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Founded in 1968 to pursue the integration of large numbers of 
transistors onto tiny silicon chips, Intel's history has been marked by 
a remarkable number of scientific breakthroughs and innovations. In 
1971, Intel introduced the 4004, the first microprocessor. Containing 
2300 transistors, this first commercially-available computer on a chip 
is considered primitive compared with today's million-plus transistor 
products. 

Innovations such as the microprocessor, the erasable program­
mable read-only memory (EPROM) and the dynamic random access 
memory (DRAM) revolutionized electronics by making integrated 
circuits the mainstay of both consumer and business computing 
products. 

Over the last two and a half decades, Intel's business has 
evolved and today the company's focus is on delivering an extensive 
line of component, module and system-level building block products 
to the computer industry. The company's product line covers a broad 
spectrum, and includes microprocessors, flash memory, microcontrol­
lers, a broad line of PC enhancement and local area network 
products, multimedia technology products, and massively parallel 
supercomputers. Intel's 32-bit X86 architecture, represented by the 
InteI386T>' and Intel486™ microprocessor families, are the de facto 
standard of modern business computing and installed in millions of 
PCs worldwide. 

Intel has over 25,000 employees located in offices and manufac­
turing facilities around the world. Today, Intel is the largest semicon­
ductor company in the United States and the second largest in the 
world. 
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Microprocessor Family 





CHAPTER 1 
INTRODUCTION TO THE 

Intel486™ MICROPROCESSOR FAMilY 

The Intel486 microprocessors offer the highest performance for DOS, OS/2, Windows 
and UNIX System V/386 applications. The Intel486 microprocessor family currently 
includes the Intel486 SX CPU (and Intel48T" SX Math CoProcessor), Intel486 DX 
CPU, and the Intel486 DX2 CPU. These processors are 100% binary compatible with 
one another and with the Intel386™ family of microprocessors. Throughout this text, 
these members are collectively referred to as the "Inte1486 processor." The high integra­
tion Intel486 processors maintain binary compatibility with previous members of the x86 
architectural family. The instruction set microarchitecture has been reimplemented 
using RISC design techniques such that frequently used instructions execute in one 
cycle. An 8-Kbyte unified code and data cache combined with the high bandwidth, burst­
able data bus allow this performance level to be sustained, providing a significant per­
formance advantage without additional system complexity. 

New features enhance multiprocessing systems. New instructions speed manipulation of 
memory-based semaphores. On-chip hardware ensures cache consistency and provides 
hooks for multi-level caching. 

The built-in self-test extensively tests on-chip logic, cache memory and the on-chip pag­
ing translation cache. Debug features include breakpoint traps on code execution and 
data accesses. 

Features of the Intel486 processor include: . 

• Full binary compatibility with Intel386 DX CPU, Intel386 SX CPU, Intel386 SL, 
376™ embedded processor, 80286, 8086, and 8088 processors. 

o Execution unit designed to execute frequently~used instructions in one .clock cycle. 

o 32-bit integer processor for performing arithmetic and logical operations. 
o Internal or coprocessor floating-point unit (Inte1486 FPU)·for supporting the 32-, 64-, 

and 80-bit formats specified in IEEE standard 754 (object-code compatible with 
Intel38T" DX and Inte1387 SX math coprocessors). 

• Internal 8-Kbyte cache memory, which provides fast access to recently-used instruc­
tions and data. 

o Bus control signals for maintaining cache consistency in multiprocessor systems. 
• Segmentation, a form of memory management for creating independent, protected 

address spaces. 

• Paging, a form of memory management which provides access to data structures 
larger than the available memory space by keeping therri partly in memory and partly 
on disk. 

• Restartable instructions that allow a program to be restarted following an exception 
(necessary for supporting demand-paged virtual memory). 

o Pipelined instruction execution overlaps the interpretation of different instructions. 
o Debugging registers for hardware support of instruction and data breakpoints. 
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The Intel486 processors are object-code compatible with four other Inte1386 processors: 

• Inte1386 DX Processor (32-bit data bus)-A cost-effective form for high-end personal 
computers and mid-range workstations. 

• Inte1386 SX Processor (16-bit data bus) - The Intel386 processor adapted for mid­
range personal computers, which are sensitive to the higher system cost of a 32-bit 
bus. 

• Inte1386 SL Processor (16-bit data bus) - A high integration, static Intel386 micropro­
cessor with ISA peripheral subsystem and power management. 

• 376 Embedded Processor (16-bit data bus) - A reduced form of the Intel386 proces­
sor optimized for embedded applications, such as process controllers. The 376 pro­
cessor lacks the paging and 8086-compatlbility features provided in the Intel486 
processor. Tl)e 376 processor is available in a surface-mount plastic package, which 
provides the lowest cost and smallest form factor for any implementation of the 
Intel386 processor. 

The operating mode of the Intel486 processor determines which instructions and archi­
tectural features are accessible. The Intel486 processor has three modes for running 
programs: 

• Protected mode uses the native 32-bit instruction set of the processor. In this mode 
all instructions and architectural features are available. 

• Real-address mode (also called "real mode") emulates the programming environ­
ment of the 8086 processor, with a few extensions (such as the ability to break out of 
this mode). Reset initialization places the processor into real mode. 

• Virtual-8086 mode (also called "V86 mode") is another form of 8086 emulation 
mode. Unlike real-address mode, virtual-8086 mode is compatible with protection and 
memory-management. The processor can enter virtual-8086 mode from protected 
mode to run a program written for the 8086 processor, then leave virtual-8086 mode 
and re-enter protected mode to continue a program which uses the 32-bit instruction 
set. 

1.1 ORGANIZATION OF THIS MANUAL 

This book presents the architecture of the Intel486 processor in five parts: 

• Part I - Application Programming 

• Part II - System Programming 

• Part III - Numeric Processing 

• Part IV - Compatibility 

• Part V - Instruction Set 

• Appendices 
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These divisions are determined by the architecture and by the ways programmers use 
this book. The first three parts are explanatory, showing the purpose of architectural 
features, developing terminology and concepts, and describing instructions as they relate 
to specific purposes or to specific architectural features. The remaining parts are refer­
ence material for programmers developing software for the Intel486 processor. 

The first four parts cover the operating modes and protection mechanism of the Intel486 
processor. The distinction between application programming and system programming is 
related to the protection mechanism of the Intel486 processor. One purpose of protec­
tion is to prevent applications from interfering with the operating system. For this rea­
son, certain registers and instructions are inaccessible to application programs. The 
features discussed in Part I and Part III are those which are accessible to applications; 
the features in Part II are available only to programs running with special privileges, or 
programs running on systems where the protection mechanism is nbt used. 

The features available to application programs in protected mode and to all programs in 
virtual-8086 mode are the same. These features are described in Part I and Part III of 
this book. The additional features available to system programs in protected mode are 
described in Part II. Part IV describes real-address mode and virtual-8086 mode, as well 
as how to run a mix of 16-bit and 32-bit programs. 

1.1.1 Part I...,...Application Programming 

This part presents the features used by most application programmers. It does not 
include features used in numeric applications, which are discussed in Part III. 

Chapter 2 - Basic Programming Model: Introduces the models of memory organization. 
Defines the data types. Presents the register set used by applications. Introduces the 
stack. Explains string operations. Defines the parts of an instruction. Explains address 
calculations. Introduces interrupts and exceptions as they apply to application 
programming. 

Chapter 3 - Application Programming: Surveys the instructions. commonly used for 
application programming. Considers instructions in functionally related groups; for 
example, string instructions are considered in one section, while control-transfer instruc­
tions are considered in another. Explains the concepts behind the instructions. Details of 
individual instructions are deferred until Part IV, the instruction-set reference. 

1.1.2 Part 11-System Programming 

This part presents the features used by operating systems, device drivers, debuggers, and 
other software which support application programs. Some additional information rele­
vant to systems programming is presented in Part III. 
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Chapter 4- System Architecture: Describes the features of the Intel486 processor used 
by system programmers. Introduces the registers and data structures of the Intel486 
processor which are not discussed in Part I or Part III. Introduces the system-oriented 
instructions in the context of the registers and data structures they support. References 
the chapters in which each register, data structure, and instruction is discussed in, more 
detail. 

Chapter 5 - Memory Management: Presents details of the data structures, registers" and 
instructions which support segmentation. Explains how system designers can choose 
between an unsegmented ("flat") mood of memory organization and a model with 
segmentation. 

Chapter 6 - Protection: Dis,cusses protection as it applies to segments. Explains the 
implementation of privilege rules, stack switching, pointer validation, user and supervi­
sor modes. Protection aspects of multitasking are deferred until the following chapter. 

Chapter 7-Multitasking: Explains how the hardware of the Intel486 processor supports 
multitasking with context-switching operations and intertask protection. 

Chapter 8 - Input/Output: Describes the I/O features Of the Intel486 processor,' includ­
ing I/O instructions, protection as it relates to I/O, and the I/O permission'bit map. 

Chapter 9 - Exceptions and Interrupts: Explains the basic interrupt mechanisms of the 
Intel486 processor. Shows how interrupts and exceptions relate to protection. Discusses 
all possible exceptions, listing causes and including information needed to handle and 
recover from each exception. 

Chapter 10 - Initialization: Defines the condition of the processor after reset initializa­
tion. Explains how to set up registers, flags, and data structures. Shows how to test the 
on-chip cache and the translation lookaside buffer. Contains an example of aninitializa­
tion program. 

Chapter '11- Debugging: Tells how to use the debugging registers of th~ Intel486 
processor. 

Chapter 12-Caching: Explains the general concept of caching and the specific mecha­
nisms used by the internal cache on the Intel486, processor. 

Chapter 13 - Multiprocessing: Explains the instructions and flags which support multiple 
processors with shared memory. 

1.1.3 Part 111-Numeric Processing 

This part explains the floating-point arithmetic features of the Intel486 microprocessor 
family. These features are an object-code compatible implementation of the features 
provided by the Inte1387 DX or SX math. coprocessor used with the Intel386 DX or SX 
processor. 
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Chapter 14-Introduction to Numeric Applications: Gives an overview of the floating­
point unit and reviews the concepts of numerical computation. 

Chapter 15 -Architecture of the Floating-Point Unit: Presents the floating-point regis­
ters and data types available to both applications and systems programmers. 

Chapter 16 - Special Computational Situations: Discusses the special values that can be 
represented in the -real -formats of the Intel486 processor - denormal numbers, zeros, 
infinities, NaNs (Not a Number) - as well as the numerical exceptions. This chapter 
should be read thoroughly by systems programmers, but can be skimmed by applications 
programmers. Many of these special situations may never arise in applications programs. 

Chapter 17-Floating-Point Instruction Set: Surveys the instructions commonly used for 
numeric processing. Details of individual instructions are deferred until Part V, the 
instruction-set reference. 

Chapter 18 - Numeric Applications: Describes the Intel486 processor's floating-point 
arithmetic facilities. Gives short programming examples in both assembly language and 
high-level languages. 

Chapter 19-5ystem-Level Considerations: Provides information of interest to systems 
software writers. 

Chapter 20-Numeric Programming Examples: Provides detailed examples of assembly­
language numeric programming with the Intel486 processor, including conditional 
branching, conversion between floating-point values and their ASCII representations, 
and use of trigonometric functions. 

1.1.4 Part IV - Compatibility 

This part explains the features of the architecture which support programs written for 
earlier Intel processors. The native mode of execution is an upward-compatible superset 
of the environment of the 286 and Intel386 processors. All three execution modes have 
support for 16-bit programming: 16-bit operations can be performed in protected mode 
using the operand-size prefix, programs written for the 8086 processor or the real mode 
of the 286 processor can run in real mode on the Intel386 DX or SX processor, and a 
virtual machine monitor can be used to emulate real mode using virtual-8086 mode, even 
while multitasking with 32-bit programs. 

Chapter 21- Executing 286 and Intel386 DX or SX CPU Programs: Explains the pro­
gramming differences between the 286 and Intel486 processors, and between the 
Inte1386 DX and SX and Intel486 processors. 

Chapter 22 - Real-Address Mode: Explains the real mode of the Intel486 processor. In 
this mode, the Intel486 processor appears as a fast real-mode 286 or Inte1386 processor 
or a fast 8086 processor enhanced with additional instructions. 
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Chapter 23 - Virtual-8086 Mode: Describes how the Intel486 processor supports execu­
tion of one or more 8086, 8088, 80186 or 80188 programs in an Intel486 processor 
protected-mode environment. 

Chapter 24-Mixing 16-Bit and 32-Bit Code: Explains how the Intel486 processor can 
mix 16-bit and 32-bit modules within the same program or task. Any particular module 
can use both 16-bit and 32-bit operands and addresses. 

Chapter 25 - Compatibility with 8087, Inte1287, and Intel387 Math CoProcessors: Com­
pares the floating-point unit of the Intel486 processors with the arithmetic of the numer­
ics coprocessors used with earlier Intel processors. 

1.1.5 Part V -Instruction Set 

Parts I, II, and III present the general features of the instruction set as they relate to 
specific aspects of the architecture. Part V presents the instructions in alphabetical 
order, with the detail needed by assembly language programmers and programmers of 
debuggers, compilers, operating systems, etc. Instruction descriptions include an algo­
rithmic description of operations, effect of flag settings, effect on flag settings, effect of 
operand- and address-size attributes, and exceptions which may be generated. 

1.1.6 Appendices 

The appendices present tables of encodings and other details in a format designed for 
quick reference by programmers. 

1.2 RELATED LITERATURE 

The following books contain additional material related to Intel processors: 

Intel386 "I Processor Hardware Reference Manual, Order Number 231732 
InteI386T>' Processor System Software Writer's Guide, Order Number 231499 
InteI386T>' High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory Man­
agement, Order Number 231630 
376"1 Embedded Processor Programmer's Reference Manual, Order Number 240314. 
Intel386 "I DX Processor Programmer's Reference Manual, Order Number 230985 
InteI386T>' SXProcessor Programmer's Reference Manual, Order Number 240331 
80387 Programmer's Reference Manual, Order Number 231917 
376"1 High-Performance 32-Bit Embedded Processor, Order Number 240182 
InteI386T>' SX Microprocessor, Order Number 240187 
50-MHz InteI486'" DX CPU-Cache Chip Set Hardware Reference Manual, Order Number 
241172 
50-MHz Intel486'" DX CPU-Cache Module Hardware Reference Manual, Order Number 
241091 
Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843 

1·6 



inteL, INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY 

The Inte1486'" Microprocessor Hardware Reference Manual is the companion of this book 
for use by hardware designers. It contains information which may be useful to program­
mers, especially system programmers .. Order Number 240552 

The Inte1486'" Microprocessor Data Book (Order Number 240440), Intel486'" DX2 Micro­
processor Data Book (Order Number 241245-001), and Inte1486'" SX CPUllntel487'" SX 
Math CoProcessor Data Book (Order Number 240950-002) contains the latest informa­
tion regarding device parameters (voltage levels, bus cycle timing, priority of simulta­
neous exceptions and interrupts, etc.). 

The Inte1486'" Microprocessor Product Brief Book describes many related products com­
monly used with Intel486 CPU. Order Number 240459 

1.3 NOTATIONAL CONVENTIONS 

This manual uses special notation for data-structure formats, for symbolic representation 
of instructions, and for hexadecimal numbers. A review of this notation makes the man­
ual easier to read. 

1.3.1 Bit and Byte Order 

In illustrations of data structures in memory, smaller addresses appear toward the bot­
tom of the figure; addresses increase toward. the top. Bit positions are numbered from 
right to left. The numerical value of a set bit is equal to two raised to the power of the bit 
position. The Intel486 processor is a "little endian" machine; this means the bytes of a 
word are numbered starting from the least significant byte. Figure 1-1 illustrates these 
conventions. 

GREATEST 
ADDRESS 

31 

DATA STRUCTURE 

23 15 7 

UNDEFINED 

BYTE 3 BYTE 2 BYTE 1 BYTE 0 

o .....:. BIT OFFSET 

28 

24 

20 

16 

12 

8 

4 
SMALLEST 

0 ADDRESS 

t 
BYTE OFFSET 

Figure 1-1. Bit and Byte Order 
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Numbers are usually expressed in decimal nDtation (base 10). When hexadecimal 
(base 16) numbers are used, they are indicated by an 'R' suffix. 

1.3~2 Undefined Bits and Software Compatibility 

In many register and memory layout descriptiDns, certain bits are marked as reselVed. 
When bits are marked as uridefined or reserved, it is essential for cDmpatibility with 
future processDrs that software treat these bits as having a future, though unknown, 
effect. SDftware should fDllDW these guidelines in dealing with reserved bits: 

• Do. not depend on the states of any reserved bits when testing the values Df registers 
which contain such bits. Mask Dut the reserved bits befDre testing. . 

• Do. nDt depend Dn the states Df any reserved bits when stDring to. memDry Dr to' a 
register. . 

• Do. nDt d,epend Dn the. ability to' retain infDrmatiDn written into. any reserved bits. 

• When loading a register, always load the reserved bits with the values indicated in the 
dDcumentatiDn, if any, Dr relDad them with values previDusly stDred from the same 
register. 

NOTE 
Dep~nding ~pon th~ .valu~s ofreselVedregisterbits will make softWare dependent upon 
the unspecified manner in which the Intel486processor handles these bits. Depending 
upon reselVed va.luesrisks incompatibility with future processors. AVOID ANY SOFT-
WARE DEPENDENCE UPON THE STATE OF RESERVED Intel486 PROCESSOR 
REGISTER BITS. .. . 

1.3.3 Instruction O'perarids 

When instructiDns are represented symb()lically, a subset Df the assembly language fDr 
the Inte1486 processDr is used: In this subset; an instructiDn has the fDllDwing fDrmat: 

label: mnemonic argument1, argument2, argument3 

where: 

• A label is an identifier which is fDllDwed by aCDIDn. 

• A mnemonic is a reserved name fDr a class Df instructiDn DpcDdes which have the 
same functiDn. . ' 

• The Dperands argumenti, argument2, and argument3 are DptiDnai. There may be from 
zero to. three Dperands, depending Dn the 0pcDde. When present, they take the fDrm 
pf either literals Dr identifiers fDr data items. Operand identifiers are either reserved 
names Df registers Dr are assumed to' be assigned to' data items declared in anDther 
part Df the program (which may nQt be ShDwn in the example). 
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When two operands are present in an arithmetic or logical instruction, the right oper­
and is the source and the left operand is the destination. Some assembly languages 
put the source and destination in reverse order. 

For example: 

LOADREG: MOV EAX, SUBTOTAL 

In this example LOAD REG is a label, MOV is the mnemonic identifier of an opcode, 
EAX is the destination operand, and SUBTOTAL is the source operand. 

1.3.4 Hexadecimal Numbers 

Base 16 numbers are represented by a string of hexadecimal digits followed by the char­
acter H. A hexadecimal digit is a character from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 
C, D, E, F). A leading zero is added if the number would otherwise begin with one of the 
digits A-F. For example, OFH is equivalent to the decimal number 15. 

1.3.5 Segmented Addressing 

The Intel486 processor uses byte addressing. This means memory is organized and 
accessed as a sequence of bytes. Whether one or more bytes are being accessed, a byte 
number is used to address memory. The memory which can be addressed with this 
number is called an address space. 

The Intel486 processor also supports segmented addressing. This is a form of addressing 
where a program may have many independent address spaces, called segments. For 
example, a program can keep its code (instructions) and stack in separate· segments. 
Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. An example of the notation used to show segmented addresses 
is shown below. 

CS:EIP 

This example refers to a byte within the code segment. The byte number is held in the 
EIP register. 

1.3.6 Exceptions 

An exception is an event which occurs when an instruction causes an error. For example, 
an attempt to divide by zero generates an exception. There are several different types of 
exceptions, and some of these types may provide error codes. An error code reports 
additional information about the error. Error codes are produced only for some excep­
tions. An example of the notation used to show an exception and error code is shown 
below. 

#PF(fault code) 
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This example refers to a page-fault exception under conditions where an error code 
naming a type of fault is reported. Under some conditions, exceptions which produce 
error codes may not be able to report an accurate code. In this case, the error code is 
zero, as shown below. 

#PF(O) 
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CHAPTER 2 
BASIC PROGRAMMING MODEL 

This chapter describes the application programming environment (except for the 
floating-point features) as seen by assembly-language programmers. The chapter intro­
duces the architectural features whi_ch directly affect the design and implementation of 
application programs. Floating-point applications are described separately in Part III. 

The basic programming model consists of these parts: 

• Memory organization 

• Data types 
• Registers 

• Instruction format 

• Operand selection 

• Interrupts and exceptions 

Note that input/output is not included as part of the basic programming model. System 
designers may choose to make I/O instructions available to applications or may choose to 
reserve these functions for the operating system. For this reason, the I/O features of the 
Intel486 processor are discussed in Part II.· .. :. 

This chapter contains a section for each feature of the architecture normally visible to 
applications. 

2.1MEMO,RV ORGANIZATION 

The memory on the bus of an Intel486 processor is· call~d physical· memory~ It· is orga­
nized as a. sequence of 8-bit bytes. Each byte is assigned a unique address, called a 
physical address, which ranges from zero to a maximum of 232_1 (4 gigabytes). Memory 
management is a hardware mechanism for making reliable and efficient use of memory. 
When memory management is used, programs do not directly address physical memory. 
Programs address a memory model, called virtual memory. 

Memory management consists of segmentation and paging.· Segmentation is a mecha­
nism for providing multiple, independent address spaces. Paging is a mechanisintb sup­
port a model of a large address space in RAM using a small amount of RAM and some 
disk storage. Either or both of these mechanisms may be used. An address issued by a 
program is a logical address. Segmentation hardware translates a logical address into an 
address for a continuous, unsegmented address space, called a linear address. Paging 
h~rdware translates a linear address into a physical ·address. j 

Memory may appear as a single, addressable space like physical memory. Or, it may 
appear as one or more independent memory spaces, called segments. Segments can be 
assigned specifically for holding a program's code (instructions), data, or stack. In fact, a 
single program may have up to 16,383 segments of different sizes and kinds. Segments 
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can be used to increase the reliability of programs and systems. For example, a pro­
gram's stack can be put into a different segment than its code to prevent the stack from 
growing into the code space and overwriting instructions with data. 

Whether or not multiple segments are used, logical addresses are translated into linear 
addresses by treating the address as an offset into a segment. Each segment has a seg­
ment descriptor, which holds its base address and size . limit. If the offset does· not exceed 
the limit, and no other condition exists which would prevent reading the segment, the 
offset and base address are added together to form the linear address. 

The linear address produced by segmentation is used directly as the physical address if 
bit 31 of the CRO register is clear (the CRO register is discussed in Chapter 4). This 
register bit controls whether paging is used or not used. If the bit is set, the paging 
hardware is used to translate the linear address into the physical address. 

The paging hardware gives another level of organization to memory. It breaks the linear 
address space into fixed blocks of 4K bytes, called pages. The logical address space is 
mapped into the linear address space, which is mapped into some number of pages. A 
page may be in memory or on disk. When a logical address is issued, it is translated into 
an address for a page in memory, or an exception is issued. An exception gives the 
operating system a chance to read the page from disk and update the page mapping. The 
program which generated the exception then can be restarted without generating an 
exception. 

If multiple segments are used, they are part of the programming environment seen by 
application programmers. If paging is used, it is normally invisible to the application 
programmer. It only becomes visible when there is an interaction between the applica­
tion program and the paging algorithm used by the operating system. When all of the 
pages in· memory are used, the operating system uses its paging algorithm to decide 
which mem()ry pages should be· sent to disk. All paging· algorithms (except random algo­
rithms) have some kind of worst-case behavior which may be exercised by some kinds of 
application programs. 

The architecture of the Intel486 processor gives designers the freedom to choose a dif­
ferent memory model for each program, even when more than one program is running at 
the same time. The model of memory organization can range between the following 
extremes: 

• A "flat" address space where the code, stack, and data spaces are mapped to the 
same linear addresses. To the greatest extent possible, this· eliminates segmentation 
by· allowing any type of memory reference to access any type of data .. 

• A segmented address space with separate segments for the code, data, and stack 
spaces. As many as 16,383 linear address spaces of up to 4 gigabytes each can be used. 

Both models can provide memory protection .. Models intermediate between these 
extremes also can be chosen. The reasons for choosing a particular memory model and 
the manner in which system programmers implement a model are discussed in Part II...,.. 
System Programming. 
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2.1.1 Unsegmented or "FI~t" Model 

The simplest memory model is the flat model. Although there isn't a mode bit or control 
register which turns off the segmentation mechanism, the same effect can be achieved by 
mapping all segments to the same linear addresses. This will cause all memory opera.:. 
tions to refer to the same memory space. 

In a flat model, segments may cover the entire 4 gigabyte range of physical addresses, or 
they may cover only those addresses which are mapped to physical memory. The advan­
tage of the smaller address space is it provides a minimum level of hardware protection 
against software bugs; an exception will occur if any logical address refers to an address 
for which no memory exists. 

2.1.2 Segmented Model 

In a segmented model of memory organization, the logical address space consists of as 
many as 16,383 segments of up to 4 gigabytes each, or a total as large as 246 bytes (64 
terabytes). The processor maps this 64 terabyte logical address space onto the physical 
address space (up to 4 gigabytes) by the address translation mechanism described in 
Chapter 5. Application programmers may ignore the details of this mapping. The advan­
tage of the segmented model is that offsets within each address space are separately 
checked and access to each segment can be individually controlled. 

A pointer into a segmented address space consists of two parts (see Figure 2-1). 

1. A segment selector, which is a 16-bit field which identifies a segment. 

2. An offset, which is a 32-bit byte address within a segment. 

The processor uses the segment selector to find the linear address of the beginning of 
the segment, called the base address .. Programs access memory using fixed offsets from 
this base address, so an object-code module may be loaded into memory and run without 
changing the addresses it uses (dynamic linking). The size of a segment is defined by the 
programmer, so a segment can be exactly the size of the module it contains. 

2.2 DATA TYPES 

Bytes, words, and doublewords are the principal data types (see Figure 2-2). A byte is 
eight bits. The bits are numbered 0 through 7, bit 0 being the least significant bit (LSB). 

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits. 
The bits of a word are numbered from 0 through 15, bit 0 again being the least signifi­
cant bit. The byte containing bit 0 of. the word is·called the low byte; the byte containing 
bit 15 is called the high byte. On the Intel486 processor, the low byte is stored in the byte 
with the lower address. The address of the low byte also is the address of the word. The 
address of the high byte is used only when the upper half of the word is being accessed 
separately from the lower half. 
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Figure 2·1. Segmented Addressing 

A doubleword is four bytes occupying any four consecutive addresses_ A doubleword 
contains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again 
being the least significant bit. The word containing bit 0 of the doubleword is called the 
low word; the word containing bit 31 is called the high word. The low word is stored in 
the two bytes with the lower addresses. The address of the lowest byte is the address of 
the doubleword. The higher addresses are used only when the upper word is being 
accessed separately from the lower word, or when individual bytes are being accessed. 
Figure 2-3 illustrates the arrangement of bytes within words and doublewords. 

Note that words do not need to be aligned at even-numbered addresses and double­
words do not need to be aligned at addresses evenly divisible by four. This allows maxi­
mum flexibility in data structures (e.g., records containing mixed byte, word, and 
doubleword items) and efficiency in memory utilization. Because the Intel486 processor 
has a 32-bit data bus, communication between processor and memory takes place as 
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Figure 2-2. Fundamental Data Types 
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Figure 2-3. Bytes, Words, and Doublewords in Memory 
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doubleword transfers aligned to addresses evenly divisible by four; the processor c()n­
verts doubleword transfers aligned to other addresses into multiple transfers. These 
unaligned operations reduce speed by requiring extra bus cycles. For maximum speed, 
data structures (especially stacks) should be designed so, whenever possible, word oper­
ands are aligned to even addresses and doubleword operands are aligned to addresses 
evenly divisible by four. 

Although bytes, words, and doublewords are the fundamental types of operands, the 
processor also supports additional interpretations of these operands. Specialized instruc­
tions recognize the following data types (shown in Figure 2-4): 

• Integer: A signed binary number held in a 32-bit doubleword, 16cbit word, or 8-bit 
byte. All operations assume a two's complement representation. The sign bit is 
located in bit 7 in a byte, bit 15 in a word, and bit 31 ina doubleword: The sign bit is 
set for negative integers, clear for positive integers and zero. The value of an 8-bit 
integer is from -128 to + 127; a 16-bit integer from - 32,768 to + 32,767; a 32-bit 
integer from - 231 to + 231 -1. 

• Ordinal: An unsigned binary number contained in a 32-bit doubleword, 16-bit word, 
or 8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a 16-bit ordinal from 0 to 

. 65,535; a 32-bit ordinal from 0 to 232 - 1. 

• Near Pointer: A 32-bit logical address. A near pointer is an offset within a segment. 
Near pointers are used for all pointers in a flat memory model, or for references 
within a segment in a segmented model. . 

• Far Pointer: A 48-bit logical address consisting of a 16-bit segment selector and a 
32-bit offset. Far pointers are used in a segmented memory model to access other 
segments. . 

• String: A conti~uous sequence of bytes, words, or doublewords. A string may contain 
from zero to 2 2 ~ 1 bytes (4 gigabytes). 

• Bit field: A contiguous sequence of bits. A bit field may begin at any bit position of 
any byte and may contain up to 32 bits. 

• Bit string: A contiguous sequence of bits. A bit string may begin at any bit position of 
any byte and may contain up to 232 - 1 bits. 

• BCD: A representation of a binary-coded decimal (BCD) digit in the range 0 through 
9. Unpacked decimal numbers are stored as unsigned byte quantities. One digit is 
stored in each byte. The magnitude of the number. is the binary value of the low-order 
half-byte; values 0 to 9 are valid and are interpreted as the value of a digit. The 
high-order half-byte must be zero during multiplication and division; it may contain 
any value during addition and subtraction. 

• Packed BCD: A representation of binary-coded decimal digits, each in the range 0 to 
9. One digit is stored in each half-byte, two digits in each byte. The digit in bits 4 to 7 
ismore significant than the digit in bits 0 to 3. Values 0 to 9 are valid for a digit. 

• Floating-Point Types: For a discussion of the data types used by floating-point instruc­
tions, see Chapter 15. 
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Figure 2·4. Data Types 
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.2.3 REGISTERS 

.The Intel486 processor contains sixteen registers which may be used by an application 
programmer. As Figure 2-5 shows, these registers may be grouped as: 

1. General registers: These eight 32-bit registers are free for use by the programmer. 

2. Segment. registers. These registers hold· segment selectors associated with different 
forms of memory access. For example, there are separate segment registers for 
access to code and stack space. These six registers determine, at any given time; 
which segments of memory are currently available. 

3. Status and control registers. These registers report and allow modification of the 
state of the Intel486 processor. 

2.3.1 Gener.al Registers 

The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, 
and ED!. These registers are used to hold operands for logical and arithmetic opera­
tions. They also may be used to hold operands for address calculations (except the ESP 
register cannot be used as an index operand). The names of these registers are derived 
from the names of the general registers on the 8086 processor, the AX, BX, CX, DX, 
BP, SP, SI, and DI registers. As Table 2-1 shows, the low 16 bits of the general registers 
can be referenced using these names. 

Each byte of the 16-bit registers AX, BX, CX, and DX also have other names. The byte 
registers are named AH, BR, CR, and DR (high bytes) and AL, BL, CL, and DL (low 
bytes). 

Table 2-1. Register Names 

8-Bit. 16-Bit 32-Bit 

AL AX EAX 
AH 
BL BX EBX 
BH 
CL CX ECX 
CH 
OL OX EOX 
OH 

SI ESI 
01 EOI 
BP EBP 
SP ESP 
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Figure 2-5. Application Register Set 
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All of the general-purpose registers are available for address calculations and for the 
results of most arithmetic and logical operations; however, a few instructions assign 
specific registers to hold operands. For example, string instructions use the contents of 
the ECX, ESI, and EDI registers as operands. By assigning specific registers for these 
functions, the instruction set can be encoded more compactly. The instructions using 
specific registers include: double-precision multiply and divide, I/O, strings, translate; 
loop, variable shift and rotate, and stack operations. . 

2.3.2 Segment Registers 

Segmentation gives system designers the flexibility to choose among various models of 
memory organization. Implementation of memory models· is the subject of Part 
II - System Programming, 

The segment registers contain 16-bit segment selectors; which index into tables in mem­
ory. The tables hold the base address for each segment, as well as other information 
regarding memory access. An unsegmented model is created by mapping each segment 
to the same place in physical memory, as shown in Figure 2-6. 

At any instant, up to six segments of memory are immediately available. The segment 
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments: 
Each register is associated with a particular kind of memory access (code, data, or stack). 
Each register specifies a segment, from among the segments used by the program, which 
is used for its kind of access (see Figure 2-7). Other segments can be used by loading 
their segment selectors into the segment. registers. 

DIFFERENT LOGICAL SEGMENTS 

GS------. 

FS 

ES 

OS 

CS 

SS ..... ____ .... 

ONE PHYSICAL ADDRESS SPACE 

Figure 2·6. An Unsegmented Meinory 
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The segment containing the instructions being executed is called the code segment. Its 
segment selector is held in the CS register. The Intel486 processor fetches instructions 
from the code segment, using the contents of the EIP register as an offset into the 
segment. The CS register is loaded as the result of interrupts, exceptions, and instruc­
tions which transfer control between segments (e.g., the CALL, IRET and JMP 
instructions ). 

Before a procedure is called, a region of memory needs to be allocated for a stack. The 
stack is used to hold the return address, parameters passed by the calling routine, and 
temporary variables allocated by the procedure. All stack operations use the SS register 
to find the stack segment. Unlike the CS register, the SS register can be loaded explic­
itly, which permits application programs to set up stacks. 

The DS, ES, FS, and GS registers allow as many as four data segments to be available 
simultaneously. Four data segments give efficient and secure access to different types of 
data structures. For example, separate data segments can be created for the data struc­
tures of the current module, data exported from a higher-level module, a dynamically­
created data structure, and data shared with another program. If a bug causes a program 
to run wild, the segmentation mechanism can limit the damage to only those segments 
allocated to the program. An operand within a data segment is addressed by specifying 
its offset either in an instruction or a general register., 
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Depending on the structure of data (Le., the way data is partitioned into segments), a 
program may require access to more than four data segments. To access additional 
segments, the DS, ~S, FS, and OS registers can be loaded by an application program 

.. during execution. The only requirement is to load the appropriate segment register 
before accessing data in its segment. 

A base address is kept for each segment. To address data within a segment, a 32-bit 
offset is added to the segment's base address. Once a segment is selected (by loading the 
segment selector into a segment register), an instruction only needs to specify the offset. 
Simple rules define which segment register is used to form an address when only an 
offset is specified. 

2.3.3 Stack Implementation 

Stack operations are supported by three registers: 

1. Stack Segment (SS) Register: Stacks reside in memory. The number of stacks in a 
system is limited only by the maximum number of segments. A stack may be up to 4 
gigabytes long, the maximum size of a segment on the Intel486 processor. One stack 
is available at a time-the stack whose segment selector is held in the SS register. 
This is the current stack, often referred to simply as "the" stack. The SS register is 
used automatically by the processor for all stack operations. 

2. Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack 
(TOS) in the current stack segment. It is used by PUSH and POP operations, sub­
routine calls and returns, exceptions, and interrupts. When an item is pushed onto 
the stack (see Figure 2-8), the processor decrements the ESP register, then writes 
the item at the new TOS. When an item is popped. off the stack, the processor 
copies it from the TOS, then increments the ESP register. In other words, the stack 
grows down in memory toward lesser addresses. 

3. Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to 
access data structures passed on the stack. For example, on entering a subroutine 
the stack contains the return address and some number of data structures passed to 
the subroutine. The subroutine adds to the stack whenever it needs to create space 
for temporary local variables. As a result, the stack pointer moves around as tempo­
rary variables are pushed and popped. If the stack pointer is copied into the base 
pointer before anything is pushed on the stack, the base pointer can be used to 
reference data structures with fixed offsets. If this is not done, the offset to access a 
particular data structure would change whenever a temporary variable is allocated 
or de-allocated. 

When the EBP register is used to address memory, the c.urrent stack segment is 
selected (i.e., the SS segment). Because the stack segment does not have to be 
specified, instruction encoding is more compact. The EBP register also can be used 
to address other segments. 

Instructions, such as the ENTER and LEAVE instructions, are provided which 
automatically set up the EBP register for convenient access to variables. 
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Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register 
named EFLAGS. Figure 2-9 defines the bits within this register. The flags control cer­
tain operations and indicate the status of the Intel486 processor. 

The flags may be considered in three groups: status flags, control flags, and system flags. 
Discussion of the system flags occurs in Part II. 

2.3.4.1 STATUS FLAGS 

The status flags of the EFLAGS register report the kind of result produced from the 
execution of arithmetic instructions. The MOV instruction does not affect these flags. 
Conditional jumps and subroutine calls allow a program to sense the state of the status 
flags and respond to them. For example, when the counter controlling a loop is decre­
mented to zero, the state of the ZF flag changes, and this change can be used to sup­
press the conditional jump to the start of the loop. 

The status flags are shown in Table 2-2. 

2.3.4.2 CONTROL FLAG 

The control flag DF of the EFLAGS register controls string instructions. 

DF (Direction Flag, bit 10) 
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Figure 2-9. EFLAGS Register 

Table 2-2; Status Flags 

Purpose Condition Reported 

240486;2·9 

overflow Result exceeds positive or negative limit of number range 
sign Result is negative (less than zero) 
zero Result is zero 
auxiliary carry Carry out of bit position 3 (used for BCD) 
parity Low byte of result has even parity (even number of set bits) 
carry flag Carry out of most significant bit of result 

Setting the DF flag causes string instructions to auto-decrement, that is, to process 
strings from high addresses to low addresses. Clearing the DF flag causes string instruc­
tions to auto-increment, or to process strings from low addresses to high addresses. 

2.3.4.3 INSTRUCTION POINTER 

The instruction pointer (EIP) register contains the offset in the current code segment for 
the next instruction to execute. The instruction pointer is not directly available to the 
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programmer; it is controlled implicitly by control-transfer instructions Gumps, returns, 
etc.), interrupts, and exceptions .. 

The EIP register is advanced from one instruction boundary to the next. Because of 
instruction prefetching, it is only an approximate indication of the bus activity which 
loads instructions into the processor. 

The Intel486 processor does not fetch single instructions. The processor prefetches 
aligned 128-bit blocks of instruction code in advance of instruction execution. (An 
aligned 128-bit block begins at an address which is clear in its low four bits.) These 
blocks are fetched without regard to the boundaries between instructions. By the time an 
instruction starts to execute, it already has been loaded into the processor and decoded. 
This is a performance feature, because it allows instruction execution to be overlapped 
with instruction prefetch and decode. 

When a jump or call is executed, the processor prefetches the entire aligned block con­
taining the destination address. Instructions which have been prefetched or decoded are 
discarded. If a prefetch would generate an exception, such as a prefetch beyond the end 
of the code segment, the exception is not reported until the execution of an instruction 
containing at least one exception-generating byte. If the instruction is discarded, no 
exception is generated. 

In real mode prefetching may cause the processor to access addresses not anticipated by 
programmers. In protected mode exceptions are correctly reported when these addresses 
are executed. There may not be hardware mechanisms which account for real mode 
behavior of the processor. For example, if a system does not return the RDY# signal 
(the signal which terminates a bus cycle) for bus cycles to unimplemented addresses, 
prefetching must be prevented from referencing these addresses. If a system implements 
parity checking, prefetching must be prevented from accessing addresses beyond the end 
of parity-protected memory. (Alternatively, RDY # can be returned even for bus cycles 
to unimplemented addresses, and parity errors can be ignored on prefetches beyond the 
end of parity-protected memory.) 

Prefetching can be kept from referencing a particular address by placing enough dis­
tance between the address and the last executable byte. For example, to keep prefetch­
ing away from addresses in the block from lOOOOH to lOOOFH, the last executable byte 
should be no closer than OFFEEH. This places one free byte followed by one free, 
aligned, 128-bit block between the last byte of the last instruction and the address which 
must not be referenced. The prefetching behavior of the Intel486 processor is 
implementation-dependent; future Intel products may have different prefetching 
behavior. 

2.4 INSTRUCTION FORMAT 

The information encoded in an instruction includes a specification of the operation to be 
performed, the type of the operands to be manipulated, and the location of these oper­
ands. If an operand is located in memory, the instruction also must select, explicitly or 
implicitly, the segment which contains the operand. 
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An instruction may have various parts and formats.' The exact format of instructions is 
shown in Appendix A; the parts of an instruction are . described below. Of these parts, 
only the opcode is always present. The other parts mayor may not be present, depending 
on the operation involved and the location and type of the operands. The parts of an 
instruction, in order of occurrence, are listed below: 

• Prefixes: one or more bytes preceding an instruction which modify the operation of 
the instruction. The following prefixes can b~ used by application programs: 

1. Segment override - explicitlyspeeifies which segment register an instruction 
should use, instead of the default segment re~ister. ' 

2. Address size-switches between 16- and 32-bit addressing. Either size can be the 
default; this prefix selects the non-default size. 

3. Operand size - switches between 16- and 32-bit. data size. Either ,size can be the 
default; this, prefix selects the. non-default size. 

4. Repeat - used with a string inst;uction to cause the instruction t() be repeated for 
each element of the, string., . , 

• Opcode: specifies the operation performed by the instruction. Some operations have 
several different opcodes, each specifying a different form of the operation. 

• Register specifier: an, instruction may specify one or two register operands. Register 
specifiers occur either in the same byte as the opcode or in the same byte as. the 
addressing-mode specifier.' . 

• Addressing-mode specifier: when present, specifies whether an operand is a register 
or memory location; if in memory, 'specifies.whethera displacement, ,a base register, 
an index register, and scaling are to be used. 

• SIB (scale, index, base) byte: when the addressing-mode specifier indicates an index 
register will be used to calculate the address of an operand, a SIB byte is included in 
the instruction to encode the. base register, the index register, and a scaling factor. 

o Displacement: when the addressing-mode specifier indicates a displacement will be 
used to compute the address of an operand, the displacement is encoded in the 
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is 
used in the common case when the displacement is sufficiently small. The processor 
extends an 8-bit displacement to 16 or 32 bits, taking into account the sign. 

• Immediate operand: when present, directly provides the value of an operand. Imme­
diate operands maybe bytes, words, or doublewords. In cases where an 8-bit imme­
diate operand is us~d with a: 16- or 32-bitoperand, the processor extends the eight-bit 
operand to an integer of the same sign and magnitude in the larger size. In the same 
way, a 16-bit operand is extended to 32~bits. ' 
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2.5 OPERAND SELECTION 

An instruction acts on zero or more operands. An example of a zero-operand instruction 
is the NOP instruction (no operation). An operand can be held in any of these places: 

• In the instruction itself (an immediate operand). 

• In a register (iri the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP, 
or EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the 
case of 8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers; 
or the EFLAGS register for flag operations). Use of 16-bit register operands requires 
use of the 16-bit operand size prefix (a byte with the value 67H preceding the 
instruction) . 

• In memory. 

" At an I/O port. 

Access to operands is very fast. Register and immediate operands are available 
on-chip - the latter because they are preJetched as par! of interpreting the instruction. 
Memory operands residing in the on-chip cache can be accessed just as fast. 

Of the instructions which have operands, some specify operands implicitly; others specify 
operands explicitly; still others use a combination of both. For example: 

Implicit operand: AAM 

By definition, AAM (ASCII adju"St for multiplication) operates on the contents of 
the AX register. . 

Explicit operand: XCHG EAX, EBX 

The operands to be exchanged are encoded in the instruction with the opcode. 

Implicit and explicit operands: PUSH COUNTER 

The memory variable COUNTER (the explicit operand) is copied to the top of the 
stack (the implicit operand). 

Note that most instructions have implicit operands. All arithmetic instructions, for exam­
ple, update the EFLAGS register. 

An instruction can explicitly reference one or two operands. Two-operand instructions, 
such as MOV, ADD, and XOR, generally overwrite one of the two participating oper­
ands with the result. This is, the difference between the source operand (the one unaf­
fected by the operation) and the destination operand (the one overwritten by the reSUlt); 
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For most instructions, one of the two explicitly specified operands-either the source or 
the destination - can be either in a register or in memory. The other operand must be in 
a register or it must be an immediate source operand. This puts the explicit two-operand 
instructions into the following groups: 

• Register to register 

• Register to memory 

• Memory to register 

• Immediate to register 

• Immediate to memory 

Certain string instructions and stack manipulation instructions, however, transfer data 
from memory to memory. Both operands of some string instructions are in memory and 
are specified implicitly. Push and pop stack operations allow transfer between memory 
operands and the memory-based stack. 

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD 
instructions. Two of the three operands are specified explicitly, as for the two-operand 
instructions, while a third is taken from theECX register or supplied as an immediate. 
Other three-operand instructions, such as the string instructions when used with a repeat 
prefix, take all their operands from registers. 

2.5.1 Immediate Operands 

Certain instructions use data from the instruction itself as one (and sometimes two) of 
the operands. Such an operand is called an immediate operand. It may be a byte, word, 
or doubleword. For example: 

SHR PATTERN, 2 

One byte of the instruction holds the. value 2, the number of bits by which to shift the 
variable PATTERN. 

TEST PATTERN, 0FFFF00FFH 

A doubleword of the instruction holds the mask which is used to test the variable 
PATTERN. 

IMUL ex, MEMWORD, 3 

A word in memory is multiplied by an immediate 3 and stored into the CX register. 

All arithmetic instructions (except divide) allow the source operand to be an immediate 
value. When the destination is the EAX or AL register, the instruction encoding is one 
byte shorter than with the other general registers. 
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2.5.2 Register Operands 

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX, 
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, 
DI, SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, -CL, 
or DL). 

The Intel486 processor has instructions for referencing the segment registers (CS, DS, 
ES, SS, FS, and GS). These instructions are used by application programs only if system 
designers have chosen a segmented memory model. 

The, Intel486 processor also has instructions for changing the state of individual flags in 
the EFLAGS register. Instructions have been provided for setting and clearing flags 
which often need to be accessed. The other flags, whiCh are not accessed so often, can be 
changed by pushing the contents of the EFLAGS register on the stack, making changes 
to it while it's on the stack, and popping it back into the register. 

2.5.3 Memory Operands 

Instructions with explicit operands in memory must reference the segment containing 
the operand and the offset from the beginning of the segment to the operand. Segments 
are specified using a segment-override prefix, which is a byte placed at the beginning of 
an instruction. If no segment is specified, simple rules assign the segment by default.: The 
offset is specified in one of the following ways: 

1. Most instructions which access memory contain a byte for specifying the addressing 
method of the operand. The byte, called the modR/M byte, comes after the opcode 
and specifies whether the operand is in a register or in memory. If the operand is in 
memory, the address is calculated from a segment register and any of the following 
values: a base register, an index register, a scaling factor, and a displacement. When 
an index register is used, the modR/M byte also is followed by another byte to 
specify the index register and scaling factor. This form of addressing is the most 
flexible. 

2. A few instructions use implied address modes: 

, A MOV instruction with the AL or EAX register as either source or destination can 
address memory with a doubleword encoded in the instruction. This special form of 
the MOV instruction allows no base register, index register, or scaling factor to be 
used. This form is one byte shorter than the general-purpose form. 

String operations address memory in the DS seginent using the ESI register, (the 
MOVS, CMPS, OUTS, and LODS instructions) or using the ES segment and EDI 
register (the MOVS, CMPS, INS, SCAS, and STOS instructions). 

Stack operations address memory in the SS segment using the ESP register (the 
PUSH, POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, 
POPFD, CALL, LEAVE, RET, IRET, and IRETD instructions, exceptions, and 
interrupts). 
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2.5.3.1 SEGMENT SELECTION 

Explicit specification of a segment is optional. If a segment is not specified using a 
segment-override prefix, the processor automatically chooses a segment according to the 
rules of Table 2-3. (If a flat model of memory organization is used, the rules for selecting 
segments are not apparent to application programs.) 

Different kinds of memory access have different default segments. Data operands usu­
ally use the main data segment (the DS segment). However, the ESP and EBP registers 
are used for addressing the stack, so when either register is used, the stack segment (the 
SS segment) is selected. 

Segment-override prefixes are provided for each of the segment registers. Only the fol­
lowing special cases have a default segment selection which is not affected by a segment­
override prefix: 

• Destination strings in string instructions use the ES segment 

• Destination of a push or source of a pop uses the SS segment 

• Instruction fetches use the CS segment 

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION 

The modRIM byte provides the most flexible form of addressing. Instructions which have 
a modRIM byte after the opcode are the most common in the instruction set. For mem­
ory operands specified by a modRIM byte, the offset within the selected segment is the 
sum of three components: 

• A displacement 

• A base register 

• An index register (the index register may be multiplied by a factor of 2, 4, or 8) 

Table 2-3. Default Segment Selection Rules 

Type of Reference 
Segment Used 

Default Selection Rule 
Register Used 

Instructions Code Segment Automatic.with instruction fetch. 
CS register 

Stack Stack Segment All stack pushes and pops. Any mem-
SS register ory reference which uses ESP or EBP 

as a base register. 

Local Data Data Segment All data references except when rela-
DS register tive to stack or string destination. 

Destination Strings E-Space Segment Destination of string instructions. 
ES register 
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The offset which results from adding these components is called an effective address. 
Each of these components may have either a positive or negative value. Figure 2-10 
illustrates the full set of possibilities for modR/M addressing. 

The displacement component, because it is encoded in the instruction, is useful for 
relative addressing by fixed amounts, such as: 

• Location of simple scalar operands. 

• Beginning of a statically allocated array. 

• Offset to a field within a record. 

The base and index components have similar functions. Both use the same set of general 
registers. Both can be used for addressing which changes during program execution, 
such as: 

• Location of procedure parameters and local variables on the stack. 

• The beginning of one record among several occurrences of the same record type or in 
an array of records. 

• The beginning of one dimension of multiple dimension array. 

o The beginning of a dynamically allocated array. 

The uses of general registers as base or index components differ III the following 
respects: 

• The ESP register cannot be. used as an index register. 

• When the ESP or EBP register is used as the base, the SS segment is the default 
selection. In all other cases, the DS segment is the default selection. 

The scaling factor permits efficient indexing into an array when the array elements are 2, 
4, or 8 bytes. The scaling of the index register is done in hardware at the time the 
address is evaluated. This eliminates an extra shift or multiply instruction. 

SEGMENT + BASE + (INDEX' SCALE) +" DISPLACEMENT 

{CSI ~EAX} {~~~} {1} 1 l ss ~8~ EDX 2 NO DISPLACEMENT 
~~ + EBX + :.BX. + a.BIT DISPLACEMENT 
FS ~~~ EBP 4 32·BIT DISPLACEMENT 
GS ESI ESI a 

EDI . EDI 

240486;2-10 

Figure 2-10. Effective Address Computation 
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The base, index, and displacement components may be used in any combination; any of 
these components may be null. A scale factor can be used only when an index also is 
used. Each possible combination is useful for data structures commonly used by pro­
grammers in high-level languages and assembly language. Suggested uses for some com­
binations of address components are described below. 

DISPLACEMENT 

The displacement alone indicates the offset of the operand. This form of addressing is 
used to access a statically allocated scalar operand. A byte, word, or doubleword dis­
placement can be used. 

BASE 

The offset to the operand is specified indirectly in one of the general registers, as for 
"based" variables. 

BASE + DISPLACEMENT 

A register and a displacement can be used together for two distinct purposes: 

1. Index into static array when the element size is not 2, 4, or 8 bytes. The displace­
ment component encodes the offset of the beginning of the array. The register holds 
the results of a calculation to determine the offset to a specific element within the 
array. 

2. Access a field of a record. The base register holds the address of the beginning of 
the record, while the displacement is an offset to the field: 

An important special. case of this combination is access to parameters in a procedure 
activation record. A procedure activation record is the stack frame created when a sub­
routine is entered. In this case, the EBP register is the best choice for the base .register, 
because it automatically selects the stack segment. This .is a compact encoding for this 
common function. 

(INDEX * SCALE) + DISPLACEMENT 

This combination is an efficient way to index into a static array when the element size is 
2, 4, or 8 bytes. The displacement addresses the beginning of the array, the index register 
holds the subscript of the desired array element, and the processor automatically con­
verts the subscript into an index by applying the scaling factor. 

BASE + INDEX + DISPLACEMENT 

Two registers used together support either a two-dimensional array (the displacement 
holds the address of the beginning of the array) or one of several instances of an array of 
records (the displacement is an offset to a field within the record). 
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BASE + (INDEX * SCALE) + DISPLACEMENT 

This combination provides efficient indexing of a two-dimensional array when the ele­
ments of the array are 2, 4, or 8 bytes in size. 

2.6 INTERRUPTS AND EXCEPTIONS 

The Intel486 processor has two mechanisms for interrupting program execution: 

1. Exceptions are synchronous events which are responses of the processor to certain 
conditions detected during the execution of an instruction. 

2. Interrupts are asynchronous events typically triggered by external devices needing 
attention. 

Interrupts and exceptions are alike in that both cause the processor to temporarily sus~ 
pend the program being run in order to run a program of higher priority. The major 
distinction between these two kinds of interrupts is their origin. An exception is always 
reproducible by re-executing the program which caused the exception; while an interrupt 
can have a complex, timing-dependent relationship with programs. 

Application programmers normally are not concerned with handling exceptions or inter­
rupts. The operating system, monitor, or device driver handles them. More information 
on interrupts for system programmers may be found in Chapter 9. Certain kinds of 
exceptions, however, are relevant to application programming, and many operating sys­
tems give application programs the opportunity· to service these exceptions. However, 
the operating system defines the interface between the application program and the 
exception mechanism of the. Intel486 processor. Table 2-4 lists the interrupts and 
exceptions. 

• A divide-error exception results when the DIV or IDIV instruction is executed with a 
zero denominator or when the quotient is too large for the destination operand. (See 
Chapter 3 for more information on the DIV and IDIV instructions.) , 

• A debug exception may be sent back to an application program if it results from the 
TF (trap ) flag. 

• A breakpoint exception results when an INT3 instruction is executed. This instruction 
is used by some debuggers to stop program execution at specific points. 

• An overflow exception results when the INTO instruction is executed and the OF 
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction. 

• A bounds-check exception results when the BOUND instruction is executed with an 
array index which falls outside the bounds of the array. See Chapter 3 for a discussion 
of the BOUND instruction. 

• The device-not-available exception occurs whenever the processor encounters an 
escape instruction and either the TS (task switched) or the EM (emulate coprocessor) 
bit of the CRO control register is set. 
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Table 2-4. Exceptions and Interrupts 

Vector Description 
Number 

0 Divide Error 

1 Debugger Call 

2 NMI Interrupt 

3 Breakpoint 

4 INTO-detected Overflow, 

5 BOUND Range Exceeded 

6 Invalid Opcode 

7 Device Not Available : 

8 Double Fault 

9 (Intel reserved. Do not use. 
Not used by InteI486'· CPU.) 

10 Invalid Task State Segment 

11 Segment Not Present 

12 Stack Exception 

13 General Protection 
" 

14 Page Fault 

15 (Intel reserved. Do not use.) 

16 Floating-Point· Error 

17 Alignment Check : 

18-31 (Intel reserved. Do' not use.) 

32-255 Maskable Interrupts .. 

• An alignment-check exception is generated for unaligned memory operations in user 
mode (privilege level 3), provided both AM and AC are set. Memory operations at 
supervisor mode (privilege levels 0, 1, and 2), or memory operations which default to 
supervisor mode, do not generate this exception. . 

The INT instruction generates an interrupt whenever it is executed; the processor treats 
this interrupt as an exception. Its effects (and the effects of. all other exceptions) are 
determined by exception handler routines in the application program .orthe operating 
system. The INT instruction itself is discussed in Chapter 3. See Chapter 9 for a more 
complete description of exceptions. . . 

Exceptions caused by segmentation and paging are handled differently than illterrupts. 
Normally, the contents of the program counter (EIP register) are saved on the s~ack 
when an exception or interrupt is generated. But exceptions resulting from segmentation 
and paging restore the contents of some processor registers to their.state before interpre­
tation of the instruction began. The saved contents of the program counter address the 
instruction which caused the exception, rather than the instruction after it. This lets the 
operating system fix the exception-generating condition and restart the program which 
generated the exception. This mechanism is completely transparent to the program. 
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CHAPTER 3 
APPLICATION PROGRAMMING 

This chapter is an overview of the integer instructions which programmers can use to 
write application software for the Intel486 processor. The instructions are grouped by 
categories of related functions. (Additional application instructions for operating on 
floating-point operands are described in Part III.) 

