1

Figure 14-1. Evolution and Performance of Numeric Processors
14.2 PERFORMANCE

Table 14-1 compares the execution times of several Intel486 CPU numeric instructions
with the equivalent operations executed on a 16-MHz Intel387 DX math coprocessor. As
indicated in the table, the 33-MHz Intel486 floating-point processor provides about 5
times the performance of a 16-MHz Intel387 DX math coprocessor. A 33-MHz Intel486
processor multiplies 32-bit and 64-bit floating-point numbers in about .33 and .42 micro-
seconds, respectively. Of course, the actual performance of the processor in a given
system depends on the characteristics of the individual application.

The Inteld486 Integer Unit (IU) and FPU coordinate their activities in a manner trans-
parent to software. Moreover, built-in coordination facilities allow the IU to proceed
with other instructions while the FPU is simultaneously executing numeric instructions.

Table 14-1. Numeric Processing Speed Comparisons

Approximate Performance Ratio:
Floating-Point Instruction 33 MHz Intel486™
16 MHz Intel386™ DX/Intel387™ DX
FADD ~ ST, ST(j) Addition 4.2
FDIV dword_var - Division 2.0
FYL2X stack(0),(1) assumed Logarithm o v 25
FPATAN stack(0) assumed Arctangent 2.2
F2XMI' stack(0) assumed Expdnentiation 2.2
FLD ST(0), ST(i) Data Transfer 5.5

14-2

Intel 0 INTRODUCTION TO NUMERIC APPLICATIONS

Programs can exploit this concurrency of execution to further increase system perfor-
mance and throughput.

14.3 EASE OF USE

The Intel486 FPU provides more than raw execution speed for computation-intensive
tasks; it brings the functionality and power of accurate numeric computation into the
hands of the general user. These features are available in most high-level languages
available for the Intel486 processor.

Like the 8087, Intel287 and Intel387 DX coprocessor that preceded it, the Intel486 FPU
is explicitly designed to deliver stable, accurate results when programmed using straight-
forward “pencil and paper” algorithms. IEEE Std 754 specifically addresses this issue,
recognizing the fundamental importance of making numeric computations both easy and
safe to use.

For example, most computers can overflow when two single-precision floating-point
numbers are multiplied together and then divided by a third, even if the final result is a
perfectly valid 32-bit number. The Intel486 FPU delivers the correctly rounded result.
Other typical examples of undesirable machine behavior in straightforward calculations
occur when computing financial rate of return, which involves the expression (1 + i)" or
when solving for roots of a quadratic equation:

-b = \/b2 — 4ac
2a

If a does not equal 0, the formula is numerically unstable when the roots are nearly
coincident or when their magnitudes are wildly different. The formula is also vulnerable
to spurious over/underflows when the coefficients a, b, and ¢ are all very big or all very
tiny. When single-precision (4-byte) floating-point coefficients are given as data and the
formula is evaluated in the Intel486 FPU’s normal way, keeping all intermediate results
in its stack, the FPU produces impeccable single-precision roots. This happens because,
by default and with no effort on the programmer’s part, the FPU evaluates all those
subexpressions with so much extra precision and range as to overwhelm any threat to
numerical integrity.

If double-precision data and results were at issue, a better formula would have to be
used, and once again the Intel486 FPU’s default evaluation of that formula would pro-
vide substantially enhanced numerical integrity over mere double-precision evaluation.

On most machines, straightforward algorithms will not deliver consistently correct results
(and will not indicate when they are incorrect). To obtain correct results on traditional
machines under all conditions usually requires sophisticated numerical techniques that
are foreign to most programmers. General application programmers using straightfor-
ward algorithms will produce much more reliable programs using the Intel486 processor.
This simple fact greatly reduces the software investment required to develop safe, accu-
rate computation-based products.

14-3

Inte|® INTRODUCTION TO NUMERIC APPLICATIONS

Beyond traditional numerics support for scientific applications, the Intel486 processor
has built-in facilities for commercial computing. It can process decimal numbers of up to -
18 dl%lts without round-off errors, performing exact arithmetic on integers as large as 2%
or 10°8. Exact arithmetic is vital in accounting applications where roundmg €rrors may
lntroduce monetary losses that cannot be reconciled.

The Intel486 processor contains a number of optional numerical facilities that can be
invoked by sophisticated users. These advanced features include directed roundlng,
gradual underflow, and programmed exception-handling facilities.

These automatic exception-handling facilities permit a high degree of flexibility in
numeric processing software, without burdening the programmer. While performing
numeric calculations, the Intel486 processor automatically detects exception conditions
that can potentially damage a calculation (for example, X + 0 or when X < 0). By
default, on-chip exception logic handles these exceptions so that a reasonable result is
produced and execution may proceed without program interruption. Alternatively, the
processor can invoke a software exception handler to provide special results whenever
various types of exceptions are detected.

14.4 APPLICATIONS

The Intel486 processor’s versatility and performance make it appropriate to a broad
array of numeric applications. In general, applications that exhibit any of the following
characteristics can benefit by implementing numeric processing on the Inteld86
processor:

o Numeric data vary over a wide range of values, or include nonintegral values.

e Algorithms produce very large or very small intermediate results.

LY

nust be very precise; i.€., a large number of significant digits must be

e Computations r
maintained.
o Performance requirements exceed the capacity of traditional microprocessors.

o Con51stent1y safe, reliable results must be delivered using a programming staff that is
not expert in numerical techniques.

Note also that the Intel486 processor can reduce software development costs and
improve the performance of systems that use not only real numbers, but operate on
multiprecision binary or decimal integer values as well.

A few examples, which show how the Intel486 processor might be used in specific
numerics applications, are described below. In many cases, these types of systems have
been implemented in the past with minicomputers or small mainframe computers.

o . Business data processing — The Intel486 FPU’s ability to-accept decimal operands and
produce exact decimal results of up to 18 digits greatly simplifies accounting program-
ming. Financial calculations that use power functions can take advantage of the
Intel486 processor’s exponentiation and logarithmic instructions: Many business soft-
ware packages can benefit from the speed and accuracy of the Intel486 FPU.

14-4

Intel o INTRODUCTION TO NUMERIC APPLICATIONS

o Simulation—The large (32-bit) memory space and raw speed of the Intel486 proces-
sor make it suitable for attacking large simulation problems, which heretofore could
only be executed on expensive mini and mainframe computers. For example, complex
electronic circuit simulations using SPICE can be performed on an Intel486 proces-
sor. Simulation of mechanical systems using finite element analysis can employ more
elements, resulting in more detailed analysis or simulation of larger systems.

e Graphics transformations —The Intel486 processor can be used in graphics applica-
tions, with the FPU performing many functions concurrently with the operation of the
IU; these functions include rotation, scaling, and interpolation. By also using an
82786 Graphics Display Controller to perform high-speed drawing and window man-
agement, very powerful and highly self-sufficient terminals can be built from a small
number of parts. '

e Process control—The Intel486 FPU solves dynamic range problems automatically,
and its extended precision allows control functions to be fine-tuned for more accurate
and efficient performance. Using the Intel486 processor to implement control algo-
rithms also contributes to improved reliability and safety, while the processor’s speed
can be exploited in real-time operations.

e Computer numerical control (CNC)—The Intel486 processor can move and position
machine tool heads with accuracy in real-time. Axis positioning also benefits from the
hardware trigonometric support provided by the FPU.

o Robotics—Coupling small size and modest power requirements with powerful com-
putational abilities, the Intel486 processor is ideal for on-board six-axis positioning.

o Navigation— Very small, lightweight, and accurate inertial guidance systems can be
implemented with the Intel486 processor. Its built-in trigonometric functions can
speed and simplify the calculation of position from bearing data.

e Data acquisition — The Intel486 processor can be used to scan, scale, and reduce large
quantities of data as it is collected, thereby lowering storage requirements and time
required to process the data for analysis.

The preceding examples are oriented toward traditional numerics applications. There
are, in addition, many other types of systems that do not appear to the end user as
computational, but can employ the Intel486 processor’s numerical capabilities to advan-
tage. The imaginative system designer has an opportunity similar to that created by the
introduction of the microprocessor itself. Many applications can be viewed as
numerically-based if sufficient computational power is available to support this view
(e.g., character generation for a laser printer). This is analogous to the thousands of
successful products that have been built around “buried” microprocessors, even though
the products themselves bear little resemblance to computers.

14.5 PROGRAMMING INTERFACE

The Intel486 processor has a class of instructions known as ESCAPE instructions, all
having a common format. These ESC instructions are numeric instructions for the FPU.
These numeric instructions are part of a single integrated instruction set.

Numeric processing in the Intel486 processor centers around the floating-point register
stack. Programmers can treat these eight 80-bit registers either as a fixed register set,

14-5

Inte|® INTRODUCTION TO NUMERIC APPLICATIONS

with instructions operating on explicitly-designated registers, or as a classical stack, with
instructions operating on the top one or two stack elements.

Internally, the Intel486 FPU holds all numbers in a uniform 80-bit extended format.
Operands that may be represented in memory as 16-, 32-, or 64-bit integers, 32-, 64-, or
80-bit floating-point numbers, or 18-digit packed BCD numbers, are automatically con-
verted into extended format as they are loaded into the FPU registers. Computation
results are subsequently converted back into one of these destination data formats when
they are stored into-memory from the FPU registers. ~

Table 14-2 lists each of the seven numeric data types supported by the Intel486 FPU,
showing the data format for each type. The table also shows the approximate range of
normalized values that can be represented with each type. Denormal values are also
supported in each of the real types, as required by IEEE Std 854. Denormals are dis-
cussed in Chapter 16.

All operands are stored in memory with the least significant digits starting at the initial
(lowest) memory address. Numeric instructions access and store memory operands using
only this initial address. For maximum system performance, every operand should start
at a memory address divisible by the smallest power of two greater than the operand’s
length (in bytes).

Table 14-3 lists the numeric instructions by class. No special programming tools are
necessary to use the numerical capabilities of the Intel486 processor, because all of the
numeric instructions and data types are directly supported by the ASM386/486 Assem-
bler, by high-level languages from Intel, and by assemblers and compilers produced by
many independent software vendors. Numeric routines for the Intel486 processor can be
written in ASM386/486 Assembler or any of the following higher-level languages from
Intel:

PL/M-386/486
C-386/486
FORTRAN-386/486
ADA-386/486

Table 14-2. Numeric Data Types

Significant A . .
. - pproximate Normalized
Data Type Bits (DIZ::gi::lsal) Range (Decimal)
Word integer 16 4 - =382,768 = X = + 32,767
Short integer 32 9 -2x10°=< x = + 2 x 10°
Long integer 64 18 ‘ -9x10® = x =< +9x10"
Packed decimal 80 18 —99...99 = X < + 99...99 (18 digits)
Single real. 32 7 118 x 1078 < | x | < 3.40 x 10°%
Double real 64 15-16 223 x 1073 < | x | < 1.79 x 103°8
Extended real* 80 19 3.37 x 1079932 < | x | < 1.18 x 10932

*Equivalent to double extended format of IEEE Std 854.

14-6

Intel® INTRODUCTION TO NUMERIC APPLICATIONS

Table 14-3. Principal Numeric Instructions

Class Instruction Types
Data Transfer Load (all data types), Store (all data types), Exchange
Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide

Reversed, Square Root, Scale, Extract, Remainder, Integer Part,
Change Sign, Absolute Value

Comparison Compare, Examine, Test
Transcendental Tangent, Arctangent, Sine, Cosine, Sine and Cosine, 2* -1,
Y -Log,(X), Y - Log, (X+1)
Constants 0, 1, m, Logy¢2, Log.2, Log,10, Log,e
Processor Control Load Control Word, Store Control Word, Store Status Word, Load

Environment, Store Environment, Save, Restore, Clear Excep-
tions, Initialize

In addition, all of the development tools supporting the 8086/8087, 80286/80287 and
80386 DX/80387 DX NPX can also be used to develop numerical software for the
Intel486 processor.

All of these high-level languages provide programmers with access to the computational
power and speed of the Intel486 processor without requiring an understanding of its
architecture. Such architectural considerations as concurrency and synchronization are
handled automatically by these high-level languages. For the ASM386/486 programmer,
specific rules for handling these issues are discussed in a later section of this manual.

14-7

Architecture of
the Floating-Point Unit

15

CHAPTER 15
ARCHITECTURE OF THE FLOATING-POINT UNIT

To the programmer, the Intel486 FPU appears as a set of additional registers, data
types, and instructions. Refer to Chapter 26 for detailed explanations of the numerical
instruction set. This chapter explains the numerical registers and data types of the
Intel486 architecture.

15.1 NUMERICAL REGISTERS

The Intel486 numerical registers consist of
o Eight individually-addressable 80-bit numeric registers, organized as a register stack.
o Three 16-bit registers containing:

The FPU status word.
The FPU control word.
The tag word.

e Error pointers, consisting of:

Two 16-bit registers containing selectors for the last instruction and operand.
Two 32-bit registers containing offsets for the last instruction and operand.
One 11-bit register containing the opcode of the last non-control FPU instruction.

All of the Intel486 numeric instructions focus on the contents of these FPU registers.

15.1.1 The FPU Register Stack

The Intel486 FPU register stack is shown in Figure 15-1. Each of the eight numeric
registers in the stack is 80 bits wide and is divided into fields corresponding to the
Intel486 processor’s extended real data type.

Numeric instructions address the data registers relative to the register on the top of the
stack. At any point in time, this top-of-stack register is indicated by the TOP (stack
TOP) field in the FPU status word. Load or push operations decrement TOP by one and
load a value into the new top register. A store-and-pop operation stores the value from
the current TOP register and then increments TOP by one. Like stacks in memory, the
FPU register stack grows down toward lower-addressed registers.

Many numeric instructions have several addressing modes that permit the programmer
to implicitly operate on the top of the stack, or to explicitly operate on specific registers
relative to the TOP. The ASM386/486 Assembler supports these register addressing
modes, using the expression ST(0), or simply ST, to represent the current Stack Top and
ST(i) to specify the ith register from TOP in the stack (0 < i < 7). For example, if TOP
contains 011B (register 3 is the top of the stack), the following statement would add the
contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2)

15-1

|nte| - ARCHITECTURE OF THE FLOATING-POINT UNIT

FPU DATA REGISTERS S
79 78 64 63 0 2
ro Isien]ExpoNeNT SIGNIFICAND
R1 |
R2 [|
R3 ||
R4 ||
RS |
R6
R7 :
15 0 47 [+]
CONTROL REGISTER INSTRUCTION POINTER
STATUS REGISTER DATA POINTER
TAG WORD
240486i15-1

Figure 15-1. Intel486™ FPU Register Set

The stack organization and top-relative addressing of the numeric registers simplify sub-
routine programming by allowing routines to pass parameters on the register stack. By
using the stack to pass parameters rather than using “dedicated” registers, calling rou-
tines gain more flexibility in how they use the stack. As long as the stack is not full, each
routine simply loads the parameters onto the stack before calling a particular subroutine
to perform a numeric calculation. The subroutine then addresses its parameters as ST,
ST(1), etc., even though TOP may, for example, refer to physical register 3 in one invo-
cation and physical register 5 in another. -

15.1.2 The FPU Status Word

The 16-bit status word shown in Figure 15-2 reflects the overall state of the FPU. This
status word may be stored into memory using the FSTSW/FNSTSW, FSTENV/
FNSTENYV, and FSAVE/FNSAVE instructions, and can be transferred into the AX
register with the FSTSW AX/FNSTSW AX instructions, allowing the FPU status to be
inspected by the Integer Unit.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the
ES bit (bit 7 of the status word).

The four FPU condition code bits (C3-C,) are similar to the flags in a CPU: the Intel486
processor updates these bits to reflect the outcome of arithmetic operations. The effect
of these instructions on the condition code bits is summarized in Table 15-1. These
condition code bits are used principally for conditional branching. The FSTSW AX
instruction stores the FPU status word directly into the AX register, allowing these

15-2

Intel ® ARCHITECTURE OF THE FLOATING-POINT UNIT

FPU BUSY
TOP OF STACK POINTER
I—,—l— BE CONDITION CODE
YYVYVYYVY
1
5 7 0
[
c clc|c|e|s|plulo|z|p]1
B3 TO'I’ 2|1]|o|s|F|e|e|E|E|E|E
AAAA
ERROR SUMMARY sm‘rus—j
STACK FAULT-
EXCEPTION FLAGS
PRECISION
UNDERFLOW
OVERFLOW-
ZERO DIVIDE
DENORMALIZED OPERAND———————

INVALID OPERATION

ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET; CLEARED OTHERWISE.
SEE TABLE 15-1 FOR INTERPRETATION OF CONDITION CODE.

TOP VALUES:
000 = REGISTER 0 IS TOP OF STACK
001 = REGISTER 1 IS TOP OF STACK

111 = REGISTER 7 IS TOP OF STACK

FOR DEFINITIONS OF EXCEPTIONS, REFER TO CHAPTER 3.

240486i15-2

Figure 15-2. Intel486™ FPU Status Word

condition codes to be inspected efficiently by Intel486 code. The SAHF instruction can
copy C;-C, directly to Inteld486 flag bits to simplify conditional branching. Table 15-2
shows the mapping of these bits to the Intel486 flag bits.

Bits 11-13 of the status word point to the FPU register that is the current Top of Stack
(TOP). The significance of the stack top has been described in the prior section on the
register stack.

Figure 15-2 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the
exception summary status (ES) bit. ES is set if any unmasked exception bits are set, and
is cleared otherwise. Bits 0-5 indicate whether the FPU has detected one of six possible

15-3

intal.

ARCHITECTURE OF THE FLOATING-POINT UNIT

Table 15-1. Condition Code Interpretation

Instruction co C3 Cc2 C1
FCOM, FCOMP,
FCOMPP, FTST, 0 di t Z
FUCQM, FUCOMP, Result of comparison peran blls no eg/U #
FUCOMPP, FICOM, comparable or
FICOMP
FXAM Operand class Sign
P or O/Us#
0=reduction complete Qo
FPREM, FRREM1 Q2 ot 1 =reduction incomplete or O/U#
FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD,
FMUL, FDIV, Roundu
FDIVR, FSUB, UNDEFINED or O/U#p
FSUBR, FSCALE,
FSQRT, FPATAN,
F2XM1, FYL2X,
FYL2XP1

Roundup
FPTAN, FSIN, 0=reduction complete or O/U#
FCOS, FSINCOS UNDEFINED 1=reduction incomplete | (UNDEFINED

’ if C2=1)
FCHS, FABS,
FXCH, FINCSTP,
FDECSTP, Con-

Zero
stant Loads, UNDEFINED or O/Us#
FXTRACT, FLD,

FILD, FBLD, FSTP
(ext. real)
FLDENV, FRSTOR Each bit loaded from memory
FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX
FINIT, FSAVE Zero Zero Zero Zero
O/U# When both |E and SF bits of status word are set, indicating a stack exception, this bit

Reduction

Roundup
UNDEFINED

distinguishes between stack overflow (C1=1) and underflow (C1=0).

If FPREM and FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

Do not rely on finding any specific value in these bits.

15-4

5
&

ARCHITECTURE OF THE FLOATING-POINT UNIT

Table 15-2. Correspondence Between FPU and IU Flag Bits

FPU Flag 1U Flag
" G, CF
C, (none)
C, ‘ PF
Cs ZF

exception conditions since these status bits were last cleared or reset. They are “sticky”
bits, and can only be cleared by the instructions FINIT, FCLEX, FLDENV, FSAVE,
and FRSTOR.

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack
overflow or underflow from other kinds of invalid operations. When SF is set, bit 9 (C,)
distinguishes between stack overflow (C; = 1) and underflow (C; = 0).

15.1.3 Control Word

The FPU provides the programmer with several processing options, which are selected
by loading a word from memory into the control word. Figure 15-3 shows the format and
encoding of the fields in the control word.

The low-order byte of this control word configures the numerical exception masking. Bits
0-5 of the control word contain individual masks for each of the six floating-point excep-
tion conditions recognized by the Intel486 processor. The high-order byte of the control
word configures the FPU processing options, including

o Precision control

o Rounding control

The precision-control bits (bits 8-9) can be used to set the FPU internal operating
precision at less than the default precision (64-bit significand). These control bits can be
used to provide compatibility with the earlier-generation arithmetic processors having
less precision than the Intel486 processor or Intel387 math coprocessor. The precision-
control bits affect the results of only the following five arithmetic instructions: ADD,
SUB(R), MUL, DIV(R), and SQRT. No other operations are affected by PC.

The rounding-control bits (bits 10-11) provide for the common round-to-nearest mode,
as well as directed rounding and true chop. Rounding control affects the arithmetic
instructions (refer to Chapter 16 for lists of arithmetic and nonarithmetic instructions)
and certain non arthimetic instructions, namely (FLD constant) and (FST(P)mem)
instructions.

15-5

Inte|® ARCHITECTURE OF THE FLOATING-POINT UNIT

RESERVED
(INFINITY CONTROL)
ROUNDING CONTROL
W_— PRECISION CONTROL
15 7 0
N ' . «|elulolz]ol
x x X|x| rec | Pc |x x
1] | 1 | MIM|M|M|M|M
T T 1\ 1\ A
RESERVED
EXCEPTION MASKS
PRECISION
UNDERFLOW
OVERFLOW
ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION
ROUNDING CONTROL PRECISION CONTROL
00-ROUND TO NEAREST OR EVEN 00-24 BITS (SINGLE PRECISION)
01-ROUND DOWN (TOWARD — =) 01—(RESERVED)
10-ROUND UP (TOWARD + =) 10-53 BITS (DOUBLE PRECISION)

11-CHOP (TRUNCATE TOWARD ZERO) 11-64 BITS (EXTENDED PRECISION)

*This “infinity control” bit is not meaningful to the i486™ PROCESSOR.

To maintain compatibility with Intel287 Math CoProcessor this bit can be programmed;
however, regardless of its value, the i486™FPU treats infinity in the affine

Sense (— oo < + o).

240486i15-3

Figure 15-3. Intel486™ FPU Control Word Format

15.1.4 The FPU Tag Word

The tag word indicates the contents of each register in the register stack, as shown in
Figure 15-4. The tag word is used by the FPU itself to distinguish between empty and
nonempty register locations. Programmers of exception handlers may use this tag infor-
mation to check the contents of a numeric register without performing complex decoding
of the actual data in the register. The tag values from the tag word correspond to phys-
ical registers 0-7. Programmers must use the current top-of-stack (TOP) pointer stored
in-the FPU status word to associate these tag values with the relative stack registers
ST(0) through ST(7).