The instructions not discussed in this chapter or Part III normally are used only by 
operating-system programmers. Part II describes these system-level instructions. 

These instruction descriptions are for the Intel486 processor in protected mode. The 
instruction set in this mode is a 32-bit superset of the instruction set used in Intel 16-bit 
processors. In real-address mode or virtual-8086 mode, the Intel486 processor appears to 
have the architecture of a fast, enhanced 8086 processor with instruction set extensions. 
See Chapters 21, 22, 23, 24 and 25 for more information about running the 16-bit 
instruction set. All of the instructions described in this chapter are available in all 
modes .. 

The instruction set descriptions in Chapter 26 contain more detailed information on all 
instructions, including encoding, operation, timing, effect on flags, and exceptions which 
may be generated. 

3; 1 DATA MOVEMENT INSTRUCTIONS 

These instructions provide convenient methods for moving bytes; words, or doublewords 
between memory and the processor registers. They come in three types: 

1. General-purpose data movement instructions. 

2. Stack manipulation instructions. 

3. Type-conversion instructions. 

3.1.1 General·Purpose Data Movement Instructions 

MOV (Move) transfers a byte, word, or doubleword from the source operand to the 
destination operand. The MOV instruction is useful for transferring data along any of 
these paths: 

• To a register from memory. 

• To memory from a register. 

• Between general registers. 

• Immediate data to a register. 

• Immediate data to memory. 
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The MOV instruction cannot move from memory to memory or from a segment register 
to a segment register. Memory-to-memory moves can be performed, however, by the 
string move instruction MOVS. A special form of the MOV instruction is provided for 
transferring data between the AL or EAX registers and a location in memory specified 
by a 32-bit offset encoded in the instruction. This form of the instruction does not allow 
a segment override, index register, or scaling factor to be used. The encoding of this 
form is one byte shorter than the encoding of the general-purpose MOV instruction. A 
similar encoding is provided for moving an 8-, 16-, or 32-bit immediately into any of the 
general registers. 

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place 
of three MOV instructions. It does not require a temporary location to save the contents 
of one operand while the other is being loaded. The .XCHG instruction is especially 
useful for implementing semaphores or similar data structures for process 
synchronization, 

The XCHG instruction can swap two byte operands, two word operands, or two double­
word operands. The operands for the XCHG instruction may be two register operands, 
or a register operand and a memory operand. When used with a memory operand, 
XCHG automatically activates the LOCK signal. (See Chapter 13 for more information 
on bus locking.) . 

3.1.2 Stack Manipulation Instructions 

PUSH (Push) decrements the stack pointer (ESP register), then copies the source oper­
and to the top of stack (see Figure 3-1). The PUSH instruction often is used to place 
parameters on the stack before calling a procedure. Inside a procedure, it can be used to 
reserve space on the stack for temporary variables. The PUSH instruction operates on 

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD 

31 o 31 o 

I-ESP 

DOUBLEWORD -ESP 

240486;3·1 

Figure 3-1. PUSH Instruction 
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memory operands, immediate operands, and register operands (including segment regis­
ters). A special form of the PUSH instruction is available for pushing a 32-bit general 
register on the stack. This form has an encoding which is one byte shorter than the 
general-purpose form. 

PUSHA (Push All Registers) saves the contents of the eight general registers on the 
stack (see Figure 3-2). This instruction simplifies procedure calls by reducing the number 
of instructions required to save the contents of the general registers. The processor 
pushes the general registers on the stack in the following order: EAX, ECX, EDX, EBX, 
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the 
PUSHA instruction is reversed using the paPA instruction. 

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by 
the ESP register) to the destination operand, and then increments the ESP register to 
point to the new top of stack. See Figure 3-3. pop moves information from the stack to 
a general register, segment register, or to memory. A special form of the POP instruction 
is available for popping a doubleword from the stack to a general register. This form has 
an encoding which is one byte shorter than the general-purpose form. 

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION 

31 o 31 o 

I- ESP 

EAX 

ECX 

EDX 

EBX 

OLD ESP 

EBP 

ESI 

EDI - ESP 

240486;3-2 

Figure 3-2. PUSHA Instruction 
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BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD 

31 o 31 o 

I-ESP 

DOUBLEWORD - ESP 

240486i3-3 

Figure 3-3. POP Instruction 

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general 
registers, except for the ESP register. The ESP register is restored by the action of 
reading the stack (popping). See Figure 3-4. 

3.1.3 Type Conversion Instructions 

The type conversion instructions convert bytes into words, words into doublewords, and 
doublewords into 64-bit quantities (called quadwords). These instructions are especially 
useful for converting signed integers, because they automatically fill the extra bits of the. 
larger item with the value of the sign bit of the smaller item. This results in an integer of 
the ·same sign and magnitude, but a larger format. This kind of conversion, shown in 
Figure 3-5, is called sign extension. 

There are two kinds of type conversion instructions: 

• The CWD, CDO, CBW, and CWDE instructions which only operate on data in the 
EAX register. 

• The MOVSX and MOVZX instructions, which permit one operand to be in a general 
register while letting the other operand be in memory or a register. 

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word) 
double the size of the source operand. The CWD instruction copies the sign (bit 15) of 
the word in the AX register into every bit position in the DX register. The CDO instruc­
tion copies the sign (bit 31) of the doubleword in the EAX register into every bit posi­
tion in the EDX register. The CWD instruction can be used to produce a doubleword 
dividend· from a word before a word division, and the CDO instruction can be used to 
produce a quadword dividend from a doubleword before doubleword division. 
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BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION 

31 

EAX 

ECS 

EDX 

EBX 

IGNORED 

EBP 

ESI 

EDI 

31 

SS SS SS SS SS 

o 31 

r- ESP 

. Figure 3"4. POPA Instruction 

15 
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15 
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Figure 3-5. Sign Extension 
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CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into 
every bit position in the AX register. 

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in 
the AX register into every bit position in the EAX register. 

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or 
16-bit value to 32-bit value by using the value of the sign to fill empty positions. 

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or 
16-bit value to 32-bit valueby clearing the empty bit positions. 

3.2 BINARY ARITHMETIC INSTRUCTIONS 

The arithmetic instructions of the Intel486 processor operate on numeric data encoded 
in binary. Operations include the add, subtract, multiply, and divide as well as incre­
ment, decrement, compare, and change sign (negate). Both signed and unsigned binary 
integers are supported. The binary arithmetic instructions may also be used as steps in 
arithmetic on decimal integers. Source operands can be immediate values,general reg­
isters, or memory. Destination operands can be general registers or memory (except 
when the source operand is in memory). The basic .arithmetic instructions have special 
forms for using an immediate value as the source operand and the AL or EAX registers 
as the destination operand. These forms are one byte shorter than the general-purpose 
arithmetic instructions. 

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of 
result which was produced. The kind of instruction used to test the flags depends on 
whether the data is being interpreted as signed or unsigned. The CF flag contains infor­
mationrelevant to unsigned integers; the Sf and OE'flagscontain ipJormationrelevant 
to signed integers. The ZF flag is relevant to both signed and unsigned integers; the ZF 
flag is set when all bits of the result are clear. 

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to 
reflect the size of the operation. For example, an 8-bit ADD instruction sets the CF flag 
if the sum of the operands exceeds 255 (decimal). 

If the integer is unsigned, the CF flag may be tested after one of these arithmetic oper­
ations to determine whether the operation required a carry or borrow to be propagated 
to the next stage of the operation. The CF flag is set if a carry occurs (addition instruc­
tions ADD, ADC, AAA, and DAA) or borrow occurs (subtraction instructions SUB, 
SBB, AAS, DAS, CMP, and NEG). 

The INC and DEC instructions do not change the state of the CF fllig. This allows the 
instructions to be used to update counters used for loop control without changing the 
reported state of arithmetic results. To test the arithmetic state of the counter, the ZF 
flag can be tested to detect loop termination, or the ADD and SUB instructions can be 
used to update the value held by the counter. 
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The SF and OF flags support signed integer arithmetic. The SF flag has the value of the 
sign bit of the result. The most significant bit (MSB) of the magnitude of a signed 
integer is the bit next to the sign - bit 6 of a byte, bit 14 of a word, or bit 30 of a 
doubleword. The OF flag is set in either of these cases: 

• A carry was generated from the MSB into the sign bit but no carry was generated out 
of the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other 
words, the result was greater than the greatest positive number which could be rep­
resented in two's complement form. 

• A carry was generated from the sign bit into the MSB but no carry was generated into 
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG). 
In other words, the result was smaller than the smallest negative number which could 
be represented, in two's complement form. 

These status flags are tested by either kind of conditional instruction: Jee Gump on 
condition ee) or SETee (byte set on condition). 

3.2.1 Addition and Subtraction Instructions 

ADD (Add Integers) replaces the destination operand with the sum of the source and 
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected. 

ADC (Add Integers With Carry) replaces the destination operand with the sum of the 
source and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the 
ADC instruction performs the same operation as the ADD instruction. An ADC instruc­
tion is used to propagate carry when adding numbers in stages, .for example when using 
32-bit ADD instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF 
flags are affected. 

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the 
state of the CF flag. This allows the use of INC instructions to update counters in loops 
without disturbing the status flags resulting from an arithmetic operation used for loop 
control. The ZF flag can be used to detect when carry would have occurred. Use an 
ADD instruction with an immediate value of 1 to perform an increment which updates 
the CF flag. A one-byte form of this instruction is available when the operand is a 
general register. The OF, SF, ZF, AF, and PF flags are affected. 

SUB (Subtract Integers) subtracts the source operand from the destination operand and 
replaces the destination operand with the result. If a borrow is required, the CF flag is 
set. The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF, 
ZF, AF, PF, and CF flags are affected. 

SBB· (Subtract Integers with Borrow) subtracts the source operand from the destination 
operand and replaces the destination operand with the result, minus 1 if the CF flag is 
set. If the CF flag is clear, the SBB instruction performs the same operation as the SUB 
instruction. An SBB instruction is used to propagate borrow when subtracting numbers 
in stages, for example when using 32-bit SUB instructions to subtract one· quadword 
operand from another. The OF, SF; ZF, AF, PF, and CF flags are affected. 
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DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction pre­
serves the state of the CF flag. This allows the use of the DEC instruction to update 
counters in loops without disturbing the status flags resulting from an arithmetic opera­
tion used for loop control. Use a SUB instruction with an immediate value of 1 to 
perform a decrement which updates the CF flag. A one-byte form of this instruction is 
available when the operand is a general register. The OF, SF, ZF, AF, and PF flags are 
affected. 

3.2.2 Comparison and Sign Change Instruction 

CMP (Compare) subtracts the source operand from the destination operand. It updates 
the OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination 
operands. A subsequent Jee or SETee instruction can test the flags. 

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG 
instruction is to change the sign of a two's complement operand while keeping its mag­
nitude. The OF, SF, ZF, AF, PF, and CF flags are affected. 

3.2.3 Multiplication Instructions 

The Intel486 processor has separate multiply instructions for unsigned and signed oper­
ands. The MUL instruction operates on unsigned integers, while the IMUL instruction 
operates on signed integers as well as unsigned. 

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source 
operand and the AL, AX, or EAX register. If the source is a byte, the. processor multi­
plies it by the value held in the AL register and returns the double-length result in the 
AH and AL registers. If the source operand is a word, the processor multiplies it by the 
value held in the AX register and returns the double-length result in the DX and AX 
registers. If the source operand is a doubleword, the processor multiplies it by the value 
held in the EAX register and returns the quadword result in the EDX and EAX regis­
ters. The MUL instruction sets the CF and OF flags when the upper half of the result is 
non-zero; otherwise, the flags are cleared. The state of the SF, ZF, AF, and PF flags is 
undefined. 

IMUL (Signed Integer Multiply) performs a signed multiplication operation. The IMUL 
instruction has three forms: 

1. A one-operand form. The operand may be a byte, word, or doubleword located in 
memory or in a general register. This instruction uses the EAXand EDX registers 
as implicit operands in the same way as the MUL instruction. 

2. A two-operand form. One of the source operands is in a general register while the 
other may be in a general register or memory. The result replaces the general­
register operand. 

3. A three-operand form; two are source operands and one is the destination. One of 
the source operands is an immediate value supplied by the instruction; the second 
may be in memory or in a general register. The result is stored in a general register. 
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The immediate operand is a two's complement signed integer. If the immediate 
operand is a byte, the processor automatically sign-extends it to the size of the 
second operand before performing the multiplication. 

The three forms are similar in most respects: 

• The length of the product is calculated to twice the length of the operands. 

• The CF and OF flags are set when significant bits are carried into the upper half of 
the result. The CF and OF flags are cleared when the upper half of the result is the 
sign-extension of the lower half. The state of the SF, ZF, AF, and PF flags is 
undefined. 

However, forms 2 and 3 differ because the product is truncated to the length of the 
operands before it is stored in the destination register. Because of this truncation, the 
OF flag should be tested to ensure that no significant bits are lost. (For ways to test the 
OF flag, see the JO, INTO, and PUSHF instructions.) 

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the 
operands are signed or unsigned, the lower half of the product is the same. The CF and 
OF flags, however, cannot be used to determine if the upper half of the result is 
non-zero. 

3.2.4 Division Instructions 

The Intel486 processor has separate division instructions for unsigned and signed oper­
ands. The DIY instruction operates on unsigned integers, while the IDlY instruction 
operates on both signed and unsigned integers. In either case, a divide-error exception is 
generated if the divisor is zero or if the quotient is too large for the AL, AX, or EAX 
register. 

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX 
register by the source operand. The dividend (the accumulator) is twice the size of the 
divisor (the source operand); the quotient and remainder have the same size as the 
divisor, as shown in Table 3-1. 

Non-integral results are truncated toward O. The remainder is always smaller than the 
divisor. For unsigned byte division, the largest quotient is 255. For unsigned word divi­
sion, the largest quotient is 65,535. For unsigned doubleword division the largest quo­
tient is 232_1. The state of the OF, SF; ZF, AF, PF, and CF flags is undefined. 

Table 3-1. Operands for ·Division 

Operand Size 
Dividend Quotient Remainder 

(Divisor) 

Byte AX register AL register AH register 
Word DX and AX AX register DX register 
Doubleword EDX and EAX EAX register EDX register 
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IDIV (Signed Integer Divide) performs a signed division of the accumulator by the 
source operand. The IDIV instruction uses the same registers as the DIV instruction. 

For signed byte division, the maximum positive quotient is + 127, and the minimum 
negative quotient is -128. For signed word division, the maximum positive quotient is 
+32,767, and the minimum negative quotient is -32,768. For signed doubleword divi­
sion the maximum positive quotient is 232_1, the minimum negative quotient is _231. 
Non-integral results are truncated towards O. The remainder always has the same sign as 
the dividend and is less than the divisor in magnitude. The state of the OF, SF, ZF, AF, 
PF, and CF flags is undefined. 

3.3 DECIMAL ARITHMETIC INSTRUCTIONS 

Decimal arithmetic is performed by combining the binary arithmetic instructions 
(already discussed in the prior section) with the decimal arithmetic instructions. The 
decimal arithmetic instructions are used in one of the following ways: 

• To adjust the results of a previous binary arithmetic operation to produce a valid 
packed or unpacked decimal result. 

• To adjust the inputs to a subsequent binary arithmetic operation so that the operation 
will produce a valid packed or unpacked decimal result. These instructions operate 
only on the AL or AH registers. Most use the AF flag. 

3.3.1 Packed BCD Adjustment Instructions 

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed dec­
imal operands in the AL register. A DAA instruction must follow the addition of two 
pairs of packed decimal numbers (one digit in each half-byte) to obtain a pair of valid 
packed decimal digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF, 
and CF flags are affected. The state of the OF flag is undefined. 

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid 
packed decimal operands in the AL register. A DAS instruction must always follow the 
subtraction of one pair of packed decimal numbers (one digit in each half-byte) from 
another to obtain a pair of valid packed decimal digits as results. The CF flag is set if a 
borrow is needed. The SF, ZF, AF, PF, and CF flags are affected. The state of the OF 
flag is undefined. 

3.3.2 Unpacked BCD Adjustment Instructions 

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid 
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow 
the addition of two unpacked decimal operands in the AL register. The CF flag is set 
and the contents of the AH register are incremented if a carry occurs. The AF and CF 
flags are affected. The state of the OF, SF, ZF, and PF flags is undefined. 
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AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid 
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow 
the subtraction of one unpacl<:ed decimal operand from another in the AL register. The 
CF flag is set and the contents of the AH register are decremented if a borrow is 
needed. The AF and CF flags are affected. The state of the OF, SF, ZF, and PF flags is 
undefined. 

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two 
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of 
two decimal numbers to produce a valid decimal result. The upper digit is left in the AH 
register, the lower digit in the AL register. The SF, ZF, and PF flags are affected. The 
state of the AF, OF, and CF flags is undefined. 

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers 
to prepare for the division of two valid unpacked decimal operands, so that the quotient 
produced by the division will be a valid unpacked decimal number. TheAH register 
should contain the upper digit and the AL register should contain the lower digit. This 
instruction adjusts the value and places the result in the AL register. The AH register 
will be clear. The SF, ZF, and PF flags are affected. The state of the AF, OF, and CF 
flags is undefined. 

3.4 LOGICAL INSTRUCTIONS 

The logical instructions have two operands. Source operands can be immediate values, 
general registers, or memory. Destination operands can be general registers or memory 
(except when the source operand is in memory). The logical instructions modify the state 
of the flags. Short forms of the instructions are available when an immediate source 
operand is applied to a destination operand in the AL or EAX registers. The group of 
logical instructions includes: 

• Boolean operation instructions. 

• Bit test and modify instructions. 

• Bit scan instructions. 

• Rotate and shift instructions. 

• Byte set on condition. 

3.4.1 Boolean Operation Instructions 

The logical operations are performed by the AND, OR, XOR, and NOT instructions. 

NOT (Not) inverts the bits in the specified operand to form a one's complement of the 
operand. The NOT instruction is a unary operation which uses a single operand in a 
register or memory. NOT has no effect on the flags. 
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The AND, OR, and XOR instructions perform the standard logical operations "and," 
"or," and "exclusive or." These instructions can use the following combinations of 
operands: 

• Two register operands. 

• A general register operand with a memory operand. 

• An immediate operand with either a general register operand or a memory operand. 

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag 
undefined, and update the SF, ZF, and PF flags. 

3.4.2 Bit Test and Modify Instructions 

This group of instructions operates on a single bit which can be in memory or in a 
general register. The location of the bit is specified as an offset from the low end of the 
operand. The value of the offset either may be given by an immediate byte in the instruc­
tion or may be contained in a general register. 

These instructions first assign the value of the selected bit to the CF flag. Then a new 
value is assigned to the selected bit, as determined by the operation. The state of the 
OF, SF, ZF, AF, and PF flags is undefined. Table 3-2 defines these instructions. 

Table 3-2. Bit Test and Modify Instructions 

Instruction Effect on CF Flag Effect on Selected Bit 

BT (Bit Test) CF flag <- Selected Bit no effect 
BTS (Bit Test and Set) CF flag <- Selected Bit Selected Bit <- 1 
BTR (Bit Test and Reset) CF flag <- Selected Bit Selected Bit <- 0 
BTC (Bit Test and Complement) CF flag <- Selected Bit Selected Bit <- - .(Selected Bit) 

3.4.3 Bit Scan Instructions 

These instructions scan a word or doubleword for a set bit and store the bit index (an 
integer representing the bit position) of the first set bit into a register. The bit string 
being scanned may be in a register or in memory. The ZF flag is set if the entire word is 
clear, otherwise the ZF flag is cleared. In the former case, the value of the destination 
register is left undefined. The state of the OF, SF, AF, PF, and CF flags is undefined. 

BSF (Bit Scan Forward) scans low-to-high (from bit 0 toward the upper bit positions). 

BSR (Bit Scan Reverse) scans high-to-low (from the uppermost bit toward bit 0). 
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3.4.4 Shift and Rotate Instructions 

The shift and rotate instructions rearrange the bits within an operand. 

These instructions fall into the following classes: 

• Shift instructions. 

• Double shift instructions. 

• Rotate instructions. 

3.4.4.1 SHIFT INSTRUCTIONS 

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords. 
An arithmetic shift right copies the sign bit into empty bit positions on the upper end of 
the operand, while a logical shift right fills high order empty bit positions with zeros. An 
arithmetic shift is a fast way to perform a simple calculation. For example, an arithmetic 
shift right by one bit position divides an integer by two. A logical shift right divides an 
unsigned integer or a positive integer, but a signed negative integer loses its sign bit. 

The arithmetic and logical shift right instructions, SAR and SHR, differ .only in their 
treatment of the bit positions emptied by shifting the.contents of the operand. Note that 
there is no difference between an arithmetic shift left and a logical shift left. Two names, 
SAL and SHL, are supported for this instruction in the assembler. 

A count specifies the number of bit positions to shift an operand. Bits can be shifted up 
to 31 places. A shift instruction can give the count in any of three ways. One form of shift 
instruction always shifts by one bit position. The· second form gives the count as an 
immediate operand. The third form gives the count as the value contained in the CL 
register. This last form allows the count to be a result from a calculation. Only the low 
five bits of the CL register are used. 

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the 
CF flag is left with the value of the last bit shifted out of the operand. In a single-bit 
shift, the OF flag is set if the value of the uppermost bit (sign bit) was changed by the 
operation. Otherwise, the OF flag is cleared. After a shift of more than one bit position, 
the state of the OF flag is undefined. On a shift of one or more bit positions, the SF, ZF, 
PF, and CF flags are affected, and the state of the AF flag is undefined. 

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left 
by one bit position or by the number of bits specified in the count operand (an immedi­
ate value or a value contained in the CL register). Empty bit positions are cleared. See 
Figure 3-6. 

SHL (Shift Logical Left) is another name for the SAL instruction. It is supported in the 
assembler. 
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INITIAL STATE: . 

CF OPERAND o 1 0 0 0 1 0 0 0 1 0 0 0 .1 0 0 0 1 0.0 0 1 00 0 1 0 0 0 1 1 1 1 

AFTER l·BIT SHL/SAL INSTRUCTION: 

00010001000100010001000100011110 o 

AFTER 10·BIT SHLISAL INSTRUCTION: 

0010001000100Ul000l1110000000000 o 

240486i3·6 

Figure 3-6. SHL/SALlnstruction 

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right 
by one bit position or by the number of bits specified in the count operand (an iinmedi­
ate value ora vitluecoritairied: iri the CL'register). Empty bit positions are cleared. See 
Figure 3-7. . 

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand 
to the right by one bit position or, by the number of bits specified in the count operand 
(an immediate value or a value contained in the CL register). The sign of the operand is 
preserved by clearing empty bit positions if the operand is positive, or setting the empty 
bits if the clperandis negative. See Figure 3-8. 

Even though this instruction can be used to divide integers by an integer power of two, 
the type of division is not the same as that produced by the IDIV instruction. The 
quotient from the IDIV instruction is rounqed toward zero, whereas the "quotient". of 
the SAR iil'struc,tioh is rounded toward negative infini~. This difference is apparent only 
for negative .nllmbers. For example, when the IDIV instruction is used to divide -9 by 4, 
the result is ~ 2 with ,a remainder of '- L If the SAR instruction is used to shift - 9 right 
by tWo bits, the result is ~ 3. The "remainder" of this kind of division is + 13; however, 
the SAR iristruqtion stores onlythe·high-ordyr bit of the remainder (in the CF flag). 

3.,4.4.2 DOUBLE~SH.IFT INSTRUCTIONS 

These instructions provide the ba~ic'operations needed to implement operations on long 
unaligned bit strings. The double shifts operate either on word or doubleword operands, 
as follows: 

• Ta,ke two Word operands .an,d prodUCt! a one-word result (32-bit shift). 

• Take two doubleword operands and produce a doubleword result (64-bit shift). 
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INITIAL STATE: 

OPERAND CF 

10001000100010001000100010001111 ~ 

AFTER 1·BIT SHR INSTRUCTION: 

o 01000100010001000100010001000111 

AFTER 10·BIT SHR INSTRUCTION: 

o 00000000001000100010001000100010 

240486;3·7 

Figure 3·7. SHR Instruction 

INITIAL STATE (POSITIVE OPERAND): 

OPERAND CF 

01000100010001000100010001000111 ~ 

AFTER 1·BIT SAR INSTRUCTION: 

00100010001000100010001000100011 

INITIAL STATE (NEGATIVE OPERAND): 

OPERAND CF 

110001000100010001000100010000111 0 
AFTER 1·BIT SAR INSTRUCTION 

11100010001000100010001000100011 

240486;3·8 

Figure 3·8. SAR Instruction 
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Of the two operands, the source operand must be in a register while the destination 
operand may be in a register or in memory. The number of bits to be shifted is specified 
either in the CL register or in an immediate byte in the instruction. Bits shifted out of 
the source operand fill empty bit positions in the destination operand, which also is 
shifted. Only the destination operand is stored. 

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the 
CF flag is set to the value of the last bit shifted out of the destination operand, and the 
SF, ZF, and PF flags are affected. On a shift of one bit position, the OF flag is set if the 
sign of the operand changed, otherwise it is cleared. For shifts of more than one bit 
position, the state of the OF flag is undefined. For shifts of one or more bit positions, 
the state of AF flag is undefined. 

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling 
empty bit positions with bits shifted out of the source operand (see Figure 3-9). The 
result is stored back into the destination operand. The source operand is not modified. 

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while 
filling empty bit positions with bits shifted out of the source operand (see Figure 3-10). 
The result is stored back into the destination operand. The source operand is not 
modified. 

3.4.4.3 ROTATE INSTRUCTIONS 

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits 
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits 
are emptied during a rotation. 

DESTINATION (MEMORY OR REGISTER) 

31 o 

SOURCE (REGISTER) 

. 240486i3·9 

Figure 3·9. SHLD Instruction 

3-16 



int'eL APPLICATION PROGRAMMING 

31 

SOURCE (REGISTER) 

31 

DESTINATION (MEMORY OR REGISTER) 

240486;3-10 

Figure 3-10. SHRD Instruction 

Rotate instructions use only the CF and OF flags. The CF flag may act as an extension 
of the operand in two of the rotate instructions, allowing a bit to be isolated and then 
tested by a conditional jump instruction (JC or JNC). The CF flag always contains the 
value of the last bit rotated out of the operand, even if the instruction does not use the 
CF flag as an extension of the operand. The state of the SF, ZF, AF, and PF flags is not 
affected. 

In a single-bit rotation, the OF flag is set if the operation changes the uppermost bit 
(sign bit) of the destination operand. If the sign bit retains its original value, the OF flag 
is cleared. After a rotate of more than one bit position, the value of the OF flag is 
undefined. 

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one 
bit position or by the number of bits specified in the count operand (an immediate value 
or a value contained in the CL register). For each bit position of the rotation, the bit 
which exits from the left of the operand returns at the right. See Figure 3-11. 

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by 
one bit position or by the number of bits specified in the count operand (an immediate 
value or a value contained in the CL register). For each bit position of the rotation, the 
bit which exits from the right of the operand returns at the left. See Figure 3-12. 

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destina­
tion operand left by one bit position or by the number of bits specified in the count 
operand (an immediate value or a value contained in the CL register). 

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on 
the upper end of the destination operand. Each bit which exits from the left side of the 
operand moves into the CF flag. At the same time, the bit in the CF flag enters the right 
side. See Figure 3-13. 
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31 o 

~~.--~~L-___________ D_E_ST_IN_A_T_IO_N_(_M_E_M_O_RY __ O_R_R_EG_�_sT_E_R_) _____________ ~ 

240486i3-11 

Figure 3·11. ROL Instruction 

31 o 

~-------------D-E-ST-I-N-AT-IO-N--(M-E-M-O-R-Y-O-R-R-E-GI-S-TE_R_) __________ ~~I--~--.~~ 

240486i3-12 

Figure 3·12. ROR Instruction 

DESTINATION (MEMORY OR REGISTER) 

240486i3-13 

Figure 3·13. RCL Instruction 

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword desti· 
nation operand right by one bit position or by the number of bits specified in the count 
operand (an immediate value or a value contained in the CL register). 

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower 
end of the destination operand. Each bit which exits from the right side of the operand 
moves into the CF flag. At the same time, the bit in the CF flag enters the left side. See 
Figure 3-14. 
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DESTINATION (MEMORY OR REGISTER) 

240486i3-14 

Figure 3-14. RCR Instruction 

3.4.4.4 FAST "bit bit" USING DOUBLE-SHIFT INSTRUCTIONS 

One purpose of the double shift instructions is to implement a bit string move, with 
arbitrary misalignment of the bit strings. This is called a "bit bIt" (BIT BLock Transfer). 
A simple example is to move a bit string from an arbitrary offset into a doubleword­
aligned byte string. A left-to-right string is moved 32 bits at a time if a double shift is 
used inside the move loop. 

MOV ESI,ScrAddr 
MOV EDI,DestAddr 
MOV EBX,WordCnt 
MOV CL,RelOffset 
MOV EDX, [ESIJ 
ADD ESI,4 

BltLoop: 
LODS 
SHLD EDX,EAX,CL 
XCHG EDX,EAX 
STOS 
DEC EBX 
JNZ BltLoop 

relative offset Dest-Src 
load first word of source 
bump source address 

new low order part in EAX 
EDX overwritten with aligned stuff 
Swap high and low words 
Write out next aligned chunk 
Decrement loop count 

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest 
possible performance. Without a double shift, the best which can be achieved is 16 bits 
per loop iteration by using a 32-bit shift, and replacing the XCHG instruction with a 
ROR instruction by 16 to swap the high and low words of registers. A more general loop 
than shown above would require some extra masking on the first doubleword moved 
(before the main loop), and on the last doubleword moved (after the main loop), but 
would have the same 32-bits per loop iteration as the code above. 
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3.4.4.5 FAST BIT STRING INSERT AND EXTRACT 

The double shift instructions also make possible: 

• Fast insertion of a bit string from a register into an arbitrary bit location in a larger 
bit string in memory, without disturbing the bits on either side of the inserted bits 

• Fast extraction of a bit string into a register from an arbitrary bit location in a larger 
bit string in memory, without disturbing the bits on either side of the extracted bits 

The following coded examples illustrate bit insertion and extraction under various 
conditions: 

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e.,· spans 
four bytes or less): 

Insert a right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword aligned. 
2. The length of the bit string is an immediate value 

and the bit offset is held in a register. 

The ESI register holds the right-justified bit string 
to be inserted. 
The EDI register holds the bit offset of the start of the 
substring. 
The EAX register and ECX are also used. 

MOV ECX,EDI save original offset 
SHR EDI,3 divide offset by 8 (byte addr) 
AND CL,7H get low three bits of offset 
MOV EAX, [EDIlstrg_base move string dword into EAX 
ROR EAX,CL right jusiify old bit field 
SHRD EAX,ESI,length bring in new bits 
ROL EAX,length right justify new bit field 
ROL EAX,CL bring to final position 
MOV [EDIlstrg_base,EAX replace doubleword in memory 

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans five 
bytes or less): 

Insert a right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword aligned. 

; 2. The length of the bit string is an immediate value 
and the bit offset is held in a register. 

The ESI register holds the right-justified bit string 
to be inserted. 
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The EDI' register holds the bit offset of the start of the 
substring. 
The EAX, EBX, ECX, and EDI registers also are used. 

MOV ECX, EIH temp storage for offset 
SHR EDI,5 divide offset by 32 (dwords) 
SHL EDI,2 multiply by 4 (byte address) 
AND CL,1FH get low five bits of offset 
MOV EAX,[EDIlstrg_base move low string dword into EAX 
MOV EDX,[EDIlstrg_base+4 other string dword into EDX 
MOV EBX,EAX temp storage for part of string 
SHRD EAX,EDX,CL shift by offset within dword 
SHRD EAX,EBX,CL shift by offset within dword 
SHRD EAX,ESI,length bring in new bits 
ROL EAX,length right justify new bit field 
MOV EBX,EAX temp storage for string 
SHLD EAX,EDX,CL shift by offset within word 
SHLD EDX,EBX,CL shift by offset within word 
MOV [EDIJstrg_base,EAX replace dword in memory 
MOV [EDIlstrg_base+4,EDX replace'dword in memory 

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e., 
spans four or five bytes): ' 

Insert right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword ,aligned. 
2. The length of the bit string is 32 bits 

and the bit offset is held in a register. 

The ESI register holds the 32-bit string to be inserted. 
The EDI register holds the bit offset to the start of the 
substring. 
The EAX, EBX, ECX, and EDI registers also are used. 

MOV EDX,EDI 
SHR EDI,5 
SHL EDI,2 
AND CL,1FH 
MOV EAX,[EDIlstrg_base 
MOV EDX, [EDIlstrg_base+4 
MOV EBX,EAX 
SHRD EAX,EDX 
SHRD EDX,EBX 
MOV EAX,ESI 
MOV EBX,EAX 
SHLD EAX,EDX 
SHLD EDX,EBX 

save original offset 
divide offset by 32 (dwords) 
multiply by 4 (byte address) 
isolate low five bits of offset 
move low string dword into EAX 
other string dword into EDX 
temp storage for part of string 
shift by offset within dword 
shift by offset within dword 
move 32-bit field into position 
temp storage for part of string 
shift by offset within word 
shift by offset within word 
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MOV [EDIlstrg_base,EAX ; .replace· dword in memory' 
MOV [EDIlstrg_base,+4,EDX ; replace dword in memory 

4. Bit String Extraction from M~mo~"Y(when the bit stdng is 1-25 bits long, i.e.', spans 
four bytes or less): 

Extract a right-justified bit s~ring'into a register from 
.a bit string in memory •. 

Assumptions: 
1) The base of the string array is doubleword. aligned. 
2) The length of .. the bit· string is an immediate value 

and the bit offset.is held ina register. 
':', 

The EAX register hold the right-justified, .zero-padded 
bit string that was extracted. 
The EDI register holds the bit offs~t of the start of the 
substring. 
The EDI, and ECX registers also are·used~ 

MOV ECX,EDI 
SHR EDI,3 
AND CL,7H 
MOV EAX, [EDI j strg_bas'e . 
SHR EAX,CL 
AND EAX,mask 

temp storage for offset· 
divide offset by 8 (byte addr) 
get .low three bits of offset 
~ove '~tring ~wor~ into EA*'" 
shift by offset within dword 
ext~~ct~d'bit field iri EAX' 

5. Bit String Extraction from Memory (when bit string is 1-32 b'its lo~g, i.e., spans five 
bytes or less): . '. 

Extract a right-justified bii stri~g into a register 'from 'a 
bit string in memory. 

Assumptions: 
1) The base of the strihg 'a~ray~is' doUbleword ~ligned. 
2) The length of the"bit'stri'ng is'an immediate' 

value and the bit offset is held in'a register. 

The EAX register holds the right-justified, zero-padded 
bit string that was extracted. 
The EDI register holds ·th~ bit offset :of the start of the 
substring. . ,<' 

The EAX, EBX, and· ECX registersaiso are used. 
; . 

MOV ECX,EDI ; -temp storage for offset 
SHR EDI,5 ;.divide'oHset by 32 (dwords) 
SHL EDI,2 ;'multiply by 4 (byte address) 
AND CL,1FH get low five bits of offset in 
MOV EAX,[EDIlstrg~base ","; move lowstring'dword into EAX 
MOV EAX,[EDIlstrg~base +4 other string dword into EDX 
SHRD EAX,EDX,CL .shiftright b~~~ffset in dword 
AND EAX,mask extracted bit field in EAX 
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3.4.5 Byte-Set-On-Condition Instructions 

This group .of instructions sets a byte to the·value of zero or one, depending on any of 
the 16 conditions defined by the status flags. The byte may be in a register or in memory. 
These instructions are especially useful for implementing Boolean expressions in high­
level languages such as Pascal. 

Some languages represent a logical one as an integer with all bits set. This can be done 
by using the SET~c instruction with the mutually exclusive condition, then decrementing 
the result. 

SETcc (Set Byte on. Condition cc) loads the. value 1 into a byte if condition cc is true; 
. clears the byte otherwise. See Appendix D for a definition of the possible conditions .. 

3.4.6 Test Instruction 

TEST (Test) performs, the logical "and" of the two operands, clear~ the. OF . and CF 
flags, leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can 
be tested by conditional control transfer instructions or the byte-set-on-condition 
instructions. The operands may be bytes, words, or dou~lewords. 

The difference between the TEST and AND instructions is the TEST instruction does 
not alter the destination operand. The difference between the TESTiliidBT instructions 
is the TEST instruction can test the value Of multiple bits iIi one operation, while the BT 
instruction tests. a single bit. " i . ' . 

. ': . 

3.5 CONTROL TRANSFER INSTRUCTIONS' 

The Intel486 processor provides both conditional and unconditional control transfer 
instructions to direct the flow pf execution, Conditional tnmsfers are executed only for 
certain conibinations of the state of the flags. Unconditioiuil control transfers are always 
executed. . ...., .... . ' , 

3.5.1 Unconditional Transfer Instructions· 

The JMP, CALL, RET, INT and IRET instructions transfer execution to a destination 
in a code segment. The destination can be witb.in the same code se~ent (near transfer) 
or in a different code segment (Jar transfer). The forms of these instructions which 
transfer execution to other segments arediscussed in a later section of this chapter. If 
the model 'of memory organization used in !l par,ticular application does not make seg­
nients v~sible to application pfogrammers,Jadran~fers will '~ot be ~sed. " . ' '; 

3.5.1.1 JUMP INSTRUCTION 
';,' " 

JMP (Jump) unconditionally transfers execution to the d,estination. The JIy1P instruction 
is a one-way transfer of execution; it ,does no(save a return address on thestacL 
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The JMP instruction transfers execution from the current routine to a different routine. 
The address of the routine is specified in the instruction, in a register, or in memory. The 
location of the address determines whether it is interpreted as a relative address or an 
absolute address. 

Relative Address. A relativ~ jump uses a displacement (immediate mode constant used 
for address calculation) held in the instruction. The displacement is signed and variable­
length (byte or doubleword). The destination address is formed by adding the displace­
ment to the address held in the EIP register. The EIP register then contains the address 
of the next instruction to be executed. 

Absolute Address. An absolute jump is used with a 32-bit segment offset in either of the 
following ways: 

1. The program can jump to an address in a general register. This 32-bit value is copied 
into the EIP register and execution continues. 

2. The destination address can be a memory operand specified using the standard 
addressing modes. The operand is copied into the EIP register and execution 
continues. 

3.5.1.2 CALL INSTRUCTIONS 

CALL (Call Procedure) transfers execution and saves the address of the instruction 
following the CALL instruction . for later use by a RET (Return) instruction. CALL 
pushes the current contents of the EIP register on the stack. The RET instruction in the 
called procedure us.es this address to transfer execution back to the calling program. 

CALL instructions, like JMP instructions, have relative and absolute forms. 

Indirect CALL instructions specify an absolute address in one of the following ways: 

1. The program can jump to an address in ageneral register. This 32-bit value is copied 
into theEIP register, the return address is pushed on the stack, and execution 
90ntinues. 

2. The destination address can be a memory operand specified using the standard 
addressing modes. The operand is copied into the ElP register, the return address is 
pushed on the stack, and execution continues. 

3.5.1.3 RETURN ANDFIETURN~FROM":INTERRUPTINSTRUCTIONS 

RET (Return FromProcedtln!) termin.ates a procedure and transfe~s execution to the 
instruction following the CALL instruction which originally invoked the procedure. The 
RET instruction restores the contents of the EIP register which were pushed on the 
stack when the procedure was called. 

The RET instructions have an optional immediate operand. When present, this constant 
is added to the contents of the ESP register, which has the effect of removing any 
parameters pushed on the stack before the procedure call. 
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IRET (Return From Interrupt) returns control to an interrupted procedure. The IRET 
instruction differs from the RET instruction in that it also restores the EFLAGS register 
from the stack. The contents of the EFLAGS register are stored on the stack when an 
interrupt occurs. 

3.5.2 Conditional Transfer Instructions 

The conditional transfer instructions are jumps which transfer execution if the states in 
the EFLAGS register match conditions specified in the instruction. 

3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS 

Table 3-3 shows the rrinemonics for the jump instructions. The instructions listed as pairs 
are alternate names for the same instruction. The assembler provides these names for 
greater clarity in program listings. 

A form of the conditional jump instructions is available which uses a displacement added 
to the contents of the EIP register if the specified condition is true. The displacement 
may be a byte or doubleword. The displacement is signed; it can be used to jump for­
ward or backward. 

Table 3-3. Conditional Jump Instructions 

Unsigned Conditional Jumps 

Mnemonic Flag States Description 
JNJNBE (CF or ZF)=O above/not below nor equal 
JAE/JNB CF=O above or equal/not below 
JB/JNAE CF=1 below/not above nor equal 
JBE/JNA (CF or ZF)=1 below or equal/not above 
JC CF=1 carry 
JE/JZ ZF=1 equal/zero 
JNC CF=O not carry 
JNE/JNZ ZF=O not equal/not zero 
JNP/JPO PF=O not parity/parity odd 
JP/JPE PF=1 parity/parity even 

Signed Conditional Jumps 

JG/JNLE ((SF xor OF) or ZF) ;=0 greater/not less nor equal 
JGE/JNL (SF xor OF) = 0 greater or equal/not less 
JLlJNGE (SF xor OF) = 1 less/not greater nor equal 
JLE/JNG ((SF xor OF) or ZF) = 1 less or equal/not greater 
JNO OF=O not overflow 
JNS SF=O not sign (non-negative) 
JO OF=1 overflow 
JS SF='1 sign (negative) 
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3.5.2.2 LOOP INSTRUCTIONS 

The loop instructions are conditional jumps which use a value placed in the ECX regis­
ter as a count for the number of times to run a loop. All loop instructions decrement the 
contents of the ECX register on each reposition and terminate when zero· is reached. 
Four of the five loop instructions accept the ZF flag as a condition for terminating the 
loop before the count reaches zero. . 

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements 
the contents of the ECX register before testing for the loop-terminating condition. If 
contents of the ECX register are non-zero, the program jumps to the destination speci­
fied in the instruction. The LOOP instruction causes the execution of a block of code to 
be repeated until the count reaches zero. When zero is reached, execution is transferred 
to the instruction immediately following the LOOP instruction. If the value in the ECX 
register is zero when the instruction is first called, the count is pre-decremented to 
OFFFFFFFFH and the LOOP runs 232 times.' . 

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same 
instruction. These instructions are conditional jumps which decrement the contents of 
the ECX register before testing for the loop-terminating condition. If the contents of the 
ECX register are non-zero and the ZF flag is set, the program jumps to the destination 
specified in the instruction. When zero is reached or the ZF flag is clear, execution is 
transferred to the instruction immediately following the LOOPE/LOOPZ instruction. 

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms 
for the same instruction. These instructions are conditional jumps which decrement the 
contents of the ECX register before testing for the loop-terminating condition. If the 
contents of the ECX register are non-zero and the ZF flag is clear, the program jumps to 
the destination specified in the instruction. When zero is reached or the ZF flag is set, 
execution is transferred to the instruction immediately following the LOOPE/LOOPZ. 
instruction. 

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES 

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the 
ECX register holds a value of zero. The JECXZ instruction is used in combination with 
the LOOP instruction and with the string scan and compare instructions. Because these 
instructions decrement the contents of the ECX register before testing for zero, a loop 
will run 232 times if the loop is entered with a zero value in the ECX register. The 
JECXZ instruction is used to create loops which fall through without executing when the 
initial value is zero. A JECXZ instruction at the beginning of a loop can be used to jump 
out of the . loop if the count is zero. When used with repeated string scan and compare 
instructions, the JECXZ instruction can determine whether the loop terminated due to 
the count or due to satisfaction of the scan or compare conditions. 
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3.5.3 Software_ Interrupts 

The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of 
execution to an exception or interrupt handler. 

INTn (Software Interrupt) calls the handler specified by an interrupt vector encoded in 
the instruction. The INT instruction may specify any interrupt type. This instruction is 
used to support multiple types of software interrupts or to test the operation of interrupt 
service routines. The interrupt service routine terminates with an IRET instruction, 
which returns execution to the instruction following the INT instruction. 

INTO (Interrupt on Overflow) calls the handler for the overflow exception, if the OF 
flag is set. If the flag is clear, execution continues without calling the handler. The OF 
flag is set by arithmetic, logical, and string instructions. This instruction supports the use 
of software interrupts for handling error conditions, such as arithmetic overflow. 

BOUND (Detect Value Out of Range) compares the signed value held in a general reg­
ister against an upper and lower limit. The handler for the bounds-check exception is 
called if the value held in the register is less than the lower bound or greater than the 
upper bound. This instruction supports the use of software interrupts for bounds check­
ing, such as checking an array index to make sure it falls within the range defined for the 
array. 

The BOUND instruction has two operands. The first operand specifies the general reg­
ister being tested. The second operand is the base address of two words or doublewords 
at adjacent locations in memory. The lower limit is the word or doubleword with the 
lower address; the upper limit has the higher address. The BOUND instruction assumes 
that the upper limit and lower limit are in adjacent memory locations. These limit values 
cannot be register operands; if they are, an invalid-opcode exception occurs. 

The upper and lower limits of an array can reside just before the array itself. This puts 
the array bounds ata constant offset from the beginning of the array. Because the 
address of the array already will be present in a register, this practice avoids extra bus 
cycles to obtain the effective address of the array bounds. 

3.6 STRING OPERATIONS 

String operations manipulate large data structures in memory, such as alphanumeric 
character strings. See also the section on I/O for information about the string I/O 
instructions (also known as block I/O instructions). 
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The string operations are made by putting string instructions (which execute only one 
iteration of an operation) together with other features of the instruction set, such as 
repeat prefixes. The string instructions are: 

, 

MOVS - Move String 
CMPS - Compare string 
SCAS - Scan string 
LODS - Load string 
STOS ....:. Store string 

After a string instruction executes, the string source and destination registers point to 
the next elements in their strings. These registers automatically increment or decrement 
their contents by the number of bytes occupied by each string element. A string element 
can be a byte, word, or doubleword. The string registers are: 

ESI - Source index register . 
EDI - Destination index register 

String operations can begin at higher addresses and work toward lower ones, or they can 
begin at lower addresses and work toward higher ones. The direction is controlled by: 

DF - Direction flag 

If the DF flag is clear, the registers are incremented. If the flag is set, the registers are 
decremented. These instructions set and clear the flag: 

STD - Set direction flag instruction 
CLD - Clear direction flag instruction 

To. operate on more than one .element of a string, a repeat prefix must be used, such as: 

REP.- Repeat while the ECX, register not zero . 
REPE/REPZ - Repeat while the ECX register not zero and the ZF flag is set 
REPNE/REPNZ-Repeat while the ECX register not zero and the ZF flag is clear 

Exceptions or interrupts which occur during a string instruction leave the registers in a 
state which allows the string instruction to be restarted. The source and destination 
registers point to the next string elements, the EIP register points to the string instruc­
tion, and the ECX register has the value it held following the last successful iteration. 
All that is necessary to restart the operation is to service the interrupt or fix the source 
of the exception, then execute an IRET instruction. 

3.6.1 Repeat Prefixes 

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While 
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated 
operation of a string instruction; This form of iteration allows string operations to pro­
ceed much faster than would be. possible with a software loop; 
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When a string instruction has a repeat prefix, the operation executes until one of the 
termination conditions specified by the prefix is satisfied. 

For each repetition of the instruction, the string operation may be suspended by aQ 
exception or interrupt. After the exception or interrupt has been serviced, the string 
operation can restart where it left off. This mechanism allows long string operations to 
proceed without affecting the interrupt response time of the system. 

All three prefixes shown in Table 3-4 cause the instruction to repeat until the ECX 
register is decremented to zero, if no other termination condition is satisfied. The repeat 
prefixes differ in their other termination condition. The REP prefix has no other termi­
nation condition. The REPE/REPZ and REPNE/REPNZ prefixes are used exclusively 
with the SCAS (Scan String) and CMPS (Compare String) instructions. The REPEl 
REPZ prefix terminates if the ZF flag is clear. The REPNE/REPNZ prefix terminates if 
the ZF flag is set. The ZF flag does not require initialization before execution of a 
repeated string instruction, because both the SCAS and CMPS instructions affect the ZF 
flag according to the results of the comparisons they make. 

3.6.2 Indexing and Direction Flag Control 

Although the general registers are completely interchangeable under most conditions, 
the string instructions require the use of two specific registers. The source and destina­
tionstrings are in merpory addressed by the ESI and EDI registers. The ESI register 
points to source operands. By default, the ESI register is used with the DS segment 
register. A segment-override prefix allows the ESI register to be used with the CS, SS, 
ES, FS, or GS segment registers. The EDI register points to destination operands. It 
uses the segment indicated by the ES segment register; no segment override is allowed. 
The use of two different segment registers in one instruction permits operations between 
strings in different segments. 

When ESI and EDI are used in string instructions, they automatically are incremented 
or decremented after each iteration. String operations can begin at higher addresses and 
work toward lower ones, or they can begin at lower addresses and work toward higher 
ones. The direction is controlled by the DF flag. If the flag is clear, the registers are 
incremented. If the flag is set, the registers are decremented. The STD and CLD 
instructions set and clear this flag. Programmers should always put a known value in the 
DF flag before using a string instruction. 

Table 3-4. Repeat Instructions 

Repeat Prefix Termination Condition 1 Termination Condition 2 

REP ECX=O none 
REPE/REPZ ECX=O ZF=O 
REPNE/REPNZ ECX=O ZF=1 
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3.6.3 String Instructions 

MOVS (Move String) moves the string element addressed by the ESI register to the 
location addressed by the EDI register. The MOVSB instruction moves bytes, the 
MOVSW instruction moves words, and the MOVSD instruction moves doublewords. 
The MOVS instruction, when accompanied by the REP prefix, operates as a memory­
to-memory block transfer. To set up this operation, the program must initialize theECX, 
ESI, and EDI registers. The ECX register specifies the number of elements in the block. 

CMPS (Compare Strings) subtracts the destination string element from the source string 
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written 
back to memory. If the string elements are equal, the ZF flag is set; otherwise, it is 
cleared. CMPSB compares bytes, CMPSW compares words, and CMPSD compares 
doublewords. 

SCAS (Scan String) subtracts the destination string element from the EAX, AX, pr AL 
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF 
flags. The string and the register are not modified. If the values are equal, the ZF flag is 
set, otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction 
scans words; the SCASD instruction scans doublewords. 

When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SCAS or CMPS 
instructions, the loop which is formed is terminated by the loop counter or the effect the 
seAS or CMPS instruction has on the ZF flag. 

LODS (Load String) places the source string element addressed by the ESI register into 
the EAX register for doubleword strings, into the AX register for word strings, or into 
the AL register for byte strings. This instruction usually is used in a loop, where other 
instructions process each element of the string as they appear iIi the register. 

- STOS (Store String) places the source string element from the EAX, AX, or AL register 
into the string addressed by the EDI register. This instruction usually is used in a loop, 
where it writes to memory the result of processing a string element read from memory 
WIth the LODS instruction. A REP STOS instruction is the fastest way. to initialize a 
large block of memory. 

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES 

These instructions provide machine-language support for implementing block-structured 
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify 
procedure entry and exit in compiler-generated code. They support a structure of point­
ers and local variables on the stack called a stack frame. 

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of 
block-structured languages. In these languages, a procedure has access to its own vari­
ables and some number of other variables defined elsewhere in the program. The scope 
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of a procedure is the set of variables to which it has access. The rules for scope vary 
among languages; they may be based on the nesting of procedures, the division of the 
program into separately-compiled files, or some other modularization scheme. 

The ENTER instruction has two operands. The first specifies the number of bytes to be 
reserved on the stack for dynamic storage in the procedure being entered. Dynamic 
storage is the memory allocated for variables created when the procedure is called, also 
known as automatic variables. The second parameter is the lexical nesting level (from 0 
to 31) of the procedure. The nesting level is the depth of a procedure in the hierarchy of 
a block-structured program. The lexical level has no particular relationship to either the 
protection privilege level or to the I/O privilege level. 

The lexical nesting level determines the number of stack frame pointers to copy into the 
new stack frame from the preceding frame. A stack frame pointer is a doubleword used 
to access the variables of a procedure. The set of stack frame pointers used by a proce­
dure to access the variables of other procedures is called the display. The first double­
word in the display is a pointer to the previous stack frame. This pointer is used by a 
LEAVE instruction to undo the effect of an ENTER instruction by discarding the cur­
rent stack frame. 

Example: ENTER 2048,3 

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two 
previous stack frames in the stack frame for this procedure. 

After the ENTER instruction creates the display for a procedure, it allocates the 
dynamic (automatic) local variables for the procedure by decrementing the contents of 
the ESP register by the number of bytes specified in the first parameter. This new value 
in the ESP register serves as the initial top-of-stack for all PUSH and POP operations 
within the procedure. 

To allow a procedure to address its display, the ENTER instruction leaves the EBP 
register pointing to the first doubleword in the display. Because stacks grow down, this is 
actually the doubleword with the highest address in the display. Data manipulation 
instructions which specify the EBP register as a base register automatically address 
locations within the stack segment instead of the data segment. 

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical 
level is 0, the non-nested form is used. The non-nested form pushes the contents of the 
EBP register on the stack, copies the contents of the ESP register into the EBP register, 
and subtracts the first operand from the contents of the ESP register to allocate dynamic 
storage. The non-nested form differs from the nested form in that no stack frame point­
ers are copied. The nested form of the ENTER instruction occurs when the second 
parameter (lexical level) is not zero. 

Figure 3-15 shows the formal definition of the ENTER instruction. STORAGE is the 
number of bytes of dynamic storage to allocate for local variables, and LEVEL is the 
lexical nesting level. 
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Push EBP 
Set a temporary value FRAMLPTR : = ESP 
If LEVEL 0 then 

End if 

Repeat LEVEL - 1) times: 
EBP :=EBP -4 
Push the doubleword pointed to by EBP 

End repeat 
Push FRAMLPTR 

EBP : = FRAMLPTR 
ESP: = ESP - STORAGE 

Figure 3-15. Formal Definition of the ENTER Instruction 

The main procedure (in which all other procedures are nested) operates at the highest 
lexical level, level 1. The first procedure it calls operates at the next deeper lexical level, 
level 2. A level 2 procedure can access the variables of the main program, which are at 
fixed locations specified by the compiler. In the case of level 1, the ENTER instruction 
allocates only the requested dynamic storage on the stack because there is no previous 
display to copy. 

A procedure which calls another procedure at a lower lexical level gives the called pro­
cedure access to the variables of the caller. The ENTER instruction provides this access 
by placing a pointer to the calling procedure's stack frame in the display. 

A procedure which calls another procedure at the same lexical level should not give 
access to its variables. In this case, the ENTER instruction copies only that part of the 
display from the calling procedure which refers to previously nested procedures operat­
ing at higher lexical levels. The new stack frame does not include the pointer for 
addressing the calling procedure's stack frame. 

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the 
same lexical level. In this case, each succeeding iteration of the re-entrant procedure can 
address only its own variables and the variables of the procedures within which it is 
nested. A re-entrant procedure always can address its own variables; it does not require 
pointers to the stack frames of previous iterations. 

By copying only the stack frame pointers of procedures at higher lexical levels, the 
ENTER instruction makes certain that procedures access only those variables of higher 
lexical levels, not those at parallel lexical levels (see Figure 3-16). 
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MAIN (LEXICAL LEVEL 1) 

PROCEDURE A (LEXICAL LEVEL 2) 

PROCEDURE B (LEXICAL LEVEL 3) 

PROCEDURE C (LEXICAL LEVEL 3) 

PROCEDURE D (LEXICAL LEVEL 4) 

240486i3-16 

Figure 3-16. Nested Procedures 

Block-structured languages can use the lexical levels defined by ENTER to control 
access to the variables of nested procedures. In the figure, for example, if PROCE­
DURE A calls PROCEDURE B which, in turn, calls PROCEDURE C, then PROCE­
DURE C will have access to the variables of MAIN and PROCEDURE A, but not those 
of PROCEDURE B because they are at the same lexical level. The following definition 
describes the access to variables for the nested procedures in the figure. 

1. MAIN has variables at fixed locations. 

2. PROCEDURE A can access only the variables of MAIN. 

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE B cannot access the variables of PROCEDURE C or PROCE­
DURED. 

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE C cannot access the variables of PROCEDURE B or PROCE­
DURED. 

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, 
. and MAIN. PROCEDURE D cannot access the variables of PROCEDURE B. 

In the following diagram, an ENTER instruction at the beginning of the MAIN program 
creates three doublewords of dynamic storage for MAIN, but copies no pointers from 
other stack frames (See Figure 3-17). The first doubleword in the display holds a copy of 
the last value in the EBP register before the ENTER instruction was executed. The 
second doubleword (which, because stacks grow down, is stored at a lower address) 
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OLD EBP 

MAIN'S EBP 

I- EBP 

I- ESP 

Figure 3-17. Stack Frame After Entering MAIN 

240486;3-17 

holds a copy of the contents of the EBP register following the ENTER instruction. After 
the instruction is executed, the EBP register points to the first doubleword pushed on 
the stack, and the ESP register points to the last doubleword in the stack frame. 

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (see 
Figure 3-18). The first doubleword is the last value held in MAIN's EBP register. The 
second doubleword is a pointer to MAIN's stack frame which is copied from the second 
doubleword in MAIN's display. This happens to be another copy of the last value held in 
MAIN's EBP register. PROCEDURE A can access variables in MAIN because MAIN 
is at level 1. Therefore the base address for the dynamic storage used in MAIN is the 
current address in the EBP register, plus four bytes to account for the saved contents of 
MAIN's EBP register. All dynamic variables for MAIN are at fixed, positive offsets from 
this value. 

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new 
display (See Figure 3-19). The first doubleword holds a copy of the last value in PRO­
CEDURE A's EBP register. The second and third doublewords are copies of the two 
stack frame pointers in PROCEDURE A's display. PROCEDURE B can access vari­
ables in PROCEDURE A and MAIN by using the stack frame pointers in its display. 

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new 
display for PROCEDURE C (See Figure 3-20). The first doubleword holds a copy of the 
last value in PROCEDURE B's EBP register. This is used by the LEAVE instruction to 
restore PROCEDURE B's stack frame. The second and third doublewords are copies of 
the two stack frame pointers in PROCEDURE A's display. If PROCEDURE C were at 
the next deeper lexical level from PROCEDURE B, a fourth doubleword would be 
copied, which would be the stack frame pointer to PROCEDURE B's local variables. 
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Figure 3-18. Stack Frame After Entering PROCEDURE A 
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Figure 3-19. Stack Frame After Entering PROCEDURE B 
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MAIN'S EBP 
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PROCEDURE A'S EBP 
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Figure 3-20. Stack Frame After Entering PROCEDURE C 
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Note that PROCEDURE .B and PROCEDURE C are at the same level, so PROCE­
DURE C is not intended to access PROCEDURE B's variables. This does not mean 
that PROCEDURE C is completely isolated from PROCEDURE B; PROCEDURE C 
is called by PROCEDURE B, so the pointer to the returning stack frame is a pointer to 
PROCEDURE B's stack frame. In addition, PROCEDURE B can pass parameters to 
PROCEDURE C either on the stack or through variables global to both procedures 
(i.e., variables in the scope of both procedures). 

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The 
LEAVE instruction does not have any operands. The LEAVE instruction copies the 
contents of the EBP register into the ESP register to release all stack space allocated to 
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the procedure. Then the LEAVE instruction restores the old value of the EBP register 
from the stack. This simultaneously restores the ESP register to its original value. A 
subsequent RET instruction then can remove any arguments and the return address 
pushed on the stack by the calling program for use by the procedure. 

3.8 FLAG CONTROL INSTRUCTIONS 

The flag control instructions change the state of bits in the EFLAGS register, as shown 
in Table 3-5. 

3.8.1 Carry and Direction Flag Control Instructions 

The carry flag instructions are useful with instructions like the rotate-with-carry instruc­
tions RCL and RCR. They can initialize the carry flag, CF, to a known state before 
execution of an instruction which copies the flag into an operand. 

The direction flag control instructions set or clear the direction flag, DF, which controls 
the direction of string processing. If the DF flag is clear, the processor increments the 
string index registers, ESI and EDI, after each iteration of a string instruction. If the DF 
flag is set, the processor decrements these index registers. 

3.8.2 Flag Transfer Instructions 

Though specific instructions exist to alter the CF and DF flags, there is no direct method 
of altering the other application-oriented flags. The flag transfer instructions allow a 
program to change the state of the other flag bits using the bit manipulation instructions 
once these flags have been moved to the stack or the AH register. 

The LAHF and SAHF instructions deal with five of the status flags, which are used 
primarily by the arithmetic and logical instructions. 

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register 
bits 7, 6, 4, 2, and 0, respectively (see Figure 3-21). The contents of the remaining bits 5, 
3, and 1 are left undefined. The contents of the EFLAGS register remain unchanged. 

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF, 
ZF, AF, PF, and CF flags, respectively (see Figure 3-21). 

Table 3-5. Flag Control Instructions 

Instruction Effect 

STC (Set Carry Flag) CF -1 
CLC (Clear Carry Flag) CF - 0 
CMC (Complement Carry Flag) CF <-- - (CF) 
CLD (Clear Direction Flag) DF - 0 
STD (Set Direction Flag) DF -1 
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THE BIT POSITIONS OF THE FLAGS ARE THE SAME, 
WHETHER THEY ARE HELD IN THE EFLAGS REGISTER 
OR THE AH REGISTER. BIT POSITIONS SHOWN AS 
o OR 1 ARE INTEL RESERVED. DO NOT USE. 

Figure 3-21. Low Byte of EFLAGS Register 

240486i3·21 

The PUSHF and POPF instructions are not only useful for storing the flags in memory 
where they can be examined and modified, but also are useful for preserving the state of 
the EFLAGS register while executing a subroutine. 

PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see 
Figure 3-22). The PUSHFD instruction pushes the entire EFLAGS register onto the 
stack (the RF flag reads as clear, however) .. 

POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 14, 
11, 10, 8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege 
level of the current code segment is 0 (most privileged), the IOPL bits (bits 13 and 12) 
also are affected. If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is affected. 
The POPFD instruction pops a doubleword into the EFLAGS register, and it can 
change the state of the AC bit (bit 18) as well as the bits affected by a POPF instruction. 

, f.. "!-. ---'---,----'------,---,---,--------•• 11 PUSHFD/POPFD 

, ... __ ---------__ 11 PUSHF/POPF 

31 15 

o A V R o N 
..J 00 o 0 o 0 o 0 o 0 o 0 o 0 D.. 

C M F T Q F F 

BIT POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED. 
DO NOT USE. 

o 

I T S Z o A o P 1 C 
F F F F F F F 

Figure 3-22. Flags Used with PUSHFand POPF 
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3.9 NUMERIC INSTRUCTIONS 

The Intel486 processor includes hardware and instructions for high-precision numeric 
operations on a variety of numeric data types, including 80-bit extended real and 64-bit 
long integer. Arithmetic, comparison, transcendental, and data transfer instructions are 
available. Frequently-used constants are also provided, to enhance the speed of numeric 
calculations. 

The numeric instructions are embedded in the instruction stream of the Intel486 proces­
sor, as though they were being executed by a single device having both integer and 
floating-point capabilities. But the floating-point unit of the Intel486 CPU actually works 
in parallel with the integer unit, resulting in higher performance. 

Refer t~ Section 10.2 to confirm the presence of an Intel486 floating point unit. 

Part III of this manual, Chapters 14-18, describe the numeric instructions in more detail. 

3.10 SEGMENT REGISTER INSTRUCTIONS 

There are several distinct types of instructions which use segment registers. They are 
grouped together here because, if system designers choose an unsegmented model of 
memory organization, none of these instructions are used. The instructions which deal 
with segment registers are: 

1. Segment-register transfer instructions. 
MbVSegReg, ••• 
MOV "', SegReg 
PUSH SegReg 
POP SegReg 

2. Control transfers to another executable segment. 

3. 

JMP far 
CALL far 
RET far 

Data pointer instructions. 
LDS reg, 48-bit memory operand 
LES reg, 48-bit memory operand 
LFS reg, 48-bit memory operand 
LGS reg, 48-bit .emory operand 
LSS reg, 48-bit memory operand 

4. Note that the following interrupt-related instructions also are used in unsegmented 
systems. Although they can transfer execution between segments when segmentation 
is used, this is transparent to the application programmer. 
INT n 
INTO 
BOUND 
IRET 
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3.10.1 Segment-Register Transfer Instructions 

Forms of the MOV, POP, and PUSH instructions also are used to load and store seg­
ment registers. These forms operate like the general-register forms, except that one 
operand is a segment register. The MOV instruction cannot copy the contents of a 
segment register into another segment register. 

The POP and MOV instructions cannot place a value in the CS register (code segment); 
only the far control-transfer instructions affect the CS register. When the destination is 
the SS register (stack segment), interrupts are disabled until after the next instruction. 

On the Inte1386 DX processor, loading a segment register always results in locked read 
and write cycles to set the Accessed bit. On the Intel486 processor, locked cycles are 
generated only if the Accessed bit is not already set. 

No 16-bit operand size prefix is needed when transferring data between a segment reg­
ister and a 32-bit general register. 

3.10.2 Far Control Transfer Instructions 

The far control-transfer instructions transfer execution to a destination in· another seg­
ment by replacing the contents of the CS register. The destination is specified by a far 
pointer, which is a 16-bit segment selector and a 32-bit offset into the segment. The far 
pointer can be an immediate operand or an operand in memory. 

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS 
registers on the stack. 

Far RET. An intersegment RET instruction restores the values of the CS and EIP reg­
isters from the stack. 

3.10.3 Data Pointer Instructions 

The data pointer instructions load a far pointer into the processor registers. A far 
pointer consists of a 16-bit segment selector, which is loaded into a segment register, and 
a 32-bit offset into the segment, which is loaded into a general register. 

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS 
register and a general register. The source operand must be a memory operand, and the 
destination operand must be a general register. 

Example: LDS ESI, STRING_X 
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Loads the DS register with the segment selector for the segment addressed by 
STRING-.X, and loads the offset within the segment to STRING-.X into the ESI 
register. Specifying the ESI register as the destination operand is, a convenient way 
to prepare for a string operation, when the source string is not in the cOrrent data 
segment. ' 

LES (Load Pointer Using ES) has the same effect as the LDS instruction, except the 
segment selector is loaded into the ES register rather than the DS register. 

Example: LES EDr, DESTINATIDN_X 

Loads the ES register with the segment selector for the segment addressed by DES­
TINATION-.X, and loads the offset within the segment to DESTINATION-.X into 
the EDI register. This instruction is a convenient way to select a destination for 
string operation if the desired location is not in the current E-data segment. 

LFS (Load Pointer Using FS) has the same effect as the LDS instruction, except the FS 
register receives the segment selector rather than the DS register. . . 

LGS (Load Pointer Using GS) has the same effect as the LDS instruction, except the GS 
register receives the segment selector rather than the DS register. 

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS 
register receives the segment selector rather than the DS register. This instruction is 
especially important, because it allows the two registers which identify the stack (the SS 
and ESP registers) to be changed in one uninterruptible operation. Unlike the other 
instructions which cim load the SS register, interrupts are not inhibited at the end of the 
LSS instruction. The other instructions, such as POP SS, turn off interrupts to permit 
the following instruction to load the ESP register without an intervening interrupt. Since 
both the SS and ESP registers can be loaded by the LSS instruction, there is no need to 
disable or re-enable interrupts. 

3.11 MISCELLANEOUS INSTRUCTIONS, 

The following instructions do not fit in any of the previous categories, but are no less 
important. . 

The BSWAP, XADD, and CMPXCHG instructions are not available on Intel386 DX or 
SX microprocessors. An Intel386 CPU can perform the same operations in multiple 
instructions. To use these instructions, always include functionally-equivalent code for 
Intel386 CPUs. Use the code in Figure 3-23 to determine whether these instructions can 
be used. ' 

The INVD and WBINVD instructions cannot be implemented on earlier processors due 
to the introduction of on-chip cache on the Intel486 CPU. Use the code in Figure 3-23 
for detecting an Intel486 processor at runtime. 
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TITLE CPUID 
DOSSEG 
model 
stack 
.data 

fp_status 
id_mess 
fp_8087 
fp_80287 
fp_80387 
c8086 
c286 
c386 
c486 
c486nfp 
period 
presenL86 
presenL286 
presenL386 
presenL486 

small 
100h 

dw 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
dw 
dw 
dw 
dw 
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"This system nas a$" 
"and an 8087 math coprocessor$" 
"and an Inte1287" math coprocessor$" 
"and an Inte1387" math coprocessor$" 
"n8086/8088 microprocessor$" 
"n80286 microprocessor$" 
, 'Inte1386" microprocessor$" 
"Inte1486" DX microprocessor/lnteI487" SX math coprocessor$" 
"Intel486 SX microprocessor$" 
".$" ,13,10 

The purpose of this code is to allow the user the ability to identify 
the processor and coprocessor that is currently in the system. The 
algorithm of the program is to first determine the processor id. 

start: 

int 

When that is accomplished, the program continues to then identify 
whether a coprocessor exists in the system. If a coprocessor or 
integrated coprocessor exists, the program will identify the 
coprocessor id. If one does not exist, the program then terminates . 

• code 

mov ax, ~data 
mov ds, ax I set segment register 

mov dx, offset lprint header message 
id_mess 

mov ah,9h 
21h 

Figure 3-23. CPUJD, MCPJD Detection Code 
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8~86 check 
Bits 12-15 are always set on the 8~86 processor. 

pushf 
pop bx 
mov ax, ~fffh 
and ax, bx 
push ax 
popf 
pushf 
pop ax 
and ax, 3f~~~h 
cmp ax, ~f~~~h 
mov dx, offset c8~86 
mov preseL86,1 
je check_fpu 

8~286 CPU Check 

save EFLAGS 
store EFLAGS in BX 
clear bits 12-15 

in EFLAGS 
store enw EFLAGS value on stack 
replace current EFLAGS value 
set new EFLAGS 
store new EFLAGS in AX 
if bits 12-15 are set, then CPU 

is an 8~86/8~88 

store 8~86/8~88 message 
turn on 8~86/8~88 flag 
if CPU is 8~86/8~88, check for 
8~87 

Bits 12-15 are always clear on the 8~286 processor. 

or 
push 
popf 
pushf 
pop 
and 
mov 
mov 
mov 
jz 

bx, ~f~~~h 
. bx 

ax 
ax, ~f~~~h 
dx, offset c286 
presenL86, ~ 
presenL286,1 
check_fpu 

try to set bi ts 12-15 ' 

If bits 12-15 are cleared, then 
CPU is a 286 

turn off 8~86/8~88 flag 
turn on 286 flag 
if CPU is 286, check for Intel287 
microprocessor 

Intel386 CPU check 
The AC bit, bit #18, is a new bit 
on the Intel486 DX CPU to generate 
on the Intel486 DX CPU, but not on 

mov bx,sp 

and sp,not 3 
db 66h 
pushf 
db 66h 
pop ax 
db 66h 
mov cx, ax 
db 66h 
xor ax,~ 

dw 4 
db 66h 
push ax 
db 66h 
popf 

introduced in the EFLAGS register 
alignment faults. This bit can be set 
the Intel386 CPU. 

save current stack pointer to 
align it 
align 'stack to avoid AC fault 

push original EFLAGS 

get original EFLAGS 

save original EFLAGS 
xor EAX, 4~~~~h 

flip AC bit in EFLAGS 
upper 16-bi ts of xor constant 

save for EFLAGS 

copy to EFLAGS 

Figure 3-23. CPUJD, MCPJD Detection Code (Contd.) 
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db 66h 
pushf 
db 66h 
pop ax 
db 66h 
xor ax,cx 

moV dx ,offset 
c386 

mov presenL286,9 
mov presenL386,l 
je check_fpu 

486 DX CPU and 486DX CPU w/o FPU checking 

mov 
mov 
mov 

dx, offset, c486nfp· 
presenL386,9 
presenL486,l 

push EFLAGS 

get new EFLAGS value 

if AC bi t cannot be changed, 
CPU is 
store Intel386 microprocessor message 

turn off 286 flag 
if CPU is Inte1386 CPU, now check for 
Intel287lInte1387 math coprocessors 

store Intel486 NFP message 
turn off Intel386 CPU flag 
turn on Intel486 CPU flag 

Co-processor checking begins here for the 8986/286/Intel386 CPUs. 
The algorithm is to determine whether or not the floating-point 
status and control words can be written to, the correct coprocessor 
is then determined depending on the processor id. Coprocessor checks 
are first performed for an 8986, 286 and an Intel486 DX CPU. If the 
coprocessor id is still undetermined, the system must contain an Intel386 
CPU. The Intel386 CPU may work with either an Intel287 or an Intel387 math coprocessor. 
infinity of the coprocessor must be checked to determine the correct 
coprocessor id. 

check_fpu: 
fninit check for 8087 IIntel28 7 IInte138 7 

math coprocessors 
mov fp_status,SaSah ini tialize temp word to non-zero value 
fnstsw fp_status save FP status word 
mov ax, fp_status check FP status word 
cmp al,0 see if correct status with 

wri tten 
jne prinLone jump if not Valid, no NPX 

installed 
fnstcw fp_status save FP control word 
mov ax, fp_status check FP control word 
and ax ,103fh see if selected parts looks OK 
cmp ax,3fh check that ones and zeroes 

correctly read 
jne prinLone jump if not Valid, no NPX installed 

cmp presenL486,l check if Intel486 CPU flag is on 
je is_486 if so, jump to print Intel486 CPU message 
jmp noL486 else continue with Inte1386 CPU checking 

is_486 
mov dx, offset store Intel486 CPU message 

c486 
jmp prinLone 

Figure 3-23. CPUJD, MCPJD Detection Code (Contd.) 
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noL486 : 

80287/80387 

restore_EFLAGS: 

prinLone: 

prinL87_287: 

prinLfpu: 

exi t: 

cmp 
jne 

mov 
int 

check for 

fldl 

fldz 
fdi v 

fld 
f chs 
f compp 

fstsw 
mov 
mov 
sahf 
jz 

mov 

fini t 
mov 
int 
db 
push 
db 
popf 
mov 
jmp 

mov 
int 
jmp 

mov 
int 
cmp 
mov 
je 
mov 

mov 
int 
jmp 

mov 
mov 
int 

mov 
int 

end 

APPLICATION PROGRAMMING 

presenL386,1 
prinL87_287 

ah,9h 
21h 

the 386 CPU 

st 

fp_status 
ax, fp_status 
dx,offset fp_80287 

restore_EFLAGS 

dX,offset fp_80387 

ah,9h 
21h 
66h 
cx 
66h 

sp, bx 
exit 

ah,9h 
21h 
exi t 

ah,9h 
21h 
presenL86,1 
dx, offset fp_8087 
prinLfpu 
dX,offset fp_80287 

ah,9h 
21h 
exit 

dX,offset period 
ah,9h 
21h 

ax,4c00h 
21h 

start 

check if Intel386 CPU flag is on 
if Intel386 CPU flag not on, check NPX for 
8086/8~88 286 
print out Intel386 CPU ID first 

must use default control from 
FNINIT 
form infinity 

1 8087IIntel287 math coprocessors says +inf = 
inf 

form negative infinity 
Intel387 math coprocessor says +inf <> -inf 
see if they are the same and 
remove them 
look at status from FCOMPP 

store Intel287 math coprocessor message 
see if ini ties matched 
jump if 8087IIntel287 math coprocessor is 
present 
store Intel387 math coprocessor message 

clear any pending fp exception 
print NPX message 

push ECX 

restore original EFLAGS register 
restore original stack pointer 

print out CPU ID with no NPX 

print out 8086/8088/286 first 

if 8086/8088 flag is on 
store 8087 message 

else CPU = 286, store Intel287 
math coprocessor message 

print out NPX 

print out a period of end message 

terminate program 

Figure 3-23. CPUJD, MCPJD Detection Code (Contd.) 
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3.11.1 CPUJD Detection Code 

The CPU identification assembly code (Figure 3-23) will determine for the user which 
Intel microprocessor is installed, and if an Intel math coprocessor is present. If an 
Intel486 microprocessor is installed, the program will determine if the CPU has an inte­
grated floating-point unit (FPU). Refer to Section 10.2 and 19.2.3 to guarantee proper 
configuration of the Intel486 microprocessor (with and without FPU). Please understand 
that only these code sequences have been validated by Intel to detect CPUID, math 
coprocessor function, and initialize accordingly. Any other approach may produce 
unpredictable results in future processors. 

3.11.2 Address Calculation Instruction 

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory 
(rather than its contents) into the destination operand. The source operand must be in 
memory, and the destination operand must be a general register. This instruction isespe­
dally useful for initializing the ESI or EDI registers before the execution of string 
instructions or initializing the EBX register before an XLAT instruction. The LEA 
instruction can perform any indexing or scaling which may be needed. 

Example: LEA EBX, EBCDIC-TABLE 

Causes the processor to place the address of the starting location of the table 
labeled EBCDICTABLE into EBX. 

3.11.3 No-Operation Instruction 

NOP (No Operation) occupies a byte of code space. When executed, it increments the 
EIP register to point at the next instruction, but affects nothing else. 

3.11.4 Translate Instruction 

XLATB (Translate) replaces the contents of the AL register with a byte read from a 
translation table in memory. The contents of the AL register are interpreted as an 
unsigned index into this table, with the contents of the EBX register used as the base 
address. The XLAT instruction does the same operation and loads its result into the 
same register, but it gets the byte operand from memory. This function is used to convert 
character codes from one alphabet into another. For example, an ASCII code could be 
used to look up its EBCDIC equivalent. 

3.11.5 Byte Swap Instruction 

BSWAP (Byte Swap) reverses the byte order in a 32-bit register operand. Bit positions 
7 .. 0 are exchanged with 31..24, and bit positions 15 .. 8 are exchanged with 23 .. 16. This 

. instruction is useful for converting between "big-endian" and "little-endian" data for­
mats. Executing this instruction twice in a row leaves the register in the same value as 
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before. This instruction also speeds execution of decimal arithmetic by operating on four 
digits at a time as shown in Figure 3-24. See introduction for Section 3.11 regarding 
Inte1386 processors when using BSWAP. 

3.11.6 Exchange-and-Add Instruction 

XADD (Exchange and Add) takes two operands: a source operand in a register and a 
destination operand in a register or memory. The source operand is replaced with the 
destination operand, and the destination operand is replaced with the sum of the source 
and destination operands. The flags reflect the result of the addition. This instruction 
can be combined with LOCK in a multiprocessing system to allow multiple processors to 
execute one do loop. See introduction for Section 3.11 regarding Inte1386 processors 
when using XADD. 

3.11.7 Compare-and-Exchange Instruction 

CMPXCHG (Compare and Exchange) takes three operands: a source operand in a reg­
ister, a destination operand in a register or memory, and the accumulator (i.e., the AL, 
AX, or EAX register, depending on operand size). If the values in the destination oper­
and and the accumulator are equal, the destination operand is replaced with the source 
operand. Otherwise, the original value of the destination operand is loaded into the 
accumulator. The flags reflect the result which would have been obtained by sllbtracting 
the destination operand from the accumulator. The ZF flag is set if the values in the 
destination operand and the accumulator were equal, otherwise it is cleared. 

The CMPXCHG instruction is useful for testing and modifying semaphores. It performs 
a check to see if a semaphore is free. If the semaphore is free it is marked allocated, 
otherwise it gets the ID of the current owner. This is all done in one uninterruptible 
operation. In a single processor system, it eliminates the need to switch to level 0 to 
disable interrupts to execute multiple instructions. For multiple processor systems, 
CMPXCHG can be combined with LOCK to perform all bus cycles atomically. See 
introduction for Section 3.11 regarding Intel386 processors when using CMPXCHG. 
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$title('ASCII Add/Subtract With BSWAP') 

code 

name 

segment er public use32 

Add a string of 4 ASCII decimal digits together; 
The upper nibble MUST be 3. 
DS: [ESI) points at operand 1 
DS: [EBX) points at operand 2 
DS: [EDI) points at the destination 

add10 proc near 

Perform ASCII add using BSWAP instruction on i486 CPU. 

mov 
bswap 
add 
mov 
bswap 
add 
rcr 
mov 
and 
sub 
shr 
and 

add 

or 
bswap 
mov 
rcl 
ret 

add10 

eax, [esi) 
eax 
eax,96969696H 
ecx, [ebx) 
ecx 
eax,ecx 
ch,1 
edx,eax 
eax,OFOFOFOFOH 
edx,eax 
eax,4 
eax,OAOAOAOAH 

eax,edx 

eax,30303030H 
eax 
[edi) ,eax 
ch,1 

endp 

Get low four digits of first operand 
Put into big-endian form 
Adjust for addition so carries work 
Get low four digits of second operand 
Put into big endian form 
Do the add with inter-digit carry 
Save the carry flag 
Save the value 
Extract upper nibble 
Zero out upper nibble of each byte 
Prepare for fixup 
If non-zero upper nibble then form 
10 as adjustment value to lower nibble 
Form adjusted lower nibble value 
upper nibbles may be 1 from adjustment 
Convert back to ASCII 
Back to little-endian 
Set destination 
Restore carry 

Subtract a string of 4 ASCII decimal digits together. 
The upper nibble must be 3. 

sub10 

DS: [ESI) points at operand 1 
DS: [EBX) points at operand 2 [ESI)-[EBX) 
DS: [EDI) points at the destination 

proc near 

Perform ASCII subtract using BSWAP instruction on i486 CPU. 

240486i3-24011 

Figure 3-24. ASCII Arithmetic Using BSWAP 
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mov 
bswap 
mov 
bswap 
sub 
rcr 
mov 
and 
sub 
shr 
and 

add 

or 
bswap 
mov 
rcl 
ret 

sub10 

APPLICATION PROGRAMMING 

eax, [esiJ 
eax 
ecx, [ebxJ 
ecx 
eax,ecx 
ch,1 
edx,eax 
eax,OFOFOFOFOH 
edx,eax 
eax,4 
eax,OAOAOAOAH 

eax,edx 

eax,30303030H 
eax 
[ediJ,eax 
ch,1 

endp 

Get low four digits of first operand 
Put into big-endian form 
Get low four digits of second operand 
Put into big endian form 
Do the subtract with inter-digit borrow 
Save the carry flag 
Save the value 
Extract upper nibble, F if borrow happened 
Zero out upper nibble of each byte 
Prepare for fixup 
If non-zero upper nibble then form 
10 as adjustment value to lower nibble 
Form adjusted lower nibble value 
upper nibbles may be 1 from adjustment 
Convert back to ASCII 
Back to little-endian 
Set destination 
Restore borrow 

code ends 
end 

240486;3-24012 

Figure 3-24. ASCII Arithmetic Using BSWAP (Contd.) 

3-49 





Part II 
System Programming 





System Architecture 4 





CHAPTER 4 
SYSTEM ARCHITECTURE 

Many of the architectural features of the Intel486 processQr are used only by system 
programmers. This chapter presents an overview of these features. Application program­
mers may need to read this chapter, and the following chapters which describe the use of 
these features, in order to understand the hardware facilities used by system program­
mers to create a reliable and secure environment for application programs. The system­
level architecture also supports powerful debugging features which application 
programmers may wish to use during program development. 

The system-level features of the architecture include: 

Memory Manag{!ment 
Protection . 
Multitasking 
Input/Output 
Exceptions and Interrupts 
Initialization 
Coprocessing and Multiprocessing 
Debugging 
Cache Management 

These features are supported by registers and instructions, all of which are introduced in 
the following sections. The purpose of this chapter is not to explain each feature in 
detail, but rather to place the remaining chapters of Part II in perspective. When a 
register or instruction is mentioned, it is accompanied by an explanation or a reference 
to a following chapter. 

4.1 SYSTEM REGISTERS 

The registers intended for use by system programmers fall into these categories: 

EFLAGS Register 
Memory-Management Registers 
Control Registers 
Debug Registers 
Test Registers 

The system registers control the execution environment of application programs. Most 
systems restrict access to these facilities by application programs (although systems can 
be built where all programs run at the most privileged level, in which case application 
programs are allowed to modify these facilities). 
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4.1.1 System Flags 

The system flags of the EFLAGS register control I/O, maskable interrupts, debugging, 
task switching, and the virtual-8086 mode. An application program should ignore these 
flags, and should' not attempt to change their state. In most systems, an attempt to 
change the state of a system flag by an application program results in an exception. 
These flags are shown 'in Figure 4-1. 

AC (Alignment Check Mode, bit 18) 

Setting the AC flag and the AM bit in the CRO register enables alignment checking on 
memory references. An alignment-check exception is generated when reference is made 
to an unaligned operand, such as a word at an odd byte address or a doubleword at an 
address which is not an integral multiple of four. Alignment-check exceptions are gen­
erated only in user mode (privilege level 3). Memory references which default to privi­
lege level 0, such as segment descriptor loads, do not generate this exception even when 
caused by a memory reference in user-mode. 

The alignment check interrupt can be used to check alignment of data. This is useful 
when exchanging data with other processors like i860™ 64-bit microprocessor which 
require all data to be aligned., The alignment check interrupt can also be used by inter­
preters to flag some pointers as special by misaligning the pointer. This eliminates over­
head of checking each pointer and only handles the special pointer when used. 

3 
1 

o 0 

11111 1 1 1 1 
8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

o A VR o N .... OD IT S Z OA o P 1 C o 0 o 0 o 0 o 0 o 0 II. 
C MF T 5! F F F F F F F F F 

AUG_ CHEa<(AcJ J 
VIRTUAL 8086 MODE (VM) 
RESUME FLAG (RF) 
NESTED TASK (NT) 
1/0 PRIVILEGE LEVEL (IOPL) 
INTERRUPT ENABLE FLAG (IF) 
TRAP FLAG (TF) 

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED. 
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ. 

240486i4-1 

Figure 4-1. System Flags 
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VM (Virtual-8086 Mode, bit 17) 

Setting the VM flag places the processor in virtual-8086 mode, which is an emulation of 
the programming environment of an 8086 processor. See Chapter 23 for more 
information. 

RF (Resume Flag, bit 16) 

The RF flag temporarily disables debug exceptions so that an instruction can be 
restarted after a debug exception without immediately causing another debug exception. 
When the debugger is entered, this flag allows it to run normally rather than recursively 
calling itself until the stack overflows. The RF flag is not affected by the POPF, POPFO 
or IRET instructions. See Chapter 9 and Chapter 11 for details. 

NT (Nested Task, bit 14) 

The processor uses the nested task flag to control chaining of interrupted and called 
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is affected 
by the POPF, POPFO, and IRET instructions. Improper changes to the state of this flag 
can generate unexpected exceptions in application programs. See Chapter 7 and 
Chapter 9 for more information on nested tasks. 

IOPL (I/O Privilege Level, bits 12 and 13) 

The I/O privilege level is used by the protection mechanism to control access to the I/O 
address space. The privilege level of the code segment currently executing (CPL) and the 
IOPL determine whether this field can be modified by the POPF, POPFO, and IRET 
instructions. See Chapter 8 for more information. 

IF (Interrupt-Enable Flag, bit 9) 

Setting the IF flag puts the processor in a mode in which it responds to maskable inter­
rupt requests (INTR interrupts). Clearing the IF flag disables these interrupts. The IF 
flag has no effect on either exceptions or nonmaskable interrupts (NMI interrupts). The 
CPL and IOPL determine whether this field can be modified by the CLI, STI, POPF, 
POPFO, and IRET instructions. See Chapter 9 for more details about interrupts. 

TF (Trap Flag, bit 8) 

Setting the TF flag puts the processor into single-step mode for debugging. In this mode, 
the processor generates a debug exception after each instruction, which allows a pro­
gram to be inspected as it executes each instruction. Single-stepping is just one of several 
debugging features of the Intel486 processor. If an application program sets the TF flag 
using the POPF, POPFO, or IRET instructions, a debug exception is generated. See 
Chapter 9 and Chapter 11 for more information. 
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4.1.2 Memory-Management Registers 

Four registers of the Intel486 processor specify the location of the data structures which 
control segmented memory management, as shown in Figure 4-2. Special instructions are 
provided for loading and storing these registers. The GDTR and IDTR registers may be 
loaded with instructions which get a six-byte block of data from memory. The LDTR and 
TR registers may be loaded with instructions which take a 16-bit segment selector as an 
operand. The remaining bytes of these registers are then loaded automatically by the 
processor from the descriptor referenced by the operand. 

Most systems will protect the instructions which load memory-management registers 
from use by application programs (although a system in which no protection is used is 
possible). . . 

GDTR Global Descriptor Table Register 

This register holds the 32-bit base address and .16-bit segment limit for the global 
descriptor table (GDT). When a reference is made to data in memory, a segment selec­
tor is used to find a segment descriptor in the GDT or LDT. A segment descriptor 
contains the base address for a segment. See . Chapter ·5 for an explanation of 
segmentation. 

LDTR Local Descriptor Table Register 

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit segment 
selector for the local descriptor table (LDT). The segment which contains the LDT has 
a segment descriptor in the GDT. There is no segment selector for the GDT. When a 
reference is made to data in memory, a segment selector is used to find a segment 
descriptor in the GDT or LDT. A segment descriptor contains the base address fora 
segment. See Chapter 5 for an explanation of segmentation. . 

SYSTEM ADDRESS REGISTERS 
47 32-BIT UNEAR BASE ADDRESS 16 15 LIMIT o 

SYSTEM SEGMENT 
REGISTERS 

15 o 
TR SELECTOR 

LDTR SELECTOR 

DESCRIPTOR REGISTERS (AUTOMAnCALLY LOADED) 

32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT UMIT ATTRIBUTES 

II II 

240486;4-2 

Figure 4·2. Memory Management Registers 
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IDTR Interrupt Descriptor Table Register 

This register holds the 32-bit base address and 16-bit segment limit for the interrupt 
descriptor table (IDT). When an interrupt occurs, the interrupt vector is used as an 
index to get a gate descriptor from this table. The gate descriptor contains a pointer used 
to start up the interrupt handler. See Chapter 9 for details of the interrupt mechanism. 

TR Task Register 

This register holds the 32-bit base address, 16-bit segment limit, descriptor attributes, 
and 16-bit segment selector for the task currently being executed. It references a task 
state segment (TSS) descriptor in the global descriptor table. See Chapter 7 for a 
description of the multitasking features of the Intel486 processor. 

4.1.3 Control Registers 

Figure 4-3 shows the format of the control registers CRO, CR1, CR2, and CR3. Most 
systems prevent application programs from loading the control registers (although an 
unprotected system would allow this). Application programs can read this register to 
determine if a numerics coprocessor is present. Forms of the MOV instruction allow the 
register to be loaded from or stored in general registers. For example: 

MDV EAX, CR9 
MDV CR3, EBX 

The CRO register contains system control flags, which control modes or indicate states 
which apply generally to the processor, rather than to the execution of an individual task. 
A program should not attempt to change any of the reserved bit positions. Reserved bits 
should always be set to the value previously read. 

3 
1 

2 
3 

1 
5 

PAGE DIRECTORY BASE REGISTER (PDBR) 

PAGE FAULT LINEAR ADDRESS 

RESERVED 

RESERVED 

Figure 4-3. Control Registers 
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The LMSW instruction can only modify the lower 16 bits of CRO. 

PG (Paging, bit 31) 
, , 

This bit enables paging when set and disables paging when clear. See Chapter ~ for more 
information about paging. See Chapter 10 for information on how to enable paging. 

When an exception is generated during paging, the CR2 register has the 32-bit linear 
address which caused the exception. See Chapter 9 for more information about handling 
exceptions generated during paging (page faults). 

When paging is used, the CR3 register has the 20 most-significant bits of the address of 
the page directory (the first-level page table). The CR3 register is also known as the 
page-directory base register (PDBR). Note that the page directory must be aligned to a 
page boundary, so the low 12 bits of the register are ignored. Unlike the Iiltel386 DX 
processor, the Intel486 processor assigns functions to two of these bits. These are: 

PCD (Page-Level Cache Disable, bit 4 of CR3) 

The state of this bit is drjven on the PCD pin during QUs cycles which are not paged, 
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus 
cycles when paging is not enabled. The PCD pin is used to control caching ,in an external, 
cache on a cycle-by-cycle basis. 

PWT (Page-Level Writes Transparent, bit 3 of CR3) 

The state of this bit· is driven on the PWT pin during bus Cycles which are not paged, 
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus 
cycles when paging is not enabled. The PWT pin is used to control write-through in an 
external cache on a cycle~by-cycle basis. ' 

CD (Cache Disable, bit 30) 

This bit enables the internal cache when clear and disables the cache when set. Cache 
misses do not cause cache line fills when the bitis set. Note that cache hits are not 
9isabled; to completely disable the cache, the cache must be flushed. See Chapter 12 for 
information on caching. 

NW (Not Write-through, bit 29) 

This bit enables write-throughs and cache invalidation cycles when cle,ar and disables 
invalidation cycles and write-throughs which hit in the cache when set. See Chapter 12 
for information on caching., Disabling write-throughs can allow stale data to appear in 
the cache. 
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AM (Alignment Mask, bit 18) 

This bit allows alignment checking when set and disables alignment checking when clear. 
Alignment cJtecking is performed only when the AM bit is set, the AC flag is set, and the 
CPL.is 3 (user mode). 

WP (Write Protect, bit 16) 

When set, this bit write-protects user-level pages against supervisor-level writes. When 
this bit is clear, read-only user-level pages can be written by a supervisor process. This 
feature is useful for implementing the copy-on-write method of creating a new process 
(forking) used by some operating systems, such as UNIX. 

NE (Numeric Error, bit 5) 

This bit enables the standard mechanism for reporting floating-point numeric errors 
when set. When NE is clear and the IGNNE# input is active, numeric errors are 
ignored. When the NE bit is clear and the IGNNE# input is inactive, a numeric error 
causes the processor to stop and wait for an interrupt. The interrupt is generated by 
using the FERR# pin to drive an input to the interrupt controller (the FERR# pin 
emulates the ERROR# pin of the Intel287™ and Intel387 DX coprocessors). The NE 
bit, IGNNE# pin, and FERR# pin are used with external logic to implement PC-style 
error reporting. 

ET (Extension Type;bit 4) 

This bit is one to indicate support of Intel387 DX math coprocessor instructions (Intel 
reserved). 

TS (Task Switched, bit 3) 

The processor sets the TS bit with every task switch and tests it when interpreting 
floating-point arithmetic instructions. This bit allows delaying save/restore of numeric 
content until the numeric data is actually used. The CLTS instruction will clear this bit. 

EM (Emulation, bit 2) 

When the EM bit is set, execution of a numeric instruction generates the coprocessor­
not-available exception. The EM bit must be set in the Intel486 SX microprocessor. 

MP (Math Present, bit 1) 

On the 286 and Intel386 DX processors, the MP bit controls the function of the WAIT 
instruction, which is used to synchronize with a coprocessor. When running 286 and 
Intel386 DX programs on processors with the Intel486 FPU, this bit should be set. The 
MP bit should be reset in the Intel486 SX Cpu. 
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PE (Protection Enable, bit 0) 

Setting the PE bit enables segment-level protection. See Chapter 6 for more information 
about protection. See Chaptf;r 10 and Chapter 22 for information on how to enable 
~~ . 

4.1.4 Debug Registers 

The debug registers bring advanced debugging abilities to the Intel486 processor, includ­
ing data breakpoints and the ability to set instruction· breakpoints without modifying 
code segments (useful in debugging ROM-based software). Only programs executing at 
the highest privilege level can access these registers. See Chapter 11 for a complete 
description of their formats and use. The debug registers are . shown in Figure 4-4. 

4.1.5 Test Registers 

The test registers are not a formal part of the architecture. They are an implementation­
dependent facility provided for testing the translation lookaside buffer (TLB) and the 
cache. See Chapter 10 for a complete description of their formats and use. The test 
registers are shoWn in Figure 4-5. . 

31 23 15 7 o 

LENIR~LENIR~LENIR/WILENIR/W 00 o 0 0 01~1~1~1~1~1~ GL GL 
33221100 1 1 00 DR7 

0000000000000000 ~I~ ~ 000000000 SS SS 
TS 32 1 0 

DR6 

RESERVED DR5 

RESERVED 

BREAKPOINT 3 LINEAR ADDRESS DR3 

BREAKPOINT 2 LINEAR ADDRESS DR2 

BREAKPOINT 1 LINEAR ADDRESS DR1 

BREAKPOINT 0 LINEAR ADDRESS DRO 

NOTE: 0 MEANS INTEL RESERVED. DO NOT DEFINE. 

240486;4-4 

Figure 4-4. Debug Registers 
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31 
1 1 1 
2109876543210 

p p p R 
PHYSICAL ADDRESS CW lRU o 0 L E 00 

OT P 

LINEAR ADDRESS V 0 o U 
# 

U w 
# :0000 C 

E C 
UNUSED SET SELECT N T 

T l 

LINEAR ADDRESS V lRU VALID o 0 0 

DATA 

V VALID 
CTl CONTROL 
ENT ENTRY 

Figure 4-5. Test Registers 

4.2 SYSTEM INSTRUCTIONS 

System instructions deal with functions such as: 

1. Verification of pointer parameters (see Chapter 6): 

TR7 

TR6 

TR5. 

TR4 

TR3 

240486;4-5 

Instruction Description Useful to Protected from 
Application? Application? 

ARPL Adjust RPL No No 
LAR Load Access Rights Yes No 
LSL Load Segment Limit Yes No 
VERR Verify for Reading Yes No 
VERW Verify for Writing Yes No 
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2. Addressing descriptor tables (see Chapter 5): 

Instruction Description Useful to Protected from 
Application? Application? 

LLOT Load LOT Register Yes No 
SLOT Store LOT Register Yes No 
LGOT· Load GOT Register No Yes 
SGOT Store GOT Register No No 

3. Multitasking (see Chapter 7): 

Instruction Description Useful to Protected from 
Application? Application? 

lTR Load Task Register No Yes 
STR Store Task Register Yes No 

4. Floating-Point Numerics (see Part III): 

Instruction Description 
Useful to Protected from 

Application? Application? 

ClTS Clear TS bit in CRO No Yes 
ESC Escape Instructions Yes No 
WAIT Wait Until Yes No 

Coprocessor Not Busy 

5. Input and Output (see Chapter 8): 

Instruction Description 
Useful to Protected from 

Application? Application? 

IN Input Yes Can be 
OUT Output Yes Can be 
INS Input String Yes Can be 
OUTS Output String Yes Can be 

6. Interrupt control (see Chapter 9): 

Instruction Description Useful to Protected from 
Application? Application? 

CLI Clear IF flag Can be Can be 
STI Store IF flag Can be Can be 
LlOT load lOT Register No Yes 
SlOT Store lOT Register No No 
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7. Debugging (see Chapter 11): 

Instruction Description Useful to Protected from 
Application? Application? 

MOV Load and store debug No Yes 
registers 

8. Cache Management: 

Instruction Description Useful to Protected from 
Application? Application? 

INVD Invalidate cache, No Yes 
no write-back 

WBINVD Invalidate cache, No Yes 
with write-back 

INVLPG Invalidate TLB entry No Yes 

9. System Control: 

Instruction Description 
Useful to Protected from 

Application? Application? 

SMSW Store MSW No No 
LMSW Load MSW No Yes 
MOV Load And Store Control Register No Yes 
HLT Halt Processor No Yes 
LOCK Bus Lock No Can Be 

The SMSW and LMSW instructions are provided for compatibility with the 286 pro­
cessor. A program for the Intel486 processor should not use these instructions. A pro­
gram should access the Control Registers using forms of the MOV instruction. The 
LMSW instruction does not affect the PG, CD, NW, AM, WP, NE or ET bits, and it 
cannot be used to clear the PE bit. 

The HL T instruction stops the processor until an enabled interrupt or RESET signal is 
received. (Note that the NMI interrupt is always enabled.) A special bus cycle is gener­
ated by the processor to indicate halt mode has been entered. Hardware may respond to 
this signal in a number of ways. An indicator light on the front panel may be turned on. 
An NMI interrupt for recording diagnostic information may be generated. Reset initial­
ization may be invoked. Software designers may need to be aware of the response of 
hardware to halt mode. 

The LOCK instruction prefix is used to invoke a locked (atomic) read-modify-write 
operation when modifying a memory operand. The LOCK# signal is asserted and the 
processor does not respond to requests for bus control during a locked operation. This 
mechanism is used to allow reliable communications between processors in multiproces­
sor systems. 

In addition to the chapters mentioned above, detailed information about each of these 
instructions can be found in the instruction reference chapter, Chapter 26. 
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CHAPTER 5 
MEMORY MANAGEMENT 

Memory management is a hardware mechanism which lets operating systems create sim­
plified environments for running programs. For example, when several programs are 
running at the same time, they must each be given an independent address space. If they 
all had to share the same address space, each would have to perform difficult and time­
consuming checks to avoid interfering with the others. 

Memory management consists of segmentation and paging. Segmentation is used to give 
each program several independent, protected· address spaces. Paging is used to support 
an environment where large address spaces are simulated using a small amount of RAM 
and some disk storage. System designers may choose to use either or both of these 
mechanisms. When several programs are running at the same time, either mechanism 
can be used to protect programs against interference from other programs. 

Segmentation allows memory to be completely unstructured and simple, like the memory 
model of an 8-bit processor, or highly structured with address translation and protection. 
The memory management features apply to units called segments. Each segment is an 
independent, protected address space. Access to segments is controlled by data which 
describes its size, the privilege level required to access it, the kinds of memory references 
which can be made to it (instruction fetch, stack push or pop, read operation, write 
operation, etc.), and whether it is present in memory. 

Segmentation is used to control memory access, which is useful for catching bugs during 
program development and for increasing the reliability of the final product. It also is 
used to simplify the linkage of object code modules. There is no reason to write position­
inc\ependent code when full use is made of the segmentation mechanism, because all 
memory references can be made relative to the base addresses of a module's code and 
data segments. Segmentation can be used to create ROM-based software modules, in 
which fixed addresses (fixed, in the sense that they cannot be changed) are offsets from 
a segment's base address. Different software systems can have the ROM modules at 
different physical addresses because the segmentation mechanism will direct all memory 
references to the right place. 

In a simple memory architecture, all addresses refer to the same address space. This is 
the memory model used by 8-bit microprocessors, such as the 8080 processor, where the 
logical address is the physical address. The Intel486 processor can be used in this way by 
mapping all segments into the same address space and keeping paging disabled. This 
might be done where an older design is being updated to 32-bit technology without also 
adopting the new architectural features. 

An application also could make partial use of segmentation. A frequent cause of soft­
ware failures is the growth of the stack into the instruction code or data of a program. 
Segmentation can be used to prevent this. The stack can be put in an address space 
separate from the address space for either code or data. Stack addresses always would 

5-1 



MEMORY MANAGEMENT 

refer to the memory in the stack segment, while data addresses always would refer to 
memory in the data segment. The stack segment would have a maximum size enforced by 
hardware. Any attempt to grow the stack beyond this size would generate an exception. 

A complex system of programs may make full use of segmentation. For example, a 
system in which programs share data in real time can have precise control of access to 
that data. Program bugs appear as exceptions generated when a program makes 
improper access. This is useful as an aid to debugging during program development, and 
it also may be used to trigger error-recovery procedures in systems delivered to the end 
user. 

Segmentation hardware translates a segmented (logical) address into an address fora 
continuous, unsegmented address space, called a linear address. If paging is enabled, 
paging hardware translates a linear address into a physical address. If paging is not 
enabled, the linear address is used as the physical address. The physical address appears 
on the address bus coming out of the processor. 

Paging is a mechanism used to simulate a large, unsegmented address space using a 
small, fragmented address space and some disk storage. Paging provides access to data 
structures larger than the available memory space by keeping them partly in memory and 
partly on disk. 

Paging is applied to units of 4K bytes called pages. When a program attempts to access a 
page which is on disk, the program is interrupted in a special way. Unlike other excep­
tions and interrupts, an exception generated due to address translation, restores the 
contents of the processor registers to values which allow the exception-generating 
instruction to be re-executed. This special treatment is called instmction restart. It allows 
the operating system to read the page from disk, update the mapping of linear addresses 
to physical addresses for that page, and restart the program. This process is transparent 
to the program. 

If an operating system never sets bit 31 of the eRO register (the PG bit), the paging 
mechanism will never be enabled. Linear addresses will be used as physical addresses. 
This might be done where a design using a 16-bit processor is being updated to use a 
32-bit processor. An operating system written for a 16-bit processor does not use paging 
because the size of its address space is so small (64K bytes) that it is more efficient to 
swap entire segments between RAM and disk, rather than individual pages. 

Paging would be enabled for operating systems which can support demand-paged virtual 
memory, such as UNIX. Paging is transparent to application software, so an operating 
system intended to support application programs written for 16-bit processors may run 
those programs with paging enabled. Unlike paging, segmentation is not transparent to 
application programs. Programs which use segmentation must be run with the segments 
they were designed to use. 
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5.1 SELECTING A SEGMENTATION MODEL 

A model for the segmentation of memory is chosen on the basis of reliability and per­
formance. For example, a system which has several programs sharing data in real time 
would get maximum performance from a model which checks memory references in 
hardware. This would be a multi-segment model. 

At the other extreme, a system which has just one program may get higher performance 
from an unsegmented or "flat" model. The elimination of "far" pointers and" segment­
override prefixes reduces code size and increases execution speed. Context switching is 
faster, beca~se the contents of the segment registers no longer have to be saved or 
restored. 

Some of the benefits of segmentation also can be provided by paging. For example, data 
can be shared by mapping the same pages onto the address space of each program. 

5.1.1 Flat Model 

The simplest model is the flat model. In this model, all segments are mapped to the 
entire physical address space. A segment offset can refer to either code or data areas. To 
the greatest extent possible, this model removes the segmentation mechanism from the 
architecture seen by either the system designer or the application programmer. This 
might be done for a programming environment like UNIX, which supports paging but 
does not support segmentation. 

A segment is defined by a segment descriptor. At least two segment descriptors must be 
created for a flat model, one for code references and one for data references. Both 
descriptors have the same base address value. Whenever memory is accessed, the con­
tents of one of the segment registers are used to select a segment descriptor. The seg­
ment descriptor provides the base address of the segment and its limit, as well as access 
control information (see Figure 5-1). 

SEGMENT 
REGISTERS 

ES . 

SEGMENT 
DESCRIPTORS 

I ACCESS I LIMIT I 
I BASE ADDRESS J~ 

Figure 5-1. Flat Model 
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ROM usually is put at the top of the physical address space, because the processor 
begins execution at OFFFFFFFOH. RAM is placed at the bottom of the address space 
because the initial base address for the DS data segment after reset initialization is O. 

For a flat model, each descriptor has a base address of 0 and a segment limit of 4 
gigabytes. By setting the segment limit to 4 gigabytes, the segmentation mechanism is 
kept from generating exceptions for memory references which fall outside of a segment. 
Exceptions could still be generated by the paging or segmentation protection mecha­
nisms, but these also can be removed from the memory model. 

5.1.2 Protected Flat Model 

The protected flat model is like the flat model, except the segment limits are set to 
include only the range of addresses for which memory actually exists. A general­
protection exception will be generated on any attempt to access unimplemented mem­
ory. This might be used for systems in which the paging mechanism is disabled, because 
it provides a minimum level of hardware protection against some kinds of program bugs. 

In this model, the segmentation hardware prevents programs from addressing non­
existent memory locations. The consequences of being allowed access to these memory 
locations are hardware-dependent. For example, if the processor does not receive a 
READY# signal (the signal used to acknowledge and terminate a bus cycle), the bus 
cycle does not terminate and program execution stops. 

Although no program should make an attempt to access these memory locations, an 
attempt may occur as a result of program bugs. Without hardware checking of addresses, 
it is possible that a bug could suddenly stop program execution. With hardware checking, 
programs fail in a controlled way. A diagnostic message can appear and recovery proce­
dures can be attempted. 

An example of a protected flat model is shown in Figure 5~2. Here, segment descriptors 
have been set up to cover only those ranges of memory which exist. A code and a data 
segment cover the EPROM and DRAM of physical memory. The code segment limit can 
be optionally set to allow access to DRAM area. The data segment limit must be set to 
the sum of EPROM and DRAM sizes. If memory-mapped I/O is used, it can be 
addressed just beyond the end of DRAM area. 

5.1.3 Multi-Segment Model 

The most sophisticated model is the multi-segment model. Here, the full capabilities of 
the segmentation mechanism are used. Each program is given its own table of segment 
descriptors, and its own segments. The segments can be completely private to the pro­
gram, or they can be shared with specific other programs. Access between programs and· 
particular segments can be individually controlled. 
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Up to six segments can be ready for immediate use. These are the segments which have 
segment selectors loaded in the segment registers. Other segments are accessed by load­
ing their segment selectors into the segment registers (see Figure 5-3). 

Each segment is a separate address space. Even though they may be placed in adjacent 
blocks of physical memory, the segmentation mechanism prevents access to the contents 
of one segment by reading beyond the end of another. Every memory operation is 
checked against the limit specified for the segment it uses. An attempt to address mem­
ory beyond the end of the segment generates a general-protection exception. 

The segmentation mechanism only enforces the address range specified in the segment 
descriptor. It is the responsibility of the operating system to allocate separate address 
ranges to each segment. There may be situations in which it is desirable to have seg­
ments which share the same range of addresses. For example, a system may have both 
code and data stored in a ROM. A code segment descriptor would be used when the 
ROM is accessed for instruction fetches. A data segment descriptor would be used when 
the ROM is accessed as data. 

5.2 SEGMENT TRANSLATION 

A logical address consists of the 16-bit segment selector for its segment and a 32-bit 
offset into the segment. A logical address is translated into a linear address by adding 
the offset to the base address of the segment. The base address comes from the segment 
descriptor, a data structure in memory which provides the size and location of a segment, 
as well as access control information. The segment descriptor comes from one of two 
tables, the global descriptor table (GDT) or the local descriptor table (LDT). There is 
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one ODT for all programs in the system, and one LDT for each separate program being 
run. If the operating system allows, different programs can share the same LDT. The 
system also may be set up with no LDTs; all programs will then use the ODT. 

Every logical address is associated with a segment (even if the system maps all segments 
into the same linear address space). Although a program may have thousands of seg­
ments, only six may be available for immediate use. These are the six segments whose 
segment selectors are loaded in the processor. The segment selector holds information 
used to translate the logical address into the corresponding linear address. 

Separate segment registers exist in the processor for each kind of memory reference (code 
space, stack space, and data spaces). They hold the segment selectors for the segments 
currently in use. Access to other segments requires loading a segment register using a 
form of the MOV instruction. Up to four data spaces may be available at the same time, 
thus providing a total of six segment registers. 
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When a segment selector is loaded, the base address, segment limit, and access control 
information also are loaded into the segment register. The processor does not reference 
the descriptor tables again until another segment selector is loaded. The information 
saved in the processor allows it to translate addresses without making extra bus cycles. In 
systems in which multiple processors have access to the same descriptor tables, it is the 
responsibility of software to reload the segment registers when the descriptor tables are 
modified. If this is not done, an old segment descriptor cached in a segment register 
might be used after its memory-resident version has been modified. 

The segment selector contains a 13-bit index into one of the descriptor tables. The index 
is scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit 
base address of the descriptor table. The base address comes from either the global 
descriptor table register (GDTR) or the local descriptor table register (LDTR). These 
registers hold the linear address of the beginning of the descriptor tables. A bit in the 
segme~t selector specifies which table to use, as shown in Figure 5-4. 

The translated address is the linear address, as shown in Figure 5-5. If paging is not 
used, it is also the physical address. If paging is used, a second level of address transla­
tion produces the physical address. This translation is described in Section 5.3. 

5.2.1 Segment Registers 

Each kind of memory reference is associated with a segment register. Code, data, and 
stack references each access the segments specified by the contents of their segment 
registers. More segments can be made available by loading their segment selectors into 
these registers during program execution. 

Every segment register has a "visible" part and an "invisible" part, as shown in 
Figure 5-6. There are forms of the MOV instruction to load the visible part of these 
segment registers. The invisible part is loaded by the processor. 

The operations which load these registers are instructions for application programs 
(described in Chapter 3). There are two kinds of these instructions: 

1. Direct load instructions such as the MOV, POP, LDS, LSS, LGS, and LFS instruc­
tions. These instructions explicitly reference the segment registers. 

2. Implied load instructions such as the far pointer versions of the CALL and JMP 
instructions. These instructions change the contents of the CS register as an inciden­
tal part of their function. 

When these instructions are used, the visible part of the segment register is loaded with 
a segment selector. The processor automatically fetches the base address, limit, type, and 
other information from the descriptor table and loads the invisible part of the segment 
register. 

Because most instructions refer to segments whose selectors already have been loaded 
into segment registers, the processor can add the logical-address offset to the segment 
base address with no performance penalty. 
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5.2.2 Segment Selectors 
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A segment selector points to the information which defines a segment, called a segment 
descriptor. A program may have more segments than the six whose segment selectors 
occupy segment registers. When this is true,· the program uses forms of theMOV 
instruction to change the contents of these registers when it needs to access a· new 
segment. 