15-6

|nte| 0 ARCHITECTURE OF THE FLOATING-POINT UNIT

15 0

T y Y T T T T T
TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) | TAG(0)
. I i h— A L L il
TAG VALUES:

VALID
01 ZERO

10
1

H [l

S:;E_?;AL:INVALID(NaN, UNSUPPORTED), INFINITY, OR DENORMAL

240486i15-4

Figure 15-4. Tag Word Format

The exact values of the tags are generated during execution of the FSTENV and FSAVE
instructions according to the actual contents of the nonempty stack locations. During
execution of other instructions, the Intel486 processor updates the TW only to indicate
whether a stack location is empty or nonempty.

15.1.5 Opcode Field of Last Instruction

The opcode field in Figure 15-5 describes the 11-bit format of the last non-control FPU
instruction executed. The first and second instruction bytes (after all prefixes) are com-
bined to form the opcode field. Since all floating-point instructions share the same 5
upper bits in the first instruction byte (following prefixes), they are not stored in the
opcode field. Note that the second instruction byte is actually located in the low-order
byte of the stored opcode field.

7 0 7 0

H5 nM4 N3 H2 K1 1O 19 I8 I7 1B 15 K4 B 12 H 10

L 2ND INSTRUCTION BYTE) 1ST INSTRUCTION BYTE

(0 o] o)

12 1] o |15 4 M3 12 H1 O 19 I8

OPCODE FIELD

240486i15-5

Figure 15-5. Opcode Field

15-7

In'l'e|® ARCHITECTURE OF THE FLOATING-POINT UNIT

15.1.6 The Numeric Instruction and Data Pointers

The instruction and data pointers provide support for programmed exception-handlers.
These registers are accessed by the ESC instructions FLDENV, FSTENV, FSAVE, and
FRSTOR. Whenever the Intel486 processor decodes an ESC instruction, it saves the
instruction address, the operand address (if present), and the instruction opcode.

When stored in memory, the instruction and data pointers appear in one of four formats,
depending on the operating mode of the processor (protected mode or real-address
mode) and depending on the operand-size attribute in effect (32-bit operand or 16-bit
operand). In virtual-8086 mode, the real-address mode formats are used.

Figures 15-6 through 15-9 show these pointers as they are stored following an FSTENV
instruction.

The FSTENV and FSAVE instructions store this data into memory, allowing exception
handlers to determine the precise nature of any numeric exceptions that may be
encountered.

The instruction address saved points to any prefixes that preceded the instruction, as in
the Intel387 and Intel287 math coprocessors. This is different from the 8087, for which
the instruction address points only to the ESC instruction opcode.

Note that the processor control instructions FINIT, FLDCW, FSTCW, FSTSW,
FCLEX, FSTENV, FLDENV, FSAVE, and FRSTOR do not affect the data pointer.
Note also that, except for the instructions just mentioned, the value of the data pointer is
undefined if the prior ESC instruction did not have a memory operand.

32-BIT PROTECTED MODE FORMAT
3 2 1
1 3 5 7 0
1 T
RESERVED CONTROL WORD OH
e il
T
RESE'FIVED STATUS WORD 4H
: 1
RESERVED TAG \!VORD 8H
il
T T
IP OFFSET CH
: L
00000 OPCODE 10...00 l CS SELECTOR 10H
i — I
T T
DATA OPERAND OFFSET 14H
J l
RESEhVED ’ OPERAND ISELECTOR 18H
240486i15-6

Figure 15-6. Protected Mode Numeric Instruction and Data Pointer Image in Memory,
32-Bit Format

15-8

intel.

ARCHITECTURE OF THE FLOATING-POINT UNIT

32-BIT REAL-ADDRESS MODE FORMAT

i 3 5 7 0

RESE:RVED CONTRO:L WORD

RESERVED STATUS WORD

RESERVED TAG WORD

RESERVED INSTRUCTION POINTER 10...00
0000| INSTRUCTION POINTER10..00 || OPCODE 10...00

RESERVED | opeRAND POINTER 10...00
0000 OPERAND POINTER 10..00 loooooo0000000

OH
4H
8H
CH
10H
14H

18H

240486i15-7

Figure 15-7. Real Mode Numeric Instruction and Data Pointer Image in Memory,
32-Bit Format '

16-BIT PROTECTED MODE FORMAT

15 7

CONTROL WORD

OH

1
STATUS WORD

2H

TAG WORD

4H

t
IP OFFSET

6H

T
CS SELECTOR

8H

t
OPERAND OFFSET
s

AH

OPERAND SELECTOR

CH

240486i15-8

Figure 15-8. Protected Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit Format

15.2 COMPUTATION FUNDAMENTALS

This section covers numeric programming concepts that are common to all applications.
It describes the Intel486 FPU’s internal number system and the various types of numbers
that can be employed in numeric programs.: The most commonly used options for round-
ing and precision (selected by fields in the control word) are described, with exhaustive
coverage of less frequently used facilities deferred to later sections. Exception conditions
that may arise during execution of floating-point instructions are also described along
with the options that are available for responding to these exceptions.

15-9

"'ltel o ARCHITECTURE OF THE FLOATING-POINT UNIT

16-BIT REAL-ADDRESS MODE AND
VIRTUAL-8086 MODE FORMAT

15 7 o
CONTROL WORD oH

STATUS WORD 2H

TAG iwono aH

msrnucnor? POINTER ,,., 6H

P 150 [oJ :opcoos oo H
OPERAND P:OINTER o AH

DP . [0f0 0 000000000 cH

T

240486i15-9

Figure 15-9. Real Mode Numeric Instruction and Data Pointer Image in Memory,-.
16-Bit Format

15.2.1 Number System

The system of real numbers that people use for pencil and paper calculations is concep-
tually infinite and continuous. There is no upper or lower limit to the magnitude of the
numbers one can employ in a calculation, or to the precision (number of significant
digits) that may be required to represent them. For any given real number, there are
always arbitrarily many numbers both larger and smaller. There are also arbitrarily many
numbers between any two real numbers. For example, between 2.5 and 2.6 are 2.51,
2.5897, 2.500001, etc.

While ideally it would be desirable for a computer to be able to operate on the entire
real number system, in practice this is not possible. Computers, no matter how large,
ultimately have fixed-size registers and memories that limit the system of numbers that
can be accommodated. These limitations determine both the range and the precision of
numbers. The result is a set of numbers that is finite and discrete, rather than infinite
and continuous. This sequence is a subset of the real numbers that is designed to form a
useful approximation of the real number system.

Figure 15-10 superimposes the basic Intel486 floating-point number system on a real
number line (decimal numbers are shown for clarity, although the Intel486 processor
actually represents numbers in binary). The dots indicate the subset of real numbers the
Intel486 processor can represent as data and final results of calculations. The range of
double-precision, normalized numbers is approximately +2.23 x. 1073%® to +1.79 x
10°%8, Applications that are required to deal with data and final results outside this range
are rare. For reference, the range of the IBM System 370* is about +0.54 X 1077% to
+0.72 x 107, : ‘

15-10

|nte|® ARCHITECTURE OF THE FLOATING-POINT UNIT

1
[< NEGATIVE RANGE , I < POSITIVE RANGE >
: (NORMALIZED) (NORMALIZED)
B o Bk o o NLLLS

| |
| |
| |
A T T j
to on&:ﬁ\ 1.79 X 10908

—>y---
-
~
-
3
2
J
r
4
v«a
»
©
X
3
\|_> e —

| 2.000000000000000
(NOT REPRESENTABLE)
1.999999999999999

PRECISION j«¢——16 DIGITS —>>|

240486i15-10

Figure 15-10. Double-Precision Number System

The finite spacing in Figure 15-10 illustrates that the Intel486 processor can represent a
great many, but not all, of the real numbers in its range. There is always a gap between
two adjacent floating-point numbers, and it is possible for the result of a calculation to
fall in this space. When this occurs, the FPU rounds the true result to a number that it
can represent. Thus, a real number that requires more digits than the FPU can accom-
modate (e.g., a 20-digit number) is represented with some loss of accuracy. Notice also
that the representable numbers are not distributed evenly along the real number line. In
fact, the same number of representable numbers exists between any two successive pow-
ers of 2 (i.e., as many representable numbers exist between 2 and 4 as between 65,536
and 131 072) Therefore, the gaps between representable numbers are larger as the
numbers increase in magmtude All integers in the range +2% (approximately +10'?),
however, are exactly representable.

In its internal operations, the FPU actually employs a number system that is a substan-
tial superset of that shown in Figure 15-10. The internal format (called extended real)
extends the representable (normalized) range to about +3.37 X 107452 to +1.18 X
10*2, and its precision to about 19 (equivalent decimal) digits. This format is designed
to prov1de extra range and precision for constants and intermediate results, and is not
normally intended for data or final results.

From a practical standpoint, the Intel486 processor’s set of real numbers is sufficiently
large and dense so as not to limit the vast majority of applications. Compared to most
computers, including mainframes, the Intel486 processor provides a very good approxi-
mation of the real number system. It is important to remember, however, that it is not an
exact representation, and that computer arithmetic on real numbers is inherently
approximate.

15-11

|nte| o ARCHITECTURE OF THE FLOATING-POINT UNIT

15.2.2 Data Types and Formats

The Intel486 processor recognizes seven numeric data types for memory-based values,
divided into three classes: binary integers, packed decimal integers, and binary reals. A
later section describes how these formats are stored in memory (the sign is always
located in the highest-addressed byte).

Figure 15-11 summarizes the format of each data type. In the figure, the most significant
digits of all numbers (and fields within numbers) are the leftmost digits.

MOST SIGNIFICANT BYTE " HIGHEST ADDRESSED BYTE
DATA
RANGE | PRECISION
FORMATS 7 0|7 of7 o|7 of7 o|7 o|7 o|7 o|7 o|7 o
(TWO'S
WORD INTEGER 104 16 BITS COMPLEMENT)
15 0
(TWO'S
SHORT INTEGER | 10° 32BITS COMPLEMENT)
31 0
‘] - (TWO'S
LONG INTEGER 107 64 BITS COMPLEMENT)
63 ; 0'
MAGNITUDE
PACKED BCD 10 18 DIGITS SLX ldﬂ]d!s,d!sldm|dn|daz|duldw,dn|ds,d1|du,d51d41d:‘d1Id do
79 72 0
. BIASED
SINGLE PRECISION| 1022 24BITS 5| EXPONENT l SIGNIFICAND
31 23 0
DOUBLE 10=900 s| _BIASED L SIGNIFICAND |
PRECISION s3BITS EXPONENT
63 52 0
EXTENDED . BIASED
Al 10:422 | 64 BITS sI EXPONENT‘F,-I SIGNIFICAND]
. ' |79 64 634 ‘ [

(1) S = SIGN BIT (0 = positive, 1 = negative)
(2) d, = DECIMAL DIGIT (TWO PER TYPE)
(3) X = BITS HAVE NO SIGNIFICANCE; 387 MATH COPROCESSOR IGNORES WHEN LOADING, ZEROS WHEN

STORING
(4) A = POSITION OF IMPLICIT BINARY POINT
(5) | = INTEGER BIT OF SIGNIFICAND; STORED IN TEMPORARY REAL, IMPLICIT IN
SINGLE AND DOUBLE PRECISION
(6) EXPONENT BIAS (NORMALIZED VALUES)
SINGLE: 127 (7FH)- .
DOUBLE: 1023 (3FFH)
EXTENDED REAL: 16383 (3FFFH)
(7) PACKED BCD: (—1)3 (D,;...D,)
(8) REAL: (— 1)3 (2584s) (F,F,...)

240486i15-11

Figure 15-11. Numerical Data Formats

15-12

|nte| ® ARCHITECTURE OF THE FLOATING-POINT UNIT

15.2.2.1 BINARY INTEGERS

The three binary integer formats are identical except for length, which governs the range
that can be accommodated in each format. The leftmost bit is interpreted as the num-
ber’s sign: 0=positive and 1=negative. Negative numbers are represented in standard
two’s complement notation (the binary integers are the only Intel486 processor format to
use two’s complement). The quantity zero is represented with a positive sign (all bits are
0). The Intel486 processor word integer format is identical to the 16-bit signed integer
data type; the short integer format is identical to the 32-bit signed integer data type.

The binary integer formats exist in memory only. When used by the Intel486 FPU, they
are automatically converted to the 80-bit extended real format. All binary integers are
exactly representable in the extended real format.

15.2.2.2 DECIMAL INTEGERS

Decimal integers are stored in packed decimal notation, with two decimal digits
_“packed” into each byte, except the leftmost byte, which carries the sign bit (0=positive,
1=negative). Negative numbers are not stored in two’s complement form and are distin-
guished from positive numbers only by the sign bit. The most significant digit of the
number is the leftmost digit. All digits must be in the range 0-9.

The decimal integer format exists in memory only. When used by the Intel486 FPU, it is
automatically converted to the 80-bit extended real format. All decimal integers are
exactly representable in the extended real format. -

15.2.2.3 REAL NUMBERS
The Inteld486 processor represents real numbers of the form:

(_ 1)52E(bOAb1b2b3"bp— 1)

where:

s =0orl :

E = any integer between Emin and Emax, inclusive
b, =0orl ’

P = number of bits of precision

Table 15-3 summarizes the parameters for each of the three real-number formats. ‘
The Intel486 processor stores real numbers in a three-field binary format that resembles
scientific, or exponential, notation. The format consists of the following fields:

e The number’s significant digits are held in the signiﬁcand field, boab;b,bs..b,_;. (The
term “significand” is analogous to the term “mantissa” used to describe floating point
numbers on some computers.)

15-13

|nte|® ARCHITECTURE OF THE FLOATING-POINT UNIT

e The exponent field, ¢ = E +bias, locates the binary point within the significant digits
(and therefore determines the number’s magnitude). (The term “exponent” is analo-
gous to the term “characteristic” used to describe floating point numbers on some
computers.)

e The 1-bit sign field indicates whether the number is positive or negative. Negative
numbers differ from positive numbers only in the sign bits of their significands. . .

Table 15-4 shows how the real number 178.125 (decimal) is stored in the single real
format. The table lists a progression of equivalent notations that express the same value
to show how a number can be converted from one form to another. (The ASM386/486
and PL/M-386/486 language translators perform a similar process when they encounter
programmer-defined real number constants.) Note that not every decimal fraction has -
an exact binary equivalent. The decimal number 1/10, for example, cannot be expressed
exactly in binary (just as the number 1/3 cannot be expressed exactly in decimal). When
a translator encounters such a value, it produces a rounded binary approximation of the
decimal value.

Table 15-3. Summary of Format Parameters

Format
Parameter
Single Double Extended
Format width in bits 32 64 80
p (bits of precision) 24 53 64
Exponent width in bits 8 : 11 15
Emax +127 +1023 : +16383
Emin -126 -1022 —-16382
Exponent bias +127 +1023 +16383
Table 15-4. Real Number Notation
Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1,78125E2
Scientific Binary 1,0110010001E111
Scientific Binary 1,0110010001E10000110
(Biased Exponent)
Sign Biased Exponent Significand
Single Format (Normalized) 0 10000110 01100100010000000000000
1, (implicit)

15-14

nte|® -ARCHITECTURE OF THE FLOATING-POINT UNIT

The Intel486 processor usually carries the digits of the significand in normalized form.
This means that, except for the value zero, the significand contains an integer bit and
fraction bits as follows:

1,fEf...£f

where , indicates an assumed binary point. The number of fraction bits varies according
to the real format: 23 for single, 52 for double, and 63 for extended real. By normalizing
real numbers so that their integer bit is always a 1, the Intel486 processor eliminates
leading zeros in small values (] X | < 1). This technique maximizes the number of
significant digits that can be accommodated in a significand of a given width. Note that,
in the single and double formats, the integer bit is implicit and is not actually stored; the
integer bit is physically present in the extended format only.

If one were to examine only the significand with its assumed binary point, all normalized
real numbers would have values greater than or equal to 1 and less than 2. The exponent
field locates the actual binary point in the significant digits. Just as in decimal scientific
notation, a positive exponent has the effect of moving the binary point to the right, and
a negative exponent effectively moves the binary point to the left, inserting leading zeros
as necessary. An unbiased exponent of zero indicates that the position of the assumed
binary point is also the position of the actual binary point. The exponent field, then,
determines a real number’s magnitude.

In order to simplify comparing real numbers (e.g., for sorting), the Intel486 processor
stores exponents in a biased form. This means that a constant is added to the true
exponent -described above. As Table 15-3 shows, the value of this bias is different for each
real format. It has been chosen so as to force the biased exponent to be a positive value.
This allows two real numbers (of the same format and sign) to be compared as if they
are unsigned binary integers. That is, when comparing them bitwise from left to right
(beginning with the leftmost exponent bit), the first bit position that differs orders the
numbers; there is no need to proceed. further with the comparison. A number’s true
exponent can be determined simply by subtracting the bias value of its format.

The single and double real formats exist in memory only. If a number in one of these
formats is loaded into an FPU register, it is automatically converted to extended format,
the format used for all internal operations. Likewise, data in registers can be converted
to single or double real for storage in memory. The extended real format may be used in
memory also, typically to store intermediate results that cannot be held in registers.

Most applications should use the double format to store real-number data and results; it
provides sufficient range and precision to return correct results with a minimum of pro-
grammer attention. The single real format is appropriate for applications that are con-
strained by memory, but it should be recognized that this format provides a smaller
margin of safety. It is also useful for the debugging of algorithms, because roundoff
problems will manifest themselves more quickly in this format. The extended real format
should normally be reserved for holding intermediate results, loop accumulations, and
constants. Its extra length is designed to shield final results from the effects of rounding
and overflow/underflow in intermediate calculations. However, the range and precision
of the double format are adequate for most microcomputer applications.

15-15

Inte|® ARCHITECTURE OF THE FLOATING-POINT UNIT

15.2.3 Rounding Control

Internally, the Intel486 FPU employs three extra bits (guard, round, and sticky bits) that
enable it to round numbers in accord with the infinitely precise true result of a compu-
tation; these bits are not accessible to programmers. Whenever the destination can rep-
resent the infinitely precise true result, the FPU delivers it. Rounding occurs in
arithmetic and store operations when the format of the destination cannot exactly rep-
resent the infinitely precise true result. For example, a real number may be rounded if it
is stored in a shorter real format, or in an integer format. Or, the mflnltely precise true
result may be rounded when it is returned to- a register.

The Intel486 FPU has four rounding modes, selectable by the RC field in the control
- word (see Figure 15-3). Given a true result b that cannot be represented by the target
data type, the FPU determines the two representable numbers a and ¢ that most closely
bracket b in value (@ < b < c¢). The processor then rounds (changes) b to a or to ¢
according to ‘the mode selected by the RC field as shown in Table 15-5. Rounding
introduces an error in a result that is less than one unit in the last place to which the
result is rounded.

e “Round to nearest” is the default mode and is suitable for most applications; it
provides the most accurate and statistically unbiased estimate of the true result.

o The “chop” or “round toward zero” mode is provided for integer arithmetic
_ applications.

e “Round up” and “round down” are termed directed rounding and can be used to
implement interval arithmetic. Interval arithmetic is used to determine upper and
lower bounds for the true result of a multi-step computation, when the intermediate
results of the computation are subject to rounding.

Rounding control affects only the arithmetic instructions (refer to Chapter 16 for lists of
arithmetic and nonarithmetic instructions).

Table 15-5. Rounding Modes

RC Field Rounding Mode Rounding Action
00 Round to nearest Closer to b of a or ¢; if equally close, select
even number (the one whose least significant
bit is zero).
01 Round down (toward —) a
10 - Round up (toward +) c
11 Chop (toward 0) Smaller in magnitude of a or c.

NOTE: a < b < ¢; aand c are successive representable numbers; b is not representable.

15-16

|nte|® ARCHITECTURE OF THE FLOATING-POINT UNIT

15.2.4 Precision Control

The Intel486 FPU allows results to be calculated with either 64, 53, or 24 bits of preci-
sion in the significand as selected by the precision control (PC) field of the control word.
The default setting, and the one that is best suited for most applications, is the full 64
bits of significance provided by the extended real format. The other settings are required
by the IEEE standard and are provided to obtain compatibility with the specifications of
certain existing programming languages. Specifying less precision nullifies the advan-
tages of the extended format’s extended fraction length. When reduced precision is
specified, the rounding of the fractional value clears the unused bits on the right to
zeros. Precision Control affects only the instructions FADD, FSUB, FMUL, FDIV, and
FSQRT.

Special Computational 16
Situations |

CHAPTER 16
SPECIAL COMPUTATIONAL SITUATIONS

Besides being able to represent positive and negative numbers, the numerical data for-
mats may be used to describe other entities. These special values provide extra flexibility,
but most users will not need to understand them in order to use the numerics capabili-
ties of the Intel486 processor successfully. This section describes the special values that
may occur in certain cases and the significance of each. The numeric exceptions are also
described, for writers of exception handlers and for those interested in probing the limits
of numeric computation using the Intel486 processor.

The material presented in this section is mainly of interest to programmers concerned
with writing exception handlers. Many readers will only need to skim this section.

When discussing these special computational situations, it is useful to distinguish
between arithmetic instructions and nonarithmetic instructions. Nonarithmetic instructions
are those that have no operands or transfer their operands without substantial change;
arithmetic instructions are those that make significant changes to their operands:.
Table 16-1 defines these two classes of instructions.

16.1 SPECIAL NUMERIC VALUES

The numerical data formats of the Intel486 processor encompass encodings for a variety
of special values in addition to the typical real or integer data values that result from
normal calculations. These special values have significance and can express relevant
information about the computations or operations that produced them. The various
types of special values are :

e Denormal real numbers -

o Zeros

e Positive and negative infinity

e NaN (Not-a-Number)

e Indefinite

o Unsupported formats

The following sections explain the origins and significanée of each of these special val-

ues. Tables 16-6 through 16-9 at the end of this section show how each of these special
values is encoded for each of the numeric data types.

16.1.1 Denormal Real Numbers

The Intel486 processor generally stores, nonzero real numbers in normalized floating-
point form; that is, the integer (leading) bit of the significand is always a one. (Refer to
Chapter 15 for a review of operand formats.) This bit is explicitly stored in the extended

16-1

intgl.