A segment selector identifies a segment descriptor by specifying a descriptor table and a 
descriptor within that table. Segment selectors are visible to application programs as a 
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part of a pointer variable, but the values of selectors are usually assigned or modified by 
link editors or linking loaders, not application programs. Figure 5-7 shows the format of 
a segment selector. 

Index: Selects one of 8192 descriptors in a descriptor table. The processor multiplies the 
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the 
base address of the descriptor table (from the GDTR or LDTR register). 

Table Indicator bit: Specifies the descriptor table to use. A clear bit selects the GDT; a 
set bit selects the current LDT. 

Requester Privilege Level: When this field contains a privilege level having a greater 
value (i.e., less privileged) than the program, it overrides the program's privilege level. 
When a program uses a less privileged segment selector, memory accesses take place at 
the lesser privilege level. This is used to guard against a security violation in which a less 
privileged program uses a more privileged program to access protected data. 
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For example, system utilities or device drivers must run with a high level of privilege in 
order to access protected facilities such as the control registers of peripheral interfaces. 
But they must not interfere with other protected facilities, even if a request to do so is 
received from a less privileged program. If a program requested reading a sector of disk 
into memory occupied by a more privileged program, such as the operating system, the 
RPL can be used to generate a general-protection exception when the less privileged 
segment selector is used. This exception occurs even though the program using the seg­
ment selector would have a sufficient privilege level to perform the operation on its own. 

Because the first entry of the GDT is not used by the processor, a selector which has an 
index of 0 and a table indicator of 0 (Le., a selector which points to the first entry of the 
GDT) is used as a "null selector." The processor does not generate an exception when a 
segment register (other than the CS or SS registers) is loaded with a null selector. It 
does, however, generate an exception when a segment register holding a null selector is 
used to access memory. This feature can be used to initialize unused segment registers. 

5.2.3 Segment Descriptors 

A segment descriptor is a data structure in memory which provides the processor with 
the size and location of a segment, as well as control and status information. Descriptors 
typically are created by compilers, linkers, loaders, or the operating system, but not 
application programs. Figure 5-8 illustrates the two general descriptor formats. The sys­
tem segment descriptor is described more fully in Chapter 6. All types of segment 
descriptors take one of these formats. 

Base: Defines the location of the segment within the 4 gigabyte physical address space. 
The processor puts together the three base address fields to form a single 32-bit value. 
Segment base values should be aligned to 16 byte boundaries to allow programs to 
maximize performance by aligning code/data on 16 byte boundaries. 

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (212). When the 
bit is clear, the segment limit is interpreted in units of one byte; when set, the segment 
limit is interpreted in units of 4K bytes (one page). Note that the twelve least significant 
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bits of the address are not tested when scaling is used. For example, a limit of a with the 
Granularity bit set results in valid offsets from a to 4095. Also note that only the Limit 
field is affected. The base address remains byte granular. 

Limit: Defines the size of the segment. The processor puts together the two limit fields 
to form a 20-bit value. The processor interprets the limit in one of two ways, depending 
on the setting of the Granularity bit: . 

1. If the Granularity bit is clear, the Limit has a value from 1 byte to 1 megabyte, in 
increments of 1 byte_ 

2. If the Granularity bit is set, the Limit has a value from 4 kilobytes to 4 gigabytes, in 
increments of 4K bytes. 
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For most segments, a logical address may have an offset ranging from 0 to the limit. 
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit 
field; they may be addressed with any offset except those from 0 to the limit (see the 
Type field, below). This is done to allow segments to be created in which increasing the 
value held in the Limit field allocates new memory at the bottom of the segment's 
address space, rather than at the top. Expand-down segments are intended to hold 
stacks, but it is not necessary to use them. If a stack is going to be put in a segment which 
does not need to change size, it can be a normal data segment. 

S bit: Determines whether a given segment is a system segment or a code or data seg­
ment. If the S bit is set, then the segment is either a code or a data segment. If it is clear, 
then the segment is a system segment. 

D bit: The code segement D bit indicates the default length for operands and effective 
addresses. If the D bit is set, then 32-bit operands and 32-biteffective addressing modes 
are assumed. If it is clear, then 16-bit operands and addressing modes are assumed. 

Type: The interpretation of this field depends on whether the segment descriptor is for 
an application segment or a system segment. System segments have a slightly different 
descriptor format, discussed in Chapter 6. The Type field of a memory descriptor spec­
ifies. the kind of access which may be made to a segment, and its direction of growth (see 
Table 5-1). 

Table 5-1. Application Segment Types 

Number E W A 
Descriptor 

Description 
Type 

0 0 0 0 Data Read·Only 
1 0 0 1 Data Read-Only, accessed 
2 0 1 0 Data Read/Write 
3 0 1 1 Data Read/Write, accessed 
4 1 0 0 Data Read-Only, expand-down 
5 1 0 1 Data Read-Only, expand-down, accessed 
6 1 1 0 Data Read/Write, expand-down 
7 1 1 1 Data Read/Write, expand-down, accessed 

Number C R A 
Descriptor 

Description 
Type 

8 0 0 0 ,Code Execute-Only 
9 0 0 1 Code Execute-Only, accessed 

10 0 1 0 Code Execute/Read 
11 0 1 1 Code Execute/Read, accessed 
12 1 0 0 Code Execute-Only, conforming 
13 1 0 1 Code Execute-Only, conforming, accessed 
14 1 1 0 Code Execute/Read-Only, conforming 
15 1 1 1 Code Execute/Read-Only, conforming, accessed 
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For data segments, the three lowest bits of the type field can be interpreted as expand­
down (E), write enable (W), and accessed (A). For code segments, the three lowest bits 
of the type field can be interpreted as conforming (C), read enable (R), and 
accessed (A). 

Data segments can be read-only or read/write. Stack segments are data segments which 
must be read/write. Loading the SS register with a segment selector for any other type of 
segment generates a general-protection exception. If the stack segment needs to be able 
to change size, it can be an expand-down data segment. The meaning of the segment 
limit is reversed for an expand-down segment. While an offset in the range from 0 to the 
segment limit is valid for other kinds of segments (outside this range a general­
protection exception is generated), in an expand-down segment these offsets are the 
ones which generate exceptions. The valid offsets in an expand-down segment are those 
which generate exceptions in the other kinds of segments. Expand-up segments must be 
addressed by offsets which are equal or less than the segment limit. Offsets into expand­
down segments always must be greater than the segment limit. This interpretation of the 
segment limit causes memory space to be allocated at the bottom of the segment when 
the segment . limit is decreased, which is correct for stack segments because they grow 
toward lower addresses. If the stack is given a segment which does not change size, it 
does not need to be an expand-down segment. 

Code segments can be execute-only or execute/read. An execute/read segment might be 
used, for example, when constants have been placed with instruction code in a ROM. In 
this case, the constants can be read either by using an instruction with a CS override 
prefix or by placing a segment selector for the code segment in a segment register for a 
data segment. 

Code segments can be either conforming or non-conforming. A transfer of execution 
into a more privileged conforming segment keeps the current privilege level. A transfer 
into a non-conforming segment at a different privilege level results in a general­
protection exception, unless a task gate is used (see Chapter 6 for a discussion of multi·· 
tasking). System utilities which do not access protected facilities, such as data-conversion 
functions (e.g., EBCDIC/ASCII translation, Huffman encoding/decoding, math library) 
and some types of exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND 
range exceeded) may be loaded in conforming code segments. 

The Type field also reports whether the segment has been accessed. Segment descriptors 
initially report a segment as having been accessed. If the Type field then is set to a value 
for a segment which has not been accessed, the processor restores the value if the seg­
ment is accessed. By clearing and testing the low bit of the Type field, software can 
monitor segment usage (the low bit of the Type field also is called the Accessed bit). 

For example, a program development system might clear all of the Accessed bits for the 
segments of an application. If the application crashes, the states of these bits can be used 
to generate a map of all the segments accessed by the application. Unlike the break­
points provided by the debugging mechanism (Chapter 11), the usage information 
applies to segments rather than physical addresses. 
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The processor may update the Type field when a segment is accessed, even if the access 
is a read cycle. If the descriptor tables have been put in ROM, it may be necessary for 
hardware to prevent the ROM from being enabled onto the data bus during a write 
cycle. It also may be necessary to return the READY # signal to the processor when a 
write cycle to ROM occurs, otherwise the cycle does not terminate. These features of the 
hardware design are necessary for using ROM-based descriptor tables with the Intel386 
DX processor, which always sets the Accessed bit when a segment descriptor is loaded. 
The Intel486 processor, however, only sets the Accessed bit if it is not already set. Writes 
to descriptor tables in ROM can be avoided by setting the Accessed bits in every 
descriptor. 

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used 
to control access to the segment, using the protection mechanism described in Chapter 6. 

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present 
exception when a selector .for the descriptor is loaded into a segment register. This is 
used to detect access to segments which have become unavailable. A segment can 
become unavailable when the system needs to create free memory. Items in memory, 
such as character fonts or device drivers, which currently are not being used are 
de-allocated. An item is de-allocated by marking the segment "not present" (this is done 
by clearing the Segment-Present bit). The memory occupied by the segment then can be 
put to another use. The next time the de-allocated item is needed, the segment-not­
present exception will indicate the segment needs to be loaded into memory. When this 
kind of memory management is provided in a manner invisible to application programs, 
it is called virtual memory. A system may maintain a total amount of virtual memory far 
larger than physical memory by keeping only a few segments present in physical memory 
at anyone time. 

Figure 5-9 shows the format of a descriptor when the Segment-Present bit is clear. When 
this bit is clear, the operating system is free to use the locations marked Available to 
store its own data, such as information regarding the whereabouts of the missing 
segment. 

1 1 1 1 1 1 
31 65432 0987 o 

D D 
AVAILABLE 0 P T 

TYPE AVAILABLE 
L 

+4 

AVAILABLE +0 
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Figure 5-9. Segment Descriptor (Segment Not Present) 
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5.2.4 Segment Descriptor Tables 

A segment descriptor table is an array of segment descriptors. There are two kinds of 
descriptor tables: 

• The global descriptor table (GDT) 

• The local descriptor tables (LDT) 

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table 
is an array of segment descriptors, as shown in Figure 5-10. A descriptor table is variable 
in length and may contain up to 8192(213) descriptors. The first descriptor in the GDT 
is not used by the processor. A segment selector to this "null descriptor" does not 
generate an exception when loaded into a segment register, but it always generates an 

GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE 

I I 
+ 38 + 38 

I I 
+ 30 + 30 

I I 
+ 28 + 28 

I I 
+ 20 + 20 

I I 
+ 18 + 18 

I I 
+ 10 + 10 

I I 
+ 8 + 8 

FIRST DESCRIPTOR IN GOT J 
IS NOT USED + 0 + 0 

GDTR REGISTER LDTR REGISTER 

I SELECTOR 

I LIMIT I LIMIT 

BASE ADDRESS r- -

NOTE: ADDRESSES SHOWN IN HEXADECIMAL 

240486i5-10 

Figure 5-10. Descriptor Tables 
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exception when an attempt is made to access memory using the descriptor. By initializing 
the segment registers with this segment selector, accidental reference to unused segment 
registers can be guaranteed to generate an exception. 

5.2.5 Descriptor Table Base Registers 

The processor finds the global descriptor table (GDT) and interrupt descriptor table 
(IDT) using the GDTR and IDTR registers. These registers hold 32-bit base addresses 
for tables in the linear address space. They also hold 16-bit limit values for the size of 
these tables. When the registers are loaded or stored, a 48-bit "pseudo-descriptor" is 
accessed in memory, as shown in Figure 5-11. The GDT and IDT should be aligned on a 
16 byte boundary to maximize performance due to cache line fills. 

The limit value is expressed iil bytes. As with segmeI ts, the limit value is added to the 
base address to get the address of the last valid byte. A limit value of 0 results in exactly 
one valid byte. Because segment descriptors are always eight bytes, the limit should 
always be one less than an integral multiple of eight (i.e., 8N - 1). The LGDT and 
SGDT instructions read and write the GDTR register; the LIDT and SIDT instructions 
read and write the IDTR register. 

A third descriptor table is the local descriptor table (LDT). It is identified using a 16-bit 
segment selector held in the LDTR register. The LLDT and SLDT instructions read and 
write the segment selector in,the LDTR register. The LDTR register also holds the base, 
address and limit for the LDT, but these are loaded automatically by the processor from 
the segment descriptor for the LDT. The LDT should be aligned on a 16 byte boundary 
to maximize performance due to cache line fills. 

Alignment check faults may be generated by storing a pseudo-descriptor in user mode 
, (privilege level 3). User-mode programs normally do not store pseudo-descriptors, but 
the possibility of generating an alignment check fault in this way can be avoided by 
placing the pseudo-descriptor at an odd word address (i.e., an address which is 2 MOD 
4). This causes the processor to store an aligned word, followed by an aligned 
doubleword. ' 

47 16 15 o 
BASE ADDRESS LIMIT , I 

5 2 1 o 

BYTE ORDER IS SHOWN BELOW 

240486i5-11 

Figure 5·11. Pseudo-Descriptor' Format 

5-16 



intel® MEMORY MANAGEMENT 

5.3 Page Translation 

A linear address is a 32-bit address into a uniform, unsegmented address space. This 
address space may be a large physical address space (i.e., an address space composed of 
4 gigabytes of RAM), or paging can be used to simulate this address space using a small 
amount of RAM and some disk storage. When paging is used, a linear address is trans­
lated into its corresponding physical address, or an exception is generated. The excep­
tion gives the operating system a chance to read the page from disk (perhaps sending a 
different page out to disk in the process), then restart the instruction which generated 
the exception. 

Paging is different from segmentation through its use of small, fixed-size pages. Unlike 
segments, which usually are the same size as the data structures they hold, on the 
Intel486 processor, pages are always 4K bytes. If segmentation is the only form of 
address translation which is used, a data structure which is present in physical memory 
will have all of its parts in memory. If paging is used, a data structure may be partly in 
memory and partly in disk storage. 

The information which maps linear addresses into physical addresses and exceptions is 
held in data structures in memory called page tables. As with segmentation, this informa­
tion is cached in processor registers to minimize the number of bus cycles required for 
address translation. Unlike segmentation, these processor registers are completely invis­
ible to application programs. (For testing purposes, these registers are visible to pro­
grams running with maximum privileges; see Chapter 10 for details.) 

The paging mechanism treats the 32-bit linear address as having three parts, two lO-bit 
indexes into the page tables and a 12-bit offset into the page addressed by the page 
tables. Because both the virtual pages in the linear address space and the physical pages 
of memory are aligned to 4K-byte page boundaries, there is no need to modify the low 12 
bits of the address. These 12 bits pass straight through the paging hardware, whether 
paging is enabled or not. Note that this is different from segmentation, because segments 
can start at any byte address. 

The upper 20 bits of the address are used to index into the page tables. If every page in 
the linear address space were mapped by a single page table in RAM, 4 megabytes 
would be needed. This is not done. Instead, two levels of page tables are used. The top 
level page table is called the page directory. It maps the upper 10 bits of the linear 
address to the second level of· page tables. The second level of page tables maps the 
middle 10 bits of the linear address to the base address of a page in physical memory 
(called a page frame address). 

An exception may be generated based on the contents of the page table or the page 
directory. An exception gives the operating system a chance to bring in a page table from 
disk storage. By allowing the second-level page tables to be sent to disk, the paging 
mechanism can support mapping of the entire linear address space using only a few 
pages in memory. 
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The CR3 register holds the page frame address of the page directory. For this reason,it 
also is called the page directory base register or PDBR. The upper 10 bits of the linear 
address are scaled by four (the number of bytes in a page table entry) and added to the 
value in the PDBRregister to get the physical address of an entry in the page directory. 
Because the page frame address is always. clear in its lowest 12 bits, this addition is 
performed by concatenation (replacement of the low 12 bits with the scaled index). 

When the entry in the page directory is accessed, a number of checks are performed. 
Exceptions may be generated if the page is protected or is notpresent in memory. If no 
exception is generated, the upper 20 bits of the· page table entry are used as the page 
frame address of a second-level page table. The middle 10 bits of the linear address are 
scaled by four (again, the size of a page table entry) and concatenated with the page 
frame address to get the physical address of an entry in the second-level page table. 

Again, access checks are performed, and exceptions ·may be generated. If no exception 
occurs, the upper 20 bits of the second-level page table entry are concatenated with the 
lowest 12 bits of the linear address to form the physical address of the operand (data) in 
memory. 

Although this process may seem complex, it all takes place with very little overhead. The 
processor has a cache for page table entries called the translation lookaside buffer 
(TLB). The TLB satisfies most requests for reading the page tables. Extra bus Cycles 
occur only when a new page is accessed. The page size (4K bytes) is large enough so that 
very few bus cycles are made to the page tables, compared to the number of bus cycles 
made to instructions and data. At the same time, the page size is small enough to make 
efficient use of memory. (No matter how small a data structure is, it occupies at least 
one page of memory.) 

5.3.1 PG Bit Enables Paging 

If paging is enabled, a second stage of address translation is used to generate the phys­
ical address from the linear address. If paging. is not enabled, the linear address is used 
as the physical address. 

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is 
set by the operating system during software initialization. The PG bit mustbe set if the 
operating system is running more than one program in virtual-8086 mode or if demand­
paged virtual memory is used. . . 

5.3.2 Linear Address 

Figure 5-12 shows the format of a linear address. 

5-18 



MEMORY MANAGEMENT 

31 22 21 12 11 o I DIRECTORY TABLE OFFSET I 
240486i5·12 

Figure 5-12. Format of a Linear Address 
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Figure 5-13. Page Translation 

Figure 5-13 shows how the processor translates the DIRECTORY, TABLE, and OFF­
SET fields of a linear address into the physical address using two levels of page tables. 
The paging mechanism uses the DIRECTORY field as an index into a page directory, 
the TABLE field as an index into the page table determined by the page directory, and 
the OFFSET field to address an operand within the page specified by the page table. 

5.3.3 Page Tables 

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096 
bytes of memory or, at most, 1K 32-bit entries. All pages, including page directories and 
page tables, are aligned to 4K-byte boundaries. 

Two levels of tables are used to address a page of memory. The top level is called the 
page directory. It addresses up to 1K page tables in the second level. A page table in the 
second level addresses up to 1K pages in physical memory. All the tables addressed by 
one page directory, therefore, can address 1M or 220 pages. Because each page contains 
4K or 212 bytes, the tables of one page directory can span the entire linear address space 
of the Intel486 processor (220 x 212 = 232). 
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The physical address of the current page directory is stored in the CR3 register, also 
called the page directory base register (PDBR). Memory management software has the 
option of using one page directory for all tasks, one page directory for each task, or some 
combination of the two .. See Chapter 10 for information on initialization of the CR3 
register. See Chapter 7 for how the contents of the CR3 register can change for each 
task. 

5.3.4 Page-Table Entries 

Entries in either level of page tables have the same format, except that the page direc­
tory has no Dirty bit. Figure 5·14 illustrates this format. The bit position of the D bit is 
reserved for future Intel use. 

5.3.4.1 PAGE FRAME ADDRESS 

The page frame address is the base address of a page. In a page table entry, the upper 
20 bits are used to specify a page frame address, and the lowest 12 bits specify control 
and status bits for the page. In a page directory, the page frame address is the address of 
a page table. In a second-level page table,· the page frame address is the address of a 
page containing instructions or data. 

5.3.4.2 PRESENT BIT 

The Present bit indicates whether the page frame address in a page table entry maps to 
a page in physical memory. When set, the page is in memory. 

When the Present bit is clear, the page is not in memory, and the rest of the page table 
entry is available for the operating system, for example, to store information regarding 
the whereabouts of the missing page. Figure 5·15 illustrates the format of a page table 
entry when the Present bit is clear. 

I 

3 
1 

11 
2 1 876543210 

PAGE FRAME ADDRESS 31 ... 12 IAVAILlolol+lglfl~lllpl 

... ~~~-- . J11 PROGRAMMER USE 
INTEL RESERVED. DO NOT DEFINE . . 
INTEL RESERVED. NOT NOT DEFINE . 
DIRTY 
ACCESSED 
PAGE CACHE DISABLE 
PAGE WRITE TRANSPARENT 
USERISUPERVISOR 
READIWRITE 
PRESENT 

Figure 5·14. Format of a Page Table Entry 
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Figure 5-15. Format of a Page Table Entry for a Not-Present Page 

If the Present bit is clear in either level of page tables when an attempt is made to use a 
page table entry for address translation, a page-fault exception is generated. In systems 
which support demand-paged virtual memory, the following sequence of events then 
occurs: 

1. The operating system copies the page from disk storage into physical memory. 

2. The operating system loads the page frame address into the page table entry and 
sets its Present bit. Other bits, such as the R/W bit, may be set, too. 

3. Because a copy of the old page table entry may stilI exist in the translation lookaside 
buffer (TLB), the operating system empties it. See Section 5.3.5 for a discussion of 
the TLB and how to empty it. 

4. The program which caused the exception is then restarted. 

Since there is no Present bit in CR3 to indicate when the page directory is not resident 
in memory, the page directory pointed to by CR3 should always be present in physical 
memory. 

5.3.4.3 ACCESSED AND DIRTY BITS 

These bits provide data about page usage in both levels of page tables. The Accessed bit 
is used to report read or write access to a page or second-level page table. The Dirty bit 
is used to report write access to a page. 

With the exception of the Dirty bit in a page directory entry, these bits are set by the 
hardware; however, the processor does not clear either of these bits. The processor sets 
the Accessed bits in both levels of page tables before a read or write operation to a page. 
The processor sets the Dirty bit in the second-level page table before a write operation 
to an address mapped by that page table entry. The Dirty bit in directory entries is 
undefined. 

The operating system may use the Accessed bit when it needs to create some free mem­
ory by sending a page or second-level page table to disk storage. By periodically clearing 
the Accessed bits in the page tables, it can see which pages have been used recently. 
Pages which have not been used are candidates for sending out to disk. 
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The operating system may use the Dirty bit when a page is sent back to disk. By clearing 
the Dirty bit when the page is brought into memory, the operating system can see if it 
has received any write access. If there is a copy of the page on disk and the copy in 
memory has not received any writes, there is no need to update disk from memory. 

See Chapter 1-3 for how the Intel486 processor updates the Accessed and Dirty bits in . 
multiprocessor systems. 

5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS 

The ReadlWrite and User/Supervisor bits are used for protection checks applied to 
pages, which the processor performs at the same time as address translation. See Chap­
ter 6 for more information on protection. 

5.3~4.5 PAGE-LEVEL CACHE CONTROL BITS 

The PCD and PWT bits are used for page-level cache management. Software can control 
the caching of individual pages or second-level page tables using these bits. , See 
Chapter 12 for more information on caching. 

5 .. 3.5 Translation Lookaside Buffer 

The processor stores the most recently used page table entries in an on-chip cache called 
the translation lookaside buffer or TLB. Most paging is performed using the contents of 
the TLB. Bus cycles to the page tables are performed only when a new page is used. 

The TLB is invisible to application programs, but not to operating systems. Operating­
system programmers must flush the TLB (dispose of its page table entries) when entries 
in the page tables are changed. If this is not done, old data which has not received the 
changes might get used for address translation. A change to an entry for a page which.is 
not present in memory does not require flushing the TLB, because entries for not­
present pages are not cached. 

The TLB is flushed when the CR3 register is loaded. The CR3 register can be loaded in 
either of two ways: 

1. Explicit loading using MOY instructions, suth as: 
MOV CR3, EAX 

2. Implicit loading by a task switch which changes the contents of the CR3 register. 
(See Chapter 7 for more information on task switching.) 

An individual entry in the TLB can be flushed using an INVLPG instruction. This is 
useful when the mapping of an individual page is changed. 
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5.4 COMBINING SEGMENT AND PAGE TRANSLATION 

Figure 5-16 combines Figure 5-5 and Figure 5-13 to summarize both stages of translation 
from a logical address to a physical address when paging is enabled. Options available in 
both stages of address translation can be used to support several different styles of 
memory management. 

5.4.1 Flat Model 

When the Intel486 processor is used to run software written without segments, it may be 
desirable to remove the segmentation features of the Intel486 processor. The Intel486 
processor does not have a mode bit for disabling segmentation, but the same effect can 
be achieved by mapping the stack, code, and data spaces to the same range of linear 
addresses. The 32-bit offsets used by Intel486 processor instructions can cover the entire 
linear address space. 

When paging is used, the segments can be mapped to the entire linear address space. If 
more than one program is being run at the same time, the paging mechanism can be 
used to give each program a separate address space. 

lOGICAL 
ADDRESS 

PAGE DIRECTORY 

o 
OFFSET 

PAGE FRAME 

'------l~ OPERAND 

PAGE TABLE 

PG TBl ENTRY 

Figure 5-16. Combined Segment and Page Address Translation 
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5.4.2 Segments Spanning Several Pages 

The architecture allows segments which are larger than the size of a page (4K bytes). For 
example, a large data structure may span thousands of pages. If paging were not used, 
access to any part of the data structure would require the entire data structure to be 
present in physical memory. With paging, only the page containing the part being 
accessed needs to be in memory. 

5.4.3 Pages Spanning Several Segments 

Segments also may be smaller than the size of a page. If one of these segments is placed 
in a page which is not shared with another segment, the extra memory is wasted. For 
example, a small data structure, such as a I-byte semaphore, occupies 4K bytes if it is 
placed in a page by itself. If many semaphores are used, it is more efficient to pack them 
into a single page. 

5.4.4 Non-Aligned Page and Segment Boundaries 

The architecture does not enforce any correspondence between the boundaries of pages 
and segments. A page may contain the end of one segment and the beginning of another. 
Likewise, a segment may contain the end of one page and the beginning of another. 

5.4.5 Aligned Page and Segment Boundaries 

Memory-management software may be simpler and more efficient if it enforces some 
alignment between page and segment boundaries. For example, if a segment which may 
fit in one page is placed in two pages, there may be twice as much paging overhead to 
support access to that segment. 

5.4.6 Page-Table Per Segment 

An approach to combining paging and segmentation which simplifies memory­
management software is to give each segment its own page table, as shown in 
Figure 5-17. This gives the segment a single entry in the page directory which provides 
the access control information for paging the segment. 
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Figure 5-17. Each Segment Can Have Its Own Page Table 
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CHAPTER 6 
PROTECTION 

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks 
from interfering with each other. For example, protection can keep one task from over­
writing the instructions or data of another task. 

During program development, the protection mechanism can give a clearer picture of 
program bugs. When a program makes an unexpected reference to the wrong memory 
space, the protection mechanism can block the event and report its occurrence. 

In end-user systems, the protection mechanism can guard against the possibility of soft­
ware failures caused by undetected program bugs. If a program fails, its effects can' be 
confined to a limited domain. The operating system can be protected against damage, so 
diagnostic information can be recorded and automatic recovery may be attempted. 

Protection may be applied to segments and pages. Two bits in a processor register define 
the privilege level of the program currently running (called the current privilege level or 
CPL). The CPL is checked during address translation for segmentation and paging. 

Although there is no control register or mode bit for turning off the protection mecha­
nism, the same effect can be achieved by assigning privilege level 0 (the highest level of 
privilege) to all segment selectors, segment descriptors, and page table entries. 

6.1 SEGMENT-LEVEL PROTECTION 

Protection provides the ability to limit the amount of interference a malfunctioning pro­
gram can inflict on other programs and their data. Protection is a valuable aid in soft­
ware development because it allows software tools (operating system, debugger, etc.) to 
survive in memory undamaged. When an application program fails, the software is avail­
able to report diagnostic messages, and the debugger is available for post-mortem anal-' 
ysis of memory and registers. In production, protection can make software more reliable 
by giving the system an opportunity to initiate recovery procedures. 

Each memory reference is checked to verify that it satisfies the protection checks. All 
checks are made before the memory cycle is started; any violation prevents the cycle 
from starting and results in an exception. Because checks are performed in parallel with 
address translation, there is no performance penalty. There are five protection checks: 

1. Type check 

2. Limit check 

3. Restriction of addressable domain 

4. Restriction of procedure entry points 

5. Restriction of instruction set, 
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A protection violation results in an exception. See Chapter 9 for an explanation of the 
exception mechanism. This chapter describes the protection violations which lead to 
exceptions. 

6.2 SEGMENT DESCRIPTORS AND PROTECTION 

Figure 6-1 shows the fields of a segment descriptor which are used by the protection 
mechanism. Individual bits in the Type field also are referred to by the names of their 
functions. 

Protection parameters are placed in the descriptor when it is created. In general, appli­
cation programmers do not need to be concerned about protection parameters. 
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Figure 6-1. Descriptor Fields Used for Protection (Part 1 of 2) 
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When a program loads a segment selector into a segment register, the processor loads 
both the base address of the segment and the protection information. The invisible part 
of each segment register has storage for the base, limit, type, and privilege level. While 
this information is resident in the segment register, subsequent protection checks on the 
same segment can be performed with no performance penalty. 

6.2.1 Type Checking 

In addition to the descriptors for application code and data segments, the Intel486 pro­
cessor has descriptors for system segments and gates. These are data structures used for 
managing tasks (Chapter 7) and exceptions and interrupts (Chapter 9). Table 6-1 lists all 
the types defined for system segments and gates. Note that not all descriptors define 
segments; gate descriptors hold pointers to procedure entry points. 

The Type fields of code and data segment descriptors include bits which further define 
the purpose of the segment (see Figure 6-1): 

" The Writable bit in a data-segment descriptor controls whether programs can write to 
the segment. 

• The Readable bit in an executable-segment descriptor specifies whether programs 
can read from the segment (e.g., to access constants stored in the code space). A 
readable, executable segment may be read in two ways: 

1. With the CS register, by using a CS override prefix. 

2. By loading a selector for the descriptor into a data-segment register (the DS, ES, 
FS, or GS registers). 
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Table 6-1. System Segment and Gate Types 

Type Description 

0 reserved 
1 Available 80286 TSS 
2 LOT 
3 Busy 80286 TSS 
4 Call Gate 
5 Task Gate 
6 80286 Interrupt Gate 
7 80286 Trap Gate 
8 reserved 
9 Available InteI486'" CPU TSS 

10 reserved 
11 Busy Intel486 CPU TSS 
12 Intel486 CPU Call Gate 
13 reserved 
14 Intel486 CPU Interrupt Gate 
15 Intel486 CPU Trap Gate 

Type checking can be used to detect programming errors which would attempt to use 
segments in ways not intended by the programmer. The processor examines type infor-
mationon two kinds of occasions: . 

1. When a selector for a descriptor is loaded into a segment register. Certain segment 
registers can contain only certain descriptor types; for example: 

• The CS register only can be loaded with a selector for an executable segment. 

• Selectors of executable segments which are not readable cannot be loaded into 
data-segment registers. 

• Only selectors of writable data segments can be loaded into the SS register. 

2. Certain segments can be used by instructions only in certain predefined ways; for 
example: 

• No instruction may write into an executable segment. 

• No instruction may write into a data segment if the writable bit is not set. 

• No instruction may read an executable segment unless the readable bit is set. 

6.2.2 Limit Checking 

Th~ Limit field ofa segment descriptor prevents programs from addressing outside the 
segment. The effective value of the limit depends on the setting of the G bit (Granularity 
bit). For data segments, the limit also depends on the E bit (Expansion Direction bit). 
The E bit is a designation for one bit of the Type field, when referring to data segment 
descriptors. 

6-4 



int'et PROTECTION 

When the G bit is clear, the . limit is the value of the 20-bit Limit field in the descriptor. 
In this case, the limit ranges from 0 to OFFFFFH (220 - 1 or 1 megabyte). When the 
G bit is set, the processor scales the value in the Limit field by a factor of 212. In this case 
the limit ranges from OFFFH (212 - 1 or 4K bytes) to OFFFFFFFFH (232 - 1 or 
4 gigabytes). Note that when scaling is used, the lower twelve bits of the address are not 
checked against the limit; when the G bit is set and the segment limit is 0, valid offsets 
within the segment are 0 through 4095. 

For all types of segments except expand-down data segments (stack segments), the value 
of the limit is one less than the size, in bytes, of the segment. The processor causes a 
general-protection exception in any of these cases: 

• Attempt to access a memory byte at an address > limit 

• Attempt to access a memory word at an address> (limit - 1) 

• Attempt to access a memory doubleword at an address > (limit - 3) 

For expand-down data segments, the limit has the same function but is interpreted 
differently. In these cases the range of valid offsets is from (limit + 1) to 232 -1 if 
Bbit = 1 and 216_1 if Bbit = O. An expand-down segment has maximum size when the 
segment limit is O. 

Limit checking catches programming errors such as runaway subscripts and invalid 
pointer calculations. These errors are detected when they occur, so identification of the 
cause is easier. Without limit checking, these errors could overwrite critical memory in 
another module, and the existence of these errors would not be discovered until the 
damaged module crashed, an event which may occur long after the actual error. Protec­
tion can block these errors and report their source. 

In addition to limit checking on segments, there is limit checking on the descriptor 
tables. The GDTR and IDTR registers contain a 16-bit limit value. It is used by the 
processor to prevent programs from selecting a segment descriptor outside the descrip­
tor table. The limit of a descriptor table identifies the last valid byte of the table. 
Because each descriptor is eight bytes long, a table which contains up to N descriptors' 
should have a limit of 8N - 1. 

A descriptor may be given a zero value. This refers to the first descriptor in the GDT, 
which is not used. Although this descriptor may be loaded into a segment register, any 
attempt to reference memory using this descriptor will generate a general-protection 
exception. 

6.2.3 Privilege Levels 

The protection mechanism recognizes four privilege levels, numbered from 0 to 3. The 
greater numbers mean lesser privileges. If all other protection checks are satisfied, a 
general-protection exception is generated if a program attempts to access a segment 
using a less privileged level (greater privilege number) than that applied to the segment. 

6-5 



int'et PROTECTION 

Although no control register or mode bit is provided for turning off the protection 
mechanism, the same effect can be achieved by assigning all privilege levels the value of 
O. (The PE bit in the CRO register is not an enabling bit· for the protection mechanism 
alone; it is used to enable "protected mode," the mode of program execution in which 
the full 32-bit architecture is available. When protected mode is disabled; the processor 
operates in "real-address mode," where it appears as a fast, enhanced 8086 processor.) 

Privilege levels can be used to improve the reliability of operating systems. By giving the 
operating system the highest privilege level, it is protected from damage by bugs in other 
programs. If a program crashes, the operating system has a chance to generate a diag~ 
nostic message and attempt recovery procedures. .. 

Another level of privilege can be established for other parts of the system software, such 
as the programs which handle peripheral devices, called device drivers. If a device driver 
crashes, the operating system should be able to report a diagnostic message, so it makes 
sense to protect the operating system against bugs in device drivers. A device driver, 
however, may service an important peripheral such asa disk drive. If the application 
program crashed, the device driver should not corrupt the directory structure of the disk, 
so it makes sense to protect device drivers against bugs in applications. Device drivers 
should be given an intermediate privilege level between the operating syst~m and the 
application programs. Application programs are given the lowest privilege level. 

Figure 6-2 shows how these levels of privilege can be interpreted as rings of protection. 
The center is for the segments containing the· most critical software, usmilly the kernel of 
an operating system. Outer rings are for less critical software. 

The following data structures contain privilege levels: 

• The lowest two bits of the CS segment register hold the current privilege level (CPL). 
This is the privilege level of the program being run. The . lowest two bits of the SS 
register also hold a copy of the CPL. Normally, the CPL is equal to the privilege level 
of the code segment from which instructions are being fetched. The CPL changes 
when control is transferred to a code segment with· a differe* privilege level. 

• Segment descriptors contain a field called the descriptor privilege level (DPL). The 
DPL is the privilege level applied to a. segment. 

• Segment selectors contain a field called the requestor privilege level(RPL). The RPLis 
intended to represent the privilege level of the procedure which created the. selector .. 
If the RPL is a less privileged level than the CPL, it overrides the CPL. When a more 
privileged program receives a segment selector from a less privileged program, the 
RPL causes the memory access to take place at the less privileged level. 

Privilege levels are checked when the selector of a descriptor.is loaded into a segment 
register. The checks used for data access differ from those used for transfers ofexecu­
tion among executable segments; therefore; the two types of access are considered sep­
arately in the following sections. 
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PROTECTION RINGS 
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Figure 6-2. Protection Rings 

6.3 RESTRICTING ACCESS TO DATA 

To address operands in memory, a segment selector for a data segment must be loaded 
into a data-segment register (the OS, ES, FS, GS, or SS registers). The processor checks 
the segment's privilege levels. The check is performed when the segment selector is 
loaded. As Figure 6-3 shows, three different privilege levels enter into this type of priv­
ilege check. 

The three privilege levels which are checked are: 

1. The CPL (current privilege level) of the program. This is held in the two least­
significant bit positions of the CS register. 

2. The OPL (descriptor privilege level) of the segment descriptor of the segment con­
taining the operand. 

3. The RPL (requestor's privilege level) of the selector used to specify the segment 
containing the operand. This is held in the two lowest bit positions of the segment 
register used to access the operand (the SS, OS, ES, FS, or GS registers). If the 
operand is in the stack segment, the RPL is the same as the CPL. 
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Instructions may load a segment register only if the DPL of the segment is the same or a 
less privileged level (greater privilege number) than the less privileged of the CPL and 
the selector's RPL. 

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data 
segments at all privilege levels are accessible; when the CPL is 1, only data segments at 
privilege levels 1 through 3 are accessible; when the CPL is 3,· only data segments at 
privilege level 3 are accessible. 

6.3.1 Accessing Data in Code .Segments 

It may be desirable to store data in a code segment, for example,when both code and 
data are provided in ROM. Code segments may, legitimately hold constants; it is not 
possible to write to a segment· defined as a code segment, unless a data segment is 
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mapped to the same address space. The following methods of accessing data in code 
segments are possible: . 

1. Load a data-segment register with a segment selector for a nonconforming, read­
able, executable segment. 

2. Load a data-segment register with a segment selector for a conforming, readable, 
executable segment. 

3. Use a code-segment override prefix to read a readable, executable segment whose 
selector already is loaded in the CS register. 

The same rules for access to data segments apply to case 1. Case 2 is always valid 
because the privilege level of a code segment with a set Conforming bit is effectively the 
same as the CPL, regardless of its DPL. Case 3 is always valid because the DPL of the 
code segment selected by the CS register is the CPL. 

6.4 RESTRICTING CONTROL TRANSFERS 

With the Intel486 processor, control transfers are provided by the JMP, CALL, RET, 
INT, and IRET instructions, as well as by the exception and interrupt mechanisms. 
Exceptions and interrupts are special cases discussed in Chapter 9. This chapter dis­
cusses only the JMP, CALL, and RET instructions. 

The "near" forms of the JMP, CALL, and RET instructions transfer program control 
within the current code segment, and therefore are subject only to limit checking. The 
processor checks that the destination of the JMP, CALL, or RET instruction does not 
exceed the limit of the current code segment. This limit is cached in the CS register, so 
protection checks for near transfers require no performance penalty. 

The operands of the "far" forms of the JMP and CALL instruction refer to other seg­
ments, so the processor performs privilege checking. There are two ways a JMP or 
CALL instruction can refer to another segment: 

1. The operand selects the descriptor of another executable segment. 

2. The operand selects a call gate descriptor. This gated form of transfer is discussed in 
Chapter 7. 

As Figure 6-4 shows, two different privilege levels enter into a privilege check for a 
control transfer which does not use a call gate: 

1. The CPL (current privilege level). 

2. The DPL of the descriptor of the destination code segment. 

Normally the CPL is equal to the DPL of the segment which the processor is currently 
executing. The CPL may, however, be greater (less privileged) than the DPL if the 
current code segment is a conforming segment (as indicated by the Type field of its 
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segment descriptor). A conforming segment runs at the privilege level of the calling 
procedure. The processor keeps a record of the CPL cached in the CS register; this value 
can be different from the DPL in the segment descriptor of the current code segment. 

The processor only permits a JMP or CALL instruction directly into another segment if 
one of the following privilege rules is satisfied: 

• The DPL of the segment is equal to the current CPL. 

• The segment is a conforming code segment, and its DPL is less (more privileged) than 
the current CPL. 

Conforming segments are used for programs, such as math libraries and some kinds of 
exception handlers, which support applications but do not require access to protected 
system facilities. When control is transferred to a conforming segment, the CPL does not 
change, even if the selector used to address the segment has a different RPL. This is the 
only condition in which the CPL may be different from the DPL of the current code 
segment_ 

Most code segments are not conforming. For these segments, control can be transferred 
without a gate only to other code segments at the same level of privilege. It is sometimes 
necessary, however, to transfer control to higher privilege levels. This is accomplished 
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with the CALL instruction using call-gate descriptors, which is explained in Chapter 7. 
The JMP instruction may never transfer control to a nonconforming segment whose 
DPL does not equal the CPL. 

6.5 GATE DESCRIPTORS 

To provide protection for control transfers among executable segments at different priv­
ilege levels, the Inte1486 processor uses gate descriptors. There are four kinds of gate 
descriptors: 

• Call gates 

• Trap gates 

• Interrupt gates 

• Task gates 

Task gates are used for task switching and are discussed in Chapter 7. Chapter 9 explains 
how trap gates and interrupt gates are used by exceptions and interrupts. This chapter is 
concerned only with call gates. Call gates are a form of protected control transfer. They 
are used for control transfers between different privilege levels. They only need to be 
used in systems in which more than one privilege level is used. Figure 6-5 illustrates the 
format of a call gate. 

A call gate has two main functions: 

1. To define an entry point of a procedure. 

2. To specify the privilege level required to enter a procedure. 
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Call gate descriptors are used by CALL and JUMP instructions in the same manner as 
code segment descriptors. When the hardware recognizes that the segment selector for 
the destination refers to a gate descriptor, the operation of the instruction is determined 
by the contents of the call gate. A call gate descriptor may reside in the GDT or in an 
LDT, but not in the interrupt descriptor table (IDT). 

The selector and offset fields of a gate form a pointer to the entry point of a procedure. 
A call gate guarantees. that all. control transfers to other segments go to a valid entry 
point, rather than to the middle of a procedure (or worse, to the middle of an instruc­
tion). The operand of the control transfer instruction is not the segment selector and 
offset within the segment to the procedure's entry point. Instead, the segment selector 
points to a gate descriptor, and the offset is not used. Figure 6-6 shows this form of 
addressing. 

I •• ------DESTINATION ADDRESS------I.~I 

15 o 31 o 

I SELECTOR I OFFSET WITHIN SEGMENT 
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DESCRIPTOR TABLE 
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Figure .6-6. Call Gate Mechanism 
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As shown in Figure 6-7, four different privilege levels are used to check the validity of a 
control transfer through a call gate. 

The privilege levels checked during a transfer of execution through a call gate are: 

1. The CPL (current privilege level). 

2. The RPL (requestor's privilege level) of the segment selector used to specify the call 
gate. 

3. The DPL (descriptor privilege level) of the gate descriptor. 

4. The DPL of the segment descriptor of the destination code segment. 

The DPL field of the gate descriptor determines from which privilege levels the gate may 
be used. One code segment can have several procedures which are intended for use from 
different privilege levels. For example, an operating system may have some services 
which are intended to be used by both the operating system and application software, 
such as routines to handle character I/O, while other services may be intended only for 
use by operating system, such as routines which initialize device drivers. 

Gates can be used for control transfers to more privileged levels or to the same privilege 
level (though they are not necessary for transfers to the same level). Only CALL instruc­
tions can use gates to transfer to more privileged levels. A JMP instruction may use a 
gate only to transfer control to a code segment with the same privilege level, or to a 
conforming code segment with the same or a more privileged level. 

For a JMP instruction to a nonconforming segment, both of the following privilege rules 
must be satisfied; otherwise, a general-protection exception is generated. 

MAX (CPL,RPL) :::; gateDPL 
destination code segment DPL = CPL 

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the 
following privilege rules must be satisfied; otherwise, a general-protection exception is 
generated. 

MAX (CPL,RPL) :::; gate DPL 
destination code segment DPL :::; CPL 

6.5.1 Stack Switching 

A procedure call to a more privileged level does the following: 

1. Changes the CPL. 

·2. Transfers control (execution). 

3. Switches stacks. 

6-13 



infel® 

I 

3 
1 

3 
1 

CPL 
DPL 
RPL 

PROTECTION 

CALL GATE 

1 
5 

D 
P 
L 

I 

7 

DESTINATION CODE SEGMENT DESCRIPTOR 

1 
5 7 

D 
P 
L 

I 

CURRENT CODE SEGMENT REGISTER 

I CPL I 

CALL GATE SELECTOR 

I RPL I 
1 

CURRENT PRIVILEGE LEVEL PRIVILEGE 

DESCRIPTOR PRIVILEGE LEVEL CHECK 

REQUESTOR'S PRIVILEGE LEVEL 

o 

0 

Figure 6-7. Privilege Check for Control Transfer with Call.Gate 

6-14 

+4 

+4 

24;0486;6-7 



intel® PROTECTION 

All inner protection rings (privilege levels 0, 1, and 2), have their own stacks for receiv­
ing calls from less privileged levels. If the caller were to provide the stack, and the stack 
was too small, the called procedure might crash as a result of insufficient stack space. 
Instead, less privileged programs are prevented from crashing more privileged programs 
by creating a new stack when a call is made to a more privileged level. The new stack is 
created, parameters are copied from the old stack, the contents of registers are saved, 
and execution proceeds normally. When the procedure returns, the contents of the saved 
registers restore the original stack. A complete description of the task switching mecha­
nism is provided in Chapter 7. 

The processor finds the space to create new stacks using the task state segment (TSS), as 
shown in Figure 6-8. Each task has its own TSS. The TSS contains initial stack pointers 
for tl:J.e inner protection rings. The operating system is responsible for creating each TSS 
and initializing its stack pointers. An initial stack pointer consists of a segment selector 
and an initial value for the ESP register (an initial offset into the segment). The initial 
stack pointers are strictly read-only values. The processor does not change them while 
the task runs. These stack pointers are used only to create new stacks when calls are 
made to more privileged levels. These stacks disappear when the called procedure 
returns. The next time the procedure is called, a new stack is created using the initial 
stack pointer. 
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Figure 6-8. Initial Stack Pointers in a TSS 
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When a call gate is used to change privilege levels, a new stack is cr:eated by loading an 
address from the TSS. The processor uses the DPL of the destination code segment (the 
new CPL) to select the initial stack pointer for privilege level 0, 1, or 2. 

The DPL of the new stack segment must equal the new CPL; if not, a stack-fault excep­
tion is generated. It is the responsibility of the operating system to create stacks and 
stack-segment descriptors for all privilege levels which are used. The. stacks must be 
read/write as specified in the Type field of their segment descriptors. They must. contain 
enough space, as specified in the Limit field, to hold the contents of the SS and ESP 
registers, the return address, and the parameters and temporary variables required by 
the called procedure. 

As with calls within a privilege level, parameters for the procedure are placed on the 
stack. The parameters are copied to the new stack. The parameters can be accessed 
within the called procedure using the same relative addresses which would have been 
used if no stack switching had occurred. The count field of a call gate tells the processor 
how many doublewords (up to 31) to copy from the caller's stack to the stack of the 
called procedure. If the count is 0, no parameters are- copied. 

If more than 31 doublewords of data need to be passed to the called procedure, one of 
the parameters can be a pointer to a data structure, or the saved contents of the SS and 
ESP registers may be used to access parameters in the old stack space. 

The processor performs the following stack-related steps in executing a procedure call 
between privilege levels. 

1. The stack of the called procedure is checked to make certain it is large enough to 
hold the parameters and the saved contents of registers; if not, a stack exception is 
generated. 

2. The old contents of the SS and ESP registers are pushed onto the stack of the called 
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the 
zero-extended upper word is Intel reserved; do not use). 

3. The parameters are copied from the stack of the caller to the stack of the called 
procedure. 

4. A pointer to the instruction after the CALL instruction (the old contents of the CS 
and EIP registers) is pushed onto the new stack. The contents of the SS and ESP 
registers after the call point to this return pointer on the stack. 

Figure 6-9 illustrates the stack frame before, during, and after a successful interlevel 
procedure call and return. 

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure 
at privilege level 3 cannot be called by a less privileged procedure. The stack for privilege 
level 3 is preserved by the contents of the SS and ElP registers which have been saved on 
the stack of the privilege level called from level 3. 
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A call using a call gate does not check the values of the words copied onto the new stack. 
The called procedure should check each parameter for validity. A later section discusses 
how the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check 
pointer values. 

6.5.2 Returning from a Procedure 

The "near" forms of the RET instruction only transfer control within the current code 
segment, therefore are subject only to limit checking. The offset to the instruction fol­
lowing the CALL instruction is popped from the stack into the EIP register. The proces­
sor checks that this offset does not exceed the limit of the current code segment. 

The "far" form of the RET instruction pops the return address which was pushed onto 
the stack by an earlier far CALL instruction. Under normal conditions, the return 
pointer is valid, because it was generated by a CALL or INT instruction. Nevertheless, 
the processor performs privilege checking because of the possibility that the current 
procedure altered the pointer or failed to maintain the stack properly. The RPL of the 
code-segment selector popped off the stack by the return instruction should have the 
privilege level of the calling procedure. 
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A return to another segment can change privilege levels, but only toward less privileged 
levels. When a RET instruction encounters a saved CS value whose RPL is numerically 
greater than the CPL (less privileged level), a return across privilege levels occurs. A 
return of this kind performs these steps: 

1. The checks shown in Table 6-2 are made, and the CS, EIP, SS, and ESP registers 
are loaded with their former values, which were saved on the stack. 

2. The old contents of the SS and ESP registers (from the top of the current stack) are 
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP 
value is not checked against the limit of the stack segment. If the ESP value is 

Table 6·2. Interlevel Return Checks 

Type of Check Exception Type Error Code 

top-of-stack + 7 must be within stack seg- stack 0 
ment limit, 

RPL of return code segment must be protection Return CS 
greater than the CPL 

Return code segment selector must be protection ' Return CS 
non-null 

Return code segment descriptor must be protection Return CS 
within descriptor table limit 

Return segment descriptor must be a protection Return CS 
code segment 

Return code segment is present segment not present Return CS 

DPL of return non-conforming code seg- protection Return CS 
ment must equal RPL of return code seg-
ment selector, or DPL of return conforming 
;code segment must be less than or equal 
to RPL of return code segment selector 

ESP + N + 15* must be within the stack stack fault 0 
segment limit 

segment selector at ESP + N + 12* must protection Return SS 
be non-null 

segment descriptor at ESP + N + 12* protection Return SS 
must be Within descriptor table limit 

stack segment descript~r must be read/ protection Return SS 
write 

stack segment must be present not present Return SS 
stack fault 

, old stack segment DPL must b,e equal to protection Return SS 
RPL of old code segment 

old stack segment selector must have an protection Return SS 
RPL equal to the DPL of the old stack 
segment 

*N is the value of the immediate operand supplied with the RET instruction. 
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beyond the limit, that fact is not recognized until the next stack operation. (The 
contents of the SS and ESP registers for the returning procedure are not preserved; 
normally, their values are the same as those contained in the TSS.) 

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of 
these registers refer to segments whose DPL is less than the new CPL (excluding 
conforming code segments), the segment register is loaded with the null selector 
(Index = 0, TI = 0). The RET instruction itself does not signal exceptions in these 
cases; however, any subsequent memory reference using a segment register contain­
ing the null selector will cause a general-protection exception. This prevents less 
privileged code from accessing more privileged segments using selectors left in the 
segment registers by a more privileged procedure. 

6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM 

Instructions which can affect the protection mechanism or influence general system per­
formance can only be executed by trusted procedures. The Intel486 processor has two 
classes of such instructions: 

1. Privileged instructions - those used for system control. 

2. Sensitive instructions - those used for I/O and I/O-related activities. 

6.6.1 Privileged Instructions 

The instructions which affect protected facilities can be executed only when the CPL is 0 
(most privileged). If one of these instructions is executed when the CPL is not 0, a 
general-protection exception is generated. These instructions include: 

CLTS 
HLT 
INVD 
INVLPG 
LGDT 
LIDT 
LLDT 
LMSW 
LTR 
MOV to/from CRO 
MOV to/from DRn 
MOV to/from TRn 
WBlNVD 

6.6.2 Sensitive Instructions 

- Clear Task-Switched Flag 
- Halt Processor 
- Invalidate Cache 
- Invalidate TLB Entry 
- Load GDT Register 
- Load IDT Register 
- Load LDT Register 
-Load Machine Status Word 
- Load Task Register 
- Move to Control Register 0 
- Move to Debug Register n 
- Move to Test Register n 
- Write Back and Invalidate Cache 

Instructions which deal with I/O need to be protected, but they also need to be used by 
procedures executing at privilege levels other than 0 (the most privileged level). The 
mechanisms for protection of I/O operations are covered in detail in Chapter 8. 
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6.7 INSTRUCTIONS FOR POINTER VALIDATION 

Pointer validation is necessary for maintaining isolation between privilege levels. It con­
sists of the following steps: 

1. . Check if the supplier of the pointer is allowed to access the segment. 

2. Check if the segment type is compatible with its use. 

3. Check if the pointer offset exceeds the segment limit. 

Although the Intel486 processor automatically performs checks 2 and 3 during instruc­
tion execution, software must assist in performing the first check. The ARPL instruction 
is provided for this purpose. Software also can use steps 2 and 3 to check for potential 
violations, rather than waiting for an exception to be generated. The LAR, LSL, VERR, 
and VERW instructions are provided for this purpose. 

An additional check, the aligmhent check, can be applied in user mode. When both the 
AM bit in CRO and the AC flag are set, unaligned memory references generate excep­
tions. This is useful for programs which use the low two bits of pointers to identify the 
type of data structure they address. For example, a subroutine in a math library may 
accept pointers to numeric data structures. If the type of this structure is assigned a code 
of 10 (binary) in the lowest two bits of pointers to this type, math subroutines can correct 
for the type code by adding a displacement of -10 (binary). If the subroutine should 
ever receive the wrong pointer type, an unaligned reference would be produced, which 
would generate an exception .. Alignment checking accelerates the processing of pro­
grams written in symbolic-processing (i.e., Artificial Intelligence) languages such as Lisp, 
Prolog, Small talk, and C++. It can be used to speed up pointer tag type checking. 

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a 
compatible privilege level and type. The LAR instruction has one operand - a segment 
selector for a descriptor whose access rights are to be checked. The segment descriptor 
must be readable at a privilege level which is numerically greater (less privileged) than 
the CPL and the selector's RPL. If the descriptor is readable, the LAR instruction gets 
the second doubleword of the descriptor, masks this value with OOFxFFOOH, stores the 
result into the specified 32-bit destination register, and sets the ZF flag. (The x indicates 
that the corresponding four bits of the stored value are undefined.) Once loaded, the 
access rights can be tested. All valid descriptor types can be tested by the LAR instruc­
tion. If the RPL or CPL is greater than the DPL, or if the segment selector would exceed 
the limit for the descriptor table, no access rights are returned, and the ZF flag is 
cleared. Conforming code segments may be accessed from any privilege level. 

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If 
the descriptor referenced by the segment selector (in memory or a register) is readable 
at the CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte 
granular limit calculated from the concatenated limit fields and the G bit of the descrip­
tor. This only can be done for descriptors which describe segments (data, code, task 
state, and local descriptor tables); gate descriptors are inaccessible. (Table 6-3 lists in 
detail which types are valid and which are not.) Interpreting the limit is a function of the 
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Table 6-3. Valid Descriptor Types for LSL Instruction 

Type Code Descriptor Type Valid? 

0 reserved no 

1 reserved no 

2 LOT yes 

3 reserved no 

4 reserved no 

5 Task Gate no 

6 reserved no 

7 reserved no 

8 reserved no 

9 Available InteI486'" CPU TSS yes 

A reserved no 

B Busy Intel486 CPU TSS yes 

C Intel486 CPU Call Gate no 

0 reserved no 

E Intel486 CPU Interrupt Gate no 

F Intel486 CPU Trap Gate no 

segment type. For example, downward-expandable data segments (stack segments) treat 
the limit differently than other kinds of segments. For both the LAR and LSL instruc­
tions, the ZF flag is set if the load was successful; otherwise, the ZF flag is cleared. 

6.7.1 Descriptor Validation 

The Intel486 processor has two instructions, VERR and VERW, which determine 
whether a segment selector points to a segment which can be read or written using the 
CPL. Neither instruction causes a protection fault if the segment cannot be accessed. 

VERR (Verify for Reading) verifies a segment for reading and sets the ZF flag if that 
segment is readable using the CPL. The VERR instruction checks the following: 

• The segment selector points to a segment descriptor within the bounds of the GDT or 
an LDT. 

• The segment selector indexes to a code or data segment descriptor. 

• The segment is readable and has a compatible privilege level. 

The privilege check for data segments and nonconforming code segments verifies that 
the DPL must be a less privileged level than either the CPL or the selector's RPL. 
Conforming segments are not checked for privilege level. 

VERW (Verify for Writing) provides the same capability as the VERR instruction for 
verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag 
if the segment can be written. The instruction verifies the descriptor is within bounds, is 
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a segment descriptor, is writable, and has a DPL which is a less privileged level than 
either the CPL or the selector's RPL. Code segments are never writable, whether con­
forming or not. 

6.7.2 Pointer Integrity and RPL 

The requestor's privilege level (RPL) can prevent accidental use of pointers which crash 
more privileged code from a less privileged level. 

A common example is a file system procedure, FREAD (fileJd, ILbytes, buffeLptr). 
This hypothetical procedure reads data from a disk file into a buffer, overwriting what~ 
ever is already there. It services requests from programs operating at the application 
level, but it must run in a privileged mode in order to read from the system I/O buffer. If 
the application program passed this procedure a bad ,buffer pointer, one which pointed 
at critical code or data in a privileged address space, the procedure could cause damage 
which would crash the system. ' 

Use of the RPL can avoid this problem. The RPL allows a privilege override to be 
assigned to a selector. This privilege override is intended to be the'privilege level of the 
code segment which generated the segment selector. In the above example, the RPL 
would be the CPL of the application program which called the system level procedure. 
The Intel486 processor automatically checks any segment selector loaded into a segment 
register to determine whether its RPL allows access. 

To take advantage of the processor's checking of the RPL, the called procedure need 
only check that all segment selectors passed to it have an RPL for the same or a less 
privileged level as the original caller's CPL. This guarantees that the segment selectors 
are not more privileged than their source. If a selector is used to access a segment which 
the source would not be able to access directly, i.e. the RPL is less privileged than the 
segment's DPL, a general-protection exception is generated when the selector is loaded 
into a segment register. 

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector'to 
be the larger (less privileged) of its original value and the value of the RPLfield for a 
segment selector stored in a general register. The RPL fields are the two least significant 
bits of the segment selector and the register. The latter normally isa copy of the caller's 
CS register on the stack. If the adjustment changes the selector's RPL, the ZF flag is set; 
otherwise, the ZF flag is cleared; " ' 

6.8 PAGE~LEVEL PROTECTION 

Protection applies to both segments and pages. When .the flat model for memory s'eg­
mentation has been used, page-level protection prevents programs from interfering with 
each other. ' 
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Each memory reference is checked to verify that it satisfies the protection checks. All 
checks are made before the memory cycle is started; any violation prevents the cycle 
from starting and results in an exception. Because checks are performed in parallel with 
address translation, there is- no performance penalty. There are two page-level protec-­
tion checks: 

1. Restriction of addressable domain. 

2. Type checking. 

A protection violation results in an exception. See Chapter 9 for an explanation of the 
exception mechanism. This chapter describes the protection violations which lead to 
exceptions. 

6.8.1 Page-Tabl~ Entries Hold Protection Parameters 

Figure 6-10 highlights the fields of a page table entry which control access to pages. The 
protection checks are applied for both first- and second-level page tables. 

6.8.1.1 RESTRICTING ADDRESSABLE DOMAIN 

Privilege is interpreted differently for pages and segments. With segments, there are four 
privilege levels, ranging from 0 (most privileged) to 3 (least privileged). With pages, 
there are two levels of privilege: . 

1. Supervisor level (U/S=O)-for the operating system, other system software (such as 
device drivers), and protected system data (such as page tables). 

2. User level (U/S = 1) - for application code and data. 

The privilege levels used for segmentation are mapped into the privilege levels used for 
paging. If the CPL is 0, 1, or 2, the processor is running at supervisor level. If the CPL is 
3, the processor is running at user level.When the processor is running at supervisor 
level, all pages are accessible. When the processor is running at user level, only pages 
from the user level are accessible. . 

31 12 11 0 

~gl~I~I~~ 
RIW READIWRITE 
U/S USER/SUPERVISOR 

240486i6·10 

Figure 6-10. Protection Fields of a Page Table Entry 
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6.8.1.2 TYPE CHECKING 

Only two types of pages are recognized by the protection mechanism: 

1. Read-only access (R/W = 0). 

2. Read/write access (R/W = 1). 

When the processor is running at supervisor level with the WP bit in the CRO register 
clear (its state following reset initialization), all pages are both readable and writable 
(write-protection is ignored). When the processor is running at user level, only pages 
which belong to user level and are marked for read/write access are writable. User-level 
pages which are read/write or read-only are readable. Pages from the supervisor level are 
neither readable nor writable from user level. A general-protection exception is gener­
ated on any attempt to violate the protection rules. 

Unlike the Intel386 DX processor, the Intel486 processor allows user-mode pages to be 
write-protected against supervisor mode access. Setting the WP bit in the CRO register 
enables supervisor~mode sensitivity to user-mode, write-protected pages. This feature is 
useful for implementing the copy-on-write strategy used by some operating systems, such 
as UNIX, for task creation (also called forking. or spawning). 

When a new task is created, it is possible to copy the entire address space of the parent 
task. This gives the child task a complete, duplicate set of the parent's segments and 
pages. The copy~on-write strategy saves memory space and time by mapping the child's 
segments and pages to the same segments and pages used by the parent task. A private 
copy of a page gets created only when one of the tasks writes to the page. 

6.8.2 Combining Protection of Both Levels of Page Tables 

For anyone page, the protection attributes of its page directory entry (first-level page 
table) may differ from those of its second-level page table entry. The Intel486 processor 
checks the protection for a page by examining the protection specified in both the page 
directory (first-level page table) and the second-level page table. Table 6-4 shows the 
protection provided by the possible combinations of protecti()n attributes when the WP 
bit is clear. 

6.8.3 Overrides to Page Protection 

Certain accesses are checked as if they are privilege-level 0 accesses, for any value 
of CPL: 

• Access to segment descriptors (LDT, GDT, TSS and IDT). 

• Access to inner stack during a CALL instruction, or exceptions and interrupts, when 
a change of privilege level occurs. 
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Table 6-4. Combined Page Directory and Page Table Protection 

Page Directory Entry Page Table Entry Combined Effect 

Privilege Access Type Privilege Access Type Privilege Access Type 

User Read-Only User Read-Only User Read-Only 
User Read-Only User Read-Write User Read-Only 
User Read-Write User Read-Only User Read-Only 
User Read-Write User Read-Write User Read/Write 
User Read-Only Supervisor Read-Only Supervisor Read/Write 
User Read-Only Supervisor Read-Write Supervisor Read/Write 
User Read-Write Supervisor Read-Only Supervisor Read/Write. 
User Read-Write Supervisor Read-Write Supervisor Read/Write 
Supervisor Read-Only User Read-Only Supervisor Read/Write 
Supervisor Read-Only User Read-Write Supervisor Read/Write 
Supervisor Read-Write User Read-Only Supervisor Read/Write 
Supervisor Read-Write User Read-Write Supervisor Read/Write 
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write 
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write 
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write 
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write 

6.9 COMBINING PAGE AND SEGMENT PROTECTION 

When paging is enabled, the Intel486 processor first evaluates segment protection, then 
evaluates page protection. If the processor detects a protection violation at either the 
segment level or the page level, the operation does not go through; an exception occurs 
instead. If an exception is generated by segmentation, no paging exception is generated 
for the operation. 

For example, it is possible to define a large data segment which has some parts which are 
read-only and other parts which are read-write. In this case, the page directory (or page 
table) entries for the read-only parts would have the U/S and R/W bits specifying no 
write access for all the pages described by that directory entry (or for individual pages 
specified in the second-level page tables). This technique might be used, for example, to 
define a large data segment, part of which is read-only (for shared data or ROMmed 
constants). This defines a "flat" data space as one large segment, with "flat" pointers 
used to access this "flat" space, while protecting shared data, shared files mapped into 
the virtual space, and supervisor areas. 
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CHAPTER 7 
MULTITASKING 

The Intel486 processor provides hardware support for multitasking. A task is a program 
which is running, or-waiting to run while another program is running. A task is invoked 
by an interrupt, exception, jump, or call. When one of these forms of transferring exe­
cution is used with a destination specified by an entry in one of the descriptor tables, this 
descriptor can be a type which causes a new task to begin execution after saving the state 
of the current task. There are two types of task-related descriptors which can occur in a 
descriptor table: task state segment descriptors and task gates. When execution is passed 
to either kind of descriptor, a task switch occurs. 

A task switch is like a procedure call, but it saves more processor state information. A 
procedure call only saves the contents of the general registers, and it might save the 
contents of only one register (the EIP register). A procedure call pushes the contents of 
the saved registers on the stack, in order that a procedure may call itself. When a 
procedure calls itself, it is said to be re-entrant. 

A task switch transfers execution to a completely new environment, the environment of a . 
task. This requires saving the contents of nearly all the processor registers, such as the 
EFLAGS register. Unlike procedures, tasks are not re-entrant. A task switch does not 
push' anything on the stack. The processor state information is saved in a data structure 
in memory, called a task state segment. 

The registers and data structures which support multitasking are: 

• Task state segment. 

• Task state segment descriptor. 

• Task register. 

• Task gate descriptor. 

With these structures, the Intel486 processor can switch execution from one task to 
another, with the context of the original task saved to allow the task to be restarted. In 
addition to the simple task switch, the Intel486 processor offers two other task­
management features: 

1. Interrupts and exceptions can cause task switches (if needed in the system design). 
The processor not only performs a task switch to handle the interrupt or exception, 
but it automatically switches back when the interrupt or exception returns. Inter­
rupts may occur during interrupt tasks. 

2. With each switch to another task, the Intel486 processor also can switch to another 
LDT. This can be used to give each task a different logical-to-physical address map­
ping. This is an additional protection feature, because tasks can be isolated and 
prevented from interfering with one another. The PDBR register also is reloaded. 
This allows the paging mechanism to be used to enforce the isolation between tasks. 
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Use of the multitasking mechanism is optional. In some applications, it may not be the 
best way to manage program execution. Where extremely fast response to interrupts is 
needed, the time required to save the processor state may be too great. A possible 
compromise in these situations is to use the task-related data structures, but perform 
task switching in software. This allows a smaller processor state to be saved. This .tech~ 
nique can be one of the optimizations used to enhance system performance after the 
basic functions of a system 'have been implemented. 

7.1 TASK STATE SEGMENT 

The processor state information needed to restore a task is saved in a type of.segment, 
called a task state segment or TSS. Figure 7-1 shows the format of a TSS for an Intel486 
CPU task (compatibility with 80286 tasks is provided by a different, kind, of TSS; see 
Chapter 21). The fields of a TSS are divided into two main categories: 

1. Dynamic fields the processor updates with each task switch. These fields store: 

'. The general registers (EAX, ECX, EDX, EBX; ESP, EBP, ESI, and EDI)., 

• The segment registers (ES, CS, SS, DS, FS, and OS). 
,. The flags register (EFLAOS). 

• The instruction pointer (EIP). 

• The selector for the TSS of the previous task (updated only when a return is 
expected). 

2. Static fields the processor reads, but does not change. These fields are set up when 
a task is created. These fields store: 

• The selector for the task's LDT. 
• The logical address of the stacks for privilege levels 0, 1, and 2. 

• The T-bit (debug trap bit) which, when set, causes the processor to raise a debug 
exception when a task switch occurs. (See Chapter 11 for more information on 
debugging.) , ' . 

• The base address for the I/O permission bit map~ If present, this map is stored in 
the TSS at higher addresses. The base address points to the beginning of the 
map. (See Chapter 8 for more information about the I/O permission bit map.) 

" ' 

If paging is used, it is important to avoid placing a page boundary within the part of the 
TSS which is read by the processor during a task switch (the first 108bytes), Ifa page 
boundary is placed within this part of the TSS, the pages on either side of the boundary 
must be present at the same time. In addition, if paging is used, the pages corresponding 
to the old task's TSS, the new task's TSS, and the descriptor table entriesior each 
should be marked as present and read/write. It is an unrecoverable error to receive a 
page fault or general-protection exception after the processor has started to rea.d the 
TSS. 
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31 15 

110 MAP BASE ADDRESS 000000000000000 

0000000000000000 SELECTOR FOR TASK'S LDT 

0000000000000000 GS 

0000000000000000 FS 

0000000000000000 DS 

0000000000000000 SS 
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0000000000000000 SS2 
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NOTE: BITS MARKED AS 0 ARE RESERVED. DO NOT USE. 

Figure 7-1. Task State Segment 
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7.2 TSS DESCRIPTOR 

The task state segment, like all other segments, is defined by a descriptor. Figure 7-2 
shows the format of a TSS descriptor. 

The Busy bit in the Type field indicates whether the task is busy. A busy task is currently 
running or waiting to run. A Type field with a value of 9 indicates an inactive task; a 
value of 11 (decimal) indicates a busy task. Tasks are not recursive. The Intel486 pro­
cessor uses the Busy bit to detect an attempt to call a task whose execution has been 
interrupted. 

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions 
similar to their use in data-segment descriptors. The Limit field must have a value equal 
to or greater than 67H, one byte less than the minimum size of a task state. An attempt 
to switch to a task whose TSS descriptor has a limit less than 67H generates an excep­
tion. A larger limit is required if an I/O permission map is used. A larger limit also may 
be required for the operating system, if the system stores additional data in the TSS. 

A procedure with access to a TSS descriptor can cause a task switch. In most systems, 
the DPL fields of TSS descriptors should be clear, so only privileged software can per­
form task switching. 

Access to a TSS descriptor does not give a procedure the ability to read or modify the 
descriptor. Reading and modification only can be done using a data descriptor mapped 

3 
1 
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TSS DESCRIPTOR 

2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
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BASE SEGMENT BASE ADDRESS 
DPL DESCRIPTOR PRIVILEGE LEVEL 
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LIMIT SEGMENT LIMIT 
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TYPE SEGMENT TYPE 

Figure 7"2. TSS Descriptor 
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to the same location in memory. Loading a TSS descriptor into a segment register gen­
erates an exception. TSS descriptors only may reside in the GDT. An attempt to access 
a TSS using a selector with a set TI bit (which indicates the current LDT) generates an 
exception. 

7.3 TASK REGISTER 

The task register (TR) is used to find the current TSS. Figure 7-3 shows the path by 
which the processor accesses the TSS. 

The task register has both a "visible" part (i.e., a part which can be read and changed by 
software) and an "invisible" part (i.e., a part maintained by the processor and inaccessi­
ble to software). The selector in the visible portion indexes to a TSS descriptor in the 
GDT. The processor uses the invisible portion of the TR register to retain the base and 
limit values from the TSS descriptor. Keeping these values in a register makes execution 
of the task more efficient, because the processor does not need to fetch these values 
from memory to reference the TSS of the current task. 

The LTR and STR instructions are used to modify and read the visible portion of the 
task register. Both instructions take one operand, a 16-bit segment selector located in 
memory or a general register. 

LTR (Load task register) loads the visible portion of the task register with the operand, 
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the 
invisible portion with information from the TSS descriptor. The LTR instruction is a 
privileged instruction; it may be executed only when the CPL is O. The LTR instruction 
generally is used during system initialization to put an initial value in the task register; 

. afterwards, the contents of the TR register are changed by events which cause a task 
switch. 

STR (Store task register) stores the visible portion of the task register in a general 
register or memory. The STR instruction is privileged. 

7.4 TASK GATE DESCRIPTOR 

A task gate descriptor provides an indirect, protected reference to a task. Figure 7-4 
illustrates the format of a task gate. 

The Selector field of a task gate indexes to a TSS descriptor. The RPL in this selector is 
not used. 

The DPL of a task gate controls access to the descriptor for a task switch. A procedure 
may not select a task gate descriptor unless the selector's RPL and the CPL of the 
procedure are numerically less than or equal to the DPL of the descriptor. This prevents 
less privileged procedures from causing a task switch. (Note that when a task gate is 
used, the DPL of the destination TSS descriptor is not used.) 
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Figure 7-3. TR Register 
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A procedure with access to a task gate can cause a task switch, as can a procedure with 
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy 
three needs: 

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the 
TSS descriptor, each task should have only one such descriptor. There. may, how­
ever, be several task gates which select a single TSS descriptor. 

2. The need to provide selective access to tasks. Task gates fill this need, because they 
can reside in an LDT and can have a DPL which is different from the TSS descrip­
tor's DPL. A procedure which does not have sufficient privilege to use the TSS 
descriptor in the GDT (which usually has a DPL of 0) can still call another task if it 
has access to a task gate in its LDT. With task gates, the operating system can limit 
task switching to specific tasks. 

3. The need for an interrupt or exception to cause a task switch. Task gates also may 
reside in the IDT, which allows interrupts and exceptions to cause task switching. 
When an interrupt or exception supplies a vector to a task gate, the Intel486 proces­
sor switches to the indicated task. 

Figure 7-5 illustrates how both a task gate in an LDT and a task gate in the IDT can 
identify the same task. 
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Figure 7-5. Task Gates Reference Tasks 

7.5 TASK SWITCHING 

TASK STATE 
SEGMENT 

The Inte1486 processor transfers execution to another task in any of four cases: 

1. The current task executes a JMP or CALL to a TSS descriptor. 

2. The current task executes a JMP or CALL to a task gate. 

3. An interrupt or exception indexes to a task gate in the lOT. 

4. The current task executes an lRET when the NT flag is set. 

240486;7-5 

The JMP, CALL, and lRET instructions, as well as interrupts and exceptions, are all 
ordinary mechanisms of the Inte1486 processor which can be used in circumstances in 
which no task switch occurs. The descriptor type (when a task is called) or the NT flag 
(when the task returns) make the difference between the standard mechanism and the 
form which causes a task switch. 
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To cause a task switch, a JMP or CALL instruction can transfer execution to either a 
TSS descriptor or a task gate. The effect is the same in either case: the Intel486 proces­
sor transfers execution to the specified task. 

An exception or interrupt causes a task switch when it indexes to a task gate in the IDT. 
If it indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See 
Chapter 9 for more information on the interrupt mechanism. 

An interrupt service routine always returns execution to the interrupted procedure, 
which may be in another task. If the NT flag is clear, a normal return occurs. If the NT 
flag is set, a task switch occurs. The task receiving the task switch is specified by the TSS 
selector in the TSS of the interrupt service routine. 

A task switch has these steps: 

1. Check that the current task is allowed to switch to the new task. Data-access privi­
lege rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and 
the task gate must be numerically greater (e.g., lower privilege level) than or equal 
to both the CPL and the RPL of the gate selector. Exceptions, interrupts, and IRET 
instructions are permitted to switch tasks regardless of the DPL of the destination 
task gate or TSS descriptor. 

2. Errors restore any changes made in the processor state when an attempt is made to 
execute the error-generating instruction. This lets the return address for the excep­
tion handler point to the error-generating instruction, rather than the instruction 
following the error-generating instruction. The exception handler can fix the condi­
tion which caused the error, and restart the task. The intervention of the exception 
handler can be completely transparent to the application program. 

3. Save the state of the current task. The processor finds the base address of the 
current TSS in the task register. The processor registers are copied into the current 
TSS (the EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS, 
and EFLAGS registers). 

4. Load the TR register with the selector to the new task's TSS descriptor, set the new 
task's Busy bit, and set the TS bit in the CRO register. The selector is either the 
operand of a JMP or CALL instruction, or it is taken from a task gate. 

5. Load the new task's state from its TSS and continue execution. The registers loaded 
are the LDTR register; the EFLAGS register; the general registers EIP, EAX, 
ECX, ED X, EBX, ESP, EBP, ESI, ED!; and the segment registers ES, CS, SS, DS, 
FS, and GS. Any errors detected in this step occur in the context of the new task. To 
an exception handler, the first instruction of the new task appears not to have 
executed. 

Note that the state of the old task is always saved when a task switch occurs. If the task 
is resumed, execution starts with the instruction which normally would have been next. 
The registers are restored to the values they held when the task stopped running. 
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Every task switch sets the TS (task switched) bit in the CRO register. The TS bit is useful 
to system software for coordinating the operations of the integer unit with the floating­
point unit or a coprocessor. The TS bit indicates that the context of the floating"point 
unit or coprocessor may be different from that of the current task. Chapter 10 discusses 
the TS bit and coprocessors in more detail. 

Exception service routines for exceptions caused by task switching (exceptions resl,llting 
from steps 5 through 17 shown in Table 7-1) may be subject to recursive calls ifthey 
attempt to reload the segment selector which generated the exception. The cause of the 
exception (or the first of multiple causes) should be fixed before reloading the selector. 

The privilege level at which the old task was running has no relation to the privilege level 
of the new task. Because the tasks are isolated by their separate address spaces and task 
state segments, and because privilege rules control access to a TSS, no privilege checks 
are needed to perform a task switch. The new task begins executing at the privilege level 
indicated by the RPL of new contents of the CS register, which are loaded from the TSS. 

7.6 TASK LINKING 

The Link field of the TSS and the NT flag are used to return execution to the previous 
task. The NT flag indicates whether the currently executing task is nested within the 
execution of another task, and the Link field of the current task's TSS holds the TSS 
selector for the higher-level task, if there is one (see Figure 7-6). 

When an interrupt, exception,jump, or call ca~ses a task switch, the Intel486 processor 
copies the segment selector for the current task state segment into the TSS for the new 
task and sets the NT flag. The NT flag indicates the Link field of the TSS has been 
loaded with a saved TSS selector. The new task releases control by executing an IRET 
instruction. When an IRET instruction is executed, the. NT flag is checked. If it is set, 
the processor does a task switch to .the previous task. Table 7:2 summarizes the uses of 
the fields in a TSS. which are affected by task switching. . 

Note that the NT flag may be modified by software executing at any privilege level. It is 
possible for a program to set its NT bit and execute an IRET instruction, which. would 
have the effect of invoking the task specified in the Link field of the current task's TSS. 
To keep spurious task switches from succeeding, the operating system should initialize 
the Link field of every TSS it creates. 

7.6.1 Busy Bit Prevents Loops 

The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one 
saved task context, the context saved in the TSS, therefore a task only may be called 
once before it terminates. The chain of suspended tasks may grow to any length, due to 
multiple interrupts, exceptions, jumps, and calls. The Busy bit prevents a task frornbeing 
called if it is in this chain: A re-entrant task switch would overwrite the old TSS for the 
task, which would break the chain. 
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Table 7-1. Checks Made during a Task Switch 

Step Condition Checked Exception1 Error Code Reference 

1 TSS descriptor is present in NP New Task's TSS 
memory 

2 TSS descriptor is not busy GP, IRET, TS, Task's backlink TSS 
Jmp callint. 

3 Registers are loaded from the values in the TSS 

4 TSS segment limit greater TS New Task's TSS 
than or equal to 108 

5 LDT selector of new task is TS New Task's TSS 
valid2 

6 Code segment DPL matches TS New Code Segment 
selector RPL 

7 SS selector is valid2 TS New Stack Segment 

8 Stack segment is present in SF New Stack Segment 
memory 

9 Stack segment DPL matches TS Stack not present 
CPL 

10 LDT of new task is present in TS New Task's TSS 
memory 

11 CS selector is valid2 TS New Code Segment 

12 Code segment is present in NP New Code Segment 
memory 

13 Stack segment DPL matches TS New Stack Segment 
selector RPL 

14 DS, ES, FS, and GS selec- TS New Data Segment 
tors are valid2 

15 DS, ES, FS, and GS seg- TS New Data Segment 
ments are readable 

16 OS, ES, FS, and GS seg- NP New Data Segment 
ments are present in memory 

17 DS, ES, FS, andGS segment TS New Data Segment 
DPL greater than or equal to 
CPL (unless these are con-
forming segments) 

NOTES: Future Intel processors may use a different order of checks. 
1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS exception, 

SF = Stack exception. 
2. A selector is valid if it is in a compatible type of table (e.g., an LDT selector may not be in any table 

except the GDT), occupies an address within the table's segment limit, and refers to a compatible type of 
descriptor (e.g., a selector in the CS register only is valid when it indexes to a descriptor for a code 
segment; the descriptor type is specified in its Type field). 
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TOP LEVEL NESTED MORE DEEPLY CURRENTLY 
TASK TASK NESTED EXECUTING 

TASK TASK 

, TSS TSS TSS EFLAGS 

I NT = 1 

NT = 0 NT = 1 NT = 1 
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Figure 7-6. Nested Tasks 

Table 7-2. Effect of a Task Switch on Busy, NT, and Link Fields 

Effect of CALL 
Effect of IRET 

Field Effect of Jump Instruction or 
Instruction 

Interrupt 

Busy bit of new task Bit is set. Must have Bit is set. Must have No change., Must be 
been clear before. been clear before. set. 

Busy bit of old task Bit is Cleared. No change. Bit is cur- Bit is cleared. 
rently set. 

NT flag of new task No change. Flag is set. No change. 

NT flag of old task No change. No change. Flag is cleared. 

Link field of new. task. No change. Loaded with selector No change. 
for 91d task's TSS. 

Link field of 'old task. No change. No change. No change. 
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The processor manages the Busy bit as follows: 

1. When switching to a task, the processor sets the Busy bit of the new task. 

2. When switching from a task, the processor clears the Busy bit of the old task if that 
task is not to be placed in the chain (i.e., the instruction causing the task switch is a 
JMP or IRETinstruction). If the task is placed in the chain, its Busy bit remains set. 

3. When switching to a task, the processor generates a general-protection exception if 
the Busy bit of the new task already is set. 

In this way, the processor prevents a task from switching to itself or to any task in the 
chain, which prevents re-entrant task switching. 

The Busy bit may be used in multiprocessor configurations, because the processor 
asserts a bus lock when it sets or clears the Busy bit. This keeps two processors from 
invoking the same task at the same time. (See Chapter 13 for more information on 
multiprocessing. ) 

7.6.2 Modifying Task Linkages 

Modification of the chain of suspended tasks may be needed to resume an interrupted 
task before the task which interrupted it. A reliable way to do this is: 

1. Disable interrupts. 

2. First change the Link field in the TSS of the interrupting task, then clear the Busy 
bit in the TSS descriptor of the task being removed from the chain. 

3. Re-enable interrupts. 

7.7 TASK ADDRESS SPACE 

The LDT selector and PDBR (CR3) field of the TSS can be used to give each task its 
own LDT and page tables. Because segment descriptors in the LDTs are the connections 
between tasks and segments, separate LDTs for each task can be used to set up individ­
ual control over these connections. Access to any particular segment can be given to any 
particular task by placing a segment descriptor for that segment in the LDT for that task. 
If paging is enabled; each task can have its own set of page tables for mapping linear 
addresses to physical addresses. 

It also is possible for tasks to have the same LDT. This is a simple and memory-efficient 
way to allow some tasks to communicate with or control each other, without dropping 
the protection barriers for the entire system. 

Because all tasks have access to the GDT, it also is possible to create shared segments 
accessed through segment descriptors in this table. 
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7.7.1 Task Linear-to-Physical Space Mapping 

The choices for arranging the linear-to-physical mappings of tasks fall into two general 
classes: 

1. One linear-to-physical mapping shared among all tasks. When paging is not enabled, 
this is the only choice. Without paging, all linear addresses map to the same physical 
addresses. When paging is enabled, this form of linear-to-physical mapping is 
obtained by using one page directory for all tasks. The linear space may exceed the 
available physical space if demand-paged virtual memory is supported. 

2. Independent linear-to-physical mappings for each task. This form of mapping comes 
from using a different page directory for each task. Because the PDBR (page direc­
tory base register) is loaded from the TSS with each task switch, each task may have 
a different page directory. 

The linear address spaces of different tasks may map to completely distinct physical 
addresses. If the entries of different page directories point to different page tables and 
the page tables point to different pages of physical memory, then the tasks do not share 
any physical addresses. 

The task state segments must lie in a space accessible to all tasks so that the mapping of 
TSS addresses does not change while the processor is reading and updating the TSSs 
during a task switch. The linear space mapped by the GDT also should be mapped to a 
shared physical space; otherwise, the purpose of the GDT is defeated. Figure 7-7 shows 
how the linear spaces of two tasks can overlap in the physical space by sharing page 
tables. 

7.7.2 Task Logical Address Space 

By itself, an overlapping linear-to-physical space mapping does not allow sharing of data 
among tasks. To share data, tasks must also have a common logical-to-linear space map­
ping; i.e., they also must have access to descriptors which point into a shared linear 
address space. There are three ways to create shared logical-to-physical address-space 
mappings: 

1. Through the segment descriptors in the GDT. All tasks have access to the descrip­
tors in the GDT. If those descriptors point into a linear-address space which is 
mapped to a common physical-address space for all tasks, then the tasks can share 
data and instructions. 

2. Through shared LDTs. Two or more tasks can use the same LDT if the LDT selec­
tors in their TSSs select the same LDT for use in address translation. Segment 
descriptors in the LDT addressing linear space mapped to overlapping physical 
space provide shared physical memory. This method of sharing is more selective 
than sharing by the GDT; the sharing can be limited to specific tasks. Other tasks in 
the system may have different LDTs which do not give them access to the shared 
areas. 
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3. Through segment descriptors in the LDTs which map to the same linear address 
space. If the linear address space is mapped to the same physical space by the page 
mapping of the tasks involved, these descriptors permit the tasks to share space. 
Such descriptors are commonly called "aliases." This method of sharing is even 
more selective than those listed above; other descriptors in the LDTs may point to 
independent linear addresses which are not shared. 
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Figure 7-7. Overlapping Linear-to-Physical Mappings 
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CHAPTER 8 
INPUT/OUTPUT 

This chapter expiains the input/output architecture of the Intel486 processor. Input/ 
output is accomplished through I/O ports, which are registers connected to peripheral 
devices. An I/O port can be an input port, an output port, or a bidirectional port. Some 
I/O ports are used for carrying data, such as the transmit and receive registers of a serial 
interface. Other I/O ports are used to control peripheral devices, such as the control 
registers of a disk controller. 

The Intel486 processor always synchronizes I/O instruction execution with external bus 
activity. All previous instructions are completed before an I/O operation begins. In par­
ticular, all writes held pending in: the intel486 CPU write buffers will be completed 
b~fore an I/O read or write is performed. 

The input/output architecture is the programmer's model of how these ports are 
accessed. The discussion of this model includes: 

• Methods of addressing I/O ports. 
e Instructions which perform I/O operations. 

e The I/O protection mechanism. 

8.1 I/O ADDRESSING 

The Intel486 processor allows I/O ports to be addressed in either of two ways: 

• Through a separate I/O address space accessed using I/O instructions. 
• Through memory-mapped I/O, where I/O ports appear in the address space ofphys­

ical memory. 

The use of a separate I/O address space is supported by special instructions and a 
hardware protection mechanism. When memory-mapped I/O is used, the general­
purpose instruction set can be used to access I/O ports, and protection is provided using 
segmentation or paging. Some system designers may prefer to use the I/O facilities built 
into the processor, while others may prefer the simplicity of a single physical address 
space. 

If segmentation or paging is used for protection of the I/O address space, the A VL fields 
in segment descriptors or page table entries may be used to mark pages containing I/O 
as unrelocatable and unswappable. The A VL fields are provided for this kind. of use, 
where a system programmer needs to make an extension to the address translation and 
protection mechanisms. 

Hardware designers use these ways of mapping I/O ports into the address space when 
they design the address decoding circuits of a system. I/O ports can be mapped so that 
they appear in the I/O address space or the address space of physical memory (orboth). 
System programmers may need to discuss with hardware designers the kind of I/O 
addressing they would like to have. 
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8.1.1 I/O Address Space 

The Intel486 processor provides a separate I/O address space, distinct from the address 
space for physical memory, where I/O ports can be placed. The I/O address space con­
sists of21 (64K) individually addressable 8-bit ports; any two consecutive 8-bit ports can 
be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port. Extra bus 
cycles are required if aport crosses the boundary between two doublewords in physical 
memory. 

The M/IO# pin on the Intel486 processor indicates when a bus cycle to the I/O address 
space occurs. When a separate I/O address space is used, it is the responsibility of the 
hardware designer to make use of this signal to select I/O ports rather than memory. In 
fact, the use of the separate I/O address space simplifies the hardware design because 
these ports can be selected by a single signal; unlike other processors, it is not necessary 
to decode a number of upper address lines in order to set up a separate I/O address 
space. 

A program can specify the address of a port in two ways. With an immediate byte 
constant, the program can specify: 

.. 256 8-bit ports numbered 0 through 255. 

• 128 16-bit ports numbered 0, 2, 4, ... , 252, 254. 

• 64 32-bit ports numbered 0, 4, 8, ... , 248, 252. 

Using a value in the DX register, the program can specify: 

• 8-bit ports numbered 0 through 65535. 

• 16-bit ports numbered 0, 2, 4, ... , 65532, 65534. 

.. 32-bit ports numbered 0, 4, 8; ... , 65528, 65532. 

The Intel486 processor can transfer 8, 16, or 32 bits to a device in the I/O space. Like 
words in memory, 16-bit ports should be aligned to even addresses so that all 16 bits can 
be transferred in a single bus cycle. Like doublewords in memory, 32-bit ports should be 
aligned to addresses which are multiples of four. The processor supports data transfers 
to unaligned ports,. but there is a performance penalty because an extra bus cycle must 
be used. 

The IN and OUT instructions move data between a register and a port in the I/O 
address space. The instructions INS and OUTS move strings of data between the mem­
ory address space and ports in the I/O address space. 

I/O port addresses OF8H through OFFH are reserved for use by Intel®. Do not assign I/O 
ports to these addresses. 

The exact order of bus cycles used to access ports which require more than one bus cycle 
is undefined. For example, an OUT instruction which loads an unaligned doubleword 
port at location 2H accesses the word at 4H before accessing the word at 2H. This 
behavior is neither defined, nor guaranteed to remain the same in future Intel products. 
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If software needs to produce a particular order of bus cycles, this order must be specified 
explicitly. For example, to load a word-length port at 4H followed by loading a word port 
at 2H, two word-length instructions must be used, rather than a single doubleword 
instruction. 

Note that although the Intel486 processor automatically masks parity errors for certain 
types of bus cycles, such as interrupt acknowledge cycles, it does not mask parity for bus 
cycles to the I/O address space. Programmers may need to be aware of this behavior as a 
possible source of spurious parity errors. 

8.1.2 Memory-Mapped I/O 

I/O devices may be placed in the address space for physical memory. This is called 
memory-mapped I/O. As long as the devices respond like memory components, they can 
be used with memory-mapped I/O. 

Memory-mapped I/O provides additional programming flexibility. Any instruction which 
references memory may be used to access an I/O port located in the memory space. For 
example, the MOY instruction can transfer data between any register and a port. The 
AND, OR, and TEST instructions may be used to manipulate bits in the control and 
status registers of peripheral devices (see Figure 8-1). Memory-mapped I/O can use the 
full instruction set and the full complement of addressing modes to address I/O ports. 

PHYSICAL MEMORY 

~---------------------'N 

ROM 

INPUT/OUTPUT PORT 

INPUT/OUTPUT PORT 

INPUT/OUTPUT PORT 

RAM 

~ __________________ ~o 
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Figure 8-1. Memory-Mapped I/O 
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To optimize performance, the Intel486 CPU allows reads to be re"ordered ahead of 
buffered writes in certain precisely-defined circumstances. (See the Intel486™ Processor 
Hardware Reference Manual for further details about the operation of the write buffer.) 
Using memory-mapped I/O on the Intel486 CPU therefore creates the possibility that an 
I/O read will be performed before the memory write of a previous instruction. To elim­
inate this possibility, use an I/O instruction for the read. 

Using an I/O instruction for an I/O write can also be advantageous because it guarantees 
that the write will be completed before the next instruction begins execution. If I/O 
writes are used to control system hardware, then this sequence of events is desirable, 
since it guarantees that the next instruction will be executed in the new state. 

If caching is enabled,. either external hardware or the paging mechanism (the PCD bit in 
the page table entry) must be used to prevent caching of I/O data. 

Memory-mapped I/O, like any other memory reference, is subject to access protection 
and control. See Chapter 6 for a discussion of memory protection. 

8.2 I/O INSTRUCTIONS 

The I/O instructions of the Intel486 processor provide access to the processor's I/O ports 
for the transfer of data. These instructions have the address of a port in the I/O address 
space as an operand. There are two kinds of I/O instructions: 

1. Those which transfer a single item (byte, word, or doubleword) to or from a register. 

2. Those which transfer strings of items (strings of bytes, words, or doublewords) 
located in memory. These are known as "string I/O instructions" or "block I/O 
instructions." 

These instructions cause the M/IO# signal to be driven low (logic 0) during a bus cycle, 
which indicates to external hardware that access to the I/O address space is taking place. 
If memory-mapped I/O is used, there is no reason to use I/O instructions. 

8.2.1 Register I/O Instructions 

The I/O instructions IN and OUT move data between I/O ports and the EAX register 
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The IN and 
OUT instructions address I/O ports either directly, with the address of one of 256 port 
addresses coded in the instruction, or indirectly using an address in the DX register to 
select one of 64K port addresses. These instructions synchronize program execution to 
external hardware. The Intel486 processor write buffers are cleared and program execu­
tion delayed until the last ready of the last bus cycle has been returned. 
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IN (Input from Port) transfers a byte, word, or doubleword from an input port to the 
AL, AX, or EAX registers. A byte IN instruction transfers 8 bits from the selected port 
to the AL register. A word IN instruction transfers 16 bits from the port to the AX 
register. A doubleword IN instruction transfers 32 bits from the port to the EAX 
register. 

OUT (Output from Port) transfers a byte, word, or doubleword from the AL, AX, or 
EAX registers to an output port. A byte OUT instruction transfers 8 bits from the AL 
register to the selected port. A word OUT instruction transfers 16 bits from the AX 
register to the port. A doubleword OUT instruction transfers 32 bits from the EAX 
register to the port. 

8.2.2 Block I/O Instructions 

The INS and OUTS instructions move blocks of data between I/O ports and memory. 
Block I/O instructions use an address in the DX register to address a port in the I/O 
address space. These instructions use the DX register to specify: 

• 8-bit ports numbered 0 through 65535. 

o 16-bit ports numbered 0, 2, 4, ... , 65532, 65534. 

o 32-bit ports numbered 0, 4, 8, ... , 65528, 65532. 

Block I/O instructions use either the SI or DI register to address memory. For each 
transfer, the SI or DI register is incremented or decremented, as specified by the DF 
flag. 

The INS and OUTS instructions, when used with repeat prefixes, perform block input or 
output operations. The repeat prefix REP modifies the INS and OUTS instructions to 
transfer blocks of data between an I/O port and memory. These block I/O instructions 
are string instructions (see Chapter 3 for more on string instructions). They simplifY 
programming and increase the speed of data transfer by eliminating the need to use a 
separate LOOP instruction or an intermediate register to hold the data. 

The string I/O instructions operate on byte strings, word strings, or doubleword strings. 
After each transfer, the memory address in the ESI or EDI registers is incremented or 
decremented by 1 for byte operands, by 2 for word operands, or by 4 for doubleword 
operands. The DF flag controls whether the register is incremented (the DF flag is 
clear) or decremented (the DF flag is set). 

INS (Input String from Port) transfers a byte, word, or doubleword string element from 
an input port to memory. The INSB instruction transfers a byte from the selected port to 
the memory location addressed by the ES and EDI registers. The INSW instruction 
transfers a word. The INSD instruction transfers a doubleword. A segment override 
prefix cannot be used to specify an alternate destination segment. Combined with a REP 
prefix, an INS instruction makes repeated read cycles to the port, and puts the data into 
consecutive locations in memory. 
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OUTS (Output String from Port) transfers a byte, word, or doubleword string element 
from memory to an output port. The OUTSB instruction transfers a byte from the mem­
ory location addressed· by the DS and ESI registers to the selected port.· The OUTSW 
instruction transfers a word. The OUTSD instruction transfers a doubleword. A segment 
override prefix cannot be used to specify an alternate source segment. Combined with a 
REP prefix, an OUTS instruction reads consecutive locations in memory, and writes the 
data to an output port. 

8.3 PROTECTION AND I/O 

The I/O architecture has two protection mechanisms: 

1. The 10PL field in the EFLAGS register controls access to the I/O instructions. 

2. The I/O permission bit map of a TSS segment controls access to individual ports in 
th~ I/O address space. 

These protection mechanisms are available only when a separate I/O address space is 
used. When memory-mapped I/O is used, protection is provided using segmentation or 
paging. 

8.3.1 I/O Privilege Level 

In systems where I/O protection is used,access to I/O instructions is controlled. by the 
IOPL field in the EFLAGS register. This permits the operating system to 'adjust the 
privilege level needed to perform I/O. In a typical protection ring model, privilege levels 
o .and 1 have access to the I/O instructions. This lets the operating system and the device 
drivers perform I/O, but keeps applications and less privileged device drivers from 
accessing the I/O address space. Applications access I/O through the operating system. 

The following instructions can be executed only if CPL ::::; 10PL: 

IN 
INS 
OUT 
OUTS 
CLI 
STI 

-Input 
- Input String 
-Output 
- Output String 
-Clear Interrupt-Enable Flag 
.-Set Interrupt-Enable Flag 

These instructions are called "sensitive" instructions, because they are sensitive to the 
10PL field. Invirtual-8086 mode, 10PL is not used; only the I/O permission bit map 
limit~ access to.l/O ports (see Chapter 23). 

To use sensitive instructions, a procedure must run at a privilege level at least as privi­
leged as that specified by the 10PL field. Any attempt by a less privileged procedure to 
use a sensitive instruction results in a general-protection exception. Because each task 
has its own copy of the EFLAGS register, each task can have a different 10PL. 
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A task can change 10PL only with the POPF instruction; however, such changes are 
privileged. No procedure may change its 10PL unless it is running at privilege level O. 
An attempt by a less privileged procedure to change the 10PL does not result in an 
exception; .the 10PL simply remains unchanged. 

The POPF instruction also may be used to change the state of the IF flag (as can the 
CLI and STI instructions); however, changes to the IF flag using the POPF instruction 
are 10PL-sensitive. A procedure may change the setting of the IF flag with a POPF 
instruction only if it runs with a CPL at least as privileged as the 10PL. An attempt by a 
less privileged procedure to change the IF flag does not result in an exception; the IF 
flag simply remains unchanged. 

8.3.2 I/O Permission Bit Map 

The Intel486 processor can generate exceptions for references to specific I/O addresses. 
These addresses are specified in the I/O permission bit map in the TSS (see Figure 8-2). 
The size of the map and its location in the TSS are variable. The processor finds the I/O 

TASK STATE SEGMENT 

11111111 I 
1/0 PERMISSION 

BIT MAP 

1/0 MAP BASE I 

NOTE: BASE ADDRESS FOR 1/0 BIT MAP 
MUST NOT EXCEED DFFF (HEXA· 
DECIMAL) 

LAST BYTE OF BIT MAP MUST BE 
FOLLOWED BY A BYTE WITH ALL 
BITS SET. 

Figure 8-2. I/O Permission Bit Map 
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permission bit map with the I/O map base address in' the TSS. The base address 'is a 
16-bit offset into the.TSS;This is an offset to the beginning of the bit map. The limit of 
the TSS is the limit on the' size of the I/O permission bit IIlap .. ' ' 

',,' 

Because each task has its own TSS, each task has its own I/O permission bit map. Access 
to individuall/O ports:can be granted to. individual tasks. 

If CPL ::;;IOPL in prot~cted,mode, then the processor allows I/O operation~. to proceed. 
If CPL > 10 PL; or if the· processqr . is. operating. in virtual 8086 mode, then the pro,cessor 
checks the 110 permission map. Each bit in the .mapcorrespondsto an I/O . port byte 
address; for example, the control bit for address 41 (decima1)in the I/Oaddress:space is 
found at bit position 1 of the sixth byte in the bit map. The processor tests all the bits 
corresponding to the I/O port being addressed; for example, a doubleword operation 
tests four bits corresponding to four adjacent byte addresses; If any tested bit is set, a 
general-protection exception is generated. If all tested bits are clear, the I/O operation 
proceeds .. 

Bec~use'l/O ports which, ar~not alig~~d to 'wQrd anddoublewo~d bound,aries are per~ 
mitted, it is possible that the processor may need to 'access two bytes in the bit map when 
I/O permission is checked. For maximum .speed, the processor has been designed to read 
two bytes for every access to an I/O port. To prevent exceptions from being generated 
)Vhen the ports with the highest addresses are accessed, an extra byte needs to come 
after the table. This byte must have aU ofits bits set, and it must be within the segment' 
limit. 

it is not necessary for th¢ I/O permission bit map to represent all the I/O addresses. I/O 
addresses not spanned by the map are tre.ated as if they had set bits in the map. For: 
example, if the TSS segIl?-ent limit is 10 bytes past the bit map base address, the map has 
11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O address 
space generate exceptions. . 

If the I/O bit map base address is greater than or equal to the TSS segment limit, there 
is no I/O permission map, an.d aU I/O instructions generate exceptions. The base address 
must be less than or equal to ODFFFH. ' 

" ,," ',I 

-,",' . 



Exceptions and Interrupts 9 





CHAPTIER 9 
EXCEPTIONS AND ~NTIERRUPTS 

Exceptions and interrupts are forced transfers of execution to a task or a procedure. The 
task or procedure is called a handler. Interrupts occur at random times during the exe­
cution of a program, in response to signals from hardware. Exceptions occur when 
instructions are executed which provoke exceptions. Usually, the servicing of interrupts 
and exceptions is performed in a manner transparent to application programs. Interrupts 
are used to handle events external to the processor, such as requests to service periph­
eral devices. Exceptions handle conditions detected by the processor in the course of 
executing instructions, such as division by O. 

There are two sources for interrupts and two sources for exceptions: 

1. Interrupts 

a Maskable interrupts, which are received on the INTR input of the Intel486 pro­
cessor. Maskable interrupts do not occur unless the interrupt-enable flag (IF) is 
set. 

a Nonmaskable interrupts, which are received on the NMI (Non-Maskable Inter­
rupt) input of the processor. The processor does not provide a mechanism to 
prevent nonmaskable interrupts. 

2. Exceptions 

o Processor-detected exceptions. These are further classified as faults, traps, and 
aborts. 

3. Programmed exceptions. The INTO, INT 3, INT n, and BOUND instructions may 
trigger exceptions. These instructions often are called "software interrupts," but the 
processor handles them as exceptions. 

This chapter explains the features of the Intel486 processor which control and respond 
to interrupts. 

9.1 EXCEPTION AND INTERRUPT VECTORS 

The processor associates an identifying number with each different type of interrupt or 
exception. This number is called a vector. 

The NMI interrupt and the exceptions are assigned vectors in the range 0 through 31. 
Not all of these vectors are currently used by the processor; unassigned vectors in this 
range are reserved for possible future uses. Do not use unassigned vectors. 

The vectors for maskable interrupts are determined by hardware. External interrupt 
controllers (such as Intel's 8259A Programmable Interrupt Controller) putthe vector on 
the bus of the Intel486 processor during its interrupt-acknowledge cycle. Any vectors in 
the range 32 through 255 can be used. Table 9-1 shows the assignment of exception and 
interrupt vectors. 
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Table 9-1. Exception and Interrupt Vectors 

Vector Number Description 

0 Divide Error 
1 Debug Exception 
2 NMI Interrupt 
3 Breakpoint 
4 INTO-detected Overflow 
5 BOUND Range Exceeded 
6 Invalid Opcode 
7 Device Not Available 
8 Double Fault 
9 CoProcessor Segment Overrun. 

10 Invalid Task State Segment 
11 Segment Not Present 
12 Stack Fault 
13 General Protection 
14 Page Fault 
15 (Intel reserved. Do not use.) 
16 Floating-Point Error 
17 Alignment Check 

18-31 (Intel reserved. Do not use.) 
32-255 Maskable Interrupts 

Exceptions are classified as faults, traps, or abarls depending on the way they are 
reported and whether restart of the instruction which caused the exception is supported. 

Faults -:- A fault is an exception which is reported at the instruction boundary prior to the 
instruction in which the exception was detected. The fault is reported with the machine 
restored to a state which permits the instruction to be restarted. The return address for 
the fault handler points to the instruction which generated the fault, rather than the 
instruction following the faulting instruction. 

Traps-A trap is an exception which is reported at the instruction boundary immediately 
after the instruction in which the exception was detected. 

Aborts - An abort is an exception which' does not always report the location of the 
instruction causing the exception and does not allow restart of the program which caused 
the exception. Aborts are used to report severe errors, such as hardware errors and 
inconsistent or illegal values in system tables. 

9.2 INSTRUCTION RESTART 

For most exceptions and interrupts, transfer of execution does not take place until the 
end of the current instruction. This leaves the EIP register pointing at the instruction 
which comes after the instruction which was being executed when the exception or inter­
rupt occurred. If the instruction has a repeat prefix, transfer takes place at the end of 
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the current iteration with the registers set to execute the next iteration. But if the excep­
tion is a fault, the processor registers are restored to the state they held before execution 
of the instruction began. This permits instruction restart. 

Instruction restart is used to handle exceptions which block access to operands. For 
example, an application program could make reference to data in a segment which is not 
present in memory. When the exception occurs, the exception handler must load the 
segment (probably from a hard disk) and resume execution beginning with the instruc­
tion which caused the exception. At the time the exception occurs, the instruction may 
have altered the contents of some of the processor registers. If the instruction read an 
operand from the stack, it is necessary to restore the stack pointer to its previous value. 
All of these restoring operations are performed by the processor in a manner completely 
transparent to the application program. 

When a fault occurs, the EIP register is restored to point to the instruction which 
received the exception. When the exception handler returns, execution resumes with this 
instruction. 

9.3 ENABLING AND DISABLING INTERRUPTS 

Certain conditions and flag settings cause the processor to inhibit certain kinds of inter­
rupts and exceptions. 

9.3.1 NMI Masks Further NMls 

While an NMI interrupt handler is executing, the processor disables additional calls to 
the procedure or task which handles the interrupt until the next IRET instruction is 
executed. This prevents stacking up calls to the interrupt handler. It is recommended 
that interrupt gates be used for NMI's in order to disable nested maskable interrupts, 
since an IRET instruction from the maskable-interrupt handler would re-enable NMI. 

9.3.2 IF Masks INTR 

The IF flag can turn off servicing of interrupts received on the INTR pin of the proces­
sor. When the IF flag is clear, INTR interrupts are ignored; when the IF flag is set, 
INTR interrupts are serviced. As with the other flag bits, the processor clears the IF flag 
in response to a RESET signal. The STI and CLI instructions set and clear the IF flag. 

eLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) put the IF flag 
(bit 9 in the EFLAGS register) in a known state. These instructions may be executed 
only if the CPL is an equal or more privileged level than the IOPL. A general-protection 
exception is generated if they are executed with a lesser privileged level. 
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The IF flag also is affected by the following operations: 

• The PUSHF instruction stores all flags on the stac:((, where they can be examined and 
modified. The POPF instruction can be used to load the modified form back into the 
EFLAGS register. 

• Task switches and the POPF and IRET instructions load the EFLAGS register; 
therefore, they can be used to modify the setting of the· IF flag. 

• Interrupts through interrupt gates automatically clear the IF flag,. which disables 
interrupts. (Interrupt gates are explained later in this chapter). 

9.3.3 RF Masks Debug Faults 

The RF flag in the EFLAGS register can be used to turn off servicing of debug faults. If 
it is clear, debug faults are serviced; if it is set, they are ignored. This is used to suppress 
multiple calls to the debug exception handler when a breakpoint occurs. 

For example·, an instruction breakpoint may have b~en set for an instruction which ref~ 
erences data in a segment which is not present in memory. When the instruction is 
executed for the first time, the breakpoint generates a debug exception. Before the 
debug handler returns, it should set the RF. flag in the copy of the EFLAGS register 
saved on the stack. This allows the segment-not-present fault to be reported after the 
debug exception handler transfers execution back to the instruction. If the flag is not set, 
another debug exception occurs after the debug exception handler returns. 

The processor sets the RF bit in the saved contents of the EFLAGS register when the 
other faults occur, so multiple debug exceptions are not generated when the instruction 
is restarted due to the segment~not-present fault. The processor clears its RF flag when 
the execution ofthe faulting instruction completes. This allows an instruction breakpoint 
to be generated for the following instruction. (See Chapter 11 for more information 011 
debugging; ) . . 

9.3.4 MOV or POP to SS Masks Some Exceptions and Interrupts 

Software which needs to change stack segments often uses a pair of instructions; for 
example: . 

MOV SS, AX 
MOV ESP, Stack Top 

If an interrupt or exception occurs after the segment selector has been loaded but :before 
the. ESP register has been loaded, these two parts of the logical address into the stack 
space are inconsistent for the duration of the interrupt or exception handler. 
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To prevent this situation, the Intel486 processor inhibits interrupts, debug exceptions, 
and single-step trap exceptions after either a MOV to SS instruction or a POP to SS 
instruction, until the instruction boundary following the next instruction is reached. 
General-protection faults may still be generated. If the LSS instruction is used to modify 
the contents of the SS register, the problem does not occur. 

9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND 
INTERRUPTS 

If more than one exception or interrupt is pending at an instruction boundary, the pro­
cessor services them in a predictable order. The priority among classes of exception and 
interrupt sources is shown in Table 9-2. The processor first services a pending exception 
or interrupt from the class which has the highest priority, transferring execution to the 
first instruction of the handler. Lower priority exceptions are discarded; lower priority 
interrupts are held pending. Discarded exceptions are re-issued when the interrupt han­
dler returns execution to the point of interruption. 

9.5 INTERRUPT DESCRIPTOR TABLE 

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a 
descriptor for the procedure or task which services the associated event. Like the GDT 
and LDTs, the IDT is an array of 8-byte descriptors. Unlike the GDT, the first entry of 
the IDT may contain a descriptor. To form an index into the IDT, the processor scales 
the exception or interrupt vector by eight, the number of bytes in a descriptor. Because 

Table 9-2. Priority Among Simultaneous Exceptions and Interrupts 

Priority Descriptions 

Highest Debug Trap Exceptions from the last instruction 
(TF flag set, T bit in TSS set, or data breakpoint) 
Debug Fault Exceptions for the next instruction (code breakpoint) 
Faults from fetching next instruction (Segment-Nat-Present Fault or General-
Protection Fault) 
Non-Maskable Interrupt 
Maskable Interrupt 
Faults from instruction decoding (Illegal Opcode, instruction too long, or 
privilege violation) if WAIT instruction, Coprocessor-Nat-Available 
Exception (TS and .MP bits of CRO set) if ESC instruction, Coprocessor-Not-
Available 
Exception (EM or TS bits of CRO set) if WAIT or ESC instruction, 
Coprocessor-Error 
Exception (Error# pin asserted) 
Segment-Nat-Present Faults, Stack Faults, and General-Protection Faults for 
memory operands 
Alignment Faults for memory operands 

Lowest Page Faults for memory operands 
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there are only 256 vectors, the IDT need not contain more than 256 descriptors. It can 
contain fewer than. 256 descriptors; descriptors are required only for the interrupt vec­
tors which may occur. 

The IDT may reside anywhere in physical memory. As Figure 9-1 shows, the processor 
locates the IDT using the IDTR register. This register holds both a 32-bit base address 
and 16-bit limit for the IDT. The LIDT and SIDT instructions load and store the con­
tents of the IDTR register. Both instructions have one operand, which is the address of 
six bytes in memory. . 

If a vector references a descriptor beyond the limit, the processor enters shutdown 
mode. In this mode, the processor stops executing instructions until an NMI interrupt is 
received or reset initialization is invoked. The processor generates a special bus cycle to 

IDTR REGISTER 

47 16 15 o 

I lOT BASE ADDRESS lOT LIMIT 

INTERRUPT 
DESCRIPTOR TABLE 

+'" I 
INTERRUPT 

INTERRUPT #N 

I 
GATE FOR 

INTERRUPT #3 

I 
GATE FOR 

INTERRUPT #2 

. I 
GATE FOR 

INTERRUPT #1 

240486;9-1 

Figure 9-1. IOTR Register Locates lOT in Memory 
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indicate it has entered shutdown mode. Software designers may need to be aware of the 
response of hardware to receiving this signal. For example, hardware may turn on an 
indicator light on the front panel, generate an NMI interrupt to record diagnostic infor­
mation, or invoke reset initialization. 

LIDT (Load IDT register) loads the IDTR register with the base address and limit held 
in the memory operand. This instruction can be executed only when the CPL is O. It 
normally is used by the initialization code of an operating system when creating an IDT. 
An operating system also may use it to change from one IDT to another. 

SIDT (Store IDT register) copies the base and limit value stored in IDTR to memory. 
This instruction can be executed at any privilege level. 