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-1. Arithmetic and Nonarithmetic Instructions

Nonarithmetic Instructions Arithmetic Instructions
FABS F2XM1
FCHS FADD (P)
FCLEX FBLD
FDECSTP FBSTP
FFREE FCOMP(P)(P)
FINCSTP FCOS
FINIT FDIV(R)(P)
FLD (register-to-register) FIADD
FLD (extended format from memory) FICOM(P)
FLD constant FIDIV(R)
FLDCW FILD
FLDENV FIMUL
FNOP FIST(P)
FRSTOR FISUB(R)
FSAVE FLD (conversion)
FST(P) (register-to-register) FMUL(P)
FSTP (extended format to memory) FPATAN
FSTCW FPREM
FSTENV FPREM1
FSTSW FPTAN
FWAIT FRNDINT
FXAM FSCALE
FXCH FSIN
FSINCOS
FSQRT
FST(P) (conversion)
FSUB(R)(P)
FTST
FUCOM(P)(P)
FXTRACT
FYL2X
FYL2XP1

format, and is implicitly assumed to be a one (1,) in the single and double formats. Since
leading zeros are eliminated, normalized storage allows the maximum number of signif-
icant digits to be held in a significand of a given width.

When a numeric value becomes very close to zero, normalized floating-point storage
cannot be used to express the value accurately. The term tiny is used here to precisely
define what values require special handling. A number R is said to be tiny when —2F™m"
<R <0o0r0 <R < +2E™" (As defined in Chapter 15, Emin is —126 for single format,
—1022 for double format, and —16382 for extended format.) In other words, a nonzero
number is tiny if its exponent would be too negative to store in the destination format.

16-2

lni'el 0 SPECIAL COMPUTATIONAL SITUATIONS

To accommodate these instances, the Intel486 processor can store and operate on reals
that are not normalized, i.e., whose significands contain one or more leading zeros.
Denormals typically arise when the result of a calculation yields a value that is tiny.

Denormal values have the following properties:
o The biased floating-point exponent is stored at its smallest value (zero)

o The integer bit of the significand (whether explicit or implicit) is zero

The leading zeros of denormals permit smaller numbers to be represented, at the possi-
ble cost of some lost precision (the number of significant bits is reduced by the leading
zeros). In typical algorithms, extremely small values are most likely to be generated as
intermediate, rather than final, results. By using the extended real format for holding
intermediate values, quantities as small as +3.37 x 107** can be represented; this
makes the occurrence of denormal numbers a rare phenomenon in Intel486 numerical
applications. Nevertheless, the Intel486 processor can load, store, and operate on denor-
malized real numbers when they do occur.

Denormals receive special treatment by the Intel486 processor in three respects:

o The Intel486 processor avoids creating denormals whenever possible. In other words,
it always normalizes real numbers except in the .case of tiny numbers.

o The Inteld486 processor provides the unmasked underflow exception to permit pro-
grammers to detect cases when denormals would be created.

o The Intel486 processor provides the denormal exception to permit programmers to
detect cases when denormals enter into further calculations.

Denormalizing means incrementing the true result’s exponent and inserting a corre-
sponding leading zero in the significand, shifting the rest of the significand one place to
the right. Denormal values may occur in any of the single, double, or extended formats.
Table 16-2 shows the range of denormalized values in each format.

Denormalization produces either a denormal or a zero. Denormals are readily identified
by their exponents, which are always the minimum for their formats; in biased form, this
is always the bit string: 00..00. This same exponent value is also assigned to the zeros, but
a denormal has a nonzero significand. A denormal in a register is tagged special.
Tables 16-8 and 16-9 later in this chapter show how denormal values are encoded in
each of the real data formats.

Table 16-2. Denormalized Values

Smallest Magnitude ‘ Largest Magnitude
Format
(Exact) (Approx.) (Exact) (Approx.)
Single Precision 27150 10746 27126_p—150 10738
Double Precision 271078 10324 271022_p=—1075 - 107%08
Extended 2—16461 10—4956 2—16382_2—16461 10—-4932

16-3

lntel o SPECIAL COMPUTATIONAL SITUATIONS

The denormalization process causes loss of significance if low-order one-bits bits are
shifted off the right of the significand. In a severe case, all the significand bits of the true
result are shifted out and replaced by the leading zeros. In this case, the result of denor-
malization is a true zero, and, if the value is in a register, it is tagged as a zero.

Denormals are rarely encountered in most applications. Typical debugged algorithms
generate extremely small results during the evaluation of intermediate subexpressions;
the final result is usually of an appropriate magnitude for its single or double format real
destination. If intermediate results are held in temporary real, as is recommended, the
great range of this format makes underflow very unlikely. Denormals are likely to arise
only when an application generates a great many intermediates, so many that they can-
not be held on the register stack or in extended format memory variables. If storage
limitations force the use of single or double format reals for intermediates, and small
values are produced, underflow may occur, and, if masked, may generate denormals.

When a denormal number in single or double format is used as a source operand and
the denormal exception is masked, the Intel486 FPU automatically normalizes the num-
ber when it is converted to extended format.

16.1.1.1 DENORMALS AND GRADUAL UNDERFLOW

Floating-point arithmetic cannot carry out all operations exactly for all operands;
approximation is unavoidable when the exact result is not representable as a floating-
point variable. To keep the approximation mathematically tractable, the hardware is
made to conform to accuracy standards that can be modeled by certain inequalities
instead of equations. Let the assignment

X«<Y@ ,Z (where @ is some operation)

represent a typical operation. In the default rounding mode (round to nearest), each
operation is carried out with an absolute error no larger than half the separation
between the two floating-point numbers closest to the exact results. Let x be the value
stored for the variable whose name in the program is X, and similarly y for Y, and z for
Z. Normally y and z will differ by accumulated errors from what is desired and from what
would have been obtained in the absence of error. For the calculation of x we assume
that y and z are the best approximations available, and we seek to compute x as well as
we can. If y@z is representable exactly, then we expect x = y@z, and that is what we get
for every algebraic operation on the Intel486 processor FPU (i.e., when y@z is one of
y+z,y—z,yXz, y=+z, sqrt z). But if y@z must be approximated, as is usually the case, then
x must differ from y@z by no more than half the difference between the two represent-
able numbers that straddle y@z. That difference depends on two factors:

1. The precision to which the calculation is carried out, as determined either by the
precision control bits or by the format used in memory. On the Intel486 processor,
the precisions are single (24 significant bits), double (53 significant bits), and
extended (64 significant bits).

16-4

|nte| 0 SPECIAL COMPUTATIONAL SITUATIONS

2. How close y@x is to zero. In this respect the existence of denormal numbers on the
Intel486 processor provides a distinct advantage over systems that do not admit
denormal numbers.

In any floating-point number system, the density of representable numbers is greater
near zero than near the largest representable magnitudes. However, machines that do
not use denormal numbers suffer from an enormous gap between zero and its closest
neighbors. Figures 16-1 and 16-2 show what happens near zero in two kinds of floating-
point number systems. '

Figure 16-1 shows a floating-point number system that (like the Intel486 processor)
admits denormal numbers. For simplicity, only the non-negative numbers appear and the
figure illustrates a number system that carries just four significant bits instead of the 24,
53, or 64 significant bits that the Intel486 processor offers.

Each vertical tick mark stands for a number representable in four significant bits, and
the longer verticals stand for powers of 2. The horizontal marks are evenly spaced; those
uncrossed by vertical tick marks stand for numbers unrepresentable at this precision.
The denormal numbers lie between 0 and the nearest normal power of 2. They are no
less dense than the remaining nonzero numbers.

Figure 16-2 shows a floating-point number system that (unlike the Intel486 or Intel387
FPUs) does not admit denormal numbers. There are two large gaps, one on the positive
side of zero (as illustrated) and one on the negative side of zero (not illustrated). The
gap between zero and the nearest neighbor of zero differs from the gap between that
neighbor and the next bigger number by a factor of about 8.4 x 10° for single, 4.5 x 10"
for double, and 9.2 x 10'® for extended format. Those gaps would complicate error
analysis. :

unonnlun.n;...4...|.......................‘....... e abececceetoaeana
------ Normal Numbers----=-34
Denormals

240486i16-1

Figure 16-1. Floating-Point System with Denormals

0 IR R Ly T T e e B B R Ty EE PRy PP Py PR R

-Normal Nunmbers----- +

240486i16-2

Figure 16-2. Floating-Point System without Denormals

16-5

I ntel ® SPECIAL COMPUTATIONAL SITUATIONS

The advantage of denormal numbers is apparent when one considers what happens in
either case when the underflow exception is masked and y@z falls into the space
between zero and the smallest normal magnitude. The Intel486 processor returns the
nearest denormal number. This action might be called “gradual underflow.” The effect
is no different from the rounding that can occur when y@z falls in the normal range.

On the other hand, the system that does not have denormal numbers returns zero as the
result, an action that can be much more inaccurate than rounding. This action could be
called “abrupt underflow.” The Intel486 FPU and Intel387 math coprocessor handle
denormal values differently than the 8087/Intel287 math coprocessors. See Section 16.2.4
for more details.

16.1.2 Zeros

The value zero in the real and decimal integer formats may be signed either positive or
negative, although the sign of a binary integer zero is always positive. For computational
purposes, the value of zero always behaves identically, regardless of sign, and typically
the fact that a zero may be signed is transparent to the programmer. If necessary, the
FXAM instruction may be used to determine a zero’s sign. -

A programmer can code a zero, or it can be created by the FPU as its masked response
to an underflow exception. If a zero is loaded or generated in a register, the register is
tagged zero. Table 16-3 lists the results of instructions executed with zero operands and
also shows how a zero may be created from nonzero operands. '

Table 16-3. Zero Operands and Results

Operation Operands Result
FLD,FBLD +0 *0
FILD +0 +0
FST,FSTP,FRNDINT *0 *0

+X +0'
=X -0’
FBSTP *0 *0
FIST,FISTP *0 . *0
+X +0°
-X -0*
FCHS +0 -0
: -0 +0
FABS +0 +0
Addition +0 plus +0 +0
-0 plus -0 -0
+0 plus =0, —0 plus +0 +0?
—X plus +X, +X plus =X +0?
+0 plus =X, =X plus +0 #X

16-6

intgl.

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-3. Zero Operands and Results

FPREM, FPREM1

FSQRT
Compare

FTST
FXAM

FSCALE

FXTRACT

FPTAN
FSIN (or SIN

result of FSINCOS)
FCOS (or COS

result of FSINCOS)

+0 rem =0

+X rem =0

+0 rem =X

-0 rem =X
+Xrem =Y
—Xrem x£Y

*0

+0: +X

+0: *0

+0: -X

+0

+0

-0

+0 scaled by —
+0 scaled by +w
+0 scaled by X
+0

-0

Operation Operands Resuit
Subtraction +0 minus -0 +0
—0 minus +0 -0
+0 minus +0, —0 minus +0?2
-0 +0?
+X minus +X, —X minus —#X
-X #X
+0 minus =X
+X minus =0
Multiplication +0 X =0 0
+0 X=X, X X =0 0
+X X +Y, =X x =Y +0'
+x x =Y, =X x +Y -0'
Division +0 + =0 Invalid Operation
+=X + *0 o (Zero Divide)
+X + +o 0
+0 =+ +X, -0+ =X +0
+0+ =X, -0 + +X -0
X + =Y, +X + +Y +0'
X+ +Y, +X + =Y -0

Invalid Operation
Invalid Operation

+0

-0

+0Y exactly divides X
—0Y exactly divides X
*0

+0 < +X

+0 = =0

+0 > -X

*0=0
C;=1;C,=C,= Cy,=0
C3=C;=1;C,=C,=0
*0

Invalid Operation

*0
ST=+0,ST(1)=—ox,
Zero divide
ST=-0,ST(1) = —,
Zero divide

*0

*0

+1

16-7

Intel ® SPECIAL COMPUTATIONAL SITUATIONS

Table 16-3. Zero Operands and Results

Operation . Operands Resuit
FPATAN +0 + +X *0
+0 + =X *m
+X + +0 #m/2
+0 + +0 *0
*0 + -0 *r
+o0 + +0 + /2
—o + *+0 —7/2
+0 + +» *0
+0 + — *1r
F2XM1 40 +0
-0 =0
FYL2X - =Y x log(+0) Zero Divide
: . %0 x log(=0) Invalid Operation
FYL2XP1 . +Y X log(x0+1) *0
=Y X log(+=0+1) -*0
XandY denote nonzero positive operands.
1 When extreme underflow denormalizes the result to zero.
2 Sign determined by rounding mode: + for nearest, up, or chop, — for down.
3 When 0 < X < 1 and rounding mode is not up.
4 When —1 < x < 0 and rounding mode is not down.
* Sign of original zero operand. .
Sign of original X operand.
—# Complement of sign of original X operand.

Exclusive OR of the signs of the operands.

16.1.3 Infinity

The real formats support signed representations of infinities. These values are encoded
with a biased exponent of all ones and a significand of 1,00..00; if the infinity is in a
register, it is tagged special.

A programmer can code an infinity, or it can be created by the FPU as its masked
response to an overflow or a zero divide exception. Note that depending on rounding
mode, the masked response may create the largest valid value representable in the des-
tination rather than infinity.

The signs of the infinities are observed, and comparisons are possible. Infinities are
always interpreted in the affine sense; that is, —o < (any finite number) < +o. Arith-
metic on infinities is always exact and, therefore, signals no exceptions, except: for the
invalid operations specified in Table 16-4.

16.1.4 NaN (Not-a-Number)

A NaN (Not a Number) is a member of a class of special values that exists in the real
formats only. A NaN has an exponent of 11..11B, may have either sign, and may have
any significand except 1,00..00B, which is assigned to the infinities. A NaN in a register
is tagged special.

16-8

intal.

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-4. Infinity Operands and Results

Operation Operands Result
FLD,FBLD *+00 *o0
FST,FSTP,FRNDINT +00 *oo
FCHS +00 —

—00 + oo
FABS +0o0 + o0
Addition +o0 plus +o + 00
—o plus — —00
+ o plus —o Invalid Operation
—o plus +o Invalid Operation
+o plus =X *o0
+X plus o *o0
Subtraction +00 minus — +o0
— minus + o —o0
+00 mMinus +o Invalid Operation
—o0 minus — Invalid Operation
+oo minus *X *o0
=X minus *o —*o0
Multiplication +00 X *oo 0
+oo X Y, £Y X *o o
+0 X *oo, 0 X *0 Invalid Operation
Division +o00 + oo Invalid Operation
+oo + X 0
+X + *oo 0
+o00 + =0 0
FPREM,FPREM1 +00 rem +o Invalid Operation
+oo rem =X Invalid Operation
+X rem *o $X, Q=0
FSQRT —o0 Invalid Operation
+ o0 + 00
Compare +00: +oo +ow = 4o
—00 ; —00 -0 = —00
400 —00 +o > —x
—0o0 . +00 -0 < 4o
+o X +o0o > X
—0 ; =X —o < X
*X: 4 X< o
*+X: —o X> +x
+ o0 +0w >0
FTST -0 -0 <0
FSCALE +oo scaled by — Invalid Operation
+oo scaled by +o *o0
+oo scaled by =X *o0
+0 scaled by — +0,
+0 scaled by « Invalid Operation
+Y scaled by +o #oo
+Y scaled by —« #0
FXTRACT +o0 ST = *», ST(1) = 4+
FXAM +o0 C0=C2=1;C1=C3=0
- C0=C1=C2=1; C3=0

16-9

intgl.

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-4. Infinity Operands and Results

Result

+Y X log (+)
+0 X log (+®)
+Y X log (—)

Operation Operands
FPATAN +oo + +X *1/2
*Y + +o #0
*Y + —o #
+o + 400 *w/4
+oo+ —o0 *3m/4
+o + +0 *m/2
+0 + +o +0
+0 + — +
-0+ + -0
-0+ —x -
F2XMm1 + +o0
—o0 -1
FYL2X +w X log (1) Invalid Operation
+o0 X log (X>1) *o0
+o0o X log (0 <X<1) —*o0
+Y X log (+) #oo
+0 X log (+) Invalid Operation
+Y X log (—) Invalid Operation
FYL2XP1 +o0o X log. (1) Invalid Operation
+o00 X log (X>0) *0o
+o0o X log —*o0
(—1<X<0) #oo

Invalid Operation
Invalid Operation

* <

% &

There are two classes of NaNs: signaling (SNaN) and quiet (QNaN). Among the
QNaNs, the value real indefinite is of special interest.

16.1.4.1 SIGNALING NaNs

A signaling NaN is a NaN that has a zero as'the most significant bit of its significand.
The rest of the significand may be set to any value. The FPU never generates a signaling
NaN as a result; however, it recognizes signaling NaNs when they appear as operands.
Arithmetic operations (as defined at the beginning of this chapter) on a signaling NaN
cause an invalid-operation exception (except for load operations from the stack, FXCH,
FCHS, and FABS).

Zero or nonzero positive operand.
Nonzero positive operand.
Sign of original infinity operand.
* Complement of sign of original infinity operand.
Sign of original operand.
Exclusive OR of signs of operands.
Sign of the original Y operand.
Sign of original zero operand.

16-10

Intel o SPECIAL COMPUTATIONAL SITUATIONS

By unmasking the invalid operation exception, the programmer can use signaling NaNs
to trap to the exception handler. The generality of this approach and the large number
of NaN values that are available provide the sophisticated programmer with a tool that
can be applied to a variety of special situations.

For example, a compiler could use signaling NaNs as references to uninitialized (real)
array elements The compiler could premltlallze each array element with a signaling
NaN whose significand contained the index (relative position) of the element. If an
application program attempted to access an element that it had not initialized, it would
use the NaN placed there by the compiler. If the invalid operation exception were
unmasked, an interrupt would occur, and the exception handler would be invoked. The
exception handler could determine which element had been accessed, since the operand
address field of the exception pointers would point to the NaN, and the NaN would
contain the index number of the array element.

16.1.4.2 QUIET NaNs

A quiet NaN is a NaN that has a one as the most significant bit of its significand. The
Intel486 processor creates the quiet NaN real indefinite (defined below) as its default
response to certain exceptional conditions. The Intel486 processor may derive other
QNaNs by converting an SNaN. The Intel486 processor converts a SNaN by setting the
most significant bit of its significand to one, thereby generating an QNaN. The remain-
ing bits of the significand are not changed; therefore, diagnostic information that may be
stored in these bits of the SNaN is propagated into the QNaN.

The Intel486 processor will generate the special QNaN, real indefinite, as its masked
response to an invalid operation exception. This NaN is signed negative; its significand is
encoded 1,100..00. All other NaNs represent values created by programmers or derived
from values created by programmers.

Both quiet and signaling NaNs are supported in all operations. A QNaN is generated as
the masked response for invalid-operation exceptions and as the result of an operation
in which at least one of the operands is a QNaN. The Intel486 processor applies the
rules shown in Table 16-5 when generating a QNaN.

Note that handling of a QNaN operand has greater priority than all exceptions except
certain invalid-operation exceptions (refer to the section “Exception Priority” in this
chapter).

Quiet NaNs could be used, for example, to speed up debugging. In its early testing
phase, a program often contains multiple errors. An exception handler could be written
to save diagnostic information in memory whenever it was invoked. After storing the
diagnostic data, it could supply a quiet NaN as the result of the erroneous instruction,
and that NaN could point to its associated diagnostic area in memory. The program
would then continue, creating a different NaN for each error. When the program ended,
the NaN results could be used to access the diagnostic data saved at the time the errors
occurred. Many errors could thus be diagnosed and corrected in one test run.

16-11

Intel) SPECIAL COMPUTATIONAL SITUATIONS

Table 16-5. Rules for Generating QNaNs

Operation Action

Real operation on an SNaN and a QNaN. Deliver the QNaN operand.

Real operation on two SNaNs. Deliver the QNaN that results from converting
the SNaN that has the larger significand.

Real operation on two QNaNs. Deliver the QNaN that has the larger
significand.

Real operation on an SNaN and another Deliver the QNaN that results from converting

number. the SNaN.

Real operation on a QNaN and another . Deliver the QNaN.

number.

Invalid operation that does not involve NaNs. Deliver the default QNaN real indefinite.

In embedded applications which use computed results in further computations, an unde-
tected QNaN can invalidate all subsequent results. Such applications should therefore
periodically check for QNaNs and provide a recovery mechanism to be used if a QNaN
result is detected.

16.1.5 Indefinite

For each numeric data type, one unique encoding is reserved for representing the special
value indefinite. The Intel486 processor produces this encoding as its response to a
masked invalid-operation exception.

In the case of reals, the indefinite value is a QNaN as discussed in the prior section.

Packed decimal indefinite may be stored with a FBSTP instructibn; attempting to use this
encoding in a FBLD instruction, however, will have an undefined result; thus indefinite
cannot be loaded from a packed decimal integer.

In the binary integers, the same encoding may represent either indefinite or the largest
negative number supported by the format (—2'5, =231, or —2%%). The Intel486 processor
will store this encoding as its masked response to an invalid operation, or when the value
in a source register represents or rounds to the largest negative integer representable by
the destination. In situations where its origin may be ambiguous, the invalid-operation
exception flag can be examined to. see if the value was produced by an exception
response. When this encoding is.loaded or used by an integer arithmetic or compare
operation, it is always interpreted as a negative number; thus indefinite cannot be loaded
from a binary integer.

16-12

|nte| o SPECIAL COMPUTATIONAL SITUATIONS

16.1.6 Encoding of Data Types

Tables 16-6 through 16-9 show how each of the special values just described is encoded -
for each of the numeric data types. In these tables, the least-significant bits are shown to
the right and are stored in the lowest memory addresses. The sign bit is always the
left-most bit of the highest-addressed byte.

16.1.7 Unsupported Formats

The extended format permits many bit patterns that do not fall into any of the previously
mentioned categories. Table 16-10 shows these unsupported formats. Some of these
encodings were supported by the Intel287 math coprocessor; however, most of them are
not supported by the Intel387 and Intel486 FPUs. These changes are required due to
changes made in the final version of IEEE Std 754 that eliminated these data types.

The categories of encodings formerly known as pseudo-NaNs, pseudoinfinities, and
unnormal numbers are not supported. The Intel486 processor raises the invalid-
operation exception when they are encountered as operands.

The encodings formerly known as pseudodenormal numbers are not generated by the
Intel486 processor; however, they are correctly utilized when encountered as operands.
The exponent is treated as if it were 00..01 and the mantissa is unchanged. The denor-
mal exception is raised.

16-13

|nte| o SPECIAL COMPUTATIONAL SITUATIONS

Table 16-6. Binary Integer Encodings

Class Sign ‘ Magnitude
(Largest) 0 11.11
(7]
Q
2
.‘”;;
o . .
o
(Smallest) 0 00..01
Zero ’ 0 00..00
(Smallest)] 13,91
[7]
(Y]
2
®
o
()] . .
=z _ .
(Largest/indefinite*) 1 00..00
Word: 15 bits
Short: 31 bits
Long: 63 bits

*|If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the
FPU interprets it as the largest negative number representable in the format... —2'%, —2%, or —2%3, The
FPU delivers this encoding to an integer destination in two cases:

1. If the result is the largest negative number.
2. As the response to a masked invalid operation exception, in which case it represents the special value
integer indefinite.