9.6 lOT DESCRIPTORS 

The IDT may contain any of three kinds of descriptors: 

.. Task gates 

o Interrupt gates 

.. Trap gates 

Figure 9-2 shows the format of task gates, interrupt gates, and trap gates. (The task gate 
in an IDT is the same as the task gate in the GDT or an LDT already discussed in 
Chapter 7.) 

9.7 INTERRUPT TASKS AND INTERRUPT PROCEDURES 

Just as a CALL instruction can call either a procedure or a task, so an exception or 
interrupt can "call" an interrupt handler as either a procedure or a task. When respond­
ing to an exception or interrupt, the processor uses the exception or interrupt vector to 
index to a descriptor in the IDT. If the processor indexes to an interrupt gate or trap 
gate, it calls the handler in a manner similar to a CALL to a call gate. If the processor 
finds a task gate, it causes a task switch in a manner similar to a CALL to a task gate. 

9.7.1 Interrupt Procedures 

An interrupt gate or trap gate indirectly references a procedure which runs in the con­
text of the currently executing task, as shown in Figure 9-3. The selector of the gate 
points to an executable-segment descriptor in either the GDT or the current LDT. The 
offset field of the gate descriptor points to the beginning of the exception or interrupt 
handling procedure. 

The Intel486 processor calls an exception or interrupt handling procedure in much the 
same manner as a procedure call; the differences are explained in the following sections. 
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9.7.1.1 STACK OF INTERRUPT PROCEDURE 

Just as with a transfer of execution using a CALL instruction, a transfer to an exception 
or interrupt handling procedure uses the stack to store the processor state. As Figure 9-4 
shows, an interrupt pushes the contents of the EFLAGS register onto the stack before 
pushing the address of the interrupted instruction. 

Certain types of exceptions also push an error code on the stack. An exception handler 
can use the error code to help diagnose the exception. 

NO PRIVILEGE LEVEL 
CHANGE, NO ERROR CODE 

-
OLD EFLAGS 

I OLD CS 

OLD EIP -
PRIVILEGE LEVEL 

CHANGE, NO ERROR CODE 

UNUSED -
I OLD SS 

OLD ESP 

OLD EFLAGS 

I OLD CS 

OLD EIP -

OLD ESP 

NEW ESP 

ESP FROM 
TSS 

NEW ESP 

NO PRIVILEGE LEVEL 
CHANGE, WITH ERROR CODE 

- OLD ESP 

OLD EFLAGS 

I OLDCS 

OLD EIP 

ERROR CODE ;-t- NEW ESP 

PRIVILEGE LEVEL 
CHANGE, WITH ERROR CODE 

UNUSED 

I OLD SS 

OLD ESP 

OLD EFLAGS 

I . OLD CS 

OLD EIP 

ERROR CODE 

-

~ 

ESP FROM 
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NEW ESP 
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Figure 9-4. Stack Frame After Exception or Interrupt 
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9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE 

An interrupt procedure differs from a normal procedure in the method of leaving the 
procedure. The IRET instruction is used to exit from an interrupt procedure. The IRET 
instruction is similar to the RET instruction except that it increments the contents of the 
ESP register by an extra four bytes and restores the saved flags into the EFLAGS reg­
ister. The IOPL field of the EFLAGS register is restored only if the CPL is O. The IF 
flag is changed only if CPL :0; IOPL. 

9.7.1.3 FLAG USAGE BY INTERRUPT PROCEDURE 

Interrupts using either interrupt gates or trap gates cause the TF flag to be cleared after 
its current value is saved on the stack as part of the saved contents of the EFLAGS 
register. In so doing, the processor prevents instruction tracing from affecting interrupt 
response. A subsequent IRET instruction restores the TF flag to the value in the saved 
contents of the EFLAGS register on the stack. 

The difference between an interrupt gate and a trap gate is its effect on the IF flag. An 
interrupt which uses an interrupt gate clears the IF flag, which prevents other interrupts 
from interfering with the current interrupt handler. A subsequent IRET instruction 
restores the IF flag to the value in the saved contents of the EFLAGS register on the 
stack. An interrupt through a trap gate does not change the IF flag. 

9.7.1.4 PROTECTION IN INTERRUPT PROCEDURES 

The privilege rule which governs interrupt procedures is similar to that for procedure 
calls: the processor does not permit an interrupt to transfer execution to a procedure in 
a less privileged segment (numerically greater privilege level). An attempt to violate this 
rule results in a general-protection exception. 

Because interrupts generally do not occur at predictable times, this privilege rule effec­
. tively imposes restrictions on the privilege levels at which exception and interrupt han­

dling procedures can run. Either of the following techniques cart be used to keep the 
privilege rule from being violated. 

• The exception or interrupt handler can be placed in a conforming code segment. This 
technique can be used by handlers for certain exceptions (divide error, for example). 
These handlers must use only the data available on the stack. If the handler needs 
data from a data segment, the data segment would have to have privilege level 3, 
which would make it unprotected. 

• The handler can be placed in a code segment with privilege level O. This handler 
would always run, no matter what CPL the program has. 
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9.7.2 Interrupt Tasks 

A taskgate in the IDT indirectly references a task, as Figure 9-5 illustrates. The segment 
selector in the task gate addresses a TSS descriptor in the GDT. 
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Figure 9-5. Interrupt Task Switch 
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When an exception or interrupt calls a task gate in the IDT, a task switch results. 
Handling an interrupt with a separate task offers two advantages: 

• The entire context is saved automatically. 

• The interrupt handler can be isolated from other tasks by giving it a separate address 
space. This is done by giving it a separate LDT. 

A task switch caused by an interrupt operates in the same manner as the other task 
switches described in Chapter 7. The interrupt task returns to the interrupted task by 
executing an IRET instruction. 

Some exceptions return an error code. If the task switch is caused by one of these, the 
processor pushes the code onto the stack corresponding to the privilege level of the 
interrupt handler. 

When interrupt tasks are used in an operating system for the Intel486 processor, there 
are actually two mechanisms which can create new tasks: the software scheduler (part of 
the operating system) and the hardware scheduler (part of the processor's interrupt 
mechanism). The software scheduler needs to accommodate interrupt tasks which may 
be generated when interrupts are enabled. 

9.8 ERROR CODE 

With exceptions related to a specific segment, the processor pushes an error code onto 
the stack of the exception handler (whether it is a procedure or task). The error code 
has the format shown in Figure 9-6. The error code resembles a segment selector; how­
ever instead of an RPL field, the error code contains two one-bit fields: 

1. The processor sets the EXT bit if an event extenial to the program caused the 
exception. 

2. The processor sets the IDT bit if the index portion of the error code refers to a gate 
descriptor in the IDT. 

If the IDT bit is not set, the TI bit indicates whether the error code refers to the GDT 
(TI bit clear) or to the LDT (TI bit set). The remaining 13 bits are the upper bits of the 
selector for the segment. In some cases the error code is null (i.e., all bits in the lower 
word are clear). 
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The error code is pushed on the stack as a doubleword. This is done to keep the stack 
aligned on addresses which are multiples of four. The upper half of the doubleword is 
reserved. 

9.9 EXCEPTION CONDITIONS 

The following sections describe conditions which generate exceptions. Each description 
classifies the exception as a fault, trap, or abort. This classification provides information 
needed by system programmers for restarting the procedure in which the exception 
occurred: 

• Faults - The saved contents of the CS and EIP registers point to the instruction which 
generated the fault. 

• Traps - The saved contents of the CS and EIP registers stored when the trap occurs 
point to the instruction to be executed after the instruction which generated the trap. 
If a trap is detected during an instruction which transfers execution, the saved con­
tents of the CS and EIP registers reflect the transfer. For example, if a trap is 
detected in a JMP instruction, the saved contents of the CS and EIP registers point to 
the destination of the JMP instruction, not to the instruction at the next address 
above the JMP instruction. 

• Aborts - An abort is an exception which permits neither precise location of the 
instruction causing the exception nor restart of the program which caused the excep­
tion. Aborts are used to report severe errors, such as hardware errors and inconsis­
tent or illegal values in system tables. 

9.9.1 Interrupt 0 - Divide Error 

The divide-error fault occurs during a DIV or an IDIV instruction when the divisor is O. 

9.9.2 Interrupt 1 -Debug Exceptions 

The processor generates a debug exception for a number of conditions; whether the 
exception is a fault or a trap depends on the condition, as shown below: .. 

• Instruction address breakpoint fault 

• Data address breakpoint trap 

• General detect fault 

• Single-step trap 

• Task-switch breakpoint trap 

The processor does not push an error code for this exception. An exception handler can 
examine the debug registers to determine which condition caused the exception. See 
Chapter 11 for more detailed information about debugging and the debug registers. 
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9.9.3 Interrupt 3 - Breakpoint 

The INT 3 instruction generates a breakpoint trap. The INT 3 instruction is one byte 
long, which makes it easy to replace an opcode in a code· segment in RAM with the 
breakpoint opcode. The operating system or a debugging tool can use a data segment 
mapped to the same physical address space as the code segment to place an INT 3 
instruction in places where it is desired to call the debugger. Debuggers use breakpoints 
as a way to suspend program execution in order to examine registers, variables, etc. 

The saved contents of the CS and EIP registers point to the byte following the break­
point. If a debugger allows the suspended program to resume execution, it replaces the 
INT 3 instruction with the original opcode at the location of the breakpoint, and it 
decrements the saved contents of the EIP register before returning. See Chapter 11 for 
more information on debugging. 

9.9.4 Interrupt 4-0verflow 

The overflow trap occurs when the processor executes an INTO instruction with the OF 
flag set. Because signed and unsigned arithmetic both use some of the same instructions, 
the processor cannot determine when overflow actually occurs. Instead, it sets the OF 
flag when .the results, if interpreted as signed numbers, would be out of range. When 
doing arithmetic on signed operands, the OF flag can be tested directly or the INTO 
instruction can be used. 

9.9.5 Interrupt 5 - Bounds Check 

The bounds-check fault is generated when the processor, while executing a BOUND 
instruction, finds that the operand .exceeds the specified limits. A program can use the 
BOUND instruction to check a signed array index against signed limits defined in a 
block of memory. 

9.9.6 Interrupt 6 -Invalid Opcode 

The invalid-opcode fault is generated when an invalid opcode is detected by the execu­
tion unit. (The exception is not detected until an attempt is made to execute the invalid 
opcode; i.e., prefetching an invalid opcode does not cause this exception.) No error code 
is pushed on the stack. The exception can be handled within the same task. 

This exception also occurs when the type of operand is invalid for the given opcode. 
Examples include an intersegment JMP instruction using a register operand, or an LES 
instruction with a register source operand. 
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A third condition which generates this exception is the use of. the LOCK prefix with an 
instruction which may not be locked. Only certain instructions may be used with bus 
locking, and only forms of these instructions which write to a destination in memory may 
be used. All other uses of the LOCK prefix generate an invaJid-opoode exception. 

NOTE 
Table 9-3 is a list of undefined opcodes that are reserved by Intel. These opcodes 
do not generate interrupt 6. 

9.9.7 Interrupt 7 - Device Not Available 

The device-not-available fault is generated by either of two c()nditions: 

• The processor executes an ESC instruction, and the EMbit of the CRO register is set . 

• The processor executes a WAIT instruction (with MP=l) or ESC instruction, imd 
the TS bit of the CRO register is set. 

Interrupt 7 thus occurs when the programmer wants ESC instructions to be handled by 
software (EM set), or when a WAIT or ESC instruction is encountered and the context 
of the floating-point unit is different from that of the curren.t task. 

On the 286 and Intel386 processors, the MP bit in the· CRO register is used with the TS 
bit to determine if WAIT instructions should generate exceptions. For programs running 
on the Intel486 processor, the MP bit should always be set. 

Table 9-3. Intel Reserved Opcodes 

Single Byte 

82 
06 
F1 

Double Byte 

OF 07 
OF 10 
OF 11 
OF 12 
OF 13 

F6XX 
F7XX 

CO XX 
C1 XX 
DO XX 
01 XX ,. 

02 XX 
. 03 XX 
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9.9.8 Interrupt 8 - Double Fault 

Normally, when the processor detects an exception while trying to call the handler for a 
prior exception, the two exceptions can be handled serially. If, however, the processor 
cannot handle them serially, it signals the double-fault exception instead. To determine 
when two faults are to be signalled as a double fault, the Intel486 processor divides the 
exceptions into three classes: benign exceptions, contributory exceptions, and page 
faults. Table 9-4 shows this classification. 

When two benign exceptions or interrupts occur, or one benign and one contributory, 
the two events can be handled in succession. When two contributory events occur, they 
cannot be handled, and a double-fault exception is generated. 

If a benign or contributory exception is followed by a page fault, the two events can be 
handled in succession. This is also true if a page fault is followed by a benign exception. 
However if a page fault is followed by a contributory exception or another page fault, a 
double-fault abort is generated. 

An initial segment or page fault encountered while prefetching instructions is outside 
the domain of Table 9-4. Any further faults generated while the processor is attempting 
to transfer control to the appropriate fault handler could stilI lead to a double-fault 
sequence. 

The processor always pushes an error code onto the stack of the double-fault handler; 
however, the error code is always O. The faulting instruction may not be restarted. If any 
other exception occurs while attempting to call the double-fault handler, the processor 
enters shutdown mode. This mode is similar to the state following execution of a HLT 
instruction. No instructions are executed until an NMI interrupt or a RESET signal is 

Table 9-4. Interrupt and Exception Classes 

Class Vector Number Description 

1 Debug Exceptions 
2 NMI Interrupt 

Benign 
3 Breakpoint 
4 Overflow 

Exceptions 
5 Bounds Check 

and Interrupts 
6 Invalid Opcode 
7 Device Not Available 

16 Floating-Point Error 

0 Divide Error 

Contributory 
10 Invalid TSS 
11 Segment Not Present 

Exceptions 
12 Stack Fault 
13 General Protection 

Page Faults 14 Page Fault 
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received. If the shutdown occurs while the processor is executing an NMI interrupt 
handler, then only a RESET can restart the processor. The processor generates a special 
bus cycle to indicate it has entered shutdown mode. 

9.9.9 Interrupt 9 - (Intel reserved. Do not use.) 

Interrupt 9, the coprocessor-segment overrun abort, is generated in Intel386 CPU/ 
Intel387 math coprocessor systems when the Intel386 CPU detects a page or segment 
violation while transferring the middle portion of an Inte1387 math coprocessor operand. 
This interrupt is not generated by the Intel486 processor; interrupt 13 occurs instead. 

9.9.10 Interrupt 10 -Invalid TSS 

An invalid-TSS fault is generated if a task switch to a segment with an invalid TSS is 
attempted. A TSS is invalid in the cases shown in Table 9-5. An error code is pushed 
onto the stack of the exception handler to help identify the cause of the fault. The EXT 
bit indicates whether the exception was caused by a condition outside the control of the 
program (e.g., if an external interrupt using a task gate attempted a task switch to an 
invalid TSS). 

This fault can occur either in the context of the original task or in the context of the new 
task. Until the processor has completely verified the presence of the new TSS, the excep­
tion occurs in the context of the original task. Once the existence of the new TSS is 
verified, the task switch is considered complete; i.e., the TR register is loaded with a 
selector for the new TSS and, if the switch is due to a CALL or interrupt, the Link field 
of the new TSS references the old TSS. Any errors discovered by the processor after this 
point are handled in the context of the new task. . 

To ensure a TSS is available to process the exception, the handler for an invalid-TSS 
exception must be a task called using a task gate. 

Table 9-5. Invalid TSS Conditions 

Error Code Index Description 

TSS segment TSS segment limit less than 67H 
LOT segment Invalid LOT or LOT not present 
Stack segment Stack segment selector exceeds descriptor table limit 
Stack segment Stack segment is not writable 
Stack segment Stack segment DPL not compatible with CPL 
Stack segment Stack segment selector RPL not compatible with CPL 
Code segment Code segment selector exceeds descriptor table limit 
Code segment Code segment is not executable 
Code segment Non-conforming code segment DPL not equal to CPL 
Code segment Conforming code segment DPL greater than CPL 
Data segment Data segment selector exceeds descriptor table limit 
Data segment Data segment not readable 
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9.9.11 Interrupt 11 - Segment Not Present 

The segment-not-present fault is generated when the processor detects that the present 
bit of a descriptor is clear. The processor can generate this fault in any of these cases: 

• While attempting to load the CS, OS, ES, FS, or GS registers; loading the SS register, 
however, causes a stack fault. 

• While attempting to load the LOT register using an LLOT instruction; loading the 
LOT register during a task switch operation, however, causes an invalid-TSS 
exception. 

• While attempting to use a gate descriptor which is marked segment-not-present. 

This fault is restartable. If the exception handler loads the segment and returns, the 
interrupted program resumes execution. 

If a segment-not-present exception occurs during a task switch, not all the steps of the 
task switch are complete. Ouring a task switch, the processor first loads all the segment 
registers, then checks their contents for validity. If a segment-not-present exception is 
discovered, the remaining segment registers have not been checked and therefore may 
not be usable for referencing memory. The segment-not-present handler should not rely 
on being able to use the segment selectors found in the CS, SS, OS, ES, FS, and GS 
registers without causing another exception. The exception handler should check all 
segment registers before trying to resume the new task; otherwise, general protection 
faults may result later under conditions which make diagnosis more difficult. There are 
three ways to handle this case: 

1. Handle. the segment-not-present fault with a task. The task switch back to the inter­
rupted task causes the processor to check the registers as it loads them from the 
TSS. 

2. Use the PUSH and POP instructions on all segment registers. Each POP instruction 
causes the processor to check the new contents of the segment register. 

3. Check the saved contents of each segment register in the TSS, simulating the test 
which the processor makes when it loads a segment register. 

This exception pushes an error code onto the stack. The EXT bit of the error code is set 
if an event external to the program caused an interrupt which subsequently referenced a 
not-present segment. The lOT bit is set if the error code refers to an lOT entry (e.g., an 
INT instruction referencing a not-present gate). 

An operating system typically uses the segment-not-present exception to implement vir­
tual memory at the segment level. A not-present indication in a gate descriptor, however, 
usually does not indicate that a segment is not present (because gates do not necessarily 
correspond to segments). Not-present gates may be used by an operating system to 
trigger exceptions of special significance to the operating system. 
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9.9.12 Interrupt 12 - Stack Exception 

A stack fault is generated under two conditions: 

• As a result of a limit violation in any operation which refers to the SS register. This 
includes stack-oriented instructions such as POP, PUSH, ENTER, and LEAVE, as 
well as other memory references which implicitly use the stack (for example, MOV 
AX, [BP + 6]). The ENTER instruction generates this exception when there is too 
little space for allocating local variables. 

• When attempting to load the SS register with a descriptor which is marked segment­
not-present but is otherwise valid. This can occur in a task switch, a CALL instruction 
to a different privilege level, a return to a different privilege level, an LSS instruction, 
or aMOV or POP instruction to the SS register. 

When the processor detects a stack exception, it pushes an error code onto the stack of 
the exception handler. If the exception is due to a not-present stack segment or to 
overflow of the new stack during an interlevel CALL, the error code contains a selector 
to the segment which caused the exception (the exception handler can test the present 
bit in the descriptor to determine which exception occurred); otherwise, the error code 
is O. 

An instruction generating this fault is restart able in all cases. The return address pushed 
onto the exception handler's stack points to the instruction which needs to be restarted. 
This instruction usually is the one which caused the exception; however, in the case of a 
stack exception from loading a not-present stack-segment descriptor during a task 
switch, the indicated instruction is the first instruction of the new task. 

When a stack exception occurs during a task switch, the segment registers may not be 
usable for addressing memory. During a task switch, the selector values are loaded 
before the descriptors are checked. If a stack exception is generated, the remaining 
segment registers have not been checked and may cause exceptions if they are used. The 
stack fault handler should not expect to use the segment selectors found in the CS, SS, 
DS, ES, FS, and GS registers without causing another exception. The exception handler 
should check all segment registers before trying to resume the new task; otherwise, 
general protection faults may result later under conditions where diagnosis is more 
difficult. 

9.9.13 Interrupt 13 - General Protection 

All protection violations which do not cause another exception cause a general­
protection exception. This includes (but is not limited to): 

• Exceeding the segment limit when using the CS, DS, ES, FS, or GS segments. 

• Exceeding the segment limit when referencing a descriptor table. 

• Transferring execution to a segment which is not executable. 

• Writing to a read-only data segment or a code segment. 

• Reading from an execute-only code segment. 
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• Loading the SS register with a selector for a read"only segment (unless the selector 
comes from a TSS during a task switch, in which case an invalid-TSS exception 
occurs). 

• Loading the SS, DS, ES, FS, or GS register with a selector for a system segment. 

" Loading the DS, ES, FS, or GS register with a selector for an execute-only code 
segment. 

" Loading the SS register with the selector of an executable segment. 

o Accessing memory using the DS, ES, FS, or GS register when it contains a null 
selector. 

" Switching to a busy task. 

.. Violating privilege rules. 

o Exceeding the instruction length limit of 15 bytes (this only can occur when redun­
dant prefixes are placed before an instruction). 

o Loading the CRO register with a set PG bit (paging enabled) and a clear PE bit 
(protection· disabled). 

o Interrupt or exception through an interrupt or trap gate from virtual-8086 mode to a 
handler at a privilege level other than O. 

The general-protection exception is a fault. In response to a general-protection excep­
tion, the processor pushes an error code onto the exception handler's stack. If loading a 
descriptor causes the exception, the error code contains a selector to the descriptor; 
otherwise, the error code is null. The source of the selector in an error code may be any 

. of the following: 

1. An operand of the instruction. 

2. A selector from a gate which is the operand of the instruction. 

3. A selector from a TSS involved in a task switch. 

9.9.14 Interrupt 14 - Page Fault 

A page fault occurs when paging is enabled (the PG bit in the CRO register is set) and 
the processor detects one of the following conditions while translating a linear address to 
a physical address: 

" The page-directory or page-table entry needed for the address translation has a clear 
Present bit, which indicates that a page table or the page containing the operand is 
not present in physical memory. 

o The procedure does not have sufficient privilege to aGcess the indicated page. 

If a page fault is caused by a page level protection violation, the access bits in both the 
page-table and page-directory are set when the faults occur. 
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The processor provides the page fault handler two items of information which aid m 
diagnosing the exception and recovering from it: 

• An error code on the stack. The error code for a page fault has a format different 
from that for other exceptions (see Figure 9-7). The error code tells the exception 
handler three things: 

1. Whether the exception was due toa not-present page or to an access rights 
violation. 

2. Whether the processor was executing at user or supervisor level at the time of the 
exception. 

3. Whether the memory access which caused the exception was a read or write. 

• The contents of the CR2 register. The processor loads the CR2 register with the 
32-bit linear address which generated the exception. The exception handler can use 
this address to locate the corresponding page directory and page table entries. If 
another page fault occurs during execution of the page fault handler, the handler will 
push the contents of the CR2 register onto the stack. 

FIELD VALUE DESCRIPTION 

U/S 0 The access causing the fault originated when 
the processor was executing in supervisor mode. , 

I The access causing the fault originated when 
the processor was executing In user mode. 

W/R 0 The access causing the fault was a read. 

1 The access causing the fault was a write. 

P 0 The fault was caused by a not·present page. 

t The fault was caused by a page-level 
protection violation 

240486;9-7 

Figure 9-7. Page Fault Error Code 
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9.9.14.1 PAGE FAULT DURING TASK SWITCH 

These operations during a task switch cause access to memory: 

1. Write the state of the original task in the TSS of that task. 

2. Read the GDT to locate the TSS descriptor of the new task. 

3. Read the TSS of the new task to check the types of segment descriptors from the 
TSS. 

4. May read the LDT of the new task in order to verify the segment registers stored in 
the new TSS. 

A page fault can result from accessing any of these operations. In the last two cases the 
exception occurs in the context of the new task. The instruction pointer refers to the next 
instruction of the new task, not to the instruction which caused the task switch (or the 
last instruction to be executed, in the case of an interrupt). If the design of the operating 
system permits page faults to occur during task-switches, the page-fault handler should 
be called through a task gate. 

9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTER 

Special care should be taken to ensure that a page fault does not cause the processor to 
use an invalid stack pointer (SS:ESP). Software written for Intel 16-bit processors often 
uses a pair of instructions to change to a new stack; for example: 

MOV SS, AX 
MOV SP, StackTop 

With the Intel486 processor, because the second instruction accesses memory, it is pos­
sible to get a page fault after the selector in the SS segment register has been changed 
but before the contents of the SP register have received the corresponding change. At 
this point, the two parts of the stack pointer SS:SP (or, for 32-bit programs, SS:ESP) are 
inconsistent. The new stack segment is being used with the old stack pointer. 

The processor does not use the inconsistent stack pointer if the handling of the page 
fault causes a stack switch to a well defined stack (i.e., the handler is a task or a more 
privileged procedure). However, if the page fault occurs at the same privilege level and 
in the same task as the page fault handler, the processor will attempt to use the stack 
indicated by the inconsistent stack pointer. 

In systems which use paging and handle page faults within the faulting task (with trap or 
interrupt gates), software executing at the same privilege level as the page fault handler 
should initialize a new stack by using the LSS instruction rather than an instruction pair 
shown above. When the page fault handler is running at privilege level 0 (the normal 
case), the problem is limited to programs which run at privilege level 0, typically the 
kernel of the operating system. 
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9.9.15 Interrupt 16 - Floating-Point Error 

A floating-paint-error fault signals an error generated by a floating-point arithmetic 
instruction. Interrupt 16 can occur only if the NE bit in the CRO register is set. See 
Chapter 16 for more information on floating-point error reporting. 

9.9.16 Interrupt 17 - Alignment Check 

An alignment-check fault can be generated for access to unaligned operands. For exam­
ple, a word stored at an odd byte address, or a doubleword stored at an address which is 
not an integer multiple of four. Table 9-6 lists the alignment requirements by data type. 
To enable alignment checking, the following conditions must be true: 

• AM bit in the CRO register is set 

• AC flag is set 

• CPL is 3 (user mode) 

Alignment checking is useful for programs which use the low two bits of pointers to 
identify the type of data structure they address. For example, a subroutine in a math 
library may accept pointers to numeric data structures. If the type of this structure is 
assigned a code of 10 (binary) in the lowest two bits of pointers to this type, math 
subroutines can correct for the type code by adding a displacement of -10 (binary). If 
the subroutine should ever receive the wrong pointer type, an unaligned reference would 
be produced, which would generate an exception. 

Alignment-check faults are generated only in user mode (privilege level 3). Memory 
references which default to privilege level 0, such as segment descriptor loads, do not 
generate alignment-check faults, even when caused by a memory reference made in user 
mode. 

Table 9-6. Alignment Requirements by Data Type 

Data Type Address Must Be Divisible By 

WORD 2 
DWORD 4 
Short REAL 4 
Long REAL 8 
TEMPREAL 8 
Selector 2 
48-bit Segmented Pointer 4 
32-bit Flat Pointer 4 
32,bit Segmented Pointer 2 
48-bit "Pseudo-Descriptor" 4 
FSTENV/FLDENV save area 4 or 2, depending on operand size 
FSAVE/FRSTOR save area 4 or 2, depending on operand size 
Bit String 4 
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Storing a 48-bit pseudo-descriptor (the memory image of the contents of a descriptor 
table base register) in user mode can generate an alignment-check fault. Although user­
mode programs do not normally store pseudo-descriptors, the fault can be avoided by 
aligning the pseudo-descriptor to an odd word address (i.e., an address which is 
2 MOD 4). 

FSA VE and FRSTOR instructions generate unaligned references which can cause 
alignment-check faults. These instructions are rarely needed by application programs. 

9.10 EXCEPTION SUMMARY 

Table 9-7 summarizes the exceptions recognized by the Intel486 processor. 

9.11 ERROR CODE SUMMARY 

Table 9-8 summarizes the error information which is available with each exception. 
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. Table 9-7. Exception Summary 
.. 

. Return Address 
Description 

Vector 
Points to Faulting 

Exception Source of the 
Number 

Instruction? 
. Type Exception 

Division by Zero 0 Yes FAULT DIV and IDIV instruc· 
tions 

Debug Exceptions 1 *1 *1. Any code or data refer-
ence 

Breakpoint 3 No TRAP INT 3 instruction 

Overflow 4 No TRAP INTO instruction 

Bounds Check 5 Yes FAULT BOUND instruction 

Invalid Opcode 6 Yes FAULT Reserved Opcodes 

Device Not 7 Yes FAULT ESC and WAIT instruc-
Available tions 

Double Fault 8 Yes ABORT Any instruction 

Invalid TSS 10 Yes2 FAULT JMP, CALL, IRET 
instructions, interrupts, 
and exceptions 

Segment Not Present 11 Yes2 FAULT Any instruction which 
changes segments 

Stack Fault· 12 Yes FAULT Stack operations 

General Protection 13 Yes FAULTfTRAp3 Any code or data refer-
ence 

Page Fault 14 Yes FAULT Any code or data refer-
ence 

Floating-Point Error 16 Yes FAULT4 ESC and WAIT instruc-
tions 

Alignment Check 17 Yes FAULT Any data reference 

Software Interrupt o to 255 No TRAP INT n instructions 

1. Debug exceptions are either traps or faults. The exception handler can distinguish between traps and 
faults by examining the contents of the DR6 register. 

2. Restartability is conditional during task switches as documented in section 7.5. 

3. All general-protection faults are restartable. If the fault occurs while attempting to call the handler, the 
interrupted program is restartable, but the interrupt may be lost. 

4. Floating-point errors are not reported until the first ESC or WAIT instruction following the ESC instruction 
which generated the error. 
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Table 9-8. Error Code Summary 

Description Vector Is an Error 
Number Code Generated? 

Divide Error 0 No 
Debug Exceptions 1 No 
Breakpoint 3 No 
Overflow 4 No 
Bounds Check 5. No 
Invalid Opcode 6 No 
Device Not Available 7 No 
Double Fault 8 Yes (always zero) 
Invalid TSS 10 Yes 
Segment Not Present 11 Yes 
Stack Fault 12 Yes 
General Protection 13 Yes 
Page Fault 14 Yes 
Floating-Point Error 16 No 
Alignment Check 17 Yes (always zero) 
Software Interrupt 0-255 No 
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CHAPTER 10 
INITIALIZATION 

The Intel486 processor has an input, called the RESET pin, which invokes reset initial­
ization. After RESET is asserted, some registers of the Intel486 processor are set to 
known states. These known states, such as the contents of the EIP register, are sufficient 
to allow software to begin execution. Software then can build the data structures in 
memory, such as the GDT and IDT tables, which are used by system and application 
software. 

Hardware asserts the RESET signal at power-up. Hardware may assert this .signal at 
other times. For example, a button may be provided for manually invoking reset initial­
ization. Reset also may be the response of hardware to receiving a halt or shutdown 
indication. 

After reset initialization, the DH register holds a number which identifies the processor 
type. Binary object code can be made compatible with other Intel processors by using 
this number to select the correct initialization software. Note the Intel486 processor has 
several processing modes. It begins execution in a mode which emulates an 8086 proces­
sor, called real-address mode. If protected mode is to be used (the mode in which the 
32-bit instruction set is available), the initialization software changes the setting of a 
mode bit in the CRO register. 

10.1 PROCESSOR STATE AFTER RESET 

A self test may be requested at power-up. The self test is requested by asserting the 
AHOLD input during the falling edge of the RESET signal. It is the responsibility of the 
hardware designer to provide the request for self test, if desired. If the self test is 
selected, it takes about 220 clock periods to complete. (Intel reserves the right to change 
the exact number of periods without notification.) 

The EAX register is clear if the Intel486 processor passed the test. A non-zero value in 
the EAX register after self test indicates the processor is faulty. If the self test is not 
requested, the contents of the EAX register after reset initialization are undefined (pos­
sibly non-zero). The DX registerholds acomponent identifier and revision number after 
reset initialization, as shown in Figure 10-1. The DH register contains the value 4, which 
indicates an Intel486 processor. The DL register contains a unique identifier of the 
revision level. . 

The state of the CRO register following power-up is shown in Figure 10-2. These states 
put the processor into real-address mode with paging disabled. 

The state of the EBX, ECX, ESI, EDI, EBP, ESP, GDTR, LDTR, TR, debug registers 
(other than DR7), and floating~point operand stack is undefined following power-up. 
Software should not depend on any undefined states. The state of the flags and other 
registers following power-up is shown in Table 10-1. 
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� ....... :-------------- EDX REGISTER -------------c~~1 

1 ....... :------- DX REGISTER ----.. ~ 1 

3 
1 

1 1 
6 5 870 

RESERVED 1 DEVICE 10 STEP~NGID 1 

Figure 10-1. Contents of the EDX Register After Reset 

rrro PAGING DISABLED 
. 1 CACHING DISABLED ITO ALIGNMENT CHECK DISABLED 1 r 1 NOT WRITE-THROUGH ro WRITE-PROTECT DISABLED 

. DISABLED 

3 3 2 1 1 
109 8 6 543210 

1:1:1:1 1:11:1 I:H:I=I=I:I 
o EXTERNAL FLOATING-POINT ERROR REPOR1ING~ 
1 (NOTUSED) 
o NO TASK SWITCH 
o ESC INSTRUCTIONS NOT TRAPPED 
o WAIT INSTRUCTIONS NOT TRAPPED 
o REAL MODE 

Figure 1 0-2. Contents of the CRO Register After Reset 

240486i 1 0-1 

240486i10-2 

Note that the invisible parts of the CS and DS segment registers are initialized to values 
which allow execution to begin, even though segments have not been defined. The base 
address for the code segment is set to 64K below the top of the physical address space, 
which allows room for a ROM to hold the initialization software. The base address for 
the data segments are set to the bottom of the physical address space (address 0), where 
RAM is expected to be. To preserve these addresses, no instruction which loads the 
segment registers should be executed until a descriptor table has been defined and its 
base address and limit have been loaded into the GDTR register. If CS is reloaded while 
in real mode, it will point to the lowest 1 Megabyte of physical memory. 
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Table 10-1. Processor State Following Power-Up 

Register State (hexadecimal) 

EFLAGS 00000002H1 

EIP OOOOFFFOH 

CS OFOOOH2 

DS 0000H3 

SS OOOOH 
ES 0000H3 

FS OOOOH 

GS OOOOH 
IDTR (base) OOOOOOOOH 

IDTR (limit) 03FFH 
DR6 FFFFOFFOH 

DR? OOOOOOOOH 

Floating-Point Unit Registers4 

Control Word 03?FH 

Status Word OOOOH 
Tag Word OFFFFH 

IP Offset OOOOOOOOH 

Data Operand Offset OOOOOOOOH 

CS Selector OOOOH 
Operand Selector OOOOH 

Opcode OOOH 

NOTE: Undefined bits are reserved. Software should not depend on the states of any of these bits. 
1. The high fourteen bits of the EFLAGS register are undefined following power-up. All of the flags are clear. 
2. The invisible part of the CS register holds a base address of OFFFFOOOOH and a limit of OFFFFH. 
3. The invisible parts of the DS and ES registers hold a base address of 0 and a limit of OFFFFH. 
4. The registers of the floating-point unit are not initialized unless the built-in self-test is invoked. 

10.2 Intel486 SX MICROPROCESSOR/lnteI487 SX MATH 
COPROCESSOR INITIALIZATION 

This interface is designed for two distinct sockets: one for the Inte1486 SX CPU and one 
for end-user/dealer upgrade with Intel487 SX Math CoProcessor. Refer to the Intel486™ 
SX Microprocessor/lnteI487'" SX Math CoProcessor Data Book for more details. The fol­
lowing should be considered when designing an Inte1486 SX CPU/InteI487 SX MCP 
system. 

1. The timing loops should be independent of the cpi. One way to attain this is to 
implement these loops in hardware and not in software (e.g., BIOS). 

2. Initialization routine should check the presence of a math coprocessor (e.g., 
Intel487 SX math coprocessor) and should set the floating point related bits in the 
CRO register accordingly. Recommended bit pattern is given in Table 10-2. The 
FSTCW instruction will give a value of FFFFh for the Inte1486 SX microprocessor 
and 037Fh for the Intel487 SX math coprocessor. 
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Table 10-2. Recommended Values of the FP Related Bits for Intel486™ SX 
Microprocessor/lntel487™ SX Math CoProcessor System 

CRO Bit Inte1486'M SX Microprocessor Inte1487'M SX Math CoProcessor 

EM 1 0 

MP 0 1 

NE 1 0, for DOS systems 
1, for user-defined exception handler 

Following is an example code to initialize the system and check for the presence of 
Intel486 SX microprocessor/Intel487 SX math coprocessor. 

fninit 
fstcw mem_loc 
mov 
cmp 
jz 
jmp 

ax, mem_loc 
ax, 037fh 
Inte1487 SX Math CoProcessor_present 
Inte1486 SX microprocessor_present 

;ax=037fh 
; ax=ffffh 

If the Intel487 SX math coprocessor is not present, the following code can be run to set 
the eRO register for the Intel486 SX microprocessor. 

mov 
and 
or 
mov 

eax, cr0 
eax, f ff f f ff dh 
eax, 0024h 
er0, eax 

;make MP=0 
;make EM=1, NE=1 

The above initialization will cause any floating point instruction to generate the inter­
rupt 7. The software emulation will then take control to execute these instructions. This 
code is not required if Intel487 SX math coprocessor is present in the system, thereupon 
the typical intialization routine for the Intel486 SX microprocessor will be adequate. 

The interpretation of different combinations of the EM and MP bits is shown ill 

Table 10-3. 

Table 10-3. EM and MP Bits Interpretations 

EM MP Interpretation 

0 0 Numeric instructions are passed to FPU; WAIT ignores TS 

0 1 Numeric instructions are passed to FPU; WAIT tests TS 

1 0 Numeric instructions trap to emulator; WAIT ignores TS 

1 1 Numeric instructions trap to emulator, WAIT tests TS 
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10.3 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE 

After reset initialization, software sets up data structures needed for the processor to 
perform basic system functions, such as handling interrupts. If the processor remains in 
real-address mode, software sets up data structures in the form used by the 8086 proces­
sor. If the processor is going to operate in protected mode, software sets up data struc­
tures in the form used by the 286 and Intel486 processors, then switches modes. See 
Section 10.7 for an example. 

10.3.1 System Tables 

In real-address mode, no descriptor tables are used. The interrupt vector table, which 
starts at address 0, needs to be loaded with pointers to exception and interrupt handlers 
before interrupts can be enabled. The NMI interrupt is always enabled. If the interrupt 
vector table and the NMI interrupt handler need to be loaded into RAM, there will be a 
period of time following reset initialization when an NMI interrupt cannot be handled. 

10.3.2 NMI Interrupt 

Hardware must provide a.mechanism to prevent an NMI interrupt from being generated 
while software is unable to handle it. For example, the interrupt vector table and NMI 
interrupt handler can be provided in ROM. This allows an NMI interrupt to be handled 
immediately after reset initialization. Another solution would be to provide a mechanism 
which passes the NMI signal through an AND gate controlled by a bit in an I/O port. 
Hardware can clear the bit when the processor is reset, and software can set the bit 
when it is ready to handle NMI interrupts. System software designers should be aware of 
the mechanism used by hardware to protect software from NMI interrupts following 
reset. 

10.3.3 First Instruction 

Execution begins with the instruction addressed by the initial contents of the CS and IP 
registers. To allow the initialization software to be placed in a ROM at the top of the 
address space, the high 12 bits of addresses issued for the code segment are set, until the 
first instruction which loads the CS register, such as a far jump or call. As a result, 
instruction fetching begins from address OFFFFFFFOH. Because the size of the ROM is 
unknown, the first instruction is intended to be a jump to the beginning of the initializa­
tion software. If protected mode will be used and the processor is still in real mode, then 
only near jumps should be performed within the ROM-based software. After a far jump 
is executed, addresses issued for the code segment are clear in their high 12 bits. 

10.3.4 Enabling Caching 

The cache is enabled by clearing the CD and NW bits in the CRO register. This enables 
caching, write-through, and cache invalidation cycles. Because all cache lines are invalid 
following reset initialization, it is unnecessary to flush the cache before enabling caching. 
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Under circumstances where cache lines may be marked as valid, the cache may need to 
be flushed before enabling caching. This may occur as a result of using the test registers 
to run test patterns through the cache memory as part of corifidence testing during 
software initialization. 

10.4 SWITCHING TO PROTECTED MODE 

Before switching to protected mode, a minimum set of system data structures must be 
created, and a minimum. number of registers must be initialized. 

10.4.1 System Tables 

To allow protected mode software to access programs and data, at least one descriptor 
table, the GDT, and two descriptors must be created. Descriptors are needed for a code 
segment and a data segment. The stack can be be placed in a normal read/write data 
segment, so no descriptor for the stack is required. Before the GDT can be used, the 
base address and limit for the GDT must be loaded into the GDTR register using an 
LGDT instruction. 

10.4.2 NMI Interrupt 

. If hardware allows NMI· interrupts to' be generated, the IDT. and a· gate for the NMI 
interrupt handler need to be created. Before the IDT can be used, the base address and 
limit for the IDT must be loaded into theIDTR register using an LIDT instruction. 

10.4.3 PE Bit 

Protected mode is entered by setting the PE bit in the CRO register. Either an LMSW or 
MOV CRO instruction may be used to set this bit (the MSW register is part of the CRO 
register). Because the processor overlaps the interpretation of several instructions, it is 
necessary to discard the instructions which already have been read into the. processor. A 
JMP instruction immediately after the LMSW instruction chariges the flow of execution, 
so it has the effect of emptying the processor of instructions which have been fetched or 
decoded. 

Mter entering protected mode, the segment registers continue to hold the contents they 
had in real address mode. Software should reload all the segment registers. Execution in 
protected mode begins with a CPL ofO. 

10.5 SOFTWARE INITIALIZATION IN PROTECTED MODE 

The data structures needed in protected mode are determined by the memory manage­
ment features which are used. The processor supports segmentation models which range 
from a single, uniform address space (flat model) to a highly structured model with 
several independent, protected address spaces for each task (multi-segmented model); 
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Paging can be enabled for allowing access to large data structures which are partly in 
memory and partly on disk. Both of these forms of address translation require data 
structures which are set up by the operating system and used by the memory manage­
ment hardware. 

10.5.1 Segmentation 

A flat model without paging only requires a GDT with one code and one data segment 
descriptor. A flat model with paging requires code and data descriptors for supervisor 
mode and another set of code and data descriptors for user mode. In addition, it 
requires a page directory and at least one second-level page table. 

A multi-segmented model may require additional segments for the operating system, as 
well as segments and LDTs for each application program. LDTs require segment 
descriptors in the GDT. Most operating systems, such as OS/2, allocate new segments 
and LDTs as they are needed. This provides maximum flexibility for handling a dynamic 
programming environment, such as an engineering workstation. An embedded system, 
such as a process controller, might pre-allocate a fixed number of segments and LDTs 
for a fixed number of application programs. This would be a simple and efficient way to 
structure the software environment of a system which requires fast real-time 
performance. 

10.5.2 Paging 

Unlike segmentation, paging is controlled by a mode bit. If the PG bit in the CRO 
register is clear (its state following reset initialization), the paging mechanism is com­
pletely absent from the processor architecture seen by programmers. 

If the PG bit is set, paging is enabled. The bit may be set using a MOV CRO instruction. 
Before setting the PG bit, the following conditions must be true: 

.. Software has created at least two page tables, the page directory and at least one 
second-level page table. 

.. The PDBR register (same as the CR3 register) is loaded with the base address of the 
page directory. 

• The processor is in protected mode (paging is not available in real-address mode). If 
all other restrictions are met, the PG and PE bits can be set at the same time. 

As with the PE bit, setting the PG bit must be followed immediately with a JMP instruc­
tion. Also, the code which sets the PG bit must come from a page which has the same 
physical address after paging is enabled. 

10.5.3 Tasks 

If the multitasking mechanism is not used, it is unnecessary to initialize the TR register. 
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If the multitasking mechanism is used, a TSS and a TSS descriptor for the initialization 
software must be created. TSS descriptors must not be marked as busy when they are 
created; TSS descriptors should be marked as busy only as a side-effect of performing a 
task switch. As with descriptors for LDTs, TSS descriptors reside in the GDT. The LTR 
instruction is used to load a selector for the TSS descriptor of the initialization software 
into the TR register. This instruction marks the TSS descriptor as busy, but does not 
perform a task switch. The selector must be loaded before performing the first task 
switch, because a task switch copies the current task state into the TSS. After the LTR 
instruction has been used, further operations on the TR register are performed by task 
switching. As with segments and LDTs, TSSs and TSS descriptors can be either pre~ 
allocated or allocated as needed. 

10.6 TLB TESTING 

The Intel486 processor provides a mechanism for testing the translation lookaside buffer 
(TLB), the cache used for translating linear addresses to physical addresses. Although 
failure of the TLB hardware is extremely unlikely, users may wish to include TLB con­
fidence tests among other power-up tests for the Intel486 processor. 

NOTE 

This TLB testing mechanism is unique to the Intel486 processor and may not be 
continued in the same way in future processors. Software which uses this mechanism 
may be incompatible with future processors. 

10.6.1 Structure of the TLB 

The TLB is a four-way set-associative memory. Figure 10-3 illustrates its structure. In the 
data block, there are eight sets of four data entries each. A data entry in the TLB 
consists of the 20 high-order bits of a physical address. These 20 bits can be interpreted 
as the base address of a page, which is by definition clear in its 12 low-order bits. 

The TLB translates a linear address into a physical address, and so is only concerned 
with the high-order 20 bits of either; the low-order 12 bits (these constitute the offset into 
the page) are the same in both the linear and the physical address. 

Corresponding to the block of data entries is a block of valid, attribute and tag entries. 
The tag entry consists of the 17 high-order bits of a linear address. In translating 
addresses, the processor uses bits 12, 13, and 14 of the linear address to select one of the 
eight sets, and then checks the four tags of that set for a match with the high-order 17 
bits of the linear address. If a match is found among the tags of the selected set, and the 
corresponding valid bit equals 1, then the linear address is translated by replacing its 
high-order 20 bits with the 20 bits of the corresponding data entry. 

Three LRU bits are provided with each set; they track the use of the data in the set, and 
are checked when a new entry is needed (and none of the entries in the set is invalid). A 
pseudo-LRU replacement algorithm is used. 
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10.6.2 Test Registers 

240486;10·3 

Two test registers, shown in Figure 10-4, are provided for the purpose of testing. The 
TR6 register is the TLB test command register, and the TR7 register is the TLB test 
data register. These registers are accessed by forms of the MaV instruction. The MaV 
instructions are defined in both real-address mode and protected mode. The test regis­
ters are privileged resources; in protected mode, the MaV instructions which access 
them can be executed only at privilege level 0 (most privileged). An attempt to read or 
write the test registers from any other privilege level causes a general-protection 
exception. 

Unlike the TLB of the Intel386 DX processor, the TLB of the Intel486 processor can be 
accessed without disabling paging. Also unlike the Intel386 DX processor, the TLB of 
the Intel486 processor uses a pseudo-LRU cache replacement algorithm to select entries 
for de-allocation when a new entry is needed and the TLB is full. 

10-9 



intel® INITIALIZATION 

1 1 1 
31 2 1 098 7 6 5 4 3 2 1 0 

P P 
o 0 P 

R 
PHYSICAL ADDRESS CW L R U E o 0 

DT 
L 

P 
TR7 

LINEAR ADDRESS V 0 o U 
# 

U w 
# ~OOOOC TRS 

240486i10-4 

Figure 10-4. TLB Test Registers 

The TLB test command register (TR6) contains a command and an address tag: 

• C This is the Command bit. There are two TLB testing commands: write entries into· 
the TLB, and perform TLB lookups. To cause a write into the TLB entry, move a 
doubleword into the TR6 register which contains a clear C bit. To cause an TLB 
lookup (read), move a doubleword into the TR6 register which contains a set C bit. 
TLB operations are triggered by writing to the TR6 register. 

• Linear Address On a TLB write, a TLB entry is allocated to this linear address; the 
rest of that TLB entry is assigned using the value of the TR7 register and the value 
just written into the TR6 register. On a TLB lookup, the TLB is interrogated with this 
value; if one and only one TLB entry matches, the rest of the fields of the TR6 and 
TR7 registers are set from the matching TLB entry. 

• V This bit indicates the TLB entry contains valid data. Entries in the TLB which are 
not loaded with page table entries have a clear V bit. All V bits are cleared by writing 
to the CR3 register, which has the effect of emptying or "flushing" the TLB. The 
TLB must be flushed after modifying the page tables, because otherwise unmodified 
data might get used for address translation. 

• D, D# The D bit (and its complement). 

• U, U# The U/S bit (and its complement). 

• W, W# The R/W bit (and its complement). 

These bits are provided in both true and complement form for extra flexibility during 
TLB lookups. The meaning of these pairs of bits is given in Table 10-4. 

Table 10-4. Meaning of Bit Pairs in the TR6 Register 

Bit Bit# Effect on TLB Lookup Effect on TLB Write 

0 0 Do not match undefined 

0 1 Match if the bit is clear Clear the bit 

1 0 Match if the bit is set Set the bit 

1 1 Match if set or clear undefined 
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The TLB test data register (TR 7) holds data read from or data to be written to the TLB: 

• Physical Address This is the data field of the TLB. On a write to the TLB, the TLB 
entry allocated to the linear address in the TR6 register is set to this value. On a TLB 
lookup (read), the data field (physical address) from the TLB is loaded into this field. 

• peD Corresponds to the PCD bit of a page table entry. 

• PWT Corresponds to the PWT bit of a page table entry. 

• LRU On a TLB read, corresponds to the bits used in the pseudo-LRU cache replace­
ment algorithm. The states which are reported are the value of these bits before the 
TLB lookup. TLB lookups which result in hits and TLB writes can change these bits. 

o PL On a TLB write, a set PL bit causes the REP field of the TR 7 register to be used 
for selecting which of four associative blocks of the TLB entry is loaded. If the PL bit 
is clear, the internal pointer of the paging unit is used to select the block. The internal 
pointer is driven by the pseudo-LRU cache replacement algorithm. On a TLB lookup 
(read), the PL bit indicates whether the read was a hit (the PL bit is set) or a miss 
(the PL bit is clear). 

o REP For a TLB write, selects which of four associative blocks of the TLB is to be 
written. For a TLB read, if the PL bit is set, REP reports in which of the four 
associative blocks the tag was found; if the PL bit is clear, the contents of this field 
are undefined. 

10.6.3 Test Operations 

To write a TLB entry: 

1. Move a doubleword to theTR7 register which contains the desired physical address, 
PCD, PWT, PL, and REP values. If the PL bit is set, the REP field selects the 
associative block in which to place the entry. If the PL bit is clear, the internal 
pointer is used. 

2. Move a doubleword to the TR6 register which contains the appropriate linear 
address, and values for the V, D, U, and W bits. The C bit must be clear. 

Do not write duplicate tags; the results of doing so are undefined. 

To lookup (read) a TLB entry: 

1. Move a doubleword to the TR6 register which contains the appropriate linear 
address and attributes. The C bit must be set. 

2. Read the TR 7 register. If the PL bit in the TR 7 register is set, then the rest of the 
register contents report the TLB contents. If the PL bit is clear, then the other 
values in the TR7 register, except the LRU bits, are undefined. 

For the purposes of testing, the V bit functions as another bit of address. The V bit for 
a lookup request should usually be set, so that uninitialized tags do not match. Lookups 
with the V bit clear are unpredictable if any tags are uninitialized. 
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10.7 CACHE TESTING 

The Intel486 processor provides a mechanism for testing the cache used for instructions 
and data. Although failure of the cache hardware is extremely unlikely, users may wish 
to include cache confidence tests among other power-up tests for the Intel486 processor. 

NOTE 

This cache testing mechanism is unique to the Intel486 processor and may not be 
continued in the same way in future processors. Software which uses this mechanism 
may be incompatible with future processors. 

Caching must be disabled while peifonning cache testing. 

10.7.1 Structure of the Cache 

The cache is a four-way set-associative memory. This means that a data block from a 
given location in main memory can b.e stored in any of four locations in the cache. 
Four-way association is a compromise between the speed of direct-mapped cache on 
cache hits and the high hit ratio of fully associative cache. It permits rapid searches of 
the cache to find data while providing a high proportion of cache hits. 

The cache· consists of three blocks: 

• Data Block-contains up to 8K-bytes of data and instructions. The data block is 
divided into four arrays, each containing 128 cache lines. Each cache line holds data 
from 16 successive memory addresses, beginning with an address divisible by 16. To 
each 7-bit index into the arrays of the data block there correspond four cache lines, 
one from each array. Four cache lines with the same index are called a set. 

• Tag Block - contains one 21-bit tag for each line of data in the cache. The tag block is 
therefore also divided into four arrays, each containing 128 tags. The tag consists of 
the high-order 21 bits of the physical address of the data stored in the corresponding 
cache line .. 

• Valid and LRU Block-contains one 7-bit quantity for each of the 128 sets of cache 
lines. Four bits are used to mark the cache lines in the set individually as valid or 
invalid. The other three bits track the use of the data in the set, and are checked 
when a cache line-fill is needed (and none of the lines in the set is invalid). As in the 
TLB, a pseudo-LRU cache replacement algorithm is used. 

Cache addressing is performed by splitting the high-order 28 bits of the· physical address 
into two parts. The highest-order 21 bits are the tag field, and are used to distinguish the 
cached data from any other 16-byte data line that could have been stored in the same 
set. The next-highest 7 bits are the index field, and determine the set in which the data 
can be stored. 
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Figure 10-5. Cache Structure 

10.7.2 Test Registers 

Three test registers, shown in Figure 10-6, are provided for the purpose of testing. The 
TR3 register is the cache test data register, the TR4 register is the cache test status 
register, and the TR5 register is the cache test control register. These registers are 
accessed by forms of the MOV instruction. The MOV instructions are defined in both 
real-address mode and protected mode. The test registers are privileged resources; in 
protected mode, the MOV instructions which access them can be executed only at priv­
ilege level 0 (most privileged). An attempt to read or write the test registers from any 
other privilege level causes a general-protection exception. 

The cache test data register (TR3) contains a doubleword to write to the cache fill 
buffer, or a doubleword read from the cache read buffer. The fill and read buffers each 
have storage for four doublewords, which pass through this register one at a time. A 
particular doubleword in either buffer is addressed using the 2-bit Entry Select field 
(bits 2 and 3) in the TR5 register. 
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Figure ,1 0-6. Cache, Test, Registers 

The cache test status register (TR4) contains Valid and LRU bits, and a tag: 

• Valid (bits 3 .. 6). On a cache lookup, these are the four Valid bits of the set which was 
accessed. 

• LRU. On a cache lookup, these are the three LRU bits of the set which was accessed. 
On a cache write, these bits are ignored; the LRU bits in the cache are updated by 
the pseudo-LRU cache replacement algorithm. ' 

• - Valid(bit 10). ThIS is the Valid bit for the particular entry which was accessed. On a 
cache lookup, it is a copy of one of the bits reported in bits 3 .. 6. On a cache write, it 
becomes the new valid bit for the entry and set selected. 

• Tag Address. On a cache write, this is the address which becomes the tag. 

The cache test control register (TR5) contains the 7-bit set select, 2-bit entry select, and 
a 2-bit control field: 

• Set Select. Selects one of the 128 sets. 

• _ Entry Select. During a cache read or write, selects one of the four entries in the set 
addressed by the Set Select; during cache-fill-buffer writes or read-buffer reads, 
selects one of the four doublewords in a litie. ' . ' 

• Control. The functions encoded by these bits are shown in Table 10-5. 
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Table 10-S. Encoding of Cache Test Control Bits 

Control Bits 
Description 

Bit 1 Bit 0 

00 Write to cache fill buffer, or read from cache read buffer. 
01 Perform cache write. 
10 Perform cache read. 
11 Flush the cache (mark all entries as invalid). 

Writing to TRS with either bit 0 or bit 1 set causes a cache access. TRS cannot be read . 

. 10.7.3 Test Operations 

Before cache testing: 

1. Disable caching by setting the CD bit in the CRO register. 

To write to the cache fill buffer: 

1. Load the TRS register with a value in the Entry Select field which addresses one of 
the four doublewords in the cache fill buffer; The value of the Control field must be 
00 (binary). 

2. Load the TR3 register with the data to be written to the cache fill buffer; The wrilt; 
to the buffer is triggered by loading this register. 

3. Repeat steps 1 and 2 above for each of the remaining three doublewords in the 
cache fill buffer; 

To write to the cache: 

1. Load the cache fill buffer, as described above. 

2. Load the TR4 register with the tag (bits 11..31) and a valid bit (bit 10). The other 
bits of the TR4 register (bits 0 .. 9) have no effect on the cache write. 