16-14

intgl.

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-7. Packed Decimal Encodings

Magnitude
Class Sign
digit digit digit digit digit
(Largest) 0 0000000 | 1001 1001 1001 1001 1001
[7/]
[
> . . .
'g (Smallest) 0 0000000 | 0000 0000 0000 0000 0001
o
Zero 0 0000000 | 0000 0000 0000 0000 0000
Zero 1 0000000 | 0000 000O 0000 0000 0000
(Smallest) 1 0000000 | 0000 0O0O0O 0000 0000 0000
7] . . .
[
2
®
o
(Largest) 1 0000000 | 1001 1001 1001 1001 1001
Indefinite* 1 1111111 1111 1111 UUUU* UUUU vuuuu
— 1 byte — — 9 bytes —

*The packed decimal indefinite is stored by FBSTP in response to a masked invalid operation exception.
Attempting to load this value via FBLD produces an undefined result.
**UUUU means bit values are undefined and may contain any value.

16-15

intgl.

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-8. Single and Double Real Encodings

*Integer bit is implied and not stored.

16-16

. Biased Significand
Class Sign Exponent ff-ff*
0 1111 11..11
Quiet
2 0 11..11 10..00
] 0 11..11 01..11
Signaling)
0 11..11 00..01
@ Infinity 0 11..11 00..00
2 0 11..10 1.1
[7] . .-
& Normals))
0 00..01 00..00
% 0 00..00 1.1
& | Denormals
0 00..00 00..01
Zero 0 00..00 00..00
Zero 1 '00..00 00.00
1 00..00 00..01
Denormals
(]
Tg 1 00..00 11.11
« 1 00..01 00..00
Normals
@ 1 11..10 11..11
-% Infinity 1 11..11 00..00
o
2 1 1 1...1 1 00...01
Signaling . .
£) 1 11..11 01..11
2 Indefinite 1 11..11 10..00
Quiet . .
1 11..11 11..11
Single: — 8 bits — — 23 bits —
Double: — 11 bits — — 52 bits —

lntel o SPECIAL COMPUTATIONAL SITUATIONS

Table 16-9. Extended Real Encodings

. Biased Significand
Class Sign Exponent Lff-ff

0 1.1 111..11
Quiet

) 0 11..11 110..00

S 11...11 _ 101'..11
Signaling . . .

0 11..11 1 00..01

Infinity 0 11..11 1 00..00

0 11..10 111.11
] .))
- Normals . . .

§ 0 00..01 100..00

0 00..00 111,11
o Pseudodenormals . .

s 0 00..00 1 00..00

& 0 00..00 011..11
Denormals

0 00..00 0 00..01

Zero 0 00..00 0 00..00

Zero 1 00..00 0 00..00

1 00..00 0 00..01
Denormals '

00..00 011..11

0 0 00..00 . 111..11
§ Pseudodenormals . . .

0 00..00 1 00..00

1 00..01 1 00..00
a Normals ’ ' '
g . . .

= 1 11..10 111..11

§ Infinity 1 11..11 1 00..00

1 11..11 1 00..01
Signaling

P 1 11.11 101..11

g Indefinite 1 11..11 1 10..00
Quiet . . .

1 11.11 111.11

— 15 bits — — 64 bits —

16-17

Intel ® SPECIAL COMPUTATIONAL SITUATIONS

Table 16-10. Unsupported Formats

. Biased Significand
Class Sign Exponent f.ff--ff
0 11..11 011..11
Quiet . . .
o o 0 11..11 0 10..00
-
2 s 0 11..11 001..11
7] . .
o | o Signaling : :
S 0 11..11 0 00..01
9 - Pseudoinfinity 0 11..11 0 00..00
o
0 11..10 011..11
[72]
® | Unnormals . . . :
& 0 00..01 0 00..00
1 11..10 011..11
(7] .
® | Unnormals . - : .
e 1 00..01 0 00..00
Pseudoinfinity 1 11..11 0 00..00
2 1 1 11..11 001..11
2 Signaling . . .
- I 1 1.1 0 00..01
Q
2 v 2
23 1 11..11 011.11
& | Quiet . . .
1 11..11 010..00
— 15 bits — — 64 bits —

16.2 NUMERIC EXCEPTIONS

The Intel486 processor can recognize six classes of numeric exception conditions while
executing numeric instructions:

1. I— Invalid operation
o Stack fault
o IEEE standard invalid operation

Z — Divide-by-zero
D — Denormalized operand
O — Numeric overflow

U — Numeric underflow

R I I S

P — Inexact result (precision)

16-18

Intel @ SPECIAL COMPUTATIONAL SITUATIONS

16.2.1 Handling Numeric Exceptions

When numeric exceptions occur, the Intel486 processor takes one of two poss1ble
courses of action:
o The FPU can itself handle the exception, producing the most reasonable result and

PRI SIS

dllUWlIlg lluITlCIlL program execution 1o continue UIlUlblUrUCU

e A software exception handler can be invoked to handle the exception.

Each of the six exception conditions described above has a corresponding flag bit in the
FPU status word and a mask bit in the FPU control word. If an exception is masked (the
corresponding mask bit in the control word = 1), the Intel486 processor takes an appro-
priate default action and continues with the computation. If the exception is unmasked
(mask = 0), a software exception handler is invoked immediately before execution of the
next WAIT or non-control floating-point instruction. Depending on the value of the NE
bit of the CRO control register, the exception handler is invoked either (NE = 1)
through interrupt vector 16 or (NE = 0) through an external interrupt.

Note that when exceptions are masked, the FPU may detect multiple exceptions in a
single instruction, because it continues executing the instruction after performing its
masked response. For example, the FPU could detect a denormalized operand, perform
its masked response to this exception, and then detect an underflow.

16.2.1.1 AUTOMATIC EXCEPTION HANDLING

The Intel486 processor has a default fix-up activity for every possible exception condition
it may encounter. These masked-exception responses are designed to be safe and are
generally acceptable for most numeric applications.

As an example of how even severe exceptions can be handled safely and automatically
using the default exception responses, consider a calculation of the parallel resistance of
several values using only the standard formula (Figure 16-3). If R1 becomes zero, the
circuit resistance becomes zero. With the divide-by-zero and precision exceptions
masked, the Intel486 processor will produce the correct result.

By masking or unmasking specific numeric exceptions in the FPU control word, pro-
grammers can delegate responsibility for most exceptions to the Intel486 processor,
reserving the most severe exceptions for programmed exception handlers. Exception-
handling software is often difficult to write, and the masked responses have been tai-
lored to deliver the most reasonable result for each condition. For the majority of
applications, masking all exceptions yields satisfactory results with the least program-
ming effort. Certain exceptions can usefully be left unmasked during the debugging
phase of software development, and then masked when the clean software is actually
run. An invalid-operation exception for example, typically indicates a program error that
must be corrected. :

The exception flags in the FPU status word provide a cumulative record of exceptions

that have occurred since these flags were last cleared. Once set, these flags can be
cleared only by executing the FCLEX (clear exceptions) instruction, by reinitializing the

16-19

lntel ® SPECIAL COMPUTATIONAL SITUATIONS

3

=

s

)

S
MN—

-

EQUIVALENT RESISTANCE =

1+ 1 4 1
R R, R,

240486i16-3

Figure 16-3. Arithmetic Example Using Infinity

FPU, or by overwri‘ting the flags with an FRSTOR or FLDENYV instruction. This allows
a programmer to mask all exceptions, run a calculation, and then inspect the status word
to see if any exceptions were detected at any point in the calculation.

16.2.1.2 SOFTWARE EXCEPTION HANDLING

If the FPU encounters an unmasked exception condition, a software exception handler is
invoked immediately before execution of the next WAIT or non-control floating-point

inctriiction The evecentin handla nunkad ithar thra intarrint vectar 14
msiruciuion. 14 \/A\.z\al.ll.l\Jll nana:er 18 lu‘vlux\\,u ciner uuu'uéu mterrupt vecior 16 Oor

through an external interrupt, depending on the value of the NE bit of the CRO control
register.

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately
before the execution of the next non-control floating-point or WAIT instruction. Inter-
rupt 16 is an operating-system call that invokes the exception handler. Chapter 9 con-
tains a general discussion of exceptions and interrupts on the Intel486 processor.

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception
causes the processor to freeze immediately before executing the next non-control
floating-point or WAIT instruction. The frozen processor waits for an external interrupt,
which must be supplied by external hardware in response to the FERR# output of the
_ processor. (Regardless of the value of NE, an unmasked numerical exception causes the
FERR# output to be activated.) In this case, the external interrupt invokes the
exception-handling routine. If NE =0 but the IGNNE# input is active, the processor
disregards the exception and continues. Error reporting via external interrupt is sup-
ported for DOS compatibility. Chapter 25 contains further discussion of compatibility
issues.

16-20

|n'l'e| o SPECIAL COMPUTATIONAL SITUATIONS

The exception-handling routine is normally a part of the systems software. Typical
exception responses may include:

e Incrementing an exception counter for later display or printing

o Printing or displaying diagnostic information (e.g., the FPU environment and
registers)

o Aborting further execution, or using the exception pointers to build an instruction
that will run without exception and executing it

Applications programmers should consult their operating system’s reference manuals for
the appropriate system response to numerical exceptions. For systems programmers,
some details on writing software exception handlers are provided in Chapter 19.

16.2.2 Invalid Operation

This exception may occur in response to two general classes of operations:
1. Stack operations

2. Arithmetic operations

The stack flag (SF) of the status word indicates which class of operation caused the
exception. When SF is 1 a stack operation has resulted in stack overflow or underflow;
when SF is 0, an arithmetic instruction has encountered an invalid operand.

16.2.2.1 STACK EXCEPTION

When SF is 1, indicating a stack operation, the O/U# bit of the condition code (bit C1)
distinguishes between stack overflow and underflow as follows:

O/U# = 1 Stack overflow—an instruction attempted to push down a nonempty stack
location.
O/U# = 0 Stack underflow—an instruction attempted to read an operand from an

empty stack location.

When the invalid-operation exception is masked, the FPU returns the QNaN indefinite.
This value overwrites the destination register, destroying its original contents.

When the invalid-operation exception is not masked, an exception handler is invoked.
TOP is not changed, and the source operands remain unaffected.

16-21

SPECIAL COMPUTATIONAL SITUATIONS

intal.

16.2.2.2 INVALID ARITHMETIC OPERATION

This class includes the invalid operations defined in IEEE Std 854. The FPU reports an
invalid operation in any of the cases shown in Table 16-11. Also shown in this table are
the FPU’s responses when the invalid exception is masked. When unmasked, an excep-
tion handier is invoked, and the operands remain unaitered. An invalid operation gen-
erally indicates a program error.

16.2.3 Division by Zero

If an instruction attempts to divide a finite nonzero operand by zero, the FPU will report
a zero-divide exception. This is possible for F(I)DIV(R)(P) as well as the other instruc-
tions that perform division internally: FYL2X and FXTRACT. The masked response for
FDIV is to return an infinity signed with the exclusive OR of the sign of the operand.

Table 16-11. Masked Responses to Invalid Operations

Condition

Maéked Response

Any arithmetic operation on an unsupported
format.

Any arithmetic operation on a signaling NaN.

~Compare and test operations: one or both oper-
ands is a NaN.

Addition of opposite-signed infinities or subtrac-
tion of like-signed infinities.

Multiplication: o x 0; or 0 X co.

Division: © + ; or 0 + 0.

Remainder instructions FPREM, FPREM1 when
modulus (divisor) is zero or dividend is . -.

Trigonometric instructions FCOS, FPTAN, FSIN,
FSINCOS when argument is .

FSQRT of negative operand (except FSQRT (—0)
= -0), FYL2X of negative operand (except
FYL2X (=0) = —x), FYL2XP1 of operand more
negative than —1.

FIST(P) instructions when source register is
empty, a NaN, «, or exceeds representable
range of destination.

FBSTP instruction when source register is
empty, a NaN, «, or exceeds 18 decimal digits.

FXCH instruction when one or both registers are
tagged empty. ‘

Return the QNaN indefinite.

Return a QNaN (refer to the section “Rules for
Generating QNaNs”).

Set condition codes “not comparable.”

Return the QNaN indefinite.

Return theQNaN indefinite.
Return the QNaN indefinite.
Return the QNaN .indefinite; set C, = 0.

Return theQNaN indefinite; set C, = 0

Return the QNaN indefinite.
Store integer indefinite.
Store packed decimal indefinite.

Change empty registers to the QNaN indefinite
and then perform exchange.

16-22

Intel ® SPECIAL COMPUTATIONAL SITUATIONS

FYL2X returns an infinity signed with the opposite sign of the non-zero operand. For
FXTRACT;, ST(1) is set to —o; ST is set to zero with the same sign as the original
operand. If the divide-by-zero exception is unmasked, an exception handler is invoked;
the operands remain unaltered.

16.2.4 Denormal Operand

If an arithmetic instruction attempts to operate on a denormal operand, the FPU reports
the denormal-operand exception. Denormal operands may have reduced significance
due to lost low-order bits, therefore it may be advisable in certain applications to pre-
clude operations on these operands. This can be accomplished by an exception handler
that responds to unmasked denormal exceptions. Most users will mask this exception so
that computation may proceed; any loss of accuracy will be analyzed by the user when
the final result is delivered.

When this exception is masked, the FPU sets the D-bit in the status word, then proceeds
with the instruction. Gradual underflow and denormal numbers as handled on the
Intel486 processor will produce results at least as good as, and often better than what
could be obtained from a machine that flushes underflows to zero. In fact, a denormal
operand in single- or double-precision format will be normalized to the extended-real
format when loaded into the FPU. Subsequent operations will benefit from the addi-
tional precision of the extended-real format used internally.

When this exception is not masked, the D-bit is set and the exception handler is invoked.
The operands are not changed by the instruction and are available for inspection by the
exception handler.

The Intel486 FPU and Intel387 math coprocessors handle denormal values differently
than the 8087 and Intel287 math coprocessors. This change is due to revisions in the
IEEE standard before being approved. The difference in operation occurs when the
denormal exception is masked. The Intei486 FPU and Intel387 math coprocessors will
automatically normalize denormals. The 8087 and Intel287 math coprocessors will gen-
erate a denormal result.

The difference in denormal handling is usually not an issue. The denormal exception is
normally masked for the Intel387 and Intel486 FPUs. For programs that also run on an
Intel287 math coprocessor, the denormal exception is often unmasked and an exception
handler is provided to normalize any denormal values. Such an exception handler is
redundant for the Intel486 and Intel387 DX FPUs. The default exception handler
should be used.

A program can detect at run-time whether it is running on an Intel387 or Intel486 FPU
or the older 8087/Intel287 math coprocessors. The code sequence in Figure 16-4 is rec-
ommended to recognize 8087/Intel287 math coprocessors. Refer to Figure 3-23 to iden-
tify an Intel387 or Intel486 CPU. The example in Figure 16-4 can be used to selectively
mask the denormal exception for an Intel387 DX or Intel486 FPU. A denormal excep-
tion handler should also be provided to support 8087/Intel287 math coprocessors. This
code example can also be used to set a flag to allow use of new instructions added to the
Intel387 and Intel486 FPUs beyond the instructions of the 8087/Intel287 math
COPIOCESSOTrS.

16-23

Intel o SPECIAL COMPUTATIONAL SITUATIONS

FINIT ; Use default infinity mode:
3 projective for 8087/Intel2B? math coprocessors,
; affine for Intel387 DX and Intell8b FPU

FLD1 ; Generate infinity

FLDZ

FDIV

FLD ST ; Form negative infinity

FCHS

FCOMPP ; Compare +infinity with -infinity

FSTSW temp ; 8087/Intel287? math coprocessors will say they are equal

Mov AX, temp

SAHF

JZ Using_8687

Figure 16-4. Coprocessor Detection Code
16.2.5 Numeric Overflow and Underflow

If the exponent of a numeric result is too large for the destination real format, the FPU
signals a numeric-overflow. Conversely, if the exponent of a result is too small to be
represented in the destination format, a numeric underflow is signaled. If either of these
exceptions occur, the result of the operation is outside the range of the destination real
format. o '

Typical algorithms are most likely to produce extremely large and small numbers in the
calculation of intermediate, rather than final, results. Because of the great range of the
extended-precision format, overflow and underflow are relatively rare events in most
numerical applications for the Intel486 processor.

16.2.5.1 OVERFLOW

The overflow exception can occur whenever the rounded true result would exceed in
magnitude the largest finite number in the destination format. The exception can occur
in the execution of most of the arithmetic instructions and ‘in some of the conversion
instructions; namely, FST(P), F(I)ADD(P), F(I)SUB(R)(P), F(I)MUL(P), FDIV(R)(P),
FSCALE, FYL2X, and FYL2XP1.

16-24

Intel o SPECIAL COMPUTATIONAL SITUATIONS

The response to an overflow condition depends on whether the overflow exception is
masked:

o Overflow exception masked. The value returned depends on the rounding mode as
Table 16-12 illustrates.

o Overflow exception not masked. The unmasked response depends on whether the
instruction is supposed to store the result on the stack or in memory:

— If the destination is the stack, then true result is divided by 2**°76 and rounded.
(The bias 24,576 is equal to 3 x 2'3) The significand is rounded to the appro-
priate precision (accordmg to the precision control (PC) bit of the control word,
for those instructions controlled by PC, otherwise to extended precision). The
roundup bit (C1) of the status word is set if the significand was rounded upward.

The biasing of the exponent by 24,576 normally translates the number as nearly
as possible to the middle of the exponent range so that, if desired, it can be used
in subsequent scaled operations with less risk of causing further exceptions. With
the instruction FSCALE, however, it can happen that the result is too large and
overflows even after biasing. In this case, the unmasked response is exactly the
same as the masked round-to-nearest response, namely = infinity. The intention
of this feature is to ensure the trap handler will discover that a translation of the
exponent by —24574 would not work correctly without obliging the programmer
of Decimal-to-Binary or Exponential functions to determine which trap handler,
if any, should be invoked.

— If the destination is memory (this can occur only with the store instructions),
then no result is stored in memory. Instead, the operand is left intact in the
stack. Because the data in the stack is in extended-precision format, the excep-
tion handler has the option either of reexecuting the store instruction after
proper adjustment of the operand or of rounding the significand on the stack to
the destination’s precision as the standard requires. The exception handler
should ultimately store a value into the destmatlon location in memory if the
program is to continue.

Table 16-12. Masked Overflow Results

Rounding Sign of
Mode True Result Result

To nearest + +oo
— —00

Toward — + Largest finite positive number
- —0

Toward + + +o0
- Largest finite negative number

Toward zero + Largest finite positive number
- Largest finite negative number

16-25

|nte| o SPECIAL COMPUTATIONAL SITUATIONS

16.2.5.2 UNDERFLOW

Underflow can occur in the execution of the instructions FST(P), FADD(P),
FSUB(RP), FMUL(P), F(I)DIV(RP), FSCALE, FPREM(1), FPTAN, FSIN, FCOS,
FSINCOS, FPATAN, F2XM1, FYL2X, and FYL2XP1.

Two related events contribute to underflow:

1. Creation of a tiny result which, because it is so small, may cause some other excep-
tion later (such as overflow upon division).

2. Creation of an inexact result; i.e. the delivered result differs from what would have
been computed were both the exponent range and precision unbounded.

Which of these events triggers the underflow exception depends on whether the under-
flow exception is masked:

1. Underflow exception masked. The underflow exception is signaled when the result is
both tiny and inexact.

2. Underflow exception not masked. The underflow exception is signaled when the
result is tiny, regardless of inexactness.

The response to an underflow exception also depends on whether the exception is
masked:

1. Masked response. The result is denormal or zero. The precision exception is also
triggered.

2. Unmasked response. The unmasked response depends on whether the instruction is
supposed to store the result on the stack or in memory:

o If the destination is the stack, then the true result is multiplied by 22*°7® and
rounded. (The bias 24,576 is equal to 3 X 2'3.) The significand is rounded to the
appropriate precision (according to the precision control (PC) bit of the control
word, for those instructions controlled by PC, otherwise to extended precision).
The roundup bit (C,) of the status word is set if the significand was rounded
upward.

The biasing of the exponent by 24,576 normally translates the number as nearly
as possible to the middle of the exponent range so that, if desired, it can be used
in subsequent scaled operations with less risk of causing further exceptions. With
the instruction FSCALE, however, it can happen that the result is too tiny and
underflows even after biasing. In this case, the unmasked response is exactly the
same as the masked round-to-nearest response, namely =0. The intention of this
feature is to ensure the trap handler will discover that a translation by + 24576
would not work correctly without obliging the programmer of Decimal-to-Binary
or Exponential functions to determine which trap handler, if any, should be
invoked.

o If the destination is memory (this can occur only with the store instructions), then
no result is stored in memory. Instead, the operand is left intact in the stack.

16-26

Uﬂﬁé o SPECIAL COMPUTATIONAL SITUATIONS

Because the data in the stack is in extended-precision format, the exception han-
dler has the option either of reexecuting the store instruction after proper adjust-
ment of the operand or of rounding the significand on the stack to the
destination’s precision as the standard requires. The exception handler should
ultimately store a value into the destination location in memory if the program is
to continue.

16.2.6 Inexact (Precision)

This exception condition occurs if the result of an operation is not exactly representable
in the destination format. For example, the fraction 1/3 cannot be precisely represented
in binary form. This exception occurs frequently and indicates that some (generally
acceptable) accuracy has been lost.

By their nature, the transcendental instructions typically cause the inexact excéption.

"The C1 (roundup) bit.of the status word indicates whether the inexact result was
rounded up (C1-= 1) or chopped (C1 =) ~

The inexact exception accompanies the underflow exception when there is also a loss of
accuracy. When underflow is masked, the underflow exception is signaled only when
there is a loss of accuracy; therefore the precision flag is always set as well. When
underflow is unmasked, there may or may not have been a loss of accuracy; the precision
bit indicates which is the case.

This exception is provided for applications that need to perform exact arithmetic only.
Most applications will mask this exception. The FPU delivers the rounded or over/
underflowed result to the destination, regardless of whether a trap occurs.

16.2.7 Exception Priority

The Inteld486 processor deals with exceptions according to a predetermined precedence.
Precedence in exception handling means that higher-priority exceptions are flagged and
results are delivered according to the requirements of that exception. Lower-priority
exceptions may not be flagged even if they occur. For example, dividing an SNaN by zero
causes an invalid-operand exception (due to the SNaN) and not a zero-divide exception;
the masked result is the QNaN real indefinite, not . A denormal or inexact (precision)
exception, however, can accompany a numeric underflow or overflow exception.