3. Load the TRS register with Control, Entry Select, and Set Select values. The value 
in the Control field must be 01 (binary). The cache write is triggered by loading this 
register. 

To read from the cache: 

1. Load the TRS register with Control, Entry Select, and Set Select values. The value 
in the Control field must be 10 (binary). The cache read is triggered by loading this 
register. The cache read loads the TR4 register with the tag for the entry which was 
read, and the LRU and Valid bits for the entire set which was read. The cache read 
loads the cache read buffer with 128 bits of data. The buffer can be read using the 
following procedure. 
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To read from the cache read buffer: 

1. Load the TRS register with Control and Entry Select values. The Entry Select value 
addresses one of the four doublewords in the cache read buffer. TQe valuein the 
Control field must be 00 (binary). 

2. Read a doubleword from the cache read buffer by unloading the TR3 register. The 
read from the buffer is triggered by unloading·this register. 

3. Repeat steps 1 and 2 above for each of the remaining three doublewords in the 
cache read buffer. 

To flush the cache: 

1. Load the TRS register with a Control value. The value in the Contr.ol field must be 
11 (binary). None of the other fields have any meaning in this case. The cache flllsh 
is triggered by loading this register. All of the LRU bits anQ Valid bits are cleared. 

10.8 INITIALIZATION EXAMPLE 

The following program templates are provided by Intel for your benefit in developing 
software for the Intel486 processor. 

simpinit.asm 
; , Initialization code for simple flat (linear) model example 

***********************************************************************, 
Version 2.B 
Copyright Intel Corp., 1988 
This template is intended for your benefit in developing applications/ 
systems using Intel Intel486 m or Inte1386- family micrbprocessors. 
Intel hereby grants you permission to modify and incorporate it,as 
needed. ' 

************************************************************************ 
This is an example of initialization code to put either the' i486(TM) 
processor, Intel386 DX processor, Intel386 SX processor or 376(TM) processor 
into flat mode. All of memory is treated as simple linear RAM. 
There are no interrupt routines. The builder creates the GDT . 
alias and IDT alias and places them, by default, in GDT[11 and GDT[21. ' 
After entering protected mode, this code jumps to an ASM386/48~ startup' 
routine for a C application. You can change this JMP address to that 'of. 
your ,code, or make the label of your code. LSTARTUP· , 

NAME simpstart name of object module 
EXTRN c_startup:near this is the label jmped to after init_code 
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int:eL 

pe-flag 
data_selc 
CODEMACRO 

ENDM 

equ 1 
equ 20H 
opprefx 
db bbH 

INITIALIZATION 

for setting PE bit 
offset of _phantom_data_ in GDT (GDT[4Jl 
macro to change default operand size 

init_code SEGMENT ER PUBLIC 
GDT_DESC is a public symbol referred to in the build file. The LOCATION 
definition in the TABLE section of the build file points to this label; 
the builder stores the base and limit for the named table at this 
location in memory. 

PUBLIC gdt_desc 
gdt_desc dp ? 

START is a label that points to the true beginning of our executable 
code. The BOOTSTRAP control causes the builder to place a s.hort jump 
to the named label in this case,. STARTj at the component reset vector. 

PUBLIC start 
Since this code initializes either an Inte148b, Inte138b DX, Inte138b SX or 37b 
processor into protected mode, the first instructions at START test for component 
type. The Inte148b or Inte138b DX or Inte138b SX processor at reset is in real or 
compatibility mode: the PE bit is off and the D bit for CS is not set. 
Instructions execute in their lb-bit form. The 37b processor at reset 
has the PE bit on as well as the D bit, so instructions execute in their 
32-bit form. 

nop 
nop 

start: 
cld 
smsw bx 
test bl, 1 
jnz pestart 

NOPs are for initializing a Inte148b or Inte138b DX 
or Inte138b SX processor 

clear direction flag 
use SMSW rather than MOV for speed 
check for pr~cessor type at reset 

Loading the GDTR at"REALSTART or PESTART depends on user hardware 
returning a READY after a write to.ROM. 

realstart: is an Inte148b or Inte138b DX or Inte138b SX processor 
opprefx and in lb-bit real mode, use operand prefix to . 
mov eax,offset gdt_desc get 32-bit address of GDT pointer 
opprefx use operand prefix to 
and eax,0ffffh make address relative to reset area 
19dtw cs:[eaxl load 24 bits of base into GDTR 

mov ax,bx 
or al,pe_flag 
lmsw ax 
jmp next 

copy machine status word 
set PE bit 
load machine status word with PE bit set 
flush pre fetch queue 
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pestart: 
mode 

mov eax,offset gdt_desc 
and eax,0ffffh 
19dt cs:[eax] 

next: 
xor eax,eax 
mov al,data_selc 
mov ds,ax 
mov sS,ax 
mov eS,ax 
mov fs,ax 
mov gS,ax 
test bl,l 
jnz pejump 

opprefx 
pejump: 

jmp far ptr c_startup 
iniLcode ENDS 

END 
cstart.asm 

INITIALIZATION 

is a 376 processor and in 32-bit protected 

get 32-bit address of GDT pointer 
make address relative to reset area 
load 32 bits of base into GDTR 

initialize data selectors 
GDT[4] is _phantom_data_ 

use operand prefix for Intel486 or Intel386 DX or 
Intel386 SX processor jump 
first far jump causes A31-20 to drop low 

An ASM386/486 module to initialize the stack and call a C application 

*********************************************************************** 

Version 2.O 
Copyright Intel Corp., 1988 
This template is intended for your benefit in developing applications/ 
systems using Intel486 m or Intel386 m family microprocessors. 
Intel hereby grants you permission to modify and incorporate it as 
needed. 

************************************************************************ 

NAME cstart 
EXTRN main:near 
PUBLIC c_startup 

stack STACKSEG 1024 

data SEGMENT RW PUBLIC 
data ENDS 
code32 SEGMENT ER PUBLIC 

name of the object module 
label of the C application to be called 
public symbol used in processor initialization 
code 
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c_startup: 

mov esp,stackstart stack 
call main 
hlt 

code32 ENDS 
1* simple.c 

INITIALIZATION 

initialize stack pointer 
call C application 
halt processor 

C386/486 application code for simple flat model example 

1*************************************************************************** 

Version 2.0 
Copyright Intel Corp., 1988 
This template is intended for your benefit in developing applicationsl 
systems using Intel486 m or Intel386 m family microprocessors. Intel 
hereby grants you permission to modify and incorporate it as needed. 

**************************************************************************** 

*1 
char message[l="IT WORKS" 

main () 
{ 

int array_count[101; 
aray_count[11 1; 
aray_count[21 2; 
aray_count[31 3; 
aray_count[41 4; 
aray_count[51 5; 
aray_count[61 6; 
aray_count[71 7; 
aray_count[81 8; 
} 

simple.bld 
Build file for input to BLD386/486 to create simple flat model example 

*********************************************************************** 

Version 2.0 
Copyright Intel Corp., 1988 
This template is intended for your benefit in developing applicationsl 
systems using Intel486 m or Intel386 m family microprocessors. 
Intel hereby grants you permission to modify and incorporate it as 
needed. 

************************************************************************ 

simple; -- build program id 
SEGMENT 
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*segments (DPL 0l, 
_phantom_code_ (DPL 0l, 
_phantom_data_ (DPL 0l, 

INITIALIZATION 

Give all user segments a DPL of 0. 
These two segments are created by 
the builder when the FLAT control is 
used. 
Their default DPL is 0j they are listed 
here for reference only. 

iniLcode Put initialization code at reset area. 
(BASE 0ffff0300Hlj 

TABLE 
create GDT 

GDT 
"simpstart" initialization 

(LOCATION = gdt_desc, 

BASE = 0ffff0100H 
lj end GDT 

TASK 
main_task 

lj 
TABLE 

(BASE 0ffff0200H, 
DATA data, 

CODE main, 

STACKS = (stackl, 

NO INTENABLED 

ldtl (NOT CREATEDlj 

END 

-- GDT_DESC is a public symbol in the 
module. 

In a buffer starting at GDT_DESC, 
BLD386/486 places the GDT base and 
GDT limit values. Buffer must be 
6 bytes long. The base and limit 
values are places in this buffer 
as two bytes of limit plus 
four bytes of base in the format 
required for use by the LGDT 
instruction. 

Task is for *ICD-486 or ICE m-386 
or ICE-376 emulator initialization. 

Points to a segment that 
indicates initial DS value. 
Entry point is main, which 
must be a public id. 
Segment id points to stack 
segment. Sets the initial SS:ESP. 
Disable interrupts. 

Builder does not place LDT in object 
module, but contents appear in listing. 
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Note: ICD-486 is an in-circuit debugger for the Inte1486 CPU. This product 
is scheduled for availability in the fourth quarter of 1989. 

echo off 
echo simple.bat 
echo A DOS batch file for generating a bootloadable simple flat model 
echo *********************************************************************** 
echo * * 
echo 
echo 
echo 
echo 
echo 
echo 
echo 

* Version 2.0 
* Copyright Intel Corp., 1988 
* This template is intended for your benefit in developing 
* applications/systems using Inte1486 m or Inte1386 m family 
* microprocessors. Intel hereby grants you permission to modify 

and incorporate it as needed. 
* 

* 
echo *********************************************************************** 
REM 
REM The following two invocations of ASM386/486 create object modules 
REM "simpinit.obj" and "cstart.obj". The assembler issues warnings with 
REM each invocation due to the use of privileged instructions in the files. 
REM The "debug" control directs ASM386/486 to include extra information 
REM useful in symbolic debugging. The listing files are "simpinit.lst" and 
REM "cstart.lst". 
echo *echo asm386 simpinit.asm debug mod486 
asm386 simpinit.asm debug mod486 
echo (1 warning due to use of privileged instructions) 
echo * 
echo asm386 cstart.asm debug mod486 
asm386 cstart·asm debug mod486 
echo (1 warning due to use of privileged instructions) 
REM 
REM The invocation of C-386/486 creates an object module "simple.obj". The 
REM "regal locate" control directs the compiler to optimize the allocation of 
REM register variables. The "code" control causes placement of a pseudo-
REM assembly language listing at the end of the listing file. "Debug" 
REM directs C-386/486 to include extra information useful in symbolic 
REM debugging. The listing file is "simple. 1st". 
echo * 
echo c386 simple.c debug regal locate code mod486 
c386 simple.c debug regallocate code mod486 
REM 
REM BND386/486 combines the input segments and resolves symbolic addressing. 
REM The "noload" control directs the binder to create a linkable (rather 
REM than loadable) file. The "debug" control indicates that the binder does 
REM not purge debug information. "Object" directs the output file to be 
REM named "simple.bnd". The listing file is "simple.mp1". 
echo * 
echo bnd386 simple.obj,simpinit.obj,cstart.obj noload debug object 
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(simple.bnd) mod48b 
bnd38b simple.obj,simpinit.obj,cstart.obj noload debug object (simple.bnd) mod48b 
REM 
REM The goal is an absolute bootloadable file (all addresses fixed in 
REM memory) suitable for loading into an ICD-48b in-circuit debugger or an ICE-38b 
REM or ICE-37b in-circuit emulator. BLD38b/48b creates such an absolute module, 
REM necessary descriptor tables, and a task for initializing the emulator. The 
REM "buildfile" control identifies "simple.bld" as the build file. The 
~EM "bootstrap" control identifies the symbol "start" as the label of the 
REM instruction to be jumped to by the bootstrap jump placed at 0fffffff0H. 
REM The "flat" control directs the builder to configure the file in a flat 
REM model, where all code resides in the _phantom_code_ segment and all data 
REM resides in the _phantom_data_ segment. The "mod48b" control causes the 
REM builder to issue messages to guide creation of the object module for an 
REM Intel48b processor. The "mod37b" control causes the builder to issue 
REM messages to guide creation of the object module for a 37b 
REM processor. You can remove either control to create an object module for 
REM a Intel38b DX processor. The listing file is "simple.mp2". The final system 
REM is "simple". 
echo * 
echo bld38b simple.bnd buildfile (simple.bld) bootstrap (start) flat mod48b 
bld38b simple.bnd buildfile (simple.bld) bootstrap (start) ·flat mod48b 
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CHAPTER 11 
DEBUGGING 

The Intel486 processor has advanced debugging facilities which are particularly impor­
tant for sophisticated software systems, such as multitasking operating systems. The fail­
ure conditions for these software systems can be very complex and time-dependent. The 
debugging features of the Intel486 processor give the system programmer valuable tools 
for looking at the dynamic state of the processor. 

The debugging support is accessed through the debug registers. They hold the addresses . 
of memory locations, called breakpoints, which invoke debugging software. An exception 
is generated when a memory operation is made to one of these addresses. A breakpoint 
is specified for a particular form of memory access, such as an instruction fetch or a 
doubleword write operation. The debug registers support both instruction breakpoints 
and data breakpoints. 

With other processors, instruction breakpoints are set by replacing normal instructions 
with breakpoint instructions. When the breakpoint instructi()n is executed, the debugger 
is called. But with the debug registers of the Intel486 processor, this is not necessary. By 
eliminating the need to write into the code space, the debugging process is simplificd 
(there is no need to set up a data segment mapped to the same memory as the emk 
segment) and breakpoints can be set in ROM-based software. In addition, breakpoints 
can be set on reads and writes to data which allows real-time monitoring of variables. 

11.1 DEBUGGING SUPPORT 

The features of the architecture which support debugging are: 

• Reserved debug interrupt vector-Specifies a procedure or task to be called when an 
event for the debugger occurs. 

• Debug address registers - Specifies the addresses of up to four breakpoints. 

• Debug control register-Specifies the forms of memory access for the breakpoints. 

• Debug status register-Reports conditions which were in effeCt at the time of the 
exception. 

• Trap bit of TSS (T-bit)-Generates a debug exception when an attempt is made to 
perform a task switch to a task with this bit set in its TSS. 

• Resume flag (RF) - Suppresses multiple exceptions to the same instruction. 

• Trap flag (TF) - Generates a debug exception after every execution of an instruction. 

• Breakpoint instruction-Calls the debugger (generates a debug exception). This 
instruction is an alternative way to set code breakpoints. It is especially useful when 
more than four breakpoints are desired, or when breakpoints are being placed in the 
source code. . 

• Reserved interrupt vector for breakpoint exception - Calls a procedure or task when a 
breakpoint instruction is executed. 
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These features allow a debugger to be called either as a separate task or as a procedure 
in the context of the current task. The following conditions can be used to call the 
debugger: 

• Task switch to a specific task 

• Execution of the breakpoint instruction. 

• Execution of any instruction. 

• Execution of an instruction at a specified address. 

• Read or write ()f a byte, word, or doubleword at a specified address. 

• Write to a byte, word, or doubleword at a specified address. 

• Attempt to change the contents of a debug register. 

11.2 DEBUG REGISTERS 

Six registers are used to control debugging. These registers are accessed by forms of the 
MOV instruction. A debug register may be the source or destination operand for one of 
these instructions. The debug registers are privileged resources; the MOV instructions 
which access them may be executed only at privilege level O. An attempt to read or write 
the debug registers from any other privilege level generates a general~protection excep­
tion. Figure 11-1 shows the format of the debug registers. 

11.2.1 Debug Address Registers (DRO-DR3) 

Each of these.registers holds the linear address for one of the four breakpoints. That is, 
breakpoint comparisons are made before physical address translation occurs. Each 
breakpoint condition is specified furt~er by the contents of the DR? register. 

11.2.2 Debug Control Register (DR7) 

The debug control register shown in Figure 11-1 specifies the sort of memory access 
associated with each breakpoint. Each address in registers DRO to DR3 corresponds to a 
field RIWO to RlW3. in the DR7 register. The processor interprets these bits as follows: 

00 - Break on instruction execution only 
01- Break on data writes only 
10 - undefined 
11-Break on data reads or writes but not instruction fetches 
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DEBUG REGISTERS 

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 111 111 
10987654321098765432109876543210 

L R L R L R L R 
GOO 1 E I E I E I E I 00 G L G L GL G L G L 

N W N W N W N W D E E 3 3 2 2 1 1 o 0 
3 3 2 2 1 1 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 111 1 B B g 0 1 1 1 1 1 111 BB BB 
T S 3 2 1 0 

RESERVED 

RESERVED 

BREAKPOINT 3 LINEAR ADDRESS 

BREAKPOINT 2 LINEAR ADDRESS 

BREAKPOINT 1 LINEAR ADDRESS 

BREAKPOINT 0 LINEAR ADDRESS 

HARDWIRED BITS ARE RESERVED. DO NOT DEFINE 

Figure 11-1. Debug Registers 

DR7 

DR6 

DRS 

DR4 

DR3 

DR2 

DR1 

ORO 

240486i11·1 

The LEND to LEN3 fields in the DR? register specify the size of the breakpointed 
location in memory. A size of 1, 2, or 4 bytes may be specified. The length fields are 
interpreted as follows: . 

00 - one-byte length 
01- two-byte length 
10 - undefined 
11-four-byte length 

If RWn is 00 (instruction execution), then LENn should also be 00. The effect of using 
any other length is undefined. 
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The GD bit enables the debug register protection condition that is flagged by BD of 
DR6. Note that GD is cleared at entry to the debug exception handler by the processor. 
This allows the handler free access to the debug registers. 

The low eight bits of the DR7 register (fields LO to L3 and GO to G3) individually enable 
the four address breakpoint conditions. There are two levels of enabling: the local (LO 
through L3) and global (GO through G3) levels. The local enable bits are automatically 
cleared by the processor on every task switch to avoid unwanted breakpoint conditions in 
the new task. They are used to breakpoint conditions in a single task. The global enable 
bits are not cleared by a task switch. They are used to enable breakpoint conditions 
which apply to all tasks. 

The InteI486 processor always uses exact data breakpoint matching in debugging. That 
is, if any of the Ln/Gn bits are set, the processor slows execution so that data breakpoints 
are reported for the instruction which triggered the breakpoint, rather than the next 
instruction to execute. In such a case, one-clock instructions which access memory will 
take two clocks to execute. . 

hi the Inte1386 DX processor, exact data breakpoint matching will not occur unless it is 
enabled by setting either the LE or the GE bit.' The InteI486 processor ignores these 
bits. 

11.2.3 Debug Status Register (DRS) 

The debug status register shown in Figure 11-1 reports conditions sampled at the time 
the debug exception was generated. Among other information, it reports which break­
point triggered the exception. Update only occurs if the exception is taken, then all bits 
will be updated. 

When an enabled breakpoint generates a debug exception, it loads the low four bits of 
this register (BO through B3) before entering the debug exception handler. The B bit is 
set if the condition described by the DR, LEN, and R/W bits is true, even if the break­
point is not enabled by the Land G bits. The processor sets the B bits for all breakpoints 
which match the conditions present at the time the debug exception is generated, 
whether or not they are enabled. 

The BT bit is associated with theT bit (debug trap bit) of theTSS (see Chapter 6 for the 
format of a TSS). The processor sets the BT bit before entering the debug handler if a 
task switch has occurred to a task with a set T bit in its TSS. There is no bit in the DR7 
register to enable or disable this exception; the T bit of the TSS is the only enabling bit. 

The BS bit is associated with the TF flag. The BS bit is set if the debug exception was 
triggered by the single-step execution mode (TF flag set). The single-step mode is the 
highest-priority debug exception; when the BS bit is set, any of the other debug status 
bits also may be set. 

The BD bitis set if the next instruction will read or write one of the eight debug registers 
while they are being used by in-circuit emulation. 
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Note that the contents of the DR6 register are never cleared by the processor. To avoid 
any confusion in identifying debug exceptions, the debug handler should clear the regis­
ter before returning. 

11.2.4 Breakpoint Field Recognition 

The address and LEN bits for each of the four breakpoint conditions define a range of 
sequential byte addresses for a data breakpoint. The LEN bits permit specification of a 
one-, two-, or four-byte range. Two-byte ranges must be aligned on word boundaries 
(addresses which are multiples of two) and four-byte ranges must be aligned on double­
word boundaries (addresses which are multiples of four). These requirements are 
enforced by the processor; it uses the LEN bits to mask the lower address bits in the 
debug registers. Unaligned code or data breakpoint addresses do not yield the expected 
results. 

A data breakpoint for reading or writing is triggered if any of the bytes participating in.a 
memory access is within the range defined by a breakpoint address register and its LEN 
bits. Table 11-1 gives some examples of combinations of addresses and fields with mem­
ory references which do and do not cause traps. 

A data breakpoint for an unaligned operand can be made from two sets of entries in the 
breakpoint registers where each entry is byte-aligned, and the two entries together cover 
the operand. This breakpoint generates exceptions only for the operand, not for any 
neighboring bytes. 

Table 11-1. Breakpointing Examples 

Comment Address (hex) Length (in bytes) 

Register Contents DRO AOO01 1 (LEND = 00) 
Register Contents DR1 AOO02 1 (LENO = 00) 
Register Contents DR2 BOO02 2 (LENO = 01) 
Register Contents DR3 COOOO 4 (LENO = 11) 

AOO01 1 
AOO02 1 
AOO01 2 
AOO02 2 

Memory Operations Which Trap 80002 2 
80001 4 
COOOO 4 
COO01 2 
COO03 1 

AOOOO 1 
Memory Operations Which AOO03 4 
Don't Trap 80000 2 

COO04 4 
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Instruction breakpoint addresses must have a length specification of one byte (LEN = 
00); the behavior of code breakpoints for other operand sizes is undefined. The proces­
sor recognizes an instruction breakpoint address only when it points to the first byte of 
an instruction. If the instruction has any prefixes, the breakpoint address must point to 
the first prefix. 

11.3 DEBUG EXCEPTIONS 

Two ofthe interrupt vectors of the Intel486 processor are reserved for debug exceptions. 
The debug exception is the usual way to invoke debuggers designed for the Intel486 
processor; the breakpoint exception is intended for putting breakpoints in debuggers. 

11.3.1 Interrupt 1-Debug Exceptions 

The· handler for this exception usually is a debugger or part of a debugging system. The 
processor generates a debug exception for any of several conditions. The debugger can 
check flags in the DR6 and DR7 registers to determine which condition caused the 
exception and which other conditions also might apply. Table 11-2 shows the states of 
these bits for each kind of breakpoint condition. 

Instruction breakpoints are faults; other debug exceptions are traps. The debug excep­
tion may report either or both at one time. The following sections present details for 
each class of debug exception. . 

11.3.1.1 INSTRUCTION-BREAKPOINT FAULT 

The processor reports an instruction breakpoint before it executes the breakpointed 
instruction (i.e., a debug exception caused by an instruction breakpoint is a fault). 

The RF flag permits the debug exception handler to restart instructions which cause 
faults other than debug.faults. When a debug fault occurs,the system software writer 
must set the RF bit in the copy of the EFLAGS register which is pushed on the sta.ck in 
the· debug exception handler routine. This bit is set in preparation of resuming the 

Table 11-2. Debug Exception Conditions 

Flags Tested Description 

BS = 1 Single-step trap 

BO = 1 and (GEO = 1 or LEO = 1) Breakpoint defined by DRO, LENO, and R/WO 

B1 = 1 and (GE1 = 1 or LE1 = 1) Breakpoint defined by DR1, LEN1, and R/W1 

B2 = 1 and (GE2 = 1 or LE2 = 1) Breakpoint defined by DR2, LEN2, and R/W2 

B3 = 1 and (GE3 = 1 or LE3 = 1) Breakpoint defined by DR3, LEN3, and R/W3 

BD = 1 Debug registers in use for in-circuit emulation 

BT = 1 Task switch 
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program's execution at the breakpoint address without generating another breakpoint 
fault on the same instruction. (Note: The RF bit does not cause breakpoint traps to be 
ignored, nor other kinds of faults.) 

The processor clears the RF flag at the successful completion of every instruction except 
after the IRET instruction, the POPF instruction, POPFD instruction, and JMP, CALL, 
or INT instructions which cause a task switch. These instructions set the RF flag to the 
value specified by the the saved copy of the EFLAGS register. 

The processor sets the RF flag in the copy of the EFLAGS register pushed on the stack 
before entry into any fault handler. When the fault handler is entered for instruction 
breakpoints, for example, the RF flag is set in the copy of the EFLAGS register pushed 
on the stack; therefore, the IRET instruction which returns control from the exception 
handler will set the RF flag in the EFLAGS register, and execution will resume at the 
breakpointed instruction without generating another breakpoint for the same 
instruction. 

If, after a debug fault, the RF flag is set and the debug handler retries the faulting 
instruction, it is possible that retrying the instruction will generate other faults. The 
restart of the instruction after these faults also occurs with the RF flag set, so repeated 
debug faults continue to be suppressed. The processor clears the RF flag only after 
successful completion of the instruction. 

11.3.1.2 DATA-BREAKPOINT TRAP 

A data-breakpoint exception is a trap; i.e., the processor generates an exception for a 
data breakpoint after executing the instruction which accesses the breakpointed memory 
location. 

The Intel486 processor always does exact data breakpoint matching, regardless of 
GE/LE bit settings. Exact reporting is provided by forcing the Intel486 processor execu­
tion unit to wait for completion of data operand transfers before beginning execution of 
the next instruction. 

If a debugger needs to save the contents of a write breakpoint location, it should save 
the original contents before setting the breakpoint. Because data breakpoints are traps, 
the original data is overwritten before the trap exception is generated. The handler can 
report the saved value after the breakpoint is triggered. The data in the debug registers 
can be used to address the new value stored by the instruction which triggered the 
breakpoint. 

11.3.1.3 GENERAL-DETECT FAULT 

The general-detect fault occurs when an attempt is made to use the debug registers at 
the same time they are being used by in-circuit emulation. This additional protection 
feature is provided to guarantee emulators can have full control over the debug registers 
when required. The exception handler can detect this condition by checking the state of 
the BD bit of the DR6 register. 
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11.3.1.4 SINGLE-STEP TRAP 

This trap occurs after an instruction is executed if the TF flag was set before the instruc­
tion was executed. Note the exception does not occur after an instruction which sets the 
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step 
trap does not occur until after the instruction following the POPF instruction. 

The processor clears the TF flag before calling the exception handler. If the TF flag was 
set in a TSS at the time of a task switch, the exception occurs after the first instruction is 
executed in the new task. 

The single-step flag normally is not cleared by privilege changes inside a task. The INT 
instructions, however, do clear the TF flag. Therefore, software debuggers which single­
step code must recognize and emulate INT n or INTO instructions rather than executing 
them directly. 

To maintain protection, the operating system should check the current execution privi­
lege level after any single-step trap to see if single stepping should continue at the 
current privilege level. 

The interrupt priorities guarantee that if an external interrupt occurs, single stepping 
stops. When both an external interrupt and a single step interrupt occur together, the 
single step interrupt is processed first. This clears the TF flag. After saving the return 
address or switching tasks, the external interrupt input is examined before the first 
instruction of the single step handler executes. If the external interrupt is still pending, 
then it is serviced. The external interrupt handler does not run in single-step mode. To 
single step an interrupt handler, single step an INTn instruction which calls the interrupt 
handler. 

11.3.1.STASK-SWITCH TRAP 

The debug exception also occurs after a task switch if the T bit of the new task's TSS is 
set. The exception occurs after control has passed to the new task, but before the first 
instruction of that task is executed. The exception handler can detect this condition by 
examining the BT bit of the .DR6 register. 

Note that if the debug exception handler is a task, the T bit of its TSS should not be set. 
Failure to observe this rule will put the processor in a loop. 

11.3.2 Interrupt 3 - Breakpoint Instruction 

The breakpoint trap is caused by execution of the INT 3 instruction. Typically, a debug­
ger prepares a breakpoint by replacing the first opcode byte of an instruction with the 
opcode for the breakpoint instruction. When execution of the INT 3 instruction calls the 
exception handler, the return address points to the first byte of the instruction following 
the INT 3 instruction. 
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With older processors, this feature is used extensively for setting instruction breakpoints. 
With the Intel486 processor, this use is more easily handled using the debug registers. 
However, the breakpoint exception still is useful for breakpointing debuggers, because 
the breakpoint exception can call an exception handler other than itself. The breakpoint 
exception also can be useful when it is necessary to set a greater number of breakpoints 
than permitted by the debug registers, or when breakpoints are being placed in the 
source code of a program under development. 
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CHAPTER 12 
CACHING 

The Intel486 processor has an on-chip internal cache for storing 8K bytes of instructions 
and data. The cache raises system performance by satisfying an internal read request 
more quickly than a bus cycle to memory. This also reduces the processor's use of the 
external bus. The internal cache is transparent to program operation. 

The Intel486 processor can use an external second-level cache outside of the processor 
chip. An external cache normally improves performance and reduces bus bandwidth 
required by the Intel486 processor. 

Caches require special consideration in multiprocessor systems. When one processor 
accesses data cached in another processor, it must not receive incorrect data. If it mod­
ifies data, all other processors which access that data must receive the modified data. 
This property is called cache consistency. The Intel486 processor provides mechanisms 
which maintain cache consistency in the presence of multiple processors and external 
caches. 

The operation of internal and external caches is transparent to application software, but 
knowledge of the behavior of these caches may be useful in optimizing software perfor­
mance. In multiprocessor systems, maintenance of cache consistency may require inter­
vention by system software. 

The cache is available in all execution modes: real mode, protected mode, and virtual-
8086 mode. For properly designed single-processor systems, the cache can be initially 
enabled and not require further control. 

12.1 INTRODUCTION TO CACHING 

Caches are often implemented as associative memories. An associative memory has extra 
storage for each unit of memory, called a tag. When an address is applied to an associa­
tive memory, each tag simultaneously compares itself against the address. If a tag 
matches the address, access is provided to the unit of memory associated with the tag. 
This is called a cache hit. If no match occurs, the cache signals a cache miss. A cache miss 
requires a bus cycle to access main memory. 

To gain efficiency in the implementation of the internal cache, storage is allocated in 
chunks of 128-bits, called cache lines. External caches are not likely to use cache lines 
smaller than those of the internal cache. 

The cache of the Intel486 processor does not support partially-filled cache lines, so 
caching a single doubleword requires caching four doublewords. This would be an inef­
ficient use of the cache if it were not for the fact that the processor rarely makes access 
to random locations in memory. Over any small span of time, the processor usually 
accesses a small number of areas in memory, such as the code segment or the stack, and 
it usually accesses many neighboring addresses in these areas. 
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To simplify the hardware implementation, cache lines can only be mapped to aligned 
128-bit blocks of main memory. (An aligned 128-bit block begins at an address which is 
clear in its low four bits.) When a new cache line is allocated, the processor loads a block 
from main memory into the cache line. This operation is called a cache line fill. Allocated 
cache lines are said to be valid. Unallocated cache lines are invalid. 

Caching can be write-through or write-back. On reads, both forms of caching operate as 
described above. On writes, write-through caching updates both cache memory and main 
memory; write-back caching updates only . the cache memory. Write-back caching 
updates main memory when a write-back operation is performed. Write-back operations 
are triggered when cache lines need to be de-allocated, such as when new cache lines are 
being allocated in a cache which is already full. Write-back operations also are triggered 
by the mechanisms used to maintain cache consistency. 

The internal cache of the Intel486 processor is a write-through cache. It can be used with 
external caches which are write-through, write-back, or a mixture of both. 

12.2 OPERATION OF THE INTERNAL CACHE 

Software controls the operating mode of the cache. Caching can be enabled (its state 
following reset initialization), caching can be disabled while valid cache lines exist (a 
mode in which the cache acts like a fast, internal RAM), or caching can be fully 
disabled. 

Precautions must be followed when disabling the cache. Whenever CD is set to 1, the 
Intel486 processor will not read external memory if a copy is still in the cache. Whenever 
NW is set to 1, the Intel486 processor will not write to external memory if the data is in 
the cache. This means stale data can develop in the Intel486 CPU cache. This stale data 
will not be written to external memory if NW is later set to 0 or that cache line is later 
overwritten as a result of a cache miss. In general, the cache should be flushed when 
disabled. 

It is possible to freeze data in the cache by loading it using test registers while CD and 
NW are set. This is useful to provide guaranteed cache hits for time critical interrupt 
code and data. 

Note that all segments should start on 16 byte boundaries to allow programs to align 
code/data in cache lines. 

12.2.1 Cache Disabling Bits 

Table 12-1 summarizes the modes enabled by the CD and NW bits. 
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Table 12-1. Cache Operating Modes 

CD NW Description 

1 1 Caching is disabled, but valid cache lines continue to 
respond. To completely disable the cache, enter this 
mode and perform a cache flush. To use the cache as a 
fast internal RAM, preload the cache with valid cache 
lines by careful choice of memory operations or by using 
the test registers. In this mode, writes to valid cache lines 
update the cache, but do not update main memory. 

1 0 No new cache lines are allocated, but valid cache lines 
continue to respond. 

0 1 Invalid setting. A general-protection exception with an 
error code of zero is generated. 

0 0 Caching is enabled. 

12.2.2 Cache Management Instructions 

The INVD and WBINVD instructions are used to invalidate the contents of the internal 
and external caches. The INVD instruction flushes the internal cache and generates a 
special bus cycle which indicates that external caches also should be flushed. (The 
response of hardware to receiving a cache flush bus cycle is implementation dependent; 
hardware might use some other mechanism for maintaining cache consistency.) 

There is only one difference between the WBINVD and INVD instructions. The 
WBINVD instruction generates a special bus cycle which indicates external, write-back 
caches should write-back modified data to main memory. This cycle is produced imme­
diately before the cycle to flush the cache. 

12.2.3 Self-Modifying Code 

A write to an instruction in the cache will modify it in both cache and memory, but if the 
instruction was prefetched before the write, the old version of the instruction could be 
the one executed. To prevent this, flush the instruction prefetch unit by coding a jump 
instruction immediately after any write that modifies an instruction. 

12.3 PAGE-LEVEL CACHE MANAGEMENT 

The Intel486 processor defines two bits in entries in the page directory and second-level 
page tables which are reserved on Intel386 processors. These bits are used to drive 
processor output pins. These bits are used to manage the caching of pages. 
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12.3.1 Cache Management Bits 

The PCD and PWT bits control caching on a page-by-page basis. The PCD bit (page­
level cachedisable) affects the operation of the internal cache. Both the PCD bit and the 
PWT bit (page-level write-through) drive processor output pins for controlling external 
caches. The treatment of these signals by external hardware is implementation­
dependent; for example, some hardware systems may control the caching of pages by 
decoding some of the high address bits. 

There are three potential sources of the bits used to drive the PCD and PWT outputs of 
the processor: the CR3 register, the page directory, and the second-level page tables. 
The processor outputs are driven by theCR3 register for bus cycles where paging is not 
used to generate the address, such as the loading of an entry in the page directory. The 
outputs are driven by a page directory entry when an entry from a second-level page 
table is accessed. The outputs are driven by a second-level page table entry when instruc­
tions or data in memory are accessed. When paging is disabled, these .bits are ignored 
(CPU assumes PCD=O and PWT=O). 

12.3.1.1 peD BIT 

When a page table entry has a set PCD bit (bit position 4), caching of the page is 
disabled, even if hardware is requesting caching by asserting the KEN# input. When the 
PCD bit is clear, caching may be requested by hardware on a cycle-by-cyde basis. 

Disabling caching is necessary for pages which contain memory-mapped 110 ports. It 
also is useful for pages which do not provide a performance benefit when cached, such as 
initialization software. 

Regardless of the page-table entries, the Intel486 processor will ignore the PCD output 
(assume PCD=O) whenever the CD (Cache Disable) bit in CRO is set. 

12.3.1.2 PWT BIT 

When a page table entry has a set PWT bit (bit position 3), a write-through caching 
policy is specified for data in the corresponding page. Clearing the PWT bit allows the 
possibility of using a write-back policy for the page. Since the internal cache of the 
Intel486 processor is a write-through cache, it is not affected by the state of the PWT bit. 
External caches however may use write-back caching, and so cart use the output signal 
driven by thePWT bit to control caching policy on a page-by-page basis. 

In multiprocessor systems, enabling write-through may be advantageous for shared mem­
ory, particularly for memory locations written infrequently by one processor, but read 
often by many processors. 
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CHAPTER 13 
MULTIPROCESSING 

The Intel486 processor supports multiprocessing on the system bus. Processors on the 
system bus can have different bus widths. 

Multiprocessors can increase particular aspects of system performance. For example, a 
computer graphics system may use an i860 CPU for fast rendering of raster images, while 
an Intel486 processor is used to support a standard operating system, such as UNIX or 
OS/2. Multiprocessing systems are sensitive to two design issues: 

o Maintaining cache consistency - When one processor accesses data cached in another 
processor, it must not receive incorrect data. If it modifies data, all other processors 
which access that data must receive the modified data. 

o Reliable communication - Processors need to be able to communicate with each other 
in a way which eliminates interference when more than one processor simultaneously 
accesses the same area in memory.· . 

Cache consistency was discussed earlier, in Chapter 12. Reliable communication is dis­
cussed in the following section, which describes the mechanism used to "lock" the bus. 

13.1 LOCKED AND PSEUDO-LOCKED BUS CYCLES· 

While the system architecture of multiprocessor systems varies greatly, they generally 
have a need for reliable communication with memory. A processor in the act of updating 
the Accessed bit of a segment descriptor, for example, should reject other attempts to 
update the descriptor until the operation is complete. 

It also is necessary to have reliable communication with other processors. Bus masters 
need to exchange data in a reliable way. For example, a bit in memory may be shared by 
several bus masters for use as a signal that some resource, such as a peripheral device, is 
idle. A bus master may test this bit, see that the resource is free, and change the state of 
the bit. The state would indicate to other potential bus masters that the resource is in 
us.e. A problem could arise if another bus master reads the bit between the time the first 
bus master reads the bit and the time the state of the bit is changed. This condition 
would indicate to both potential bus masters that the resource is free. They may inter­
fere with each other as they both, attempt to use the resource. The processor prevents 
this problem through support of locked bus cycles; requests for control of the bus are 
ignored during locked cycles. 

The Intel486 processor protects the integrity of certain critical memory operations by 
asserting an output signal called LOCK#. Reads and writes of aligned 64-bit operands 
and (128-bit) instruction prefetches are protected by an output called PLOCK#. It is the 
responsibility of the hardware. designer to use these signals to control memory access 
among processors. 
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The processor automatically asserts one of these signals during certain critical memory 
operations. Software can specify which other memory operations need to have LOCK# 
asserted. 

The features of the general-purpose multiprocessing interface include: 

• The LOCK# signal, which appears on a pin of the processor. 

• The PLOCK# signal, which appears on a pin of the processor. 

• The LOCK instruction prefix, which allows software to assert LOCK#. 

• Automatic assertion of LOCK# for some kinds of memory operations. 

• Automatic assertion of PLOCK# for some other kinds of memory operations. 

13.1.1 LOCK Prefix and the LOCK# Signal 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix can be used with the 
following Intel486 CPU instructions when they modify memory. An invalid-opcode 
exception results from using the LOCK prefix before any other instruction, or with these 
instructions when no write operation is made to memory (i.e., when the destination 
operand is in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the desti­
nation operand, but may lock a larger memory area. For example, typical 8086 and 80286 
configurations lock the entire physical memory space. 

Semaphores (shared memory used for signalling between multiple processors) should be 
accessed using identical address and length. For example, if one processor accesses a 
semaphore using word access, other processors should not access the semaphore using 
byte access. 

The integrity of the lock is not affected by the alignment of the memory field. The 
LOCK# signal is asserted for as many bus cycles as necessary to update the entire 
operand. 
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13.1.2 Automatic Locking 

There are some critical memory operations for which the processor automatically asserts 
the LOCK# signal. These operations are: 

o Acknowledging interrupts. 

After an interrupt request, the interrupt controller uses the data bus to send the 
interrupt vector of the source of the interrupt to the processor. The processor asserts 
LOCK# to ensure no other data appears on the data bus during this time. . 

o Setting the Busy bit of a TSS descriptor. 

The processor tests and sets. the Busy bit in the Type field of the TSS descriptor when 
switching to a task. To ensure two different processors do not switch to the same task 
simultaneously, the processor asserts the LOCK# signal while testing and setting 
this bit. 

o Updating segment descriptors. 

When loading a segment descriptor, the processor will set the Accessed bit if the bit is 
clear. During this operation, the processor asserts LOCK# so the descriptor will not 
be modified by another processor while it is being updated. For this action to be 
effective, operating-system procedures which update descriptors should use the fol­
lowing steps: 

- Use a locked operation when updating the access-rights byte to mark the 
descriptor not-present, and specify a value for the Type field which indicates the 
descriptor is being updated. 

- Update the fields of the descriptor. (This may require several memory accesses; 
therefore, LOCK cannot be used.) 

- Use a locked operation when updating the access-rights byte to mark the 
descriptor as valid and present. 

Note that the Intel386 DX processor always updates the Accessed bit, whether it is 
clear or not. The Intel486 processor only updates the Accessed bit if it is not already 
set. 

a Updating page-directory and page-table entries. 

When updating page-directory and page-table entries, the processor uses locked 
cycles to set the Accessed and Dirty bits. 

o Executing an XCHG instruction. 

The Intel486 processor always asserts LOCK# during an XCHG instruction which 
references memory (even if the LOCK prefix is not used). 

13.1.3 Pseudo-Locking 

The PLOCK# pin indicates that the current bus cycle and the following one should be 
treated as an atomic transfer. By implementing the pseudo-lock mechanism, system 
hardware can guarantee atomic reads and writes of 64-bit operands. The operand must 
be aligned to a doubleword boundary, so that the read or write requires no more than 
two bus cycles to be completed. 

13-3 



intel® MULTIPROCESSING 

The pseudo-lock mechanism can also be used to protect instruction prefetches and other 
transfers of more than 32 bits. For a detailed discussion of the PLOCK# signal, its 
timing and its various uses, see the Intel486™ Processor Hardware Reference Manual. 
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CHAPTER 14 
INTRODUCTION TO NUMERIC APPLICATIONS 

The Intel486 processor contains a high-performance numerics processing element that 
provides significant numeric capabilities and direct support for floating-point, extended­
integer, and BCD data types. The Intel486 Floating Point Unit (FPU) easily supports 
powerful and accurate numeric applications through its implementation, with radix 2, of 
the IEEE Standard 854 for Floating-Point Arithmetic. The Intel486 FPU provides 
floating-point performance comparable to that of large minicomputers while offering 
compatibility with object code for 8087, Inte1287, Intel387 DX and Inte1387 SX math 
coprocessors. 

14.1 HISTORY 

The Intel486 FPU is compatible with its predecessors, the earlier Intel 8087, Intel287 
and Intel387 DX coprocessor. Programs designed to use the 8087, Intel287 or Inte1387 
math coprocessor should run unchanged on the Intel486 processor. Refer to Figure 3-23 
to identify the floating point unit in your system. 

The 8087 NPX was designed for use in 8086-family systems. The 8086 was the first 
microprocessor family to partition the processing unit to permit high-performance 
numeric capabilities. The 8087 NPX for this processor family implemented a complete 
numeric processing environment in compliance with an early proposal for IEEE Stan­
dard 754 for Binary Floating-Point Arithmetic. 

With the Intel287 Numeric Processor Extension, high-speed numeric computations were 
extended to 286 high-performance multitasking and multiuser systems. Multiple tasks 
using the numeric processor extension were afforded the full protection of the 286 mem­
ory management and protection features. 

The Intel387 DX and SX math coprocessors are Intel's third generation numerics pro­
cessors. They implement the final IEEE Std 754, adds new trigonometric instructions, 
and uses a new design and CHMOS-III process to allow higher clock rates and require 
fewer clocks per instruction. Together, the Intel387 math coprocessor with additional 
instructions and the improved standard brought even more convenience and reliability to 
numerics programming and made this convenience and reliability available to applica­
tions that need the high-speed and large memory capacity of the 32-bit environment of 
the Intel386 microprocessor. 

The Intel486 FPU is an on-chip equivalent of the Intel387 DX coprocessor conforming 
to both IEEE Std 754 and the more recent, generalized IEEE Std 854. Having the FPU 
on chip results in a considerable performance improvement in numerics-intensive com­
putation. Figure 14-1 illustrates the relative performance of 5-MHz 8086 CPU/8087 
NPX, 8-MHz 286 CPU/InteI287 NPX, 20-MHz Intel386 DX CPU/Inte1387 DX systems, 
and a 33-MHz Intel486 processor, in executing numerics-oriented applications. 
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Figure 14-1. Evolution and Performance of Numeric Processors 

14.2 PERFORMANCE 

Table 14-1 compares the execution times of several Intel486 CPU numeric instructions 
with the equivalent operations executed on a 16-MHz Intel387 DX math coprocessor. As 
indicated in the table, the 33-MHz Intel486 floating-point processor provides about 5 
times the performance of a 16-MHz Inte1387 DX math coprocessor. A 33-MHz Intel486 
processor multiplies 32-bit and 64-bit floating-point numbers in about .33 and .42 micro­
seconds, respectively. Of course, the actual performance of the processor in a given 
system depends on the characteristics of the individual application. 

The Intel486 Integer Unit (IU) and FPU coordinate their activities in a manner trans­
parent to software. Moreover, built-in coordination facilities allow the IU to proceed 
with other instructions while the FPU is simultaneously executing numeric instructions. 

Table 14-1. Numeric Processing Speed Comparisons 

Approximate Performance Ratio: 
Floating-Point Instruction 33 MHz InteI486'" + 

16 MHz Inte1386'" OX/lnteI387'" OX 

FADD 8T,8T(i) Addition 4.2 

FDIV dword_var Division 2.0 

FYL2X stack(0),(1) assumed Logarithm 2.5 

FPATAN stack(O) assumed Arctangent 2.2 

F2XMI stack(O) assumed Exponentiation 2.2 

FLD 8T(0), 8T(i) Data Transfer 5.5 
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Programs can exploit this concurrency of execution to further increase system perfor­
mance and throughput. 

14.3 EASE OF USE 

The Intel486 FPU provides more than raw execution speed for computation-intensive 
tasks; it brings the functionality and power of accurate numeric computation into the 
hands of the general user. These features are available in most high-level languages 
available for the Intel486 processor. 

Like the 8087, Intel287 and Intel387 DX coprocessor that preceded it, the Intel486 FPU 
is explicitly designed to deliver stable, accurate results when programmed using straight­
forward "pencil and paper" algorithms. IEEE Std 754 specifically addresses this issue, 
recognizing the fundamental importance of making numeric computations both easy and 
safe to use. 

For example, most computers can overflow when two single-precision floating-point 
numbers are multiplied together and then divided by a third, even if the final result is a 
perfectly valid 32-bit number. The Intel486 FPU delivers the correctly rounded resu'lt. 
Other typical examples of undesirable machine behavior in straightforward calculations 
occur when computing financial rate of return, which involves the expression (1 + i)n or 
when solving for roots of a quadratic equation: 

-b ± \/b2 - 4ac 
2a 

If a does not equal 0, the formula is numerically unstable when the roots are nearly 
coincident or when their magnitudes are wildly different. The formula is also vulnerable 
to spurious over/underflows when the coefficients a, b, and c are all very big or all very 
tiny. When single-precision (4-byte) floating-point coefficients are given as data and the 
formula is evaluated in the Intel486 FPU's normal way, keeping all intermediate results 
in its stack, the FPU produces impeccable single-precision roots. This happens because, 
by default and with no effort on the programmer's part, the FPUevaluates all those 
subexpressions with so much extra precision and range as to overwhelm any threat to 
numerical integrity. 

If double-precision data and results were at issue, a better formula would have to be 
used, and once again the Intel486 FPU's default evaluation of that formula would pro­
vide substantially enhanced numerical integrity over mere double-precision evaluation. 

On most machines, straightforward algorithms will not deliver consistently correct results 
(and will not indicate when they are incorrect). To obtain correct results on traditional 
machines under all conditions usually requires sophisticated numerical techniques that 
are foreign to most programmers. General application programmers using straightfor­
ward algorithms will produce much more reliable programs using the Inte1486 processor. 
This simple fact greatly reduces the software investment required to develop safe, accu­
rate computation-based products. 
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Beyond traditional numerics support for scientific applications, the Intel486 processor 
has built-in facilities for commercial computing. It can process decimal numbers of up to 
18 di~its without round-off errors, performing exact arithmetic on integers as large as 264 

or 10 8. Exact arithmetic is vital in accounting applications where rounding errors may 
introduce monetary losses that cannot be reconciled. 

The Intel486 processor contains a number of optional numerical facilities that can be 
invoked by sophisticated users. These advanced features include directed rounding, 
gradual underflow, and programmed exception-handling facilities. 

These automatic exception-handling facilities permit a high degree of flexibility in 
numeric processing software, without burdening the programmer. While performing 
numeric calculations, the Intel486 processor automatically detects exception conditions 
that can potentially damage a calculation (for example, X -:- 0 or -y!X when X < 0). By 
default, on-chip exception logic handles these exceptions so that a reasonable result is 
produced and execution may proceed without program interruption. Alternatively, the 
processor can invoke a software exception handler to provide special results whenever 
various types of exceptions are detected. 

14.4 APPLICATIONS 

The Intel486 processor's versatility and performance make it appropriate to a broad 
array of numeric applications. In general, applications that exhibit any of the following 
characteristics can benefit by implementing numeric processing on the Intel486 
processor: 

• Numeric data vary over a wide range of values, or include nonintegral values. 

• Algorithms produce very large or very small intermediate results. 

• Computations must be very precise; i.e., a large number of significant digits must be 
maintained. 

• Performance requirements exceed the capacity of traditional microprocessors. 

• Consistently safe, reliable results must be delivered using a programming staff that is 
not expert in numerical techniques. 

Note also that the Intel486 processor can reduce software development costs and 
improve the performance of systems that use not only real numbers, but operate on 
multiprecision binary or decimal integer values as well. . 

A few examples, which show how the Intel486 processor might be used in specific 
numerics applications, are described below. In many cases, these types of systems have 
been implemented in the past with minicomputers or sIll(ill mainframe computers. 

• Business data processing - The Intel486 FPU's ability to accept decimal operands and 
produce exact decimal results of up to 18 digits greatly simplifies accounting program" 
mingo Financial calculations that use power functions can take advantage of the 
Intel486 processor's exponentiation and logarithmic instructions: Many business soft­
ware packages can benefit from the speed and accuracy of the Intel486 FPU. 
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• Simulation-The large (32-bit) memory space and raw speed of the Intel486 proces­
sor make it suitable for attacking large simulation problems, which heretofore could 
only be executed on expensive mini and mainframe computers. For example, complex 
electronic circuit simulations using SPICE can be performed on an Intel486 proces­
sor. Simulation of mechanical systems using finite element analysis can employ more 
elements, resulting in more detailed analysis or simulation of larger systems. 

• Graphics transformations - The Intel486 processor can be used in graphics applica­
tions, with the FPU performing many functions concurrently with the operation of the 
IU; these functions include rotation, scaling, and interpolation. By also using an 
82786 Graphics Display Controller to perform high-speed drawing and window man­
agement, very powerful and highly self-sufficient terminals can be built from a small 
number of parts. 

• Process control- The Intel486 FPU solves dynamic range problems automatically, 
and its extended precision allows control functions to be fine-tuned for more accurate 
and efficient performance. Using the Inte1486 processor to implement control algo­
rithms also contributes to improved reliability and safety, while the processor's speed 
can be exploited in real-time operations. 

• Computer numerical control (CNC) - The Intel486 processor can move and position 
machine tool heads with accuracy in real-time. Axis positioning also benefits from the 
hardware trigonometric support provided by the FPU. 

o Robotics - Coupling small size and modest power requirements with powerful com­
putational abilities, the Intel486 processor is ideal for on-board six-axis positioning. 

• Navigation-Very small, lightweight, and accurate inertial guidance systems can be 
implemented with the Intel486 processor. Its built-in trigonometric functions can 
speed and simplify the calculation of position from bearing data. 

• Data acquisition - The Intel486 processor can be used to scan, scale, and reduce large 
quantities of data as it is collected, thereby lowering storage requirements and time 
required to process the data for analysis. 

The preceding examples are oriented toward traditional numerics applications. There 
are, in addition, many other types of systems that do not appear to the end user as 
computational, but can employ the Intel486 processor's numerical capabilities to advan­
tage. The imaginative system designer has an opportunity similar to that created by the 
introduction of the microprocessor itself. Many applications can be viewed as 
numerically-based if sufficient computational power is available to support this view 
(e.g., character generation for a laser printer). This is analogous to the thousands of 
successful products that have been built around "buried" microprocessors, even though 
the products themselves bear little resemblance to computers. 

14.5 PROGRAMMING INTERFACE 

The Intel486 processor has a class of instructions known as ESCAPE instructions, all 
having a common format. These ESC instructions are numeric instructions for the FPU. 
These numeric instructions are part of a single integrated instruction set. 

Numeric processing in the Intel486 processor centers around the floating-point register 
stack. Programmers can treat these eight 80-bit registers either as a fixed register set, 
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with instructions operating on explicitly-designated registers, or as a classical stack, with 
instructions operating on the top· one or two stack elements. 

Internally, the Inte1486 FPU holds all numbers in a uniform 80-bit extended format. 
Operands that may be represented in memory as 16c, 32-, or 64"bit integers, 32-, 64-, or 
80-bit floating-point numbers, or 18-digit packed BCD numbers, are automatically con­
verted into extended format as they· are loaded· into the FPU registers. Computation 
results are subsequently converted back into one of these destination data formats when 
they are stored into memory from the FPU registers. 

Table 14-2 lists each of the seven numeric data types supported by the Inte1486 FPU, 
showing the data format for each type. The table also shows the approximate range of 
normalized values that can be represented with each type. Denormal values are also 
supported in each of the real types, as required by IEEE Std 854. Denormals are dis­
cussed in Chapter 16. 

All operands are stored in memory with the least significant digits starting at the initial 
(lowest) memory address. Numeric instructions access and store memory operands using 
only this initial address. For maximum system performance, every operand should start 
at a memory address divisible by the smallest power of two greater than the operand's 
length (in bytes). . . 

Table 14-3 lists the numeric instructions by class. No special programming tools are 
necessary to use the numerical capabilities of the Inte1486 processor, because all of the 
numeric instructions and data types are directly supported by the ASM386/486 Assem­
bler, by high-level languages from Intel, and by assemblers and compilers produced by 
many independent software vendors. Numeric routines for the Inte1486 processor can be 
written in ASM386/486 Assembler or any of the following higher-level languages from 
Intel: 

PL/M-386/486 
C-386/486 
FORTRAN-386/486 
ADA-386/486 

Data Type Bits 

Word integer 16 
Short integer 32 
Long integer 64 
Packed decimal 80 
Single real 32 
Double real 64 
Extended real* 80 

Table 14-2. Numeric Data Types 

Significant 
Approximate Normalized 

Digits 
Range (Decimal) 

(Decimal) 

4 -32,768 ~ x ~ + 32,767 
9 -2 x 109 ~ X ~ + 2 X 109 

18 - 9 x.1 018 ~ x ~ + 9 x 1018 

18 - 99 ... 99 ~ x ~. + 99 ... 99 (18 digits) 
7 1.18 x 10-38 < I x I < 3.40 x 1038 

15-16 2.23 x 10-308 < I x I < 1.79 X 10308 

19 3.37 x 10-4932 < I x I < 1.18 x 104932 

*Equivalent to double extended format of IEEE Std 854. 
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Table 14-3. Principal Numeric Instructions 

Class Instruction Types 

Data Transfer Load (all data types). Store (all data types), Exchange 

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide 
Reversed, Square Root, Scale, Extract, Remainder, Integer Part, 
Change Sign, Absolute Value 

Comparison Compare, Examine, Test 

Transcendental Tangent, Arctangent, Sine, Cosine, Sine and Cosine, 2X -1, 
Y ·Log2 (X). Y . Log2 (X + 1) 

Constants 0, 1, 'IT, Log 102, Log.,2, Log210, Log2e 

Processor Control Load Control Word, Store Control Word, Store Status Word, Load 
Environment, Store Environment, Save, Restore, Clear Excep-
tions, Initialize 

In addition, all of the development tools supporting the 8086/8087, 80286/80287 and 
80386 DX/80387 DX NPX can also be used to develop numerical software for the 
Intel486 processor. 

All of these high-level languages provide programmers with access to the computational 
power and speed of the Intel486 processor without requiring an understanding of its 
architecture. Such architectural considerations as concurrency and synchronization are 
handled automatically by these high-level languages. For the ASM386/486 programmer, 
specific rules for handling these issues are discussed in a later section of this manual. 
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CHAPTER 15 
ARCHITECTURE OF THE FLOATING-POINT UNIT 

To the programmer, the Intel486 FPU appears as a set of additional registers, data 
types, and instructions. Refer to Chapter 26 for detailed explanations of the numerical 
instruction set. This chapter explains the numerical registers and data types of the 
Intel486 architecture. 