1. Invalid operation exception, subdivided as follows:
Stack underflow.

Stack overflow.

Operand of unsupported format.

SNaN operand.

eo T

16-27

Intel ® SPECIAL COMPUTATIONAL SITUATIONS

2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing
with it has precedence over lower-priority exceptions. For example, a QNaN divided
by zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or zero divide.

4. Denormal operand. If masked, then instruction execution continues, and a lower-
priority exception can occur as well.

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well.
6. Inexact result (precision).

16.2.8 Standard Underflow/Overflow Exception Handler

As long as the underflow and overflow exceptions are masked, no additional software is
required to cause the output of the Intel486 processor to conform to the requirements of
IEEE Std 854. When unmasked, these exceptions give the exception handler an addi-
tional option in the case of store instructions. No result is stored in memory; instead, the
operand is left intact on the stack. The handler may round the significand of the operand
on the stack to the destination’s precision as the standard requires, or it may adjust the
opcrand and reexecute the faulting instruction. .

16-28

Floating-Point Instruction Set 17

CHAPTER 17
FLOATING-POINT INSTRUCTION SET

The floating-point instructions available on the Intel486 processor can be grouped into
six functional classes:

o Data Transfer Instructions

o Nontranscendental Instructions
o Comparison Instructions

o Transcendental Instructions

o Constant Instructions

o Control Instructions

In this chapter, the instruction classes are described as a collection of resources available
to ASM386/Intel486 programmers. For details of format, encoding, and execution times,
see the instruction reference pages in Chapter 26.

The Intel387 math coprocessors and Intel486 FPU have more instructions than the 8087/
Intel287 math coprocessors. Some Intel386 DX microprocessor systems use an Intcl287
math coprocessor. See Figures 3-23 and 16-4 for examples of how to detect whether an
8087/Intel287 math coprocessor is present to use the new instructions when available.

17.1 SOURCE AND DESTINATION OPERANDS

The typical floating-point instruction takes one or two operands, which can come from
the FPU register stack or from memory. Many instructions, such as FSIN, automatically
operate on the top FPU stack element. Others allow, or require, the programmer to
code the operand(s) explicitly along with the instruction mnemonic. Still others accept
one explicit operand and one implicit operand (usually the top FPU stack element).

Whether specified by the programmer or supplied by default, floating-point operands
are of two basic types, sources and destinations. A source operand provides an input to an
instruction, but is not altered by its execution. Even when an instruction converts the
source operand from one format to another (e.g., real to integer), the conversion is
performed in an internal work area to avoid altering the source operand. A destination
operand may also provide an input to an instruction; on execution, however, the instruc-
tion returns a result to the destination, overwriting its previous contents.

Many instructions allow their operands to be coded in more than one way. For example,
FADD (add real) may be written without operands, with only a source, or with a desti-
nation and a source. When both destination and source operands are specified, the
destination must precede the source on the command line, and both must come from the
FPU stack.

17-1

Intel 0 FLOATING-POINT INSTRUCTION SET

Memory operands can be coded with any of the memory-addressing methods provided
by the ModR/M byte. To review these methods' (BASE- = (INDEX X SCALE) +
DISPLACEMENT), refer to Chapter 2. Floating-point instructions with memory oper-
ands either read from memory or write to it; no floating-point instruction does both.For
a detailed description of each instruction, including its range of possible encodings, see
the reference pages in Chapter 26.

17.2 DATA TRANSFER INSTRUCTIONS

These instructions (summarized in Table 17-1) move operands among elements of the
register stack, and between the stack top and memory. Any of the seven data types can
be converted to extended-real and loaded (pushed) onto the stack in a single operation;
they can be stored to memory in the same manner. The data transfer instructions auto-
matically update the FPU tag word to.reflect. whether the register is empty or full fol-
lowing the instruction.

17.3 NONTRANSCENDENTAL INSTRUCTIONS

The nontranscendental instruction set provides a wealth of variations on the basic add,
subtract, multiply, and divide operations, and a number of other useful functions. These
range from a simple absolute value instruction to instructions which perform exact mod-
ulo division, round real numbers to integers, and scale values by powers of two.
Table .17-2 shows the nontranscendental operatlons provided, apart from basic
arithmetic. . :

The basic arithmetic instructions (addition, subtraction, multiplication and division) are
designed to encourage the development of very efficient algorithms. In particular, they
allow the programmer to reference memory as easily as the FPU register stack.
Table 17-3 summarizes the available operation/operand forms that are provided for basic
arithmetic. In addition to the four normal operations, there are “reversed” subtraction

Table 17-1.. Data’Tr_anéfer Instructions:

Real ' Integer ‘ Packed Decimal
FLD Load Real FILD Load Integer FBLD Load Packed Decimal
FST." Store Real FIST ' Store Integer ‘
FSTP . Store Real and Pop FISTP Store Integer and FBSTP Load Packed Decimal
‘ ‘ Pop d and Pop
FXCH Exchange registers k

17-2

|nte| o FLOATING-POINT INSTRUCTION SET

Table 17-2. Nontranscendental instructions (Besides Basic Arithmetic)

. Mnemonic Operation
FSQRT Square Root
FSCALE " Scale
FXTRACT Extract Exponent and Significand
FPREM Partial Remainder
FPREM1* IEEE Standard Partial Remainder
FRNDINT Round to Integer
FABS Absolute Value
FCHS Change Sign

*Not available on 8087/Intel287™ math coprocessor.

Table 17-3. Basic Arithmetic Instructions and Operands

I . Mnemonic Operand Forms:
nstruction Form e

Form Destination, Source
Classical Stack Fop {ST(1), ST}
Classical Stack, extra pop FopP {ST(1), ST}
Register Fop : ST(j), ST or ST, ST()
Register, pop FopP ST(i), ST
Real Memory Fop {ST} single-real/double-real
Integer Memory Flop {ST} word-integer/short-integer

NOTES:

Braces ({ }) surround implicit operands; these are not coded, but are supplied by the assembler.

op= ADD - DEST « DEST + SRC

SUB DEST « ST — Other Operand
SUBR DEST <« Other Operand — ST

MUL DEST <« DEST x SRC
DIV DEST <« DEST + SRC
DIVR DEST « SRC -+ DEST

and division instructions which eliminate the need for many exchanges between ST(0)
and ST(1). The variety of instruction and operand forms give the programmer unusual

flexibility:

e Operands can be located in registers or memory.

e Results can be deposited in a choice of registers.

e Operands can be a variety of numerical data types: extended real, double real, single
real, short integer or word integer, with automatic conversion to extended real per-

formed by the FPU.

Five basic instruction forms can be used across all six operations, as shown in Table 17-3.
The classical stack form can be used to make the FPU operate like a classical stack
machine. No operands are coded in this form, only the instruction mnemonic. The FPU
picks the source operand from the stack top (ST) and the destination from the next stack
element (ST(1)). After performing its calculation, it returns the result to ST(1) and then

pops ST, effectively replacing the operands by the result. -

17-3

Intel o FLOATING-POINT INSTRUCTION SET

The register form is a generalization of the classical stack form; the programmer speci-
fies the stack top as one operand and any register on the stack as the other operand.
Coding the stack top as the destination provides a convenient way to access a constant,
held elsewhere in the stack, from the top stack. The destination need not always be ST,
however. The basic two-operand instructions allow the use of another register as the
destination. Using ST as the source allows, for example adding the stack top into a
register used as an accumulator.

Often the operand in the stack top is needed for one operation but then is of no further
use in the computation. The register pop form can be used to pick up the stack top as
the source operand, and then discard it by popping the.stack. Coding operands of ST(1),
ST with a register pop mnemonic is equivalent to a classical stack operation: the top is
popped and the result is left at the new top.

The two memory forms increase the flexibility of the nontranscendental instructions.
They permit a real number or a binary integer in memory to be used directly as a source
operand. This is useful in situations where operands are not used frequently enough to
justify holding them in registers. Note that any memory-addressing method can be used
to define these operands, so they can be elements in arrays, structures, or other data
organizations, as well as simple scalars.

17.4 COMPARISON INSTRUCTIONS

The instructions of this class allow numbers of all supported real and integer data types
to be compared. Each of these instructions (Table 17-4) analyzes the top stack element,
often in relationship to another operand, and reports the result as a condition code
(flags CO, C2, and C3) in the status word.

The basic operations are compare, test (compare with zero), and examine (report type,
sign, and normalization). Special forms of the compare operation are provided to opti-
mize algorithms by allowing direct comparisons with binary integers and real numbers in
memory, as well as popping the stack after a comparison.

Table 17-4. Comparison Instructions

Mnemonic Operation

FCOM Compare Real

FCOMP Compare Real and Pop

FCOMPP Compare Real and Pop Twice
FICOM Compare Integer

FICOMP Compare Integer and Pop

FTST Test

FUCOM* Unordered Compare Real
FUCOMP* Unordered Compare Realand Pop
FUCOMPP* Unordered Compare Real and Pop Twice
FXAM Examine

*Not available on 8087/Intel287™ math coprocessof.

17-4

Inte|® FLOATING-POINT INSTRUCTION SET

The FSTSW AX (store status word) instruction can be used after a comparison to trans-
fer the condition code to the AX register for inspection. The TEST instruction is recom-
mended for using the FPU flags (once they are in the AX register) to control conditional
branching. First check to see if the comparison resulted in unordered. This can happen,
for instance, if one of the operands is a NaN. TEST the contents of the AX register
against the constant 0400H; this will clear ZF (the Zero Flag of the EFLAGS register) if
the original comparison was unordered, and set ZF otherwise. The JNZ instruction can
now be used to transfer control (if necessary) to code which handles the case of unor-
dered operands. With the unordered case now filtered out, TEST the contents of the
AX register against the appropriate constant from Table 17-5, and then use the corre-
sponding conditional branch.

It is not always necessary to filter out the unordered case when using this algorithm for
conditional jumps. If the software has been thoroughly tested, and incorporates periodic
checks for QNaN results (as recommended in Chapter 16), then it is not necessary to
check for unordered every time a comparison is made.

Instructions other than those in the comparison group can update the condition code. To
ensure that the status word is not altered inadvertently, store it immediately following a
comparison operation.

17.5 TRANSCENDENTAL INSTRUCTIONS

The instructions in this group (Table 17-6) perform the time-consuming core calcula-
tions for all common trigonometric, inverse trigonometric, hyperbolic, inverse hyper-
bolic, logarithmic, and exponential functions. The transcendentals operate on the top
one or two stack elements, and they return their results to the stack. The trigonometric
operations assume their arguments are expressed in radians. The logarithmic and expo-
nential operations work in base 2.

The results of transcendental instructions are highly accurate. The absolute value of the
relative error of the transcendental instructions is guaranteed to be less than 272, (Rel-
ative error is the ratio between the absolute error and the exact value.)

The trigonometric functions accept a practically unrestricted range of operands, whereas
the other transcendental instructions require that arguments be more restricted in range.
FPREM or FPREM!1 can be used to bring the otherwise valid operand of a periodic
function into range. Prologue and epilogue software can be used to reduce arguments

Table 17-5. TEST Constants for Conditional Branching

Order . Constant Branch
ST > Operand 4500H Jz
ST < Operand . 0100H JNZ
ST = Operand 4000H JNZ
Unordered 0400H) ! JNZ

17-5

Intel 0 FLOATING-POINT INSTRUCTION SET

Table 17-6. Transcendental Instructions

Mnemonic Operation

FSIN* Sine

FCOS* Cosine

FSINCOS* Sine and Cosine -

FPTAN** Tangent

FPATAN Arctangent of ST(1) + ST

F2XM1** 2X — 1; Xisin ST

FYL2X Y x log,X; Y is in ST(1), X is in ST
FYL2XP1 © Yxlogy(X + 1); Yisin ST(1), Xis in ST

*Not available on 8087/Intel287™ math coprocessor.
**Operand range extended over 8087/Intel287 math coprocessor.

for other instructions to the expected range and to adjust the result to correspond to the
original arguments if necessary. The instruction descriptions in the reference pages of
Chapter 26 document the allowed operand range for each instruction.

When the argument of a trigonometric function is in range, it is automatically reduced
by the appropriate multiple of 2 (in 66-bit precision), by means of the same mechanism
used in the FPREM and FPREM]1 instructions. The value of m used in the automatic
reduction has been chosen so as to guarantee no 'loss of significance in the operand,
provided it is within the specified range. The internal value of = is:

4 * 0.C90FDAA2 2168C234 C H |

A program may use an explicit value for 7 in computations whose results later appear as
arguments to trigonometric functions. In such a case (in explicit reduction of a trigono-
metric operand outside the specxfled range, for example) the value used for 1 should be
the same as the full 66-bit internal w. This will insure that Luc results are consistent with
the automatic argument reduction performed by the trigonometric functions. The 66-bit
7 cannot be represented as an extended-real value, so it must be encoded as two or more
numbers. A common solution is to represent 1 as the sum of a highm which contains the
33 most-significant bits and a loww which contains the 33 least-significant bits. When
using this two-part , all computations should be performed separately on each part,
with the results added only at the end.

The complications of maintaining a consistent value of = for argument reduction can be
avoided, either by applying the trigonometric functions only to arguments within the
range of the automatic reduction mechanism, or by performing all argument reductions
(down to a magnitude less than w/4) explicitly in software.

17.6 CONSTANT INSTRUCTIONS

Each of these instructions (Table 17-7) pushes a commonly used cohstant onto the stack.
(ST(7) must be empty to avoid an invalid exception.) The values have full extended real
precision (64 bits) and are accurate to approximately 19 decimal digits. Because an

17-6

Intel ® FLOATING-POINT INSTRUCTION SET

Table 17-7. Constant Instructions

Mnemonic : Operation
FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load w
FLDL2T Load log, 10
FLDL2E Load log,e
FLDLG2 Load log;42
FLDLN2 Load loge2

external real constant occupies 10 memory bytes, the constant instructions, which are
only two bytes long, save storage and improve execution speed, in addition to simplifying
programming.

The constants used by these instructions are stored internally in a format more precise
than extended real. When loading the constant, the FPU rounds the more precise inter-
nal constant according the RC (rounding control) bit of the control word. However, in
spite of this rounding, the precision exception is not raised (to maintain compatibility).
When the rounding control is set to round to nearest, the FPU produces the same
constant that is produced by the 8087 and Intel287 numeric coprocessors.

17.7 CONTROL INSTRUCTIONS

The FPU control instructions are shown in Table 17-8. The FSTSW instruction is com-
monly used for conditional branching. The remaining instructions are not typically used
in calculations; they provide control over the FPU for system-level activities. These activ-
ities include initialization of the FPU, numeric exception handling, and task switching.

Table 17-8. Control Instructions

Mnemonic Operation
FINIT / FNINIT Initialize FPU
FLDCW Load Control Word
FSTCW / FNSTCW Store Control Word
FSTSW / FNSTSW Store Status Word
FSTSW AX / FNSTSW AX* Store Status Word to AX Register
FCLEX / FNCLEX Clear Exceptions
FSTENV / FNSTENV Store Environment
FLDENV Load Environment
FSAVE / FNSAVE Save State
FRSTOR Restore State
FINCSTP Increment Stack-Top Pointer
FDECSTP . Decrement Stack-Top Pointer
FFREE Free Register
FNOP No Operation
FWAIT Report FPU Error

*Not available on 8087 math coprocessor.

17-7

Intel ® FLOATING-POINT INSTRUCTION SET

As shown in Table 17-8, certain instructions have alternative mnemonics. The instruc-
tions which initialize the FPU, clear exceptions, or store (all or part of) the FPU envi-
ronment come in two forms:

e Wait—the mnemonic is prefixed only with an F, such as FSTSW. This form checks for
unmasked numeric exceptions.

e No-wait—the mnemonic is prefixed with an FN, such as FNSTSW. This form ignores
unmasked numeric exceptions. :

When the control instruction is coded using the no-wait form of thé mnemonic, the
ASM386/486 assembler does not precede the ESC instruction with a WAIT instruction,
‘and the processor does not test for a floating-point error condition before executmg the
control instruction.

The only no-wait instructions are those shown in Table 17-8. All other floating-point
instructions are automatically synchronized by the processor; all operands are trans-
ferred before the next instruction is initiated. Because of this automatic synchronization
non-control floating-point instructions need not be preceded by a WAIT instruction in
order to execute correctly ,

Exception synchronization relies on the WAIT instruction. Since the Integer Unit and
the FPU operate in parallel, it is possible in the case of a floating-point exception for the
processor to disturb information vital to exception recovery before the exception-handler -
can be invoked. Coding a WAIT or FWAIT instruction in the proper place can prevent
this. See Chapter 18 for details.

It should also be noted that the 8087 instructions FENI and FDISI and the Intel287
instruction FSETPM perform no function in the Intel486 processor. If these opcodes are
detected in the instruction stream, the Intel486 processor performs no specific operation
and no internal states are affected. Chapter 25 contain a more complete description of

the differences between floating-point operations on the Intel486 processor and on 8087,

Intel287, and Intel387 DX numeric coprocessors.

17-8

Numeric Applications

18

CHAPTER 18
NUMERIC APPLICATIONS

18.1 PROGRAMMING FACILITIES

This section describes how programmers in ASM386/486 and in a variety of higher-level
languages can make use of the Intel486 processor’s numerics capabilities.

The level of detail in this section is intended to give programmers a basic understanding
of the software tools that can be used for numeric programming, but this information
does not document the full capabilities of these facilities. Complete documentation is
available with each program development product. :

18.1.1 High-Level Languages

A variety of Intel high-level languages are available that automatically make usc of the
numeric instruction set when appropriate. These languages “include C-386/486 and
PL/M-386/486. In addition many high-level language compilers are available from inde-
pendent software vendors. ' .

Each of these high-level languages has special numeric libraries allowing programs to
take advantage of the capabilities of the FPU. No special programming conventions are
necessary to make use of the FPU when programming numeric applications in any of
these languages. '

Programmers in PL/M-386/486 and ASM386/486 can also make use of many of these
library routines by using routines contained in the Support Library. These libraries
implement many of the functions provided by higher-level languages, including exception
handlers, ASCII-to-floating-point conversions, and a more complete set of transcenden-
tal functions than that provided by the Intel486 numeric instruction set.

18.1.2 C Programs

C programmers automatically cause the C compiler to generate Intel486 numeric
instructions when they use the double and float data types. The float type corresponds to
the single real format; the double type corresponds to the double real format. The state-
ment #include (math.h) causes mathematical functions such as sin and sqrt to return
values of type double. Figure 18-1 illustrates the ease with which C programs can make
use of the Intel486 processor’s numerics capabilities.

18-1

Inte|® NUMERIC APPLICATIONS

/**

* *
* SAMPLE C PROGRAM *
* *

**/

/** Include /usr/include/stdio.h. if necessary **/
/** Include math declarations for transcendenatals and others **/

#include </usr/include/math.h>
#define Pl 3.1415926535897943

main()

<

double sin_result, cos_result;
double angle_deg = 0.0, angle_rad;
int i, no_of_trial = 4;

for(i = 1; i <= no_of_trial; i++)(

angle_rad = angle_deg * PI1 / 180.0;
sin_result = sin (angle_rad);
cos_result = cos (angle_rad);
printf("sine of %f degrees equals %f\n", angle_deg, sin_result);
printf("cosine of %f degrees equals %f\n\n", angle_deg, cos_result);
angle_deg = angle_deg + 30.0;
N)

/** etc. **/

240486i18-1

Figure 18-1. Sample C-386/486 Program

18.1.3 PL/M-386/486

Programmers in PL/M-386/486 can access a very useful subset of the Intel486 processor’s
numeric capabilities. The PL/M-386/486 REAL data type corresponds to the single real
(32- brt) format. This data type provides a range of about 8.43 x 107" < | X | < 3.38 x
10%, with about seven significant decimal digits. This representation is adequate for the
data manipulated by many microcomputer applications.

The utility of the REAL data type is extended by the PL/M-386/486 compiler’s practice
of holding intermediate results in the extended real format. This means that the full
range and precision of the processor are utilized for intermediate results. Underflow,
overflow, and rounding exceptions are most likely to occur during intermediate compu-
tations rather than during calculation of an expression’s final result. Holding intermedi-
ate results in extended-precision real format greatly reduces the likelihood of overflow
and underflow and eliminates roundoff as a serious source of error until the flnal assrgn-
ment of the result is performed. -

18-2

W&eﬂ o NUMERIC APPLICATIONS

The compiler generates floating-point instructions to evaluate expressions that contain
REAL data types, whether variables or constants or both. This means that addition,
subtraction, multiplication, division, comparison, and assignment of REALs will be per-
formed by the FPU. INTEGER expressions, on the other hand, are evaluated by the
Integer Unit.

Five built-in procedures (Table 18-1) give the PL/M-386/486 programmer access to FPU
control instructions. Prior to any arithmetic operations, a typical PL/M-386/486 program
will set up the FPU using the INITSREALSMATHS$UNIT procedure and then issue
SET$REALSMODE to configure the FPU. SETSREALSMODE loads the FPU control
word, and its 16-bit parameter has the format shown for the control word in Chapter 14.
The recommended value of this parameter is 033EH (round to nearest, 64-bit precision,
all exceptions masked except invalid operation). Other settings may be used at the pro-
grammer’s discretion.

If any exceptions are unmasked, an exception handler must be provided in the form of
an interrupt procedure that is designated to be invoked via interrupt vector number 16.
The exception handler can use the GETSREALSERROR procedure to obtain the low-
order byte of the FPU status word and to then clear the exception flags. The byte
returned by GETSREALSERROR contains the exception flags; these can be examined
to determine the source of the exception.

The SAVESREALS$STATUS and RESTORESREAL$STATUS procedures are pro-
vided for multitasking environments where a running task that uses the FPU may be
preempted by another task that also uses the FPU. It is the responsibility of the operat-
ing system to issue SAVESREAL$STATUS before it executes any statements that affect
the FPU; these include the INITSREAL$SMATHS$UNIT and SETSREALSMODE pro-
cedures as well as arithmetic expressions. SAVESREALSSTATUS saves the FPU state
(registers, status, and control words, etc.) on the memory stack. RESTORESREAL-
$STATUS reloads the state information; the preempting task must invoke this proce-
dure before terminating in order to restore the FPU to its state at the time the running
task was preempted. This enables the preempted task to resume execution from the
point of its preemption.

Table 18-1. PL/M-386/486 Built-In Procedures

Procedure FPU Coqtrol Description
Instruction
INITSREALSMATHSUNIT FINIT Initialize FPU
SET$REAL$MODE FLDCW Set exception masks, rounding precision, and
infinity controls.
GET$REAL$ERROR FNSTSW Store, then clear, exception flags.
& FNCLEX
SAVE$REAL$STATUS FNSAVE Save FPU state.
RESTORE$REAL$STATUS FRSTOR ‘Restore FPU state.

18-3

Inte|® NUMERIC APPLICATIONS

18.1.4 ASM386/486

The ASM386/486 assembly language provides programmers with cbmplete access to all
of the facilities of the processor.

18.1.4.1 DEFINING DATA

The ASM386/486 directives shown in Table 18-2 allocate storage for numeric variables
and constants. As with other storage allocation directives, the assembler associates a
type with any variable defined with these directives. The type value is equal to the length
of the storage unit in bytes (10 for DT, 8 for DQ, etc.). The assembler checks the type of
any variable coded in an instruction to be certain that it is compatible with the instruc-
tion. For example, the coding FIADD ALPHA will be flagged as an error if ALPHA’s
type is not 2 or 4, because integer addition is only available for word and short integer
(doubleword) data types. The operand’s type also tells the assembler which machine
instruction to produce; although to the programmer there is only an FIADD instruction,
a different machine instruction is required for each operand type.

On occasion it is desirable to use an instruction with an operand that has no declared
type. For example, if register BX points to a short integer variable, a programmer may
want to code FIADD [BX]. This can be done by informing the assembler of the oper-
and’s type in the instruction, coding FIADD DWORD PTR [BX]. The corresponding
overrides for the other storage allocations are WORD PTR, QWORD PTR, and
TBYTE PTR.

The assembler does not, however, check the types of operands used in processor control
instructions. Coding FRSTOR [BP] implies that the programmer has set up register BP
to point to the location (probably in the stack) where the processor’s 94-byte state record
has been previously saved.

The initial values for numeric constants may be coded in several different ways. Binary
integer constants may be specified as bit strings, decimal integers, octal integers, or
hexadecimal strings. Packed decimal values are normally written as decimal integers,
although the assembler will accept and convert other representations of integers. Real
values may be written as ordinary decimal real numbers (decimal point required), as
decimal numbers in scientific notation, or as hexadecimal strings. Using hexadecimal
strings is primarily intended for defining special values such as infinities, NaNs, and
denormalized numbers. Most programmers will find that ordinary decimal and scientific
decimal provide the simplest way to initialize numeric constants. Figure 18-2 compares
several ways of setting the various numeric data types to the same initial value.

Table 18-2. ASM386/486 Storage Allocation Directives

Directives Interpretation ' Data Types

DW Define Word) Word integer

DD Define Doubleword Short integer, short real

DQ Define Quadword Long integer, long real

DT Define Tenbyte Packed decimal, temporary real

18-4

ﬂni'eﬂ 0 NUMERIC APPLICATIONS

i THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126
i NOTE TWO'S COMPLETE STORAGE OF NEGATIVE BINARY INTEGERS.

FORCE WORD ALIGNMENT

i EVEN ,
WORD_INTEGER DW 111111111000010B i BIT STRING
SHORT_INTEGER DD OFFFFFFB2H i HEX STRING MUST START
s WITH DIGIT
LONG_INTEGER DO -126 ; ORDINARY DECINAL
SINGLE_REAL DD -126.0 i NOTE PRESENCE OF *.'
DOUBLE_REAL DD -1.26E2 ; "SCIENTIFIC

PACKED_DECIMAL DT -126 ORDINARY DECIMAL INTEGER

IN THE FOLLOWING, SIGN AND EXPONENT IS *CO05’
SIGNIFICAND IS *7E00..,.00", “*R’ INFORMS ASSEMBLER THAT
THE STRING REPRESENTS A REAL DATA TYPE.

EXTENDED_REAL DT 0CO0057E00000000000000R 3 HEX STRING

240486i18-2

Figure 18-2. Sample Numeric Constants

Note that preceding numeric variables and constants with the ASM386/486 EVEN direc-
tive ensures that the operands will be word-aligned in memory. The best performance is
obtained when data transfers are double-word aligned. All numeric data types occupy
integral numbers of words so that no storage is “wasted” if blocks of variables are
defined together and preceded by a single EVEN declarative.

18.1.4.2 RECORDS AND STRUCTURES

The ASM386/486 RECORD and STRUC (structure) declaratives can be very useful in
numeric programming. The record facility can be used to define the bit fields of the
control, status, and tag words. Figure 18-3 shows one definition of the status word and
how it might be used in a routine that polls the FPU until it has completed an
instruction.

Because structures allow different but related data types to be grouped together, they
often provide a natural way to represent “real world” data organizations. The fact that
the structure template may be “moved” about in memory adds to its flexibility.
Figure 18-4 shows a simple structure that might be used to represent data consisting of a
series of test score samples. This sample structure can be reorganized, if necessary, for
the sake of more efficient execution. If the two double real fields were listed before the
integer fields, then (provided that the structure is instantiated only at addresses divisible
by eight) all the fields would be optimally aligned for efficient memory access and cach-
ing. A structure could also be used to define the organization of the information stored
and loaded by the FSTENV and FLDENYV instructions.

18-5

Inte|® NUMERIC APPLICATIONS

; RESERVE SPACE FOR STATUS WORD
STATUS_WORD

i LAY OUT STATUS WORD FIELDS
STATUS RECORD

L BUSY:

v ovo

b COND_CODE3:
] STACK_TOP:
¢ COND_CODE2:
] COND_CODET:
b COND_CODED:
] INT_REQ:
¢ S_FLAG:
] P_FLAG:
[U_FLAG:
¢ 0_FLAG:
¢ Z_FLAG:
4 D_FLAG:
] I_FLAG: 1
i REDUCE UNTIL COMPLETE
REDUCE: FPREM!

FNSTSW STATUS_WORD

TEST STATUS_WORD, MASK_COND_CODE2

—- s a a s e a D —a o

1
1
1
1
1
)
)
1
1
1
)
)
1

JNZ REDUCE
240486i18-3
Figure 18-3. Status Word Record Definition
SAMPLE STRUC
N_0BS DD ? + SHORT INTEGER
MEAN pe ? i DOUBLE REAL
MODE DH ? ; WORD INTEGER
STD_DEV D@ ? + DOUBLE REAL
+ ARRAY OF OBSERVATIONS -- WORD INTEGER
TEST_SCORES DW 1000 DUP (7)
SAMPLE ENDS
é404séi1s-4

Figure 18-4. Structure Definition
18.1.4.3 Addressing Methods

Numeric data in memory can be accessed with any of the memory addressing methods
provided by the ModR/M byte and (optionally) the SIB byte. This means that numeric
data types can be incorporated in data aggregates ranging from simple to complex
according to the needs of the application. The addressing methods and the- ASM386/486
notation used to specify them in instructions make the accessing of structures, arrays,
arrays of structures, and other organizations direct and straightforward. Table 18-3 gives
several examples of numeric instructions coded with operands that illustrate different
addressing methods.

18-6

!ntea o NUMERIC APPLICATIONS

Table 18-3. Addressing Method Examples

Coding Interpretation

FIADD ALPHA ALPHA is a simple scalar (mode is direct).

FDIVR ALPHA.BETA BETA is a field in a structure that is “overlaid” on ALPHA
(mode is direct).

FMUL QWORD PTR [BX] BX contains the address of a long real variable (mode is
register indirect).

FSUB ALPHA [SI] ALPHA is an array and S| contains the offset of an array
element from the start of the array (mode is indexed).

FILD [BP].BETA BP contains the address of a structure on the CPU stack
and BETA is a field in the structure (mode is based).

FBLD TBYTE PTR [BX] [DI] BX contains the address of a packed decimal array and DI
contains the offset of an array element (mode is based
indexed).

18.1.5 Comparative Programming Example

Figures 18-5 and 18-6 show the PL/M-386/486 and ASM386/486 code for a simple
numeric program, called ARRSUM. The program references an array (X$ARRAY),
which contains 0-100 single real values; the integer variable NSOF$X indicates the num-
ber of array elements the program is to consider. ARRSUM steps through X$ARRAY
accumulating three sums: '

o SUMSX, the sum of the array values

o SUMSINDEXES, the sum of each array value times its index, where the index of the
first element is 1, the second is 2, etc. .

(A true program, of course, would go beyond these steps to store and use the results of
these calculations.) The control word is set with the recommended values: round to
nearest, 64-bit precision, interrupts enabled, and all exceptions masked except invalid
operation. It is assumed that an exception handler has been written to field the invalid
operation if it occurs, and that it is invoked by interrupt pointer 16.

The PL/M-386/486 version of ARRSUM (Figure 18-5) is very straightforward and illus-
trates how easily the numerics capabilities of the Intel486 processor can be used in this
language. After declaring variables, the program calls built-in procedures to initialize the
FPU and to load to the control word. The program clears the sum variables and then
steps through X$ARRAY with a DO-loop. The loop control takes into account
PL/M-386/486’s practice of considering the index of the first element of an array to be 0.
In the computation of SUMSINDEXES, the built-in procedure FLOAT converts I+1
from integer to real because the language does not support “mixed mode” arithmetic.
One of the strengths of the Intel486 FPU, of course, is that it does support arithmetic on
mixed data types (because all values are converted 1nternally to the 80-bit extended-
precision real format).

18-7

_ |nte|@ NUMERIC APPLICATIONS

e dedetdedede e e de e ok e ek e e ke ek e ek ek de et ek e ke ok ko ke ok o
* , . E *
* . ARRAYSUM = MODDULE *
* . . *
sk dedeke gtk e ok ok et de ek de ke ke Rk ok Rk kol ko ek ok ok

array$sum: ~do;

declare (sumx, sumindexes, sum$squares) real;
declare x$array(100) real;
declare (nofx, i) integer;

' declare control $ FPU .literally '033eh';

/* Assume‘xsarray and nofx are initialized */
call init$real$math$unit; :
call set$real$mode(control $ FPU);

/* Clear sums */
sumx, sumindexes, sum$squares = 0.0;

‘/* Loop through array, accumulating sums */
do i = 0 to nofx - 1;
sum$x = sum$x + x$array(i);
sum$indexes = sum$indexes + (x$array(i)*float(i+1));
sum$squares = sum$squares + (x$array(i)*x$array(i));
end;

/* etc. */
end array$sum;

240486i18-5

“Figure 18-5. Sample PL/M-386/486 Program

The ASM386/486 version (Figure 18-6) defines the external procedure INITFPU, which
makes the different initialization requirements of the processor and its emulator trans-
parent to the source code. After defining the data and setting up the segment registers
and stack pointer, the program calls INITFPU and loads the control word. The compu-
tation begins with the next three instructions, which clear three registers by loading
(pushing) zeros onto the stack.. As shown in Figure 18-7, these registers remain at the
bottom of the stack throughout the computation while temporary values are pushed on
and popped off the stack above them.

The program uses the LOOP instruction to control its iteration through X ARRAY;
register ECX, which LOOP automatically decrements, is loaded with N_.OF_X, the num-
ber of array elements to be summed. Register. ESI is used to select (index) the array
elements. The program steps through X ARRAY from back to front, so ESI is initialized
to point at the element just beyond the first element to be processed. The ASM386/486

18-8

NUMERIC APPLICATIONS

name arraysum
; Define initialization routine
extrn initFPU: far

; Allocate space for data

data segment rw public
control_FPU dw 033eh
n_of_x dd ?

x_array dd 100 dup (?)
sum_squares dd ?
sum_indexes dd ?

sum_x dd ?

data ends

; Allocate CPU stack space
stack stackseg 400

; Begin code

code segment er puplic

assume ds:data, ss:stack

start:
mov ax, data
mov ds, ax
mov ax, stack
mov eax, Oh
mov ss, ax
mov esp, stackstart stack

; Assume x_array and n_of_x have
been initialized

~e

; Prepare the FPU or its emulator

call initFPU
fldew control_FPU

Clear three registers to hold
running sums

~

fldz
fldz
fldz

240486i18-60f1

Figure 18-6. Sample ASM386/486 Program

18-9

NUMERIC APPLICATIONS

Setup ECX as loop counter and ESI
as index into x_array

~ ~e

mov ecx, n_of_x
imut ecx
mov esi, eax

ESI now contains index of last
element + 1 :

Loop through x_array and
accumulate sum

~e Sene owe

sum_next:
; backup one element and push on
; the stack

sub ‘esi, type x_array
fld x_arraylesil

add to the sum and duplicate x
on the stack

~ we

fadd st(3), st
fld st

square it and add into the sum of
(index+1) and discard

~e ~e

" fmul st, st
faddp st(2), st

reduce index for next iteration

dec n_of_x
Loop sum_next

; Pop sums into memory

pop_results:
fstp sum_squares
fstp sum_indexes
fstp Sum_X

fwait
H
; Etc.
H
code ends
end start, ds:data, ss:stack

240486i18-60f2

Figure 18-6. Sample ASM386/486 Program (Contd.)

18-10

NUMERIC APPLICATIONS

ST(0)
ST(1)
ST(2)

ST(0)
ST(1)
ST(2)
ST(3)

ST(0)
ST(1)
ST(2)
ST(3)
ST(4)

ST(0)
ST(1)
ST(2)
ST(3)

FLDZ, FLDZ, FLDZ

FLD X_ARRAYI[SI]

SUM_SQUARES

0.0 ST(0) 25
0.0 SUM_INDEXES ST(1)
0.0 SUM_X ST(2) 0.0
ST(3) 0.0
-
FADD_STR)ST __ — f_ FLD_ST
2.5 X_ARRAY (19) ST(0) 25
0.0 SUM_SQUARES ST(1) 2.5
0.0 SUM_INDEXES ST(2) 0.0
2.5 SUM_X ST(3) 0.0
ST(4) 2.5
-

FMUL_ST, ST — f_ /__ FADDP_ST(2), ST

6.25 X_ARRAY(19)? ST(0) 2.5

25 X_ARRAY (19) ST(1) 6.25
0.0 SUM_SQUARES ST(2) 0.0
0.0 SUM_INDEXES ST(3) 2.5
2.5 SUM_X - -

-

FIMUL N_of_X FADDP_ST(2), ST
50.0 X_A.R_RAYE)"L;O_ ST(0) 6.25
'6.25 SUM_SQUARES ST(1) 50.0

0.0 SUM_INDEXES ST(2) 2.5
2.5 SUM_X

X_ARRAY (19)
SUM_SQUARES
SUM_INDEXES

SUM_X

X_ARRAY (19)
X_ARRAY(19)
SUM_SQUARES
SUM_INDEXES

SUM_X

X_ARRAY (19)
SUM_SQUARES
SUM_INDEXES

SUM_X

SUM_SQUARES
SUM_INDEXES
SUM_X

240486i18-7

Figure 18-7. Instructions and Register Stack

TYPE operator is used to determine the number of bytes in each array element. This
permits changing X ARRAY to a double-precision real array by simply changing its
definition (DD to DQ) and reassembling.

Figure 18-7 shows the effect of the instructions in the program loop on the FPU register
stack. The figure assumes that the program is in its first iteration, that N.OF_X is 20, and
that X ARRAY(19) (the 20th element) contains the value 2.5. When the loop termi-
nates, the three sums are left as the top stack elements so that the program ends by
simply popping them into memory variables.

18-11

|nte| o NUMERIC APPLICATIONS

18.2 CONCURRENT PROCESSING

Because the Intel486 Integer Unit and FPU are separate execution units, it is possible
for the FPU to execute numeric instructions in parallel with instructions executed by the
IU. This simultaneous execution of different instructions is called concurrency.

No special programming techniques are required to gain the advantages of concurrent
execution; numeric instructions for the FPU are simply placed in line with the instruc-
tions for the IU. Integer and numeric instructions are initiated in the same order as they
are encountered in the instruction stream. However, because numeric operations per-
formed by the FPU generally require more time than integer operations, the IU can
often execute several of its instructions before the FPU completes a numeric instruction
previously initiated.

This concurrency offers obvious advantages in terms of execution performance, but con-
currency also imposes several rules that must be observed in order to assure proper
synchronization of the IU and FPU. :

All Intel high-level languages automatically provide for and manage concurrency in the
FPU. Assembly—language programmers, however, must understand and manage some
areas of concurrency in exchange for the ﬂex1b1]1ty and performance of programming in
assembly language. This section is for the assembly—language programmer or well-
informed high-level-language programmer.

18.2.1 Managing Concurrency

The activities of numeric programs can be split into. two major areas: program control
and arithmetic. The program control part performs activities such as deciding what func-
tions to perform, calculating addresses of numeric operands, and loop control. The arith-
metic part simply adds, subtracts, multiplies, and performs other operations on the
numeric operands. The Intel486 processor is designed to handle these two parts sepa-
rately and efficiently.

Concurrency management is required to check for an exception before letting the pro-
cessor change a value just used by the FPU. Almost any numeric instruction can, under
the wrong circumstances, produce a numeric exception. For programmers in higher-level
languages, all required synchronization is automatically provided by the appropriate
compiler. For assembly-language programmers exception synchronization remains the
responsibility of the programmer.

A complication is that a programmer may. not expect his numeric program to cause
numeric exceptions, but in some systems, they may regularly happen. To better under-
stand these points, consider what can happen when the FPU detects an exception.

18-12

|nte| o NUMERIC APPLICATIONS

Depending on options determined by the software system designer, the Intel486 proces-
sor can perform one of two things when a numeric exception occurs:

e The FPU can provide a default fix-up for selected numeric exceptions. Programs can
mask individual exception types to indicate that the FPU should generate a safe,
reasonable result whenever that exception occurs. The default exception fix-up activ-
ity is treated by the FPU as part of the instruction causing the exception; no external
indication of the exception is given. When exceptions are detected, a flag is set in the
numeric status register, but no information regarding where or when is available. If
the FPU performs its default action for all exceptions, then the need for exception
synchronization is not manifest. However, as will be shown later, this is not sufficient
reason to ignore exception synchronization when designing programs that use the
FPU.

e As an alternative to the default fix-up of numeric exceptions, the IU can be notified
whenever an exception occurs. When a numeric exception is unmasked and the
exception occurs, the FPU stops further execution of the numeric instruction and

~ signals this event. On the next occurrence of an ESC or WAIT instruction, the pro-
cessor traps to a software exception handler. The exception handler can then imple-
ment any sort of recovery procedures desired for any numeric exception detectable by
the FPU. Some ESC instructions do not check for exceptions. These are the nonwait-
ing forms FNINIT, FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX.

When the FPU signals an unmasked exception condition, it is requesting help. The fact
that the exception was unmasked indicates that further numeric program execution
under the arithmetic and programming rules of the FPU is unreasonable.

If concurrent execution is allowed, the state of the processor when it recognizes the
exception is undefined. It may have changed many of its internal registers and be exe-
cuting a totally different program by the time the exception occurs. To handle this situ-
ation, the FPU has special registers updated at the start of each numeric instruction to
describe the state of the numeric program when the failed instruction was attempted.

Exception synchronization ensures that the FPU is in a well-defined state after an
unmasked numeric exception occurs. Without a well-defined state, it would be impossi-
ble for exception recovery routines to determine why the numeric exception occurred, or
to recover successfully from the exception.

The following two sections illustrate the need to always consider exception synchroniza-
tion when writing numeric code, even when the code is initially intended for execution
with exceptions masked. If the code is later moved to an environment where exceptions
are unmasked, the same code may not work correctly. An example of how some instruc-
tions written without exception synchronization will work initially, but fail when moved
into a new environment, is shown in Figure 18-8.

18.2.1.1 INCORRECT EXCEPTION SYNCHRONIZATION

In Figure 18-8, three instructions are shown to load an integer, calculate its square root,
then increment the integer. The synchronous execution of the FPU will allow this pro-
gram to execute correctly when no exceptions occur on the FILD instruction.

18-13

nteg o NUMERIC APPLICATIONS

INCORRECT ERROR SYNCHRONIZATION

FILD COUNT 3 FPU instruction
INC COUNT 5 integer instruction alters operand
FSQRT i subsequent FPU instruction -- error fronm
H previous FPU instruction detected here
PROPER ERROR SYNCHRONIZATION
FILD COUNT FPU instruction

previous FPU instruction detected here

1

FSQRT ; subsequent FPU instruction -- error from
H
; integer instruction alters operand

INC COUNT

' 240486i18-8

Figure 18-8. Exception Synchronization Examples

This situation changes if the numeric register stack is extended to memory. To extend
the FPU stack to memory, the invalid exception is unmasked. A push to a full reglster or
pop from an empty register sets SF and causes an invalid exception.

The recovery routine for the exception must recognize this situation, fix up the stack,
then perform the original operation. The recovery routine will not work correctly in the
first example shown in the figure. The problem is that the value of COUNT is incre-
mented before the exception handler is invoked, so that the recovery routine will load an
incorrect value of COUNT, causing the program to fail or behave unreliably.

18.2.1.2 PROPER EXCEPTION SYNCHRONIZATION

Exception synchronization relies on the WAIT instruction. Whenever an unmasked
numerical exception occurs, the FPU asserts an error-condition signal internal to the
processor. When the next WAIT instruction (or non-control ESC instruction) is encoun-
tered, the error-condition signal is acknowledged and a software exception handler is
invoked. (See Chapter 16 for a more detailed discussion of the various floating-point
error-reporting mechanisms.) If this WAIT or ESC instruction is properly placed, the
processor will not yet have disturbed any information vital to recovery from the
exceptlon

18-14

System-Level Considerations 19

CHAPTER 19
SYSTEM-LEVEL CONSIDERATIONS

System programming for Intel486 processor systems requires a more detailed under-

standine of the FPU than does annlication nroerammine. Such thines as initialization

Swanliiag UL WLC L wiain BWUCS A LGl piUgi il LSS QS aiudiiiZauavii,

exception handling, and data and error synchronization are all the responsibility of the
systems programmer. These topics are covered in detail in the sections that follow.

19.1 ARCHITECTURE

On a software level, the FPU appears as an extension of the Integer Unit. On the
hardware level, however, the mechanisms by which the FPU and IU interact are more
complex. This section describes this interaction and points out features that are of inter-
est to systems programmers.

19.1.1 Independent of Addressing Mode

Unlike the Intel287 NPX (but like the Intel387 NPX), the FPU of the Inteld86 proces-
sor operates the same regardless of whether the processor is operating in real-address
mode, in protected mode, or in virtual 8086 mode.

Numeric instructions can utilize any memory location accessible by the task currently
executing. When operating in protected mode, all references to memory operands are
automatically verified by the memory management and protection mechanisms as for any
other memory references by the currently-executing task. Protection violations associ-
ated with numeric instructions automatically cause the processor to trap to an appropri-
ate exception handler. '

To the numerics programmer, the operating mode affects only the manner in which the
FPU instruction and data pointers are represented in memory following an FSAVE or
FSTENYV instruction. Each of these instructions produces one of four formats depending
on both the operating mode and on the operand-size attribute in eftect for the instruc-
tion. The differences are detailed in the discussion of the FSAVE and FSTENYV instruc-
tions in Chapter 26.

19.2 PROCESSOR INITIALIZATION AND CONTROL

One of the principal responsibilities of systems software is the initialization, monitoring,
and control of the hardware and software resources of the system, including the FPU. In
this section, issues related to system initialization and control are described, including
the handling of exceptions that may occur during the execution of numeric instructions.

19-1

|ntel o SYSTEM-LEVEL CONSIDERATIONS

19.2.1 System Initialization

During initialization of an Intel486 processor system, systems software must initialize the
FPU and set flags in CRO to reflect the state of the numeric environment. Refer to
Section 3.11 (Figure 3-23) to determine the presence of an Intel486 FPU. These activi-
ties can be quickly and easily performed as part of the overall system initialization.

19.2.2 Configuring the Numerics Environment

System software must load the appropriate values into the MP, EM, and NE bits of the
CRO control register.

The MP (Monitor coProcessor) bit determines whether WAIT instructions trap when
the context of the FPU is different from that of the currently executing task. If MP = 1
and TS = 1, then a WAIT instruction will cause a Device Not Available fault (interrupt
vector 7). The MP bit was used on the 286 and Intel386 DX microprocessors to support
the use of a WAIT instruction to wait on a device other than a numeric coprocessor. The
device would report its status through the BUSY# pin. It should be set for processors
with integrated FPU and reset in the Intel486 SX CPU.

The EM (EMulate coprocessor) bit determines whether ESC instructions are executed
by the FPU (EM = 0) or trap via interrupt vector 7 to be handled by software (EM =
1). The EM bit was used on the Intel386 DX microprocessor so that numeric applica-
tions written for an Intel386 DX CPU/Intel387 DX system could be run in the absence
of an Intel387 DX coprocessor with a software Intel387 DX emulator. For normal oper-
ation of the Intel486 FPU, the EM bit should be cleared to 0. The EM bit must be set in
the Intel486 SX CPU.

The NE (Numeric Exception) bit determines whether unmasked floating-point excep-
tions are handled through interrupt vector 16 (NE = 1) or through external interrupt
(NE =0). In systems using an external interrupt controller to invoke numeric exception
handlers, the NE bit should be cleared to 0. Other systems can make use of the auto-
matic error reporting through interrupt 16, and should set the NE bit to 1. See Section
19.2.4 for a discussion of numeric exception handling.

19.2.3 Initializing the FPU

Initializing the FPU simply means placing the FPU in a known state unaffected by any
activity performed earlier. A single FNINIT instruction performs this initialization. All
the error masks are set, all registers are tagged empty, TOP is set to zero, and default
rounding and precision controls are set. Table 19-1 shows the state of the FPU following
FINIT or FNINIT.

The FNINIT instruction leaves the FPU in the same state as that which results from a
hardware RESET signal with Built-In Self-Test. When the Built-In Self-Test is not
requested, a hardware RESET leaves the FPU state unchanged An FNINIT instruction
should be executed after reset.

19-2

tal.

SYSTEM-LEVEL CONSIDERATIONS

Table 19-1. FPU State Following Initialization

Field Value Interpretation

Control Word 037FH

(Infinity Control)* 0 Affine

Rounding Control 00 Round to nearest

Precision Control 11 64 bits

Exception Masks 111111 All exceptions masked
Status Word 0000H

(Busy) 0 -

Condition Code 0000 -

Stack Top 000 Register 0 is stack top

Exception Summary 0 - No exceptions

Stack Flag 0 - .

Exception Flags 000000 No exceptions
Tag Word FFFFH

Tags 11 Empty
Registers N.C. Not changed
Exception Pointers

Instruction Code Cleared

Instruction Address Cleared

Operand Address Cleared

*The Intel486™ processor does not have infinity control. This value is listed to emphasize that programs
written for the Intel287 math coprocessor may not behave the same on the Intel486 processor if they
depend on this bit.

19.2.3.1 Intel486 DX CPU SOFTWARE EMULATION

Setting the EM bit to 1 will cause the Intel486 processor to trap via interrupt vector 7
(Device Not Available) to a software exception handler whenever it encounters an ESC
instruction. The EM bit was used to run numeric applications on an Intel386 processor
with a software Intel387 emulator. Numeric applications designed to be run with a non-
standard Intel387 emulator may not run successfully on the Intel486 processor without
the emulator. Setting the EM bit to 1 makes it possible to run such applications, or
programs which use non-standard floating-point arithmetic, on the Intel486 processor.

19.2.3.2 Intel486 SX CPU SOFTWARE EMULATION PROCEDURE

If the Intel487 SX math coprocessor is not present in the Intel486 SX system, floating
point instructions can be emulated. The system is set up for software emulation
accordingly:

CRO bit

EM 1
MP 0
NE 1

19-3

|nte| 0 SYSTEM-LEVEL CONSIDERATIONS

The EM bit must be set in order for the Intel486 SX to function properly. Setting the
EM bit to 1 will cause. the Intel486 processor to trap via interrupt vector 7 (Device Not
Available) to a software exception handler whenever it encounters an ESC instruction. If
the EM bit is set and no coprocessor or emulator is present, the system will hang.

The MP bit is used in conjunction with the TS bit to determine if WAIT instructions
should trap when the context of the FPU is different from that of the currently executing
task. When no FPU is present, this information is irrelevent and therefore the bit should
be set to 0. '

Regardless of the value of the NE bit, the Intel486 SX processor will generate an inter-
rupt vector 7 upon encountering any floating point instruction. It is recommended that
NE be set to 1 for normal operation. If a Floating Point Unit is present, this bit follows
the description described in Section 19.2.4.

19.2.4 Handling Numerics Exceptions

Once the FPU has been initialized and normal execution of applications has been com-
menced, the FPU may occasionally require attention in order to recover from numeric
processing exceptions. This section provides details for writing software exception han-
dlers for numeric exceptions. Numeric processing exceptions have already been intro-
duced in Chapter 16.

If the FPU encounters an unmasked exception condition, a software exception handler is
invoked immediately before execution of the next WAIT or non-control floating-point
instruction. The exception handler is invoked either through interrupt vector 16 or
through an external interrupt, depending on the value of the NE bit of the CRO control
register.

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately
before the execution of the next non-control floating-point or WAIT instruction. Inter-
rupt 16'is an operating-system call that invokes the exception handler. Chapter 9 con-
tains a general discussion of exceptions and interrupts on the Intel486 processor.

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception
causes the processor to freeze immediately before executing the next non-control
floating-point or WAIT instruction. The frozen processor waits for an external interrupt,
which must be supplied by external hardware in response to the FERR# output of the
processor. (Regardless of the value of NE, an unmasked numerical exception causes the
FERR# output to be activated.) In this case, the external interrupt invokes the
exception-handling routine. If NE = 0 but the IGNNE# input is active, the processor
disregards the exception and continues. Error reporting via external interrupt is sup-
ported for DOS compatibility. Chapter 25 contains further discussion of compatibility
issues.

19-4

|nte| 0 SYSTEM-LEVEL CONSIDERATIONS

When handling numeric errors, the processor has two responsibilities:
e It must not disturb the numeric context when an error is detected.
e It must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from
one implementation to the next, most exception handlers will include these basic steps:

o Store the FPU environment (control, status, and tag words, operand and instruction
pointers) as it existed at the time of the exception.

o Clear the exception bits in the status word.
e Enable interrupts.

o Identify the exception by examining the status and control words in the saved
environment. '

o Take some system-dependent action to rectify the exception.
o Return to the interrupted program and resume normal execution.

19.2.5 Simultaneous Exception Response

In cases where multiple exceptions arise simultaneously, the FPU signals one exception
according to the precedence shown at the end of Chapter 16. This means, for example,
that an SNaN divided by zero results in an invalid operation, not in a zero divide
exception. :

19.2.6 Exception Recovery Examples

Recovery routines for numeric exceptions can take a variety of forms. They can change
the arithmetic and programming rules of the FPU. These changes may redefine the
default fix-up for an error, change the appearance of the FPU to the programmer, or

change how arithmetic is defined on the FPU.

A change to an exception response might be to perform denormal arithmetic on denor-
mals loaded from memory. A change in appearance might be extending the register stack
into memory to provide an “infinite” number of numeric registers. The arithmetic of the
FPU can be changed to automatically extend the precision and range of variables when
exceeded. All these functions can be implemented on the Intel486 processor via numeric
exceptions and associated recovery routines in a manner transparent to the application
programmer.

Some other possible application-dependent actions might include:
o Incrementing an exception counter for later display or printing

e Printing or displaying diagnostic information (e.g.," the FPU environment and
registers)

e Aborting further execution
e Storing a diagnostic value (a NaN) in the result and continuing with the computation

19-5

Intel o SYSTEM-LEVEL CONSIDERATIONS

Notice that an exception may or may not constitute an error, depending on the applica-
tion. Once the exception handler corrects the condition causing the exception, the
floating-point instruction that caused the exception can be restarted, if appropriate. This
cannot be accomplished using the IRET instruction; however, because the trap occurs at
the ESC or WAIT instruction following the offending ESC instruction. The exception
handler must obtain (using FSAVE or FSTENV) the address of the offending instruc-
tion in the task that initiated it, make a copy of it, execute the copy in the context of the
offending task, and then return via IRET to the current instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must
recognize the precise state of the FPU at the time the exception handler was invoked,
and be able to reconstruct the state of the FPU when the exception initially occurred. To
reconstruct the state of the FPU, programmers must understand when, during the exe-
cution of a numeric instruction, exceptions are actually recognized.

Invalid operation, zero divide, and denormalized exceptions are detected before an
operation begins, whereas overflow, underflow, and precision exceptions are not raised
until a true result has been computed. When a before exception is detected, the FPU
register stack and memory have not yet been updated, and appear as if the offending
instructions has not been executed.

When an after exception is detected, the register stack and memory appear as if the
instruction has run to completion; i.e., they may be updated. (However, in a store or
store-and-pop operation, unmasked over/underflow is handled like a before exception;
memory is not updated and the stack is not popped.) The programming examples con-
tained in Chapter 20 include an outline of several exception handlers to process numeric
exceptions. '

19-6

Numeric Programming 20
- Examples

CHAPTER 20
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs for the Intel486 processor
written in ASM386/486 These examples are intended to illustrate some of the tech-

........... FAar mrATTATAIR IR G IAO[mm~nncont cuctere FAar nitmmerin annlinatiano

uu.lucb chlul 101 Plugldllllllillg 1 l CI400 plOCCOOdUL SYSLCIID 1UL HULICLIL appu\,auuua

20.1 CONDITIONAL BRANCHING EXAMPLE

As discussed in Chapter 15, several numeric instructions post their results to the condi-
tion code bits of the FPU status word. Although there are many ways to implement
conditional branching following a comparison, the basic approach is as follows:

Execute the comparison.
Store the status word. (The FPU status word can be stored directly into AX register.)

Inspect the condition code bits.
e Jump on the result.

Figure 20-1 is a code fragment that illustrates how two memory-resident double-format
real numbers might be compared (similar code could be used with the FTST instruc-
tion). The numbers are called A and B, and the comparison is A to B.

The comparison itself requires loading A onto the top of the FPU register stack and
then comparing it to B, while popping the stack with the same instruction. The status
word is then written into the AX register.

A and B have four possible orderings, and bits C3, C2, and CO of the condition code
indicate which ordering holds. These bits are positioned in the upper byte of the FPU
status word so as to correspond to the zero, parity, and carry flags (ZF, PF, and CF),
when the byte is written into the flags. The code fragment sets ZF, PF, and CF of the
EFLAGS register to the values of C3, C2, and CO of the FPU status word, and then uses
the conditional jump instructions to test the flags. The resultmg code is extremely com-
pact, requiring only seven instructions. ,

The FXAM instruction updates all four condition code bits. Figure 20-2 shows how a
jump table can be used to determine the characteristics of the value examined. The jump
table (FXAM_TBL) is initialized to contain the 32-bit displacement of 16 labels, one for
each possible condition code setting. Note that four of the table entries contain the same
value, “EMPTY.” The first two condition code settings correspond to “EMPTY.” The
two other table entries that contain “EMPTY” will never be used on the Intel486 pro-
cessor or the Intel387 math coprocessors, but may be used if the code is executed with
an Intel287 math coprocessor. .

The program fragment performs the FXAM and stores the status word. It then manip-
ulates the condition code bits to finally produce a number in register AX that equals the
condition code times 2. This involves zeroing the unused bits in the byte that contains
the code, shifting C3 to the right so that it is adjacent to C2, and then shifting the code

20-1

NUMERIC PROGRAMMING EXAMPLES

A

A_
A_

Ao

pa ?

ELD A 3 LOAD A ONTO TOP OF FPU STACK
FComp B ; COMPARE A:B, POP A

FSTSW AX ; STORE RESULT TD AX REGISTER

CPU AX REGISTER CONTAINS CONDITION CODES
(RESULTS OF COMPARE)
LOAD CONDITION CODES INTD FLAGS

SAHF
USE CUNDIT[UNAL JUMPS TO DETERMINE ORDERING OF A TO B

JP. A_B_UNORDERED i TEST €2 (PF)

JB ATLESS . TEST 00 (CF)
JE AZEQUAL . TEST €3 (ZF)
GREATER: L 00 (CF) = 0, C3 (ZF) = 0
EQUAL : . 00 (CF) = 0, C3 (ZF) = 1
LESS: _ ;00 C(CF) = 1, €3 (ZF) = 0
_B_UNORDERED: . 02 (PF) = 1

240486i20-1

Figure 20-1. Conditional Branching for Compares

to multiply it by 2. The resulting value is used as an index that selects one of the dis-
placements from FXAM TBL (the multiplication of the condition code is required
because of the 2-byte length of each value in FXAM_TBL). The unconditional JMP
instruction effectively vectors through the jump table to the labeled routine that contains
code (not shown ‘in the example) to process each possible result of the FXAM

instruction.

20.2 EXCEPTION HANDLING EXAMPLES

" There are many approaches to writing exception handlers. One useful technique is to
consider the exception handler procedure as consisting of “prologue,” “body,” and ‘epi-

logue” sections of code. This procedure is invoked via interrupt number 16.

20-2

in

tal.

NUMERIC PROGRAMMING EXAMPLES

i JUMP TABLE FOR EXAMINE ROUTINE

FXAM_TBL DD POS_UNNORM, POS NAN, NEG_UNNORM, NEG_NAN,
¢ POS_NORM, POS_INFINITY, NEG_NORM,

& NEG_INFINITY, POS_ZERO, EMPTY, NEG_ZEROD,

¢ EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY

FXAM

XOR EAX,EAX ;

FSTSW AX

; CALCULATE OFFSET

AND
SHR

SAL AH,S

OR AL, AH
AH, AH

X0R

i

AX,0100011100000000B ;
EAX,6

CLEAR EAX

INTO JUMP TABLE

CLEAR ALL BITS
i SHIFT C2-C0 INTO PLACE

; POSITION C3

; DROP C3 IN ADJACENT TO C2
1

CLEAR OUT THE OLD COPY OF

JHP FXAM_TBLIEAX]

; HERE ARE THE JUMP TARGETS,

ONE TO HANDLE

; EACH POSSIBLE RESULT OF FXAM

POS_UNNORN:
POS_NAN:
NEG_UNNORM:
NEG_NAN:
POS_NORM:
POS_INFINITY:
NEG_NORM:
NEG_INFINITY:
POS_ZERD:
EMPTY:
NEG_ZERD:
POS_DENDRM:
NEG_DENORM:

EXAMINE ST AND STORE RESULT (CONDITION CODES)

EXCEPT C3,
000XXX00)
(00X00000)
00XXXX00)
€3

JUMP TO THE ROUTINE ‘ADDRESSED’ BY CONDITION CODE

€2-C0

240486i20-2

Figure 20-2. Conditional Branching for FXAM

20-3

|nte|® NUMERIC PROGRAMMING EXAMPLES

In the transfer of control to the exception handler, interrupts have been disabled by
hardware. The prologue performs all functions that must be protected from possible
interruption by higher-priority sources. Typically, this involves saving registers and trans-
ferring diagnostic information from the FPU to memory. When the critical processing
has been completed, the prologue may re-enable interrupts to allow higher-priority
interrupt handlers to preempt the exception handler.

The body of the exception handler examines the diagnostic information and makes a
response that is necessarily application-dependent. This response may range from halt-
ing execution, to displaying a message, to attempting to repair the problem and proceed
with normal execution.

The epilogue essentially reverses the actions of the prologue, restoring the processor so
that normal execution can be resumed. The epilogue must not load an unmasked excep-
tion flag into the FPU or another exception will be requested immediately.

Figures 20-3. through 20-5 show the ASM386/486 coding of -three skeleton exception
handlers. They show how prologues and epilogues can be written for various situations,
but provide comments indicating only where the application dependent exception han-
dling body should be placed.

SAVE_ALL PROC

1

i SAVE REGISTERS, ALLOCATE STACK SPACE
i FOR FPU STATE IMAGE

PUSH EBP
Mov EBP,ESP
SUB ESP,108

i SAVE FULL FPU STATE, ENABLE INTERRUPTS
FNSAVE [EBP-108] -
STI

APPLICATION-DEPENDENT EXCEPTION HANDLING
CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH 1S IN MEMORY)

RESTORE MODIFIED STATE IMAGE
MOV BYTE PTR [EBP-1041, OH
FRSTOR [EBP-108)

DEALLOCATE STACK SPACE, RESTORE REGISTERS
MOVE ESP,EBP

POP EBP

; RETURN TO INTERRUPTED CALCULATION
IRET
SAVE_ALL ENDP

240486i20-3

Figure 20-3. Full-State Exception Handler

20-4

Hni'eﬁ@ NUMERIC PROGRAMMING EXAMPLES

SAVE_ENVIRONMENT PROC

i SAVE REGISTERS, ALLOCATE STACK SPACE
; FOR FPU ENVIRONMENT

PUSH EBP
MOV EBP,ESP
SUB £SP, 28

i SAVE ENVIRONMENT, ENABLE INTERRUPTS
FNSTENV [EBP-281
STI

APPLICATION EXCEPTION-HANDLING CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY)
RESTORE MODIFIED ENVIRONMENT IMAGE
MoV BYTE PTR [EBP-241, 0H
FLDENV [EBP-28)
1 DE-ALLDCATE STACK SPACE, RESTORE REGISTERS
Mov ESP,EBP
POP EBP

; RETURN TO INTERRUPTED CALCULATION
IRET
SAVE_ENVIRONMENT ENDP

240486i20-4

Figure 20-4. Reduced-Latency Exception Handler

Figures 20-3 and 20-4 are very similar; their only substantial difference is their choice of
instructions to save and restore the FPU. The tradeoff here is between the increased
diagnostic information provided by FNSAVE and. the faster execution of FNSTENV.
For applications that are sensitive to interrupt latency or that do not need to examine
register contents, FNSTENV reduces the duration of the “critical region,” during which
the processor does not recognize another interrupt request.

After the exception handler body, the epilogues prepare the processor to resume execu-
tion from the point of interruption (i.e., the instruction following the one that generated

tha 1inmag Irad avanmtinn) Natina that tha avanmtinn flaga in tha mamasgy tmaoa thot 1a
LLIU UulllliadKcu CAbCyLlUll}. INULILT Ulal U CALCUPLIVIL Liags 111 UIb 1iviiuvly iagc !,llrll n
loaded into the FPU are cleared to zero prior to reloading (in fact, in these examples,
the entire status word image is cleared).

The examples in Figures 20-3 and 20-4 assume that the exception handler itself will not
cause an unmasked exception. Where this is a possibility, the general approach shown in
Figure 20-5 can be employed. The basic technique is to save the full FPU state and then

20-5

|nte|® NUMERIC PROGRAMMING EXAMPLES

LUCAL CONTROL DW ? 5 ASSUME INITIALIZED

REENTRANT PROC
. SAVE REGISTERS, ALLOCATE STACK SPACE FOR
. FPU STATE IMAGE

PUSH EBP

MoV EBP,ESP

SUB ESP,108
s SAVE STATE, LOAD NEW CONTROL WORD,
i ENABLE INTERRUPTS

FNSAVE [EBP-108]

FLDCH LOCAL_CONTROL

STI

APPLICATION EXCEPTION HANDLING CODE GOES HERE.
AN UNMASKED EXCEPTION GENERATED HERE WILL
CAUSE THE EXCEPTION HANDLER TO0 BE REENTERED.
IF LOCAL STORAGE IS NEEDED, IT MUST BE
ALLOCATED ON THE STACK.

; CLEAR EXCEPTION FLAGS IN STATUS WORD
i (WHICH 1S IN MEMORY)
; RESTORE MODIFIED STATE IMAGE
Mov BYTE PTR [EBP-1041, 0H
FRSTOR [EBP-108]
; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS

MOV ESP,EBP
POP EBP
. RETURN TO POINT OF INTERRUPTION
IRET -
REENTRANT ENDP

240486i20-5

Figure 20-5. Reentrant Exception Handler

20-6.

H[ﬁiﬁ@_ﬂ@ NUMERIC PROGRAMMING EXAMPLES

to load a new control word in the prologue. Note that considerable care should be taken
when designing an exception handler of this type to prevent the handler from being
reentered endlessly.

20.3 FLOATING-POINT TO ASCIi CONVERSION EXAMPLES

Numeric programs must typically format their results at some point for presentation and
inspection by the program user. In many cases, numeric results are formatted as ASCII
strings for printing or display. This example shows how floating-point values can be
converted to decimal ASCII character strings. The function shown in Figure 20-6 can be
invoked from PL/M-386/486, Pascal-386/486, FORTRAN-386/486, or ASM386/486
routines.

Shortness, speed, and accuracy were chosen rather than providing the maximum number
of significant digits possible. An attempt is made to keep integers in their own domain to
avoid unnecessary conversion errors.

Using the extended precision real number format, this routine achieves a worst case
accuracy of three units in the 16th decimal position for a noninteger value or integers
greater than 10'®. This is double precision accuracy. With values having decimal expo-
nents less than 100 in magnitude, the accuracy is one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size,
and lower performance.

20.3.1 Function Partitioning

Three separate modules implement the conversion. Most of the work of the conversion
_is done in the module FLOATING_TO_ASCII. The other modules are provided sepa-
rately, because they have a more general use. One of them, GET_.POWER_10, is also
used by the ASCII to floating-point conversion routine. The other small module,
TOS_STATUS, identifies what, if anything, is in the top of the numeric register stack.

20.3.2 Exception Considerations

Care is taken inside the function to avoid generating exceptions. Any possible numeric
value is accepted. The only possible exception is insufficient space on the numeric reg-
ister stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity),
and status (denormal, zero, sign). The string size is tested for a minimum and maximum
value. If the top of the register stack is empty, or the string size is too small, the function
returns with an error code.

Overflow and underflow is avoided inside the function for very large or very small
numbers. :

20-7

intal.

NUMERIC PROGRAMMING EXAMPLES

+1

SOURCE

$title('Convert a floating point number to ASCII')

Ne Ne me oNe S Se ose -

B T

DT EC TR PR

Ne e e we No ose s

~

~

Ne we Ns s Se Se S8 Ne Ne N8 oS¢ Ne Se Ne Sa Se we

name floating_to_ascii

public floating_to_ascii
extrn get_power_10:near, tos_status:near

This subroutine will convert the floating point

number in the top of the NPX stack to an ASCII

string and separate power of 10 scaling value

(in binary). The maximum width of the ASCII string
formed is controlled by a parameter which must be

> 1. Unnormal values, denormal values, and psuedo
zeroes will be correctly converted. However, unnormals
and pseudo zeros are no longer supported formats on the i486 processor
(in conformance with the IEEE floating point

standard) and hence not generated internally. A
returned value will indicate how many binary bits

of precision were lost in an unnormal or denormal
value. The magnitude (in terms of binary power)

of a pseudo zero will also be indicated. Integers

less than 10**18 in magnitude are accurately converted
if the destination ASCII string field is wide enough

to hold all the digits. Otherwise the value is converted

to scientific notation.

The status of the conversion is identified by the
return value, it can be:

0 conversion complete, string_size is defined
1 invalid arguments
.2 exact integer conversion, string_size is defined
3 indefinite
4 + NAN (Not A Number)
5 - NAN
) + Infinity
7 - Infinity
8

pseudo zero found, string_size is defined
The PLM—386/486 calling convention is:

floating_to_ascii:
procedure (number,denormal_ptr,string_ptr,size_ptr,
field_size, power_ptr) word external;
declare (denormal_ptr,string_ptr,power_ptr,size_ptr)
pointer;
declare field_size word,
string_size based size_ptr word;
declare number real;
declare denormal integer based denormal_ptr;

240486i20-60f1

Figure 20-6. Floating-Point to ASCIlI Conversion Routine

20-8

intgl.

NUMERIC PROGRAMMING EXAMPLES

Se Se Ne e Ns Se Se SE Se SE S Sa Ne S N owe

~ =

~e e e we e oSe

~e ~e

~

Se Se N N Se Se S Se S oS

~e Ne e owe

RV

'

ebp_save equ dword ptr [ebpl

es_save equ ebp_save + size ebp_save
return_ptr equ es_save + size es_save

power_ptr equ return_ptr + size return_ptr
field_size equ power_ptr + size power_ptr
size_ptr equ field_size + size field_size
string_ptr equ size_ptr + size size_ptr
denormal_ptr equ string_ptr + size string_ptr
parms_size equ size power_ptr + size field_size
& ' size size_ptr + size string_ptr +

&

declare power integer based power_ptr;
end floating_to_ascii;

The floating point value is expected to be
on the top of the FPU stack. This subroutine
expects 3 free entries on the FPU stack and
Will.pop the passed value off when done. The
generated ASCII string will have a leading
character either '-' or '+!' indicating the sign
of the value. The ASCII decimal digits will
immediately follow. The numeric value of the
ASCII string is (ASCII STRING.)*10**POWER. If
the given number was zero, the ASCII string will
contain a sign and a single zero chacter. The
value string_size indicates the total length of
the ASCII string including the sign character.
String(0) will always hold the sign. It is
possible for string_size to be less than
field_size. This occurs for zeroes or integer
values. A pseudo zero will return a special
return code. The denormal count will indicate

the power of two originally associated with the
value. The power of ten and ASCII string will
be as if the value was an ordinary zero.

This subroutine is accurate up to a maximum of -

18 decimal digits for integers. Integer values
will have a decimal power of zero associated

with them. For non integers, the result will be
accurate to within 2 decimal digits of the 16th
decimal place(double precision). The exponentiate
instruction is also used for scaling the value into
the range acceptable for the BCD data type. The
rounding mode in effect on entry to the

subroutine is used for the conversion.

The following registers are not transparent:

eax ebx ecx edx esi edi eflags

Define the stack layout.

size denormal_ptr

240486i20-60f2

Figure 20-6. Floating-Point to ASCIl Conversion Routine (Contd.)

20-9

intgl.

NUMERIC PROGRAMMING EXAMPLES

~e e

:

BCD_DIGITS equ
WORD_SIZE equ
BCD_SIZE equ
MINUS equ
NAN . equ
INFINITY equ
INDEFINITE equ
PSEUDO_ZERO equ
INVALID equ
ZERO equ
DENORMAL equ
UNNORMAL equ
NORMAL . equ
EXACT equ
H

; Define layout
’

power_two equ
bed_value equ
bed_byte equ
fraction equ
local_size equ

H
i
i
i
s

+1 $eject

Define constants used

18 ; Number of digits in bcd_value

4

10

1. ; Define return values

4 ; The exact values chosen

6 ; here are important. They must

3 ; correspond to the possible return
8 ; values and be in the same numeric
-2 ; order as tested by the program.
-4 .

-6

-8

0

2

of temporary storage area.

word ptr [ebp - WORD_SIZE]
tbyte ptr power_two - BCD_SIZE
byte ptr bcd_value

bed_value

size power_two + size bcd_value

Allocate stack space for the temporaries so
the stack will be big enough

tack stackseg (local_size+6) ; Allocate stack

; space for locals

240486i20-60f3

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-10

Eni'eL NUMERIC PROGRAMMING EXAMPLES

code segment public er
extrn power_table:qword
H Constants used by this function.
H
even ; Optimize for 16 bits
const10 dw 10 ; Adjustment value for
; too big BCD

Convert the C3,C2,C1,C0 encoding from tos_status
into meaningful bit flags and values.

’

;

;

’

H .

status_table db UNNORMAL, NAN, UNNORMAL + MINUS,

& NAN + MINUS, NORMAL, INFINITY,

& NORMAL + MINUS, INFINITY + MINUS,

& ZERO, INVALID, ZERO + MINUS, INVALID,

& DENORMAL, INVALID, DENORMAL + MINUS, INVALID
f

loating_to_ascii proc

call tos_status ; Look at status of ST(0)
; Get descriptor from table

‘movzx eax, status_table[eax]

cmp al, INVALID ; Look for empty ST(0)
jne not_empty

ST(0) is empty! Return the status value.

~e e s

ret parms_size
H Remove infinity from stack and exit.
i
found_infinity:

fstp st(0) ; OK to leave fstp running
jmp short exit_proc

~e =

String space is too small!
H Return invalid code.
H
small_string:
mov al, INVALID
exit_proc:
leave ; Restore stack setup

240486i20-60f4

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-11

intel.

NUMERIC PROGRAMMING EXAMPLES

pop
ret

‘

es
parms_size

; ST(0) is NAN or indefinite. Store the
; value in memory and look at the fraction
; field to separate indefinite from an ordinary NAN.

NAN_or_indefini
fstp

test
fwait
jz

te:
fraction ; Remove value from stack
; for examination
al ,MINUS ; Look at sign bit
; Insure store is done
exit_proc ; Can't be indefinite if

; positive

ebx,0C0G00000H ; Match against upper 32
;bits of fraction

; Compare bits 63-32

sub

ebx, dword ptr fraction + 4

; Bits 31-0 must be zero

or
jnz

ebx, dword ptr fraction
exit_proc

; Set return value for indefinite value
mov al, INDEFINITE

jmp exit_proc

I’

; Allocate stack space for local variables

; and establish parameter addressibility.

H

not_empty:
push es ; Save working register
enter local_size, 0 ; Setup stack addressing

; Check for enough string space

mov
cmp
jt

dec

; See if string

cmp
jbe

ecx,field size
ecx,2
small_string

ecx ; Adjust for sign character
is too large for BCD

ecx,BCD_DIGITS
size_ok

; Else set maximum string size

mov
size_ok:
cmp

; Return status
ige

ecx,BCD_DIGITS
al, INFINITY ; Look for infinity

value for + or - inf
found_infinity

240486i20-60f5

Figure 20-6. Floating-Point to ASCIl Conversion Routine (Contd.)

20-12

intal.

NUMERIC PROGRAMMING EXAMPLES

cmp al,NAN ; Look for NAN or INDEFINITE
jge NAN_or_indefinite

Set default return values and check that
the number is normalized.

~e we we s

fabs ; Use positive value only .
; sign bit in al has true sign of value

xor edx, edx ; Form 0 constant
mov edi,denormal_ptr; Zero denormal count
mov [edil, dx
mov ebx,power_ptr ; Zero power of ten value
mov [ebx], dx
mov dl, al
and di, 1

add dl, EXACT
cmp al,ZERO ; Test for zero
jae convert_integer ; Skip power code if value

; is zero

fstp fraction

fwait

mov al, bcd byte + 7

or byte ptr bcd_byte + 7, 80h
fld fraction

fxtract

test al, 80h

jnz normal_value

fld1

fsub

ftst

fstsw ax

sahf

jnz set_unnormal_count

Found a pseudo zero

.~ = we

fldlg2 ; Develop power of ten estimate
add dl, PSEUDO_ZERO - EXACT

fmulp st(2), st

fxch ; Get power of ten

fistp word ptr [ebx] ; Set power of ten

jmp convert_integer

set_unnormal_count:

fxtract ; Get original fraction,
; now normalized

fxch ; Get unnormal count

fchs

fistp word ptr [edil ; Set unnormal count

; Calculate the decimal magnitude associated
with this number to within one order. This

‘

240486i20-60f6

Figure 20-6. Floating-Point to ASCIl Conversion Routine (Contd.)

20-13

NUMERIC PROGRAMMING EXAMPLES

; error will always be inevitable due to

; rounding and lost precision. As a result,
; we will deliberately fail to consider the
; LOG10 of the fraction value in calculating
; the order. Since the fraction will always
; be1<=F <2, its LOG10 will not change
; the basic accuracy of the function. To
get the decimal order of magnitude, simply

H
; multiply the power of two by LOG10(2) and
; truncate the result to an integer.
1
normal_value: .
fstp fraction ; Save the fraction field
; for later use
fist power_two ; Save power of two
fldlg2 ; Get LOG10(2)
; Power_two is now safe to use
fmul ; Form LOG10(of exponent of number)

fistp word ptr [ebx] ; Any rounding mode
; will work here

H
; Check if the magnitude of the number rules
; out treating it as an integer.
H
; CX has the maximum number of decimal digits
; allowed.
H
fwait ; Wait for power_ten to be valid

; Get power of ten of value
movsx si, word ptr [ebx]

sub esi,ecx ; Form scaling factor
; necessary in ax
ja adjust_result ; Jump if number will not fit
H
; The number is between 1 and 10**(field_size).
; Test if it is an integer.
; . . .
fild power_two H Restore original number
sub dl,NORMAL-EXACT ; Convert to exact return
; value
fld fraction
fscale ; Form full value, this
; is safe here :
fst st(1) ; Copy value for compare
frndint ! ; Test if its an integer
fcomp ; Compare values
fstsw ax ; Save status
sahf ; C3=1 implies it was
; an integer
jnz convert_integer
fstp st(0) . ; Remove non integer value

add dl,NORMAL-EXACT ; Restore original return value

240486i20-60f7

Figure 20-6. Floating-Point to' ASCII Conversion Routine (Contd.)

20-14

intal.

NUMERIC PROGRAMMING EXAMPLES

H Scale the number to within the range allowed

H by the BCD format.The scaling

operation should

; produce a number within one decimal order of
; magnitude of the largest decimal number
; representable within the given string width.

H The scaling power of ten value is in si.

adjust_result:

; Setup for pow10

mov eax,esi :
mov word ptr [ebx],ax ; Set initial power
; of ten return value
neg eax ; Subtract one for each order of
; magnitude the value is scaled by
call get_power_10 ; Scaling factor is
; returned as
; exponent and fraction
ftd fraction ; Get fraction
fmul ; Combine fractions
mov esi,ecx ; Form power of ten of
; the maximum .
shl esi,3 ; BCD value to fit in
; the string
fild power_two ; Combine powers of two
faddp st(2),st
fscale ; Form full value,
; exponent was safe
fstp st(1) ; Remove exponent
7
; Test the adjusted value against a table
; . of exact powers of ten. The combined errors
H of the magnitude estimate and power function
H can result in a value one order of magnitude
; too small or too large to fit correctly in
; the BCD field. To handle this problem, pretest
H the adjusted value, if it is too small or
H large, then adjust it by ten and adjust the
; power of ten value.

test_power:

; Compare against exact power entry. Use the next
; entry since cx has been decremented by one

fcom power_tablel[esil+type power_table

fstsw ax ;- No wait is necessary
sahf ; 1f C3 = €0 = 0 then

jb test_for_small ; too big

fidiv const10 ; Else adjust value

and dl,not EXACT ; Remove exact flag

inc word ptr [ebx] '; Adjust power of ten value
jmp short in_range ; Convert the value to a BCD

; integer

test_for_small:

fcom power_table[esil

; Test relative size

240486i20-60f8

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-15

NUMERIC PROGRAMMING EXAMPLES

Ne ms Ne Ss Se wa Se Se S Se Se w

~e ws wa owe

fstsw ax i S ; No wait is necess
ary ' s
sahf ; 1f CO = 0 then
; st(0) >= lower bound
jc in_range : - ; Convert the value
to a
; BCD integer
fimul const10 ; Adjust value into range
dec word ptr ‘[ebx] '; Adjust power of ten value
in_range: R : :
frndint ; Form integer value
’
H Assert: 0 <='TOS <= 999,999,999,999,999,999
; The TOS number will be exactly representable
; in 18 digit BCD format.
; ;
convert_integer:

fbstp ~bcd_value ; Store as BCD format number

While the store BCD runs, setup registers
for the conversion to ASCII.

mov esi,BCD_SIZE-2 ; Initial BCD index value

mov cx,0f04h ; Set shift count and mask
mov ebx,1 - ; Set initial size of ASCII
; field for sign
mov edi,string_ptr ; Get address of start of
; ASCII string
mov ax,ds *; Copy ds to es
mov es,ax : ’
cld . ; Set autoincrement. mode
mov al,'+! s -3 Clear sign field
test di,MINUS ©; Look for negative value
jz positive result : . B
mov al,'-?
positive_result:
stosb ' ; Bump string pointer
H past sign
and dl,not MINUS ; Turn off sign bit
fwait ; Wait for fbstp to finish
Register usage:
ah: BCD byte value in use
al: ASCII character value
dx: Return wvalue
ch: BCD mask = Ofh
~el: BCD shift count = 4
bx: ASCII string field w1dth
esi: BCD field index
di: ASCII string field pointer

ds,es: ' ASCII string segment base

Remove leading zeroes from the number.

240486i20-60f9

Figure.20-6: ‘Floating-Point to ASCII Conversion Routine (Contd.)

20-16

intel.

NUMERIC PROGRAMMING EXAMPLES

digit_loop:

mov
mov
mov

jmp

floating_to_ascii

i
skip_leading_zeroes:

mov ah,bcd_bytelesil ; Get BCD byte
mov al,ah ; Copy value
shr al,cl ; Get high order digit
and al,0fh ; Set zero flag
jnz enter_odd ; Exit loop if leading
; non zero found .
mov al,ah ; Get BCD byte again
and al,0fh ; Get.low order digit
jnz enter_even ; Exit loop if non zero
; digit found

dec esi . ; Decrement BCD index
jns skip_leading_zeroes

i

H The significand was all zeroes.

H
mov al,'0! ; Set initial zero
stosb .
inc ebx ; Bump string length
jmp short exit_with_value

H

; Now expand the BCD string into digit

; per byte values 0-9.

mov ah,bcd_bytelesil ; Get BCD byte

mov al,ah

shr al,cl ; Get high order digit
enter_odd:

add al,'0 ; Convert to ASCII

stosb ; Put digit into ASCII

; string area

mov al,ah ; Get low order digit

and al,0fh)

inc ebx ; Bump field size counter
enter_even:

add al,'0! ; Convert to ASCII

stosb ; Put digit into ASCII area

inc ebx ; Bump field size counter

dec esi ; Go to next BCD byte

jns digit_loop
’
H Conversion complete. Set the string
H size and remainder.

’
exit_with_value:

edi,size_ptr
word ptr [edil,bx

eax, edx ; Set return value
exit_proc
endp
code ends
end

240486i20-60f10

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-17

intel.

NUMERIC PROGRAMMING EXAMPLES

+
-+
-
@
~
©
o
_—
o
c
o
-
@
s
ar
@
L
o
=N

This subroutine will calculate the
value of 10**eax. For values of
0 <= eax < 19, the result will exact.
All registers are transparent
and the value is returned on the TOS
as two numbers, exponent in ST(1) and
fraction in ST(0). The exponent value
can be larger than the largest
 exponent of an extended real format
number. Three stack entries are used.

B Y

name get_power_10
public get_power_10,power_table

stack stackseg 8
code segment public er
H Use exact values from 1.0 to 1e18.
H
even ; Optimize 16 bit access
power_table dq 1.0,1e1,1€2,1e3
dq 1e4,1e5,1e6,1e7
dq 1e8,1e9,1e10,1e11
dq 1e12,1e13,1e14,1e15
“dq 1e16,1e17, 1e18

get_power_10 proc

cmp eax, 18 ; Test for 0 <= ax < 19
ja out_of_range
fld . power_table[eax*8]; Get exact value

fxtract ; Separate power

240486i20-60f11

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-18

NUMERIC PROGRAMMING EXAMPLES

Ne S Se oS

~e ma ws owe N

; and fraction
ret ; OK to leave fxtract running

calculate the value using the
exponentiate instruction. The following
relations are used:
10%*x = 2%*(log2(10)*x)
2**(I+F) = 2**1 * 2**F
if st(1) = I and st(0) = 2**F then
 fscale produces 2**(1+F)

out_of_range:

fldlat ; TOS = L0G2(¢10)
enter 4,0

save power of 10 value, P

mov [ebp-41,eax

'

TOS,X = LOG2(10)*P = LOG2(10**P)
fimul dword ptr [ebp-41

fldl ; Set T0S = -1.0
fchs :
fld st(1) ; Copy power value
; in base two
frndint ; TOS = I: -inf <1 <=X
; where I is an integer
; Rounding mode does
; not matter
fxch st(2) ; TOS = X, ST(1) = -1.0
; STy =1
fsub st,st(2) ; TOS,F = X-1:
; -1.0 < T0S <= 1.0

; Restore orignal rounding control

pop eax

f2xm1 ; TOS = 2**(F) - 1.0

leave ; Restore stack

fsubr ; Form 2**(F)

ret ; OK to leave fsubr running

get_power_10 endp

code

ends
end

240486i20-60f12

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-19

|nte|® | NUMERIC PROGRAMMING EXAMPLES

+1 $title(Determine TOS register contents)

This subroutine will return a value
from 0-15 in eax corresponding

to the contents of FPU TOS. ALl
registers are transparent and no

errors are possible. The return
value corresponds to c3,c2,c1,c0

of FXAM instruction.

Ns S me we S we Se Se Se

name tos_status
public tos_status

stack stackseg [}
code segment public er
tos_status proc
fxam ; Get status of TOS register
fstsw ax ; Get current status
mov al,ah ; Put bit 10-8 into bits 2-0
and eax,4007h ; Mask out bits ¢3,c2,c1,c0
shr ah, 3 ; Put bit ¢3 into bit 11
or al,ah ; Put ¢3 into bit 3
mov ah,0 ; Clear return value
ret
tos_status endp
code ends
end

240486i20-60f13

Figure 20-6. Floating-Point to ASCIl Conversion Routine (Contd.)

20-20

ﬂﬂw® NUMERIC PROGRAMMING EXAMPLES

20.3.3 Special Instructions

The functions demonstrate the operation of several numeric instructions, different data
types, and precision control. Shown are instructions for automatic conversion to BCD,
calculating the value of 10 raised to an integer value, establishing and maintaining con-
currency, data synchronization, and use of directed rounding on the FPU.

Without the extended precision data type and built-in exponential function, the double
precision accuracy of this function could not be attained with the size and speed of the
shown example.

The function relies on the numeric- BCD data type for conversion from binary floating-
point to decimal. It is not difficult to unpack the BCD digits into separate ASCII deci-
mal digits. The major work involves scaling the floating-point value to the comparatively
limited range of BCD values. To print a 9-digit result requires accurately scaling the
given value to an integer between 10® and 10°. For example, the number +0.123456789
requires a scaling factor of 10° to produce the value + 123456789.0, which can be stored
in 9 BCD digits. The scale factor must be an exact power of 10 to avoid changing any of
the printed digit values. '

These routines should exactly convert all values exactly representable in decimal in the
field size given. Integer values that fit in the given string size are not be scaled, but
directly stored into the BCD form. Noninteger values exactly representable in decimal
within the string size limits are also exactly converted. For example, 0.125 is exactly
representable in binary or decimal. To convert this floating-point value to decimal, the
scaling factor is 1000, resulting in 125. When scaling a value, the function must keep
track of where the decimal point lies in the final decimal value. :

20.3.4 Description of Operation

Converting a floating-point number to decimal ASCII takes three major steps: identify-
ing the magnitude of the number, scaling it for the BCD data type, and converting the
BCD data type to a decimal ASCII string.

Identifying the magnitude of the result requires finding the value X such that the num-
ber is represented by I X 10%, where 1.0 = I < 10.0. Scaling the number requires
multiplying it by a scaling factor 105, so that the result is an integer requiring no more
decimal digits than provided for in the ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a
form easy to convert to decimal ASCII by host software.

Implementing each of these three steps requires attention to detail. To begin with, not
all floating-point values have a numeric meaning. Values such as infinity, indefinite, or
NaN may be encountered by the conversion routine. The conversion routine should
recognize these values and identify them uniquely.

20-21

|nte§® NUMERIC PROGRAMMING EXAMPLES

Special cases of numeric values also exist. Denormals have numeric values, but should be
recognized because they indicate that precision was lost during some earlier calculations.

Once it has been det