15.1 NUMERICAL REGISTERS 

The Intel486 numerical registers consist of 

• Eight individually-addressable 80-bit numeric registers, organized as a register stack. 

o Three 16-bit registers containing: 

The FPU status word. 
The FPU control word. 
The tag word. 

• Error pointers, consisting of: 

Two 16-bit registers containing selectors for the last instruction and operand. 
Two 32-bit registers containing offsets for the last instruction and operand. 
One ll-bit register containing the opcode of the last non-control FPU instruction. 

All of the Intel486 numeric instructions focus on the contents of these FPU registers. 

15.1.1 The FPU Register Stack 

The Intel486 FPU register stack is shown in Figure 15-1. Each of the eight numeric 
registers in the stack is 80 bits wide and is divided into fields corresponding to the 
Intel486 processor's extended real data type. 

Numeric instructions address the data registers relative to the register on the top of the 
stack. At any point in time, this top-of-stack register is indicated by the TOP (stack 
TOP) field in the FPU status word. Load or push operations decrement TOP by one and 
load a value into the new top register. A store-and-pop operation stores the value from 
the current TOP register and then increments TOP by one. Like stacks in memory, the 
FPU register stack grows down toward lower-addressed registers. 

Many numeric instructions have several addressing modes that permit the programmer 
to implicitly operate on the top of the stack, or to explicitly operate on specific registers 
relative to the TOP. The ASM386/486 Assembler supports these register addressing 
modes, using the expression ST(O), or simply ST, to represent the current Stack Top and 
ST(i) to specify the ith register from TOP in the stack (0 :5 i :5 7). For example, if TOP 
contains 011B (register 3 is the top of the stack), the following statement would add the 
contents of two registers in the stack (registers 3 and 5): 

FADD ST, ST(2) 
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The stack organization and top-relative addressing of the numeric registers simplify sub­
routine prbgramming by allowing routines to pass parameters on the register stack. By 
using the stack to pass parameters rather than using "dedicated" registers, calling rou­
tines gain more flexibility in how they use the stack. As long as the stack is not full, each 
routine simply loads the parameters onto the stack before calling a particular subroutine 
to perform a numeric calculation. The subroutine then addresses its parameters as ST, 
ST(l), etc., even though TOP may, for example, refer to physical register 3 in one invo­
cation and physical register 5 in another. 

15.1.2 The FPU Status Word 

The 16-bit status word shown in Figure 15-2 reflects the overall state of the FPU. This 
status word may be stored into memory using the FSTSW/FNSTSW, FSTENV/ 
FNSTENV, and FSA VE/FNSA VE· instructions, and can be transferred into the AX 
register with the FSTSW AX/FNSTSW AX instructions, allowing the FPU status to be 
inspected by the Integer Unit. 

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the 
ESbit (bit 7 of the status word). 

The four FPU condition code bits (C3-CO) are similar to the flags in a CPU: the Intel486 
processor updates these bits to ·reflect the outcome of arithmetic operations. The effect 
of these instructions on the condition code bits is summarized in Table 15-1. These 
condition code bits are used principally for conditional branching. The FSTSW AX 
instruction stores the FPU status word directly into the AX register, allowing these 
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r-----------------------~-FPUBUSY 

r---l--r-----------TOP OF STACK POINTER 

rl-I-I---.--r--rr r r-'CONDITION CODE 

7 

ERROR SUMMARY STATUS~ 
STACK FAULT'---------------' 

EXCEPTION FLAGS 

PRECISION----------------' 

UNDERFLO'W-----------------' 

OVERFLOW--------------------' 

o 

ZERO DIVIDE--------------------' 

DENORMALIZED OPERAND--------------' 

INVALID OPERATION-------------------' 

ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET; CLEARED OTHERWISE. 
SEE TABLE 15·1 FOR INTERPRETATION OF CONDITION CODE. 

TOP VALUES: 
000 = REGISTER 0 IS TOP OF STACK 
001 = REGISTER 1 IS TOP OF STACK 

111 = REGISTER 7 IS TOP OF STACK 

FOR DEFINITIONS OF EXCEPTIONS, REFER TO CHAPTER 3. 

Figure 15-2. Intel486™ FPU Status Word 
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condition codes to be inspected efficiently by Intel486 code. The SAHF instruction can 
copy C3-CO directly to Intel486 flag bits to simplify conditional branching. Table 15-2 
shows the mapping of these bits to the Intel486 flag bits. 

Bits 11-13 of the status word point to the FPU register that is the current Top of Stack 
(TOP). The significance of the stack top has been described in the prior section on the 
register stack. 

Figure 15-2 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the 
exception summary status (ES) bit. ES is set if any unmasked exception bits are set, and 
is cleared otherwise. Bits 0-5 indicate whether the FPU has detected one of six possible 
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Table 15-1. Condition Code Interpretation 

Instruction CO J C3 C2 C1 

FCOM, FCOMP, 
FCOMPP, FTST, 

Operand is not Zero 
FUCOM, FUCOMP, Result of comparison 

comparable or O/U# 
FUCOMPP, FICOM, 
FICOMP 

FXAM Operand .class 
Sign 
or O/U# 

FPREM, FRREM1 02 J 01 
0= reduction complete 00 
1 = reduction incomplete or O/U# 

FIST, FBSTP, 
FRNDINT, FST, 
FSTP, FADD, 
FMUL, FDIV, 

Roundup 
FDIVR, FSUB, UNDEFINED 
FSUBR, FSCALE, 

or O/U# 

FSORT, FPATAN, 
F2XM1, FYL2X, 
FYL2XP1 

Roundup 
FPTAN, FSIN, 

UNDEFINED 
0= reduction complete or O/U# 

FCOS, FSINCOS 1 = reduction incomplete (UNDEFINED 
if C2= 1) 

FCHS, FABS, 
FXCH, FINCSTP, 
FDECSTP, Con-

Zero 
stant Loads, UNDEFINED 

or O/U# 
FXTRACT, FLO, 
FILD, FBLD, FSTP 
(ext. real) 

FLDENV, FRSTOR Each bit loaded from memory 

FLDCW, FSTENV, 
FSTCW, FSTSW, UNDEFINED 
FCLEX 

FINIT, FSAVE Zero I Zero Zero Zero 

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit 
distinguishes between stack overflow (C1 =1) and underflow (C1 =0). 

Reduction If FPREM and FPREM1 produces a remainder that is less than the modulus, reduction is 
complete. When reduction is incomplete the value at the top of the stack is a partial 
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and 
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this 
case the original operand remains at the top of the stack. 

Roundup v.(hen the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward. 

UNDEFINED Do not rely on finding any specific value in these bits. 
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Table 15-2. Correspondence Between FPU and IU Flag Bits 

FPU Flag IU Flag 

Co GF 

C1 (none) 

C2 PF 

C3 ZF 

exception conditions since these status bits were last cleared or reset. They are "sticky" 
bits, and can only be cleared by the instructions FINIT, FCLEX, FLDENV, FSAVE, 
and FRSTOR. 

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack 
overflow or underflow from other kinds of invalid operations. When SF is set, bit 9 (C l ) 

distinguishes between stack overflow (C l = 1) and underflow (C l = 0). 

15.1.3 Control Word 

The FPU provides the programmer with several processing options, which are selected 
by loading a word from memory into the control word. Figure 15-3 shows the format and 
encoding of the fields in the control word. 

The low-order byte of this control word configures the numerical exception masking. Bits 
0-5 of the control word contain individual masks for each of the six floating-point excep­
tion conditions recognized by the Inte1486 processor. The high-order byte of the control 
word configures the FPU processing options, including 

C) Precision control 

.. Rounding control 

The precision-control bits (bits 8-9) can be used to set the FPU internal operating 
precision at less than the default precision (64-bit significand). These control bits can be 
used to provide compatibility with the earlier-generation arithmetic processors having 
less precision than the Inte1486 processor or Inte1387 math coprocessor. The precision­
control bits affect the results of only the following five arithmetic instructions: ADD, 
SUBeR), MUL, DIV(R), and SORT. No other operations are affected by Pc. 

The rounding-control bits (bits 10-11) provide for the common round-to-nearest mode, 
as well as directed rounding and true chop. Rounding control affects the arithmetic 
instructions (refer to Chapter 16 for lists of arithmetic and non arithmetic instructions) 
and certain non arthimetic instructions, namely (FLD constant) and (FST(P)mem) 
instructions. 
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,.............,,.....------------ RESERVED 

r---------- (INFINITY CONTROL) 

1 r" .. r------- ROUNDING CONTROL l! !""""-l - PRECISION CONTROL 

1:;x:+1 + 1 + 1::xl:I*I*I~1 
RESERVED 

EXCEPTION MASKS HJ 
PRECISION ------------' 

UNDERFLOW-------------' 

.OVERFLOW ---------------1 
ZERO DIVIDE -------------...... 

DENORMALIZED OPERAND -----------1 
INVALID OPERATION ---------------1 

ROUNDING CONTROL 
DO-ROUND TO NEAREST OR EVEN 
01-ROUND DOWN (TOWARD -~) 
10-ROUND UP (TOWARD +~) 
11-CHOP (TRUNCATE TOWARD ZERO) 

PRECISION CONTROL 
00-24 BITS (SINGLE PRECISION) 
01-(RESERVED) 
10-53 BITS (DOUBLE PRECISION) 
11-64 BITS (EXTENDED PRECISION) 

*This "infinity control" bit is not meaningful to the i486'" PROCESSOR. 
To maintain compatibility with Intel287 Math CoProcessor this bit can be programmed; 
however, regardless of its value, the i486'" FPU treats infinity in the affine 
sense (- ~ < + ~). 

Figure 15-3. Intel486™ FPU Control Word Format 

15.1.4 The FPU Tag Word 

240486i15·3 

The tag word indicates the contents of each register in the register stack, as shown in 
Figure 15-4. The tag word is used by the FPU itself to distinguish between empty and 
nonempty register locations. Programmers of exception handlers may use this tag infor­
mation to check the contents of a numeric register without performing complex decoding 
of the actual data in the register. The tag values from the tag word correspond to phys­
ical registers 0-7. Programmers must use the current top-of-stack (TOP) pointer stored 
in the FPU status word to associate these tag values with the relative stack registers 
ST(O) through ST(7). 
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TAG VALUES: 
00 ~ VALID 
01 ~ ZERO 
10 ~ SPECIAL:INVALlD(NaN, UNSUPPORTED), INFINITY, OR DENORMAL 
11 ~ EMPTY 

Figure 15-4. Tag Word Format 
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The exact values of the tags are generated during execution of the FSTENV and FSA VE 
instructions according to the actual contents of the nonempty stack locations. During 
execution of other instructions, the Intel486 processor updates the TW only to indicate 
whether a stack location is empty or nonempty. 

15.1.5 Opcode Field of Last Instruction 

The opcode field in Figure 15-5 describes the ll-bit format of the last non-control FPU 
instruction executed. The first and second instruction bytes (after all prefixes) are com­
bined to form the opcode field. Since all floating-point instructions share the same 5 
upper bits in the first instruction byte (following prefixes), they are not stored in the 
opcode field. Note that the second instruction byte is actually located in the low-order 
byte of the stored opcode field. 

7 o 7 o 

115 114 113 112 111 110 19 18 17 16 15 14 13 12 11 10 

2ND INSTRUCTION BYTE ,STINSTRUCTION BYTE Y 
'I 

I 

~ * 10 8 7 0 

12 11 10 115 114 113 112 111 110 19 18 

OPCODE FIELD 

240486i15·5 

Figure 15-5. Opcode Field 
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15.1.6 The Numeric Instruction and Data Pointers 

The instruction and data pointers provide support for programmed exception-handlers. 
These registers are accessed by the ESC instructions FLDENV, FSTENV, FSAVE, and 
FRSTOR. Whenever the Intel486 processor decodes an ESC instruction, it saves the 
instruction address, the operand address (if present), and the instruction opcode. 

When stored in memory, the instruction and data pointers appear in one of four formats, 
depending on the operating mode of the processor (protected mode or real-address 
mode) and depending on the operand-size attribute in effect (32-bit operand or 16-bit 
operand). In virtual-8086 mode, the real-address mode formats are used. 

Figures 15-6 through 15-9 show these pointers as they are stored following an FSTENV 
instruction. 

The FSTENV and FSA VE instructions store this data into memory, allowing exception 
handlers to determine the precise nature of any numeric exceptions that may be 
encountered. 

The instruction address saved points to any prefixes that preceded the instruction, as in 
the Intel387 and Intel287 math coprocessors. This is different from the 8087, for which 
the instruction address points only to the ESC instruction opcode. 

Note that the processor control instructions FINIT, FLDCW, FSTCW, FSTSW, 
FCLEX, FSTENV, FLDENV, FSA VE, and FRS TOR do not affect the data pointer. 
Note also that, except for the instructions just mentioned, the value of the data pointer is 
undefined if the prior ESC instruction did not have a memory operand. 

3 
1 

o 0 0 0 01 

32-BIT PROTECTED MODE FORMAT 

2 
3 

RESERVED 

RESERVED 

RESERVED 

OPCODE 10 ... 00 

1 
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IPOFFSET 

7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

CSSELECTOR 

DATA OPERAND OFFSET 

RESERVED OPERAND SELECTOR 

o 
OH 

4H 
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CH 

10H 

14H 

18H 
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Figure 15-6. Protected Mode Numeric Instruction and Data Pointer Image in Memory, 
32-Bit Format 
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32-BIT REAL-ADDRESS MODE FORMAT 

2 
3 

RESERVED 

RESERVED 

RESERVED 

1 
5 7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

RESERVED INSTRUCTION POINTER 10 ... 00 

INSTRUCTION POINTER 10 •.• 00 10 1 
OPCODE 10 ... 00 

RESERVED OPERAND POINTER 10 ••. 00 

o 

OPERAND POINTER 10 ... 00 10 0 0 0 0 0 0 0 0 0 0 0 

OH 

4H 

8H 

CH 

10H 
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Figure 15·7. Real Mode Numeric Instruction and Data Pointer Image in Memory, 
32·Bit Format 
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4H 

6H 

8H 

AH 

CH 
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Figure 15-8. Protected Mode Numeric Instruction and Data Pointer Image in Memory, 
16·Bit Format 

15.2 COMPUTATION FUNDAMENTALS 

This section covers numeric programming concepts that are common to all applications. 
It describes the Intel486 FPU's internal number system and the various types of numbers 
that can be employed in numeric programs. The most commonly used options for round­
ing and precision (selected by fields in the control word) are described, with exhaustive 
coverage of less frequently used facilities deferred to later sections. Exception conditions 
that may arise during execution of floating-point instructions are also described along 
with the options that are available for responding to these exceptions. 
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Figure 15-9. Real Mode Numeric Instruction and Data Pointer Image in Memory, 
16-Bit Format 
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The system of real numbers that people use for pencil and paper calculations is concep­
tually infinite and continuous. There is no upper or lower limit to the magnitude of the 
numbers one can employ in a calculation, or to the precision (number of significant 
digits) that may be required to represent them. For any given real number, there are 
always arbitrarily many numbers both larger and smaller. There are also arbitrarily many 
numbers between any two real numbers. For example, between 2.5 and 2.6 are 2.51, 
2.5897, 2.500001, etc. 

While ideally it would be desirable for a computer to be able to operate on the entire 
real number system, in practice this is not possible. Computers, no matter how large, 
ultimately have fixed-size registers and memories that limit the system of numbers that 
can be accommodated. These limitations determine both the range and the precision of 
numbers. The result is a set of numbers that is finite and discrete, rather than infinite 
and continuous. This sequence is a subset of the real numbers that is designed to form a 
useful approximation of the real number system. 

Figure 15-10 superimposes the basic Intel486 floating-point number system on a real 
number line (decimal numbers are shown for clarity, although the Intel486 processor 
actually represents numbers in binary). The dots indicate the subset of real numbers the 
Intel486 processor can represent as data and final results of calculations. The range of 
double-precision, normalized numbers is approximately ±2.23 x 10-308 to ±1.79 x 
10308• Applications that are required to deal with data and final results outside this range 
are rare. For reference, the range of the IBM System 370* is about ±0.54 x 10-78 to 
±0.72 x 1076• .. 
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Figure 15-10. Double-Precision Number System 

The finite spacing in Figure 15-10 illustrates that the Inte1486 processor can represent a 
great many, but not all, of the real numbers in its range. There is always a gap between 
two adjacent floating-point numbers, and it is possible for the result of a calculation to 
fall in this space. When this occurs, the FPU rounds the true result to a number that it 
can represent. Thus, a real number that requires more digits than the FPU can accom­
modate (e.g., a 20-digit number) is represented with some loss of accuracy. Notice also 
that the representable numbers are not distributed evenly along the real number line. In 
fact, the same number of representable numbers exists between any two successive pow­
ers of 2 (i.e., as many representable numbers exist between 2 and 4 as between 65,536 
and 131,072). Therefore, the gaps between representable numbers are larger as the 
numbers increase in magnitude. All integers in the range ±264 (approximately ±1019), 
however, are exactly representable. 

In its internal operations, the FPU actually employs a number system that is a substan­
tial superset of that shown in Figure 15-10. The internal format (called extended real) 
extends the representable (normalized) range to about ±3.37 x 10-4932 to ±1.18 x 
104932, and its precision to about 19 (equivalent decimal) digits. This format is designed 
to provide extra range and precision for constants and intermediate results, and is not 
normally intended for data or final results. 

From a practical standpoint, the Inte1486 processor's set of real numbers is sufficiently 
large and dense so as not to limit the vast majority of applications. Compared to most 
computers, including mainframes, the Inte1486 processor provides a very good approxi­
mation of the real number system. It is important to remember, however, that it is not an 
exact representation, and that computer arithmetic on real numbers is inherently 
approximate. 

15-11 



intel® ARCHITECTURE OF THE FLOATING-POINT UNIT 

15.2.2 Data Types and Formats 

The Intel486 processor recognizes seven numeric data types for memory-based values, 
divided into three classes: binary integers, packed decimal integers, and binary reals. A 
later section describes how these formats are stored in memory (the sign is always 
located in the highest-addressed byte). 

Figure 15-11 summarizes the format of each data type. In the figure, the most significant 
digits of all numbers (and fields within numbers) are the leftmost digits. 

I MOST SIGNIFICANT BYTE HIGHEST ADDRESSED BYTE 
DATA 

FORMATS RANGE PRECISION 

01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 

WORD INTEGER 10' 16 BITS J~TWO'S 
COMPLEMENT) 

15 0 

SHORT INTEGER 10' 32 BITS 
WWO'S 
COMPLEMENT) 

31 0 

LONG INTEGER 10'8 64 BITS 
WWO'S 

C;:OMPLEMENT) 

63 0' 

PACKED BCD 101~ 18 DIGITS sl X Id l1 d ,s 'd '5 d'4 d13 d12 d'1 d'0Ma~Nrd':Ed1 ds ds d" d3 d2 d, do 

79 72 0 .. ' 

SINGLE PRECISION 10±38 24BITS ,I .,ASED I G I S EXPONENT SI NIFICAND 

31 23 0 

DOUBLE 
PRECISION 

10±30B 53 BITS st BIASED I 
EXPONENT SIGNIFICAND I 

63 52 0 

EXTENDED 10±4932 64 BITS sl BIASED tTl SIGNIFICAND EXPONENT PRECISION 
79 

(1) S ~ SIGN BIT (0 ~ positive, 1 ~ negative) 
(2) do ~ DECIMAL DIGIT (TWO PER TYPE) 

6463.11 

(3) X ~ BITS HAVE NO SIGNIFICANCE; 387 MATH COPROCESSOR IGNORES WHEN LOADING, ZEROS WHEN 
. STORING ' 

(4) <l ~ POSITION OF IMPLICIT BINARY POINT 
(5) I ~ INTEGER BIT OF SIGNIFICAND; STORED IN TEMPORARY REAL, IMPLICIT IN 

SINGLE AND DOUBLE PRECISION 
(6) EXPONENT BIAS (NORMALIZED VALUES): 

SINGLE: 127 (7FH) 
DOUBLE: 1023 (3FFH) 
EXTENDED REAL: 16383 (3FFFH) 

(7) PACKED BCD: (-.1)' (D" ... Do) 
(8) REAL: (-1)' (2""AS) (FoF, ... ) 

Figure 15-11. Numerical Data Formats 
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15.2.2.1 BINARY INTEGERS 

The three binary integer formats are identical except for length, which governs the range 
that can be accommodated in each format. The leftmost bit is interpreted as thenum­
ber's sign: 0 = positive and 1 = negative. Negative numbers are represented in standard 
two's complement notation (the binary integers are the only Intel486 processor format to 
use two's complement). The quantity zero is represented with a positive sign (all bits are 
0). The Intel486 processor word integer format is identical to the 16-bit signed integer 
data type; the short integer format is identical to the 32-bit signed integer data type. 

The binary integer formats exist in memory only. When used by the Intel486 FPU, they 
are automatically converted to the 80-bit extended real format. All binary integers are 
exactly representable in the extended real format. 

15.2.2.2 DECIMAL INTEGERS 

Decimal integers are stored in packed decimal notation, with two decimal digits 
. "packed" into each byte, except the leftmost byte, which carries the sign bit (0 = positive, 
1 = negative). Negative numbers are not stored in two's complement form and are distin­
guished from positive numbers only by the sign bit. The most significant digit of the 
number is the leftmost digit. All digits must be in the range 0-9. 

The decimal integer format exists in memory only. When used by the Intel486 FPU,it is 
automatically converted to the 80-bit extended real format. All decimal integers are 
exactly representable in the extended real format. 

15.2.2.3 REAL NUMBERS 

The Intel486 processor represents real numbers of the form: 

where: 

s = 0 or 1 
E = any integer between Emin and Emax, inclusive 
bi = 0 or 1 
p = number of bits of precision 

Table 15-3 summarizes the parameters for each of the three real-number formats. 

The Intel486 processor stores real numbers in a three-field binary format that resembles 
scientific, or exponential, notation. Theformat consists of the following fields: 

• The number's significant digits are held in the significand field, bOAblb2b3 .. bp-l' (The 
term "significand" is analogous to the term "mantissa" used to describe floating point 
numbers on some computers.) 
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• The exponent field, e = E + bias, locates the binary point within the significant digits 
(and therefore determines the number's magnitude). (The term "exponent" is analo­
gous to the term "characteristic" used to describe floating point numbers on some 
computers. ) 

• The 1-bit sign field indicates whether the number is positive or negative. Negative 
numbers differ from positive numbers only in the sign bits of their significands. 

Table 15-4 shows how the real number 178.125 (decimal) is stored in the single real 
format. The table lists a progression of equivalent notations that express the same value 
to show how a number can be converted from one form to another. (The ASM386/486 
and PL/M-386/486 language translators perform a similar process when they encounter 
programmer-defined real number constants.) Note that not every decimal fraction has 
an exact binary equivalent. The decimal number 1/10, for example, cannot be expressed 
exactly in binary Gust as the number 1/3 cannot be expressed exactly in decimal). When 
a translator encounters such a value, it produces a rounded binary approximation of the 
decimal value. 

Table 15-3. Summary of Format Parameters 

Format 
Parameter 

Single Double Extended 

Format width in bits 32 64 80 

P (bits of precision) 24 53 64 

Exponent width in bits 8 11 15 

Emax +127 +1023 +16383 

Emin -126 -1022 -16382 

Exponent bias +127 +1023 +16383 

Table 15-4. Real Number Notation 

Notation Value 

Ordinary Decimal 178.125 

Scientific Decimal 1c.78125E2 

Scientific Binary 1c.0110010001E111 

Scientific Binary 1c.0110010001E10000110 
(Biased Exponent) 

Sign Biased Exponent Significand 

Single Format (Normalized) 
0 10000110 01100100010000000000000 

1 c.(implicit) 
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The Intel486 processor usually carries the digits of the significand in normalized form. 
This means that, except for the value zero, the significand contains an integer bit and 
fraction bits as follows: 

where t. indicates an assumed binary point. The number of fraction bits varies according 
to the real format: 23 for single, 52 for double, and 63 for extended real. By normalizing 
real numbers so that their integer bit is always a 1, the Intel486 processor eliminates 
leading zeros in small values (I X 1 < 1). This technique maximizes the number of 
significant digits that can be accommodated in a significand of a given width. Note that, 
in the single and double formats, the integer bit is implicit and is not actually stored; the 
integer bit is physically present in the extended format only. 

If one were to examine only the significand with its assumed binary point, all normalized 
real numbers would have values greater than or equal to 1 and less than 2. The exponent 
field locates the actual binary point in the significant digits. Just as in decimal scientific 
notation, a positive exponent has the effect of moving the binary point to the right, and 
a negative exponent effectively moves the binary point to the left, inserting leading zeros 
as necessary. An unbiased exponent of zero indicates that the position ofthe assumed 
binary point is also the position of the actual binary point. The exponent field, then, 
determines a real number's magnitude. 

In order to simplify comparing real numbers (e.g., for sorting), the Intel486 processor 
stores exponents in a biased form. This means that a constant is added to the true 
exponent described above. As Table 15-3 shows, the value of this bias is different for each 
real format. It has been chosen so as to force the biased exponent to be a positive value. 
This allows two real numbers (of the same format and sign) to be compared as if they 
are unsigned binary integers. That is, when comparing them bitwise from left to right 
(beginning with the leftmost exponent bit), the first bit position that differs orders the 
numbers; there is no need to proceed further with the comparison. A number's true 
exponent can be determined simply by subtracting the bias value of its format. 

The single and double real formats exist in memory only. If a number in one of these 
formats is loaded into an FPU register, it is automatically converted to extended format, 
the format used for all internal operations. Likewise, data in registers can be converted 
to single or double real for storage in memory. The extended real format may be used in 
memory also, typically to store intermediate results that cannot be held in registers. 

Most applications .should use the double format to store real-number data and results; it 
provides sufficient range and precision to return correct results with a minimum of pro­
grammer attention. The single real format is appropriate for applications that are con­
strained by memory, but it should be recognized that this format provides a smaller 
margin of safety. It is also useful for the debugging of algorithms, because roundoff 
problems will manifest themselves more quickly in this format. The extended real format 
should normally be reserved for holding intermediate results, loop accumulations, and 
constants. Its extra length is designed to shield final results from the effects of rounding 
and overflow/underflow in intermediate calculations. However, the range and precision 
of the double format are adequate for most microcomputer applications. 
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15.2.3 Rounding Control 

Internally, the Intel486 FPU employs three extra bits (guard, round, and sticky bits) that 
enable it to round numbers in accord with the infinitely precise true result of a compu­
tation; these bits are not accessible to programmers. Whenever the destination can rep­
resent the infinitely precise true result, the FPU delivers it. Rounding occurs in 
arithmetic and store operations when the format of the destination cannot exactly rep­
resent the infinitely precise true result. For example, a real number may be rounded ifit 
is stored in a shorter real format, or in an integer format. Or, the infinitely precise true 
result may be rounded when it is returned to a register. 

The Intel486 FPU has four rounding modes, selectable by the RC field in the control 
word (see Figure 15-3). Given a true result b that cannot be represented by the target 
data type, the FPU determines the two representable numbers a and c that most closely 
bracket b in value (a < b < c). The processor then rounds (changes) b to a or to c 
according to the mode selected by the RC field as shown in Table 15-5. Rounding 
introduces an error in a result that is less than one unit in the last place to which the 
result is rounded. 

• "Round to nearest" is the default mode and is suitable for most applications; it 
provides the most accurate and statistically unbiased estimate of the true result. 

• The "chop" or "round toward zero" mode is provided for integer arithmetic 
applications. 

• "Round up" and "round down" are termed directed rounding and can be used to 
implement interval arithmetic. Interval arithmetic is used to determine upper and 
lower bounds for the true result of a multi-step computation, when the intermediate 
results of the computation are subject to rounding. 

Rounding control affects only the arithmetic instructions (refer to Chapter 16 for lists of 
arithmetic and non arithmetic instructions). 

Table 15-5. Rounding Modes 

RC Field Rounding Mode Rounding Action 

00 Round to nearest Closer to b of a or c; if equally close, select 
even number (the one whose least significant 
bit is zero). 

01 Round down (toward -(0). a 

10 Round up (toward + (0) c 

11 Chop (toward 0) Smaller in magnitude of a or c. 

NOTE: a < b < c; a and c are successive representable numbers; b is not representable. 
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15.2.4 Precision Control 

The Intel486 FPU allows results to be calculated with either 64, 53, or 24 bits of preci­
sion in the significand as selected by the precision control (PC) field of the control word. 
The default setting, and the one that is best suited for most applications, is the full 64 
bits of significance provided by the extended real format. The other settings are required 
by the IEEE standard and are provided to obtain compatibility with the specifications of 
certain existing programming languages. Specifying less precision nullifies the advan­
tages of the extended format's extended fraction length. When reduced precision is 
specified, the rounding of the fractional value clears the unused bits on the right to 
zeros. Precision Control affects only the instructions FADD, FSUB, FMUL, FDIV, and 
FSQRT. 
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CHAPTER 16 
SPECIAL COMPUTATIONAL SITUATIONS 

Besides being able to represent positive and negative numbers, the numerical data for­
mats may be used to describe other entities. These special values provide extra flexibility, 
but most users will not need to understand them in order to use the numerics capabili­
ties of the Intel486 processor successfully. This section describes the special values that 
may occur in certain cases and the significance of each. The numeric exceptions are also 
described, for writers of exception handlers and for those interested in probing the limits 
of numeric computation using the Intel486 processor. 

The material presented in this section is mainly of interest to programmers concerned 
with writing exception handlers. Many readers will only need to skim this section. 

When discussing these special computational situations, it is useful to distinguish 
between arithmetic instructions and nonarithmetic instructions. Nonarithmetic instructions 
are those that have no operands or transfer their operands without substantial change; 
arithmetic instructions .are those that make significant changes to their operands: 
Table 16-1 defines these two classes of instructions. 

16.1 SP.ECIAL NUMERIC VALUES 

The numerical data formats of the Intel486 processor encompass encodings for a variety 
of special values in addition to the typical real or integer data values that result from 
normal calculations. These special values have significance and can express relevant 
information about the computations or operations that produced them. The various 
types of special values are 

• Denormal real numbers, 

• Zeros 
• Positive and negative infinity 

• NaN (Not-a-Number) 

• Indefinite 

• Unsupported formats 

The following sections explain the origins and significance of each qf these special val­
ues. Tables 16-6 through 16-9 at the end of this section show how each of these special 
values is encoded for each of the numeric data types. 

16.1.1 Denormal Real Numbers 

The Intel486 processor generally stores, nonzero real numbers in normalized floating­
point form; that is, the integer (leading) bit of the significand is always a one. (Refer to 
Chapter 15 for a review of operand formats.) This bit is explicitly stored in the extended 
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Table 16-1. Arithmetic and Nonarithmetic Instructions 

Nonarithmetic Instructions Arithmetic Instructions 

FABS F2XM1 

FCHS FAOO (P) 

FCLEX FBLO 

FOECSTP FBSTP 

FFREE FCOMP(P)(P) 

FINCSTP FCOS 

FINIT FOIV(R)(P) 

FLD (register·to-register) FIAOO 

FLO (extended format from memory) FICOM(P) 

FLO constant FIOIV(R) 

FLOCW FILO 

FLOENV FIMUL 

FNOP FIST(P) 

FRSTOR FISUB(R) 

FSAVE FLO (conversion) 

FST(P) (register-to-register) FMUL(P) 

FSTP (extended format to memory) FPATAN 

FSTCW FPREM 

FSTENV FPREM1 

FSTSW FPTAN 

FWAIT FRNOINT 

FXAM FSCALE 

FXCH FSIN 
FSINCOS 
FSQRT 
FST(P) (conversion) 
FSUB(R)(P) 
FTST 
FUCOM(P)(P) 
FXTRACT 
FYL2X 
FYL2XP1 

format, and is implicitly assumed to be a one (1a) in the single and double formats. Since 
leading zeros are eliminated, normalized storage allows the maximum number of signif­
icant digits to be held in a significand of a given width. 

When a numeric value becomes very close to zero, normalized floating-point storage 
cannot be used to express the value accurately. The term tiny is used here to precise~y 
define what values require special handling. A number R is said to be tiny when - 2Emm 

< R < 0 or 0 < R < + 2Emin• (As defined in Chapter 15, Emin is -126 for single format, 
-1022 for double format, and -16382 for extended format.) In other words, a nonzero 
number is tiny if its exponent would be too negative to store in the destination format. 
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To accommodate these instances, the Intel486 processor can store and operate on reals 
that are not normalized, i.e., whose significands contain one or more leading zeros. 
Denormals typically arise when the result of a calculation yields a value that is tiny. 

Denormal values have the following properties: 

• The biased floating-point exponent is stored at its smallest value (zero) 

• The integer bit of the significand (whether explicit or implicit) is zero 

The leading zeros of denormals permit smaller numbers to be represented, at the possi­
ble cost of some lost precision (the number of significant bits is reduced by the leading 
zeros). In typical algorithms, extremely small values are most likely to be generated as 
intermediate, rather than final, results. By using the extended real format for holding 
intermediate values, quantities as small as ±3.37 x 10-4932 can be represented; this 
makes the occurrence of denormal numbers a rare phenomenon in Intel486 numerical 
applications. Nevertheless, the Intel486 processor can load, store, and operate on denor­
malized real numbers when they do occur. 

Denormals receive special treatment by the Intel486 processor in three respects: 

o The Intel486 processor avoids creating denormals whenever possible. In other words, 
it always normalizes real numbers except in the case of tiny numbers. 

o The Intel486 processor provides the unmasked underflow exception to permit pro­
grammers to detect cases when denormals would be created. 

• The Intel486 processor provides the denormal exception to permit programmers to 
detect cases when denormals enter into further calculations. 

Denormalizing means incrementing the true result's exponent and inserting a corre­
sponding leading zero in the significand, shifting the rest of the significand one place to 
the right. Denormal values may occur in any of the single, double, or extended formats. 
Table 16-2 shows the range of denormalized values in each format. 

Denormalization produces either a denormal or .a zero. Denormals are readily identified 
by their exponents, which are always the minimum for their formats; in biased form, this 
is always the bit string: 00 .. 00. This same exponent value is also assigned to the zeros, but 
a denormal has a nonzero significand. A denormal in a register is tagged special. 
Tables 16-8 and 16-9 later in this chapter show how denormal values are encoded in 
each of the real data formats. 

Table 16-2. Denormalized Values 

Smallest Magnitude Largest Magnitude 
Format 

(Exact) (Approx.) (Exact) (Approx.) 

Single Precision 2_ 150 10-46 2-126_2-150 10-38 

Double Precision 2-1075 10-324 2-1022_2-1075 10-308 

Extended 2-16461 10-4956 2-16382_2-16461 10-4932 
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The denormalization process causes loss of significance if low-order one-bits bits are 
shifted off the right of the significand. In a severe case, all the significand bits of the true 
result are shifted out and replaced by the leading zeros. In this case, the result of denor­
malization is a true zero, and, if the value is in a register, it is tagged as a zero. 

Denormals are rarely encountered in most applications. Typical debugged algorithms 
generate extremely small results during the evaluation of intermediate subexpressions; 
the final result is usually of an appropriate magnitude for its single or double format real 
destination. If intermediate results are held in temporary real, as is recommended, the 
great range of this format makes underflow very unlikely. Denormals are likely to arise 
only when an application generates a great many intermediates, so many that they can­
not be held on the register stack or in extended format memory variables. If storage 
limitations force the use of single or double format reals for intermediates, and small 
values are produced, underflow may occur, and, if masked, may generate denormals. 

When a denormal number in single or double format is used as a source operand and 
the denormal exception is masked, the Intel486 FPU automatically normalizes the num­
ber when it is converted to extended format. 

16.1.1.1 DENORMALS AND GRADUAL UNDERFLOW 

Floating-point arithmetic cannot carry out all operations exactly for all operands; 
approximation is unavoidable when the exact result is not representable as a floating­
point variable. To keep the approximation mathematically tractable, the hardware is 
made to conform to accuracy standards that can be modeled by certain inequalities 
instead of equations. Let the assignment 

X-Y@Z (where @ is some operation) 

represent a typical operation. In the default rounding mode (round to nearest), each 
operation is carried out with an absolute error no larger than half the separation 
between the two floating-point numbers closest to the exact results. Let x be the value 
stored for the variable whose name in the program is X, and similarly y for Y, and Z for 
Z. Normally y and Z will differ by accumulated errors from what is desired and from what 
would have been obtained in the absence of error. For the calculation of x we assume 
that y and z are the best approximations available, and we· seek to compute x as well as 
we can. If y@z is representable exactly, then we expect x = y@z, and that is what we get 
for every algebraic operation on the Intel486 processor FPU (i.e., when Y@z is one of 
y+z,y-z,yxz,y+z, sqrt z). But ify@z must be approximated, as is usually the case, then 
x must differ from y@z by no more than half the difference between the two represent­
able numbers that straddle y@z. That difference depends on two factors: 

1. The precision to which the calculation is carried out, as determined either by the 
precision control bits or by the format used in memory. On the Intel486 processor, 
the precisions are single (24 significant bits), double (53 significant bits), and 
extended (64 significant bits). 
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2. How close y@z is to zero. In this respect the existence of denormal numbers on the 
Intel486 processor provides a distinct advantage over systems that do not admit 
denormal numbers. 

In any floating-point number system, the density of representable numbers is greater 
near zero than near the largest representable magnitudes. However, machines that do 
not use denormal numbers suffer from an enormous gap between zero and its closest 
neighbors. Figures 16-1 and 16-2 show what happens near zero in two kinds of floating-
point number systems. . 

Figure 16-1 shows a floating-point number system that (like the Intel486 processor) 
admits denorinal numbers. For simplicity, only the non-negative numbers appear and the 
figure illustrates a number system that carries just four significant bits instead of the 24, 
53, or 64 significant bits that the Intel486 processor offers. 

Each vertical tick mark stands for a number representable in four significant bits, and 
the longer verticals stand for powers. of 2. The horizontal marks are evenly spaced; those 
uncrossed by vertical tick marks stand for numbers unrepresentable at this precision. 
The denormal numbers lie between 0 and the nearest normal power of 2. They are no 
less dense than the remaining nonzero numbers. 

Figure 16-2 shows a floating-point number system that (unlike the Intel486 or Inte1387 
FPUs) does not admit denormal numbers. There are two large gaps, one on the positive 
side of zero (as illustrated) and one on the negative side of zero (not illustrated). The 
gap between zero and the nearest neighbor of zero differs from the gap between that 
neighbor and the next bigger number by a factor of about 8.4 X 106 for single, 4.5 x 1015 

for double, and 9.2 X 1018 for extended format. Those gaps would complicate error 
analysis. 

o • + ...... +.1 ....... t t .. 1- .. -+ - t - .. - ... + - + -1- -- .. ---+ - • - + • - - ... - •• - - - .. - _. + - • ·1 -.. ---- t - _. - - - -. - - - - - - - • 

Denormala 

240486i16·1 

Figure 16-1. Floating-Point System with Denormals 

J .. + + .. + + + 1- .. -+ - + - + - + - .. - .. - 1- --+ - - - + - - - + - - - + - - - t - - - + - - - .. - - -I ------- .. -. -----+ - - - - • - - I 

----Hormal Humbers-----ot 

240486i16·2 

Figure 16·2. Floating·Point System without Denormals 
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The advantage of denormal numbers is apparent when one considers what happens in 
either case when the underflow exception is masked and y@z falls into the space 
between zero and the smallest normal magnitude. The Intel486 processor returns the 
nearest denormal number. This action might be called "gradual underflow." The effect 
is no different from the rounding that can occur when y@z falls in the normal range. 

On the other hand, the system that does not have denormal numbers returns zero as the 
result, an action that can be much more inaccurate than rounding. This action could be 
called "abrupt underflow." The Intel486 FPU and Intel387 math coprocessor handle 
denormal values differently than the 8087/Inte1287 math coprocessors. See Section 16.2.4 
for more· details. 

16.1.2 Zeros 

The value zero in the real and decimal integer formats may be signecl either positive or 
negative, although the sign of a binary integer zero is always positive. For computational 
purposes, the value of zero always behaves identically, regardless of sign, and typically 
the fact that a zero may be signed is transparent to the programmer. If necessary, the 
FXAM instruction may be used to determine a zero's sign. 

A programmer can code a zero, or it can be created by the FPU as its masked response 
to an underflow exception. If a zero is loaded or generated in a register, the register is 
tagged zero. Table 16-3 lists the results of instructions executed with zero operands and 
also shows how a zero may be created from nonzero operands. 

Table 16-3. Zero Operands and Results 

Operation Operands Result 

FLD,FBLD ±O *0 
FILD +0 +0 
FST,FSTP,FRNDINT ±O *0 

+X +0' 
-X _0' 

FBSTP ±O *0 
FIST,FISTP ±O *0 

+X +03 

-X -04 

FCHS +0 -0 
-0 +0 

FABS ±O +0 
Addition +0 plus +0 +0 

-0 plus -0 -0 
+0 plus -0, -0 plus +0 ±02 
-X plus +X, +X plus -X ±02 
±O plus ±X, ±X plus ±O #X 
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Table 16-3. Zero Operands and Results 

Operation Operands Result 

Subtraction +0 minus -0 +0 
-0 minus +0 -0 
+0 minus +0, -0 minus ±02 

-0 ±02 

+X minus +X, -X minus -#X 
-x #X 
±O minus ±X 
±X minus ±O 

Multiplication ±O x ±o 0 
±o x±X, ±X x ±O 0 
+X x +Y, -X x -y +01 

+x X -V, -X x +y -01 

Division ±O.;- ±o Invalid Operation 
±X.;- ±o 00 (Zero Divide) 
±X.;- ±oo 0 
+0.;- +X, -0 .;- -X +0 
+0.;- -X, -0 .;- +X -0 
-X.;- -V, +X.;- +y +01 

-X.;- +Y, +X.;- -y _01 

FPREM, FPREM1 ±O rem ±o Invalid Operation 
±X rem ±O Invalid Operation 
+0 rem ±X +0 
-0 rem ±X -0 
+X rem ±Y + 0 Y exactly divides X 
-X rem ±Y -0 Y exactly divides X 

FSQRT ±o *0 
Compare ±o: +X ±o < +X 

±o: ±o ±o = ±o 
±O:-X ±o> -X 

FTST ±o ±o = 0 
FXAM +0 C3 = 1; C2 = C1 = Co = 0 

-0 C3 = C1 = 1; C2 = Co = 0 
FSCALE ±o scaled by -00 *0 

±o scaled by +00 Invalid Operation 
±o scaled by X *0 

FXTRACT +0 ST= +O,ST(l)=-oo, 
-0 Zero divide 

ST = -O,ST(l) = -00, 
Zero divide 

FPTAN ±o *0 
FSIN (or SIN ±o *0 

result of FSINCOS) 
FCOS (or COS ±O +1 

result of FSINCOS) 
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Table 16-3. Zero Operands and Results 

Operation Operands Result 

FPATAN 

F2XM1 

FYL2X 

FYL2XP1 

X and Y 
1 

±O -7 +X 
±O -7 -X 
±X -7 ±O 
±O -7 +0 
±O -7 -0 
+00 -7 ±O 
-00 -7 ±O 
±O -7 +00 
±O -7 -00 
+0 
-0 
±Y x 10g(±0) 
±O x 10g(±0) 
+Y x log(±0+1) 
-Y x log(±0+1)· 

denote nonzero positive operands. 
When extreme underflow denormalizes the result to zero. 

*0 
*'11" 
#'11"/2 
*0 
*'11" 
+'11"/2 
-'11"/2 
*0 
*'11" 
+0 
-0 
Zero Divide 
Invalid Operation 
*0 
-*0 

2 
3 

Sign deterrnined by rounding mode: + for nearest, up, or chop, - for down. 
When 0 < X < 1 and rounding mode is not up. 

4 
. * 
# 
-# 

When -'-1 < x < 0 and rounding mode is not down. 
Sign of original zero operand . 
Sign of original X operand. 
Complement of sign of original X operand. 
Exclusive OR of the signs of the operands. 

16.1.3 Infinity 

The real formats support signed representations of infinities. These values are encoded 
with a biased exponent of all ones and a significand of 1LlOO .. OO; if the infinity is in a 
register, it is tagged special. 

A programmer can code an infinity, or it can be created by the FPU as its masked 
response to an overflow or a zero divide exception. Note that depending on rounding 
mode, the masked response may create the largest valid value representable in the des­
tination rather than infinity. 

The signs of the infinities are observed, and comparisons are possible. Infinities are 
always interpreted in the affine sense; that is, -00 < (any finite number) < + 00. Arith­
metic on infinities is always exact and, therefore, signals no exceptions, except for the 
invalid operations specified in Table 16-4. 

16.1.4 NaN (Not-a-Number) 

A NaN (Not a Number) is a member of a class of special values that exists in the real 
formats only. A NaN has an exponent of 11..11B, may have either sign, and may have 
any significand except 1LlOO .. OOB, which is assigned to the infinities. A NaN in a register 
is tagged special. 
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Table 16·4. Infinity Operands and Results 

Operation Operands Result 

FLD,FBLD ±oo *00 
FST,FSTP,FRNDINT ±oo *00 
FCHS +00 -00 

-00 +00 
FABS ±oo +00 
Addition +00 plus +00 +00 

-00 plus -00 -00 
+00 plus -00 Invalid Operation 
-00 plus +00 Invalid Operation 
±oo plus ±X *00 
±X plus ±oo *00 

Subtraction +00 minus -00 +00 
-00 minus +00 -00 
+00 minus +00 Invalid Operation 
-00 minus-oo Invalid Operation 
±oo minus ±X *00 
±X minus ±oo -*00 

Multiplication ±oo x ±oo 00 
±oo X ±Y, ±Yx ±oo 00 
±O x ±oo, ±oo X ±O Invalid Operation 

Division ±oo -;- ±oo Invalid Operation 
±oo -;- ±X 00 
±X -;- ±oo 0 
±oo -;- ±O 00 

FPREM,FPREM1 ±oo rem ±oo Invalid Operation 
±oo rem ±X Invalid Operation 
±X rem ±oo $X, Q = 0 

FSQRT -00 Invalid Operation 
+00 +00 

Compare +00: +00 +00 = +00 
-00 : -00 -00 = -00 

+00:-00 +00>-00 
-00 : +00 -00 < +00 
+00: ±X +00 > X 
-00: ±X -00 < X 
±X: +00 X < +00 
±X: -00 X> +00 
+00 +00 >0 

FTST -00 -00 <0 
FSCALE ±oo scaled by -00 Invalid Operation 

±oo scaled by + 00 *00 
±oo scaled by ±X *00 
±o scaled by -00 ±01 
±O scaled by 00 Invalid Operation 
±Yscaled by +00 #00 
±Y scaled by -00 #0 

FXTRACT ±oo ST = *00, ST(1) = +00 
FXAM +00 CO=C2=1;C1 =C3=0 

-00 CO=C1 =C2=1; C3=0 
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Table 16-4. Infinity Operands and Results 

Operation Operands 

FPATAN ±oo + ±X 
±Y + +00 
±Y + -00 
±oo + +00 
±OO+ -00 
±oo + ±o 
+0 + +00 
+0 + -00 
-0 + +00 
-0 + -00 

F2XM1 +00 
-00 

FYL2X ±oo x log (1J 
±oo X log (X>1) 
±oo x log (0 <X<1) 
±Y x log (+00) 
±O x log (+00) 
±Y x log (-00) 

FYL2XP1 ±oo x log (1) 
±oo X log (X>O) 
±oo X log 
(-1 <X<O) 
±Y X log (+00) 
±o x log (+00) 
±Y x log (-00) 

Zero or nonzero positive operand. 
Nonzero positive operand. 
Sign of original infinity operand. 
Complement of sign of original infinity operand. 
Sign of original operand. 
Exclusive OR of signs of operands. 
Sign of the original Y operand. 
Sign of original zero operand. 

Result 

*Tr/2 
#0 
#Tr 
*Tr/4 
*3Tr/4 
*Tr/2 
+0 
+Tr 
-0 
-Tr 
+00 
-1 
Invalid Operation 
*00 
-*00 
#00 
Invalid Operation 
Invalid Operation 
Invalid Operation 
*00 
-*00 
#00 
Invalid Operation 
Invalid Operation 

There are two classes of NaNs: signaling (SNaN) and quiet (ONaN). Among the 
QNaNs, the value real indefinite is of special interest. 

16.1.4.1 SIGNALING NaNs 

A signaling NaN is a NaN that has a zero as· the most significant bit of its significand. 
The rest of the significand may be set to any value. The FPU never generates a signaling 
NaN as a result; however, it recognizes signaling NaNs when they appear as operands. 
Arithmetic operations (as defined at the beginning of this chapter) on a signaling NaN 
cause an invalid-operation exception (except fot load operations from the stack, FXCH, 
FCHS, and FABS). 
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By unmasking the invalid operation exception, the programmer can use signaling NaNs 
to trap to the exception handler. The generality of this approach and the large number 
of NaN values that are available provide the sophisticated programmer with a tool that 
can be applied to a variety of special situations. 

For example, a compiler could use signaling NaNs as references to uninitialized (real) 
array elements. The compiler could preinitialize each array element with a signaling 
NaN whose significand contained the index (relative position) of the element. If an 
application program attempted to access an element that it had not initialized, it would 
use the NaN placed there by the compiler. If the invalid operation exception were 
unmasked, an interrupt would occur, and the exception handler would be invoked. The 
exception handler could determine which element had been accessed, since the operand 
address field of the exception pointers would point to the NaN, and the NaN would 
contain the index number of the array element. 

16.1.4.2 QUIET NaNs 

A quiet NaN is a NaN that has a one as the most significant bit of its significand. The 
Intel486 processor creates the quiet NaN real indefinite (defined below) as its default 
response to certain exceptional conditions. The Intel486 processor may derive other 
QNaNs by converting an SNaN. The Intel486 processor converts a SNaN by setting the 
most significant bit of its significand to one, thereby generating an QNaN. The remain­
ing bits of the significand are not changed; therefore, diagnostic information that may be 
stored in these bits of the SNaN is propagated into the QNaN. 

The Intel486 processor will generate the special QNaN, real indefinite, as its masked 
response to an invalid operation exception. This NaN is signed negative; its significand is 
encoded 1Ll100 .. 00. All other NaNs represent values created by programmers or derived 
from values created by programmers. 

Both quiet and signaling NaNs are supported in all operations. A QNaN is generated as 
the masked response for invalid-operation exceptions and as the result of an operation 
in which at least one of the operands is a QNaN. The Intel486 processor applies the 
rules shown in Table 16-5 when generating a QNaN. 

Note that handling of a QNaN operand has greater priority than all exceptions except 
certain invalid-operation exceptions (refer to the section "Exception Priority" in this 
chapter). 

Quiet NaNs could be used, for example, to speed up debugging. In its early testing 
phase, a program often contains multiple errors .. An exception handler could be written 
to save diagnostic information in memory whenever it was invoked. After storing the 
diagnostic data, it could supply a quiet NaN as the result of the erroneous instruction, 
and that NaN could point to its associated diagnostic area in memory. The program 
would then continue, creating a different NaN for each error. When the program ended, 
the NaN results could be used to access the diagnostic data saved at the time the errors 
occurred. Many errors could thus be diagnosed and corrected in one test run. 
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Table 16-5. Rules for Generating QNaNs 

Operation Action 

Real operation on an SNaN and a QNaN. Deliver the QNaN operand. 

Real operation on two SNaNs. Deliver the QNaN that results from converting 
the SNaN that has the larger significand. 

Real operation on two QNaNs. Deliver the QNaN that has the larger 
significand. 

Real operation on an SNaN and another Deliver the QNaN that results from converting 
number. the SNaN. 

Real operation on a QNaN and another Deliver the QNaN. 
number. 

Invalid operation that does not involve NaNs. Deliver the default QNaN real indefinite. 

In embedded applications which use computed results in further computations, an unde­
tected QNaN can invalidate all subsequent results. Such applications should therefore 
periodically check for QNaNs and provide a recovery mechanism to be used if a QNaN 
result is detected. 

16.1.5 Indefinite 

For each numeric data type, one unique encoding is reserved for representing the special 
value indefinite. The Intel486 processor produces this encoding as its response to a 
masked invalid-operation exception. 

In the case of reals, the indefinite value is a QNaN as discussed in the prior section. 

Packed decimal indefinite may be stored with a FBSTP instruction; attempting to use this 
encoding in a FBLD instruction, however, will have an undefined result; thus indefinite 
cannot be loaded from a packed decimal integer. 

In the binary integers, the same encoding may represent either indefinite or the largest 
negative number supported by the format (_215, -23\ or_263). The Intel486 processor 
will store this encoding as its masked response to an invalid operation,or when the value 
in a source register represents or rounds to the largest negative integer representable by 
the destination. In situations where its origin may be ambiguous, the invalid-operation 
exception flag can be examined to see if the value was produced by an exception 
response. When this encoding is loaded or used by an integer arithmetic or compare 
operation, it is always interpreted as a negative number; thus indefinite cannot be loaded 
from a binary integer. 
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16.1.6 Encoding of Data Types 

Tables 16-6 through 16-9 show how each of the special values just described is encoded 
for each of the numeric data types. In these tables, the least-significant bits are shown to 
the right and are stored in the lowest memory addresses. The sign bit is always the 
left-most bit of the highest-addressed byte. 

16.1.7 Unsupported Formats 

The extended format permits many bit patterns that do not fall into any of the previously 
mentioned categories. Table 16-10 shows these unsupported formats. Some of these 
encodings were supported by the Intel287 math coprocessor; however, most of them are 
not supported by the Intel387 and Intel486 FPUs. These changes are required due to 
changes made in the final version of IEEE Std 754 that eliminated these data types. 

The categories of encodings formerly known as pseudo-NaNs, pseudoinfinities, and 
unnormal numbers are not supported. The Intel486 processor raises the invalid­
operation exception when they are encountered as operands. 

The encodings formerly known as pseudodenormal numbers are not generated by the 
Intel486 processor; however, they are correctly utilized when encountered as operands. 
The exponent is treated as if it were 00 .. 01 and the mantissa is unchanged. The denor­
mal exception is raised. 
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Table 16-6. Binary Integer Encodings 

Class Sign Magnitude 

(Largest) 0 11 .. 11 

III 
CII 

~ 
·iii 
0 
D.. 

(Smallest) 0 00 .. 01 

Zero 0 00 .. 00 

(Smallest) 1 1.1..11 

III 
CII 

.i2: 
m 
Cl 
CII z 

1 00 .. 00 (Largest/lndefinite*) 

Word: 15 bits 
Short: 31 bits 
Long: 63 bits 

"If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the 
FPU interprets it as the largest negative number representable in the format... _2'5, _231 , or _263. The 
FPU delivers this encoding to an integer destination in two cases: 

1. If the result is the largest negative number. 
2. As the response to a masked invalid operation exception, in which case it represents the special value 

integer indefinite. 
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Table 16-7. Packed Decimal Encodings 

Magnitude 
Class Sign 

digit 1 1 1 1· .. 1 digit digit digit digit 

(Largest) a 0000000 1 a a 1 1 a 01 1 a a 1 1 a 01 ... 1 a 01 

III 
GI 

~ 
'iii (Smallest) a 0000000 0000 0000 0000 0000 ... 0601 
0 

D.. 
Zero a 0000000 0000 0000 0000 0000 ... 0000 

Zero 1 0000000 0000 0000 0000 0000 ... 0000 

(Smallest) 1 0000000 0000 0000 0000 0000 ... 0000 
III 
GI 
> 
i 
Cl 
GI z 

(Largest) 1 0000000 1 a 01 1 a a 1 1 a 01 1 a 01 ... 1 a a 1 

Indefinite* 1 1111111 1 1 1 1 1 1 1 1 U U U U** UUUU ... UUUU 

- 1 byte - - 9 bytes-

*The packed decimal indefinite is stored by FBSTP in response to a masked invalid operation exception. 
Attempting to load this value via FBLD produces an undefined result. 

**UUUU means bit values are undefined and may contain any value. 
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Table 16-8. Single and Double Real Encodings 

Class Sign 
Biased Significand 

Exponent ff-ff* 

0 11..11 11 .. 11 

Quiet 

I/) 0 11 .. 11 10 .. 00 
z 
IU 0 11 .. 11 01 .. 11 z 

Signaling 

0 11 .. 11 00 .. 01 

I/) Infinity 0 11 .. 11 00 .. 00 
CII 

:E: 0 11 .. 10 11 .. 11 
·iii 
0 Normals Il. 

0 00 .. 01 00 .. 00 
I/) 

0 00 .. 00 11 .. 11 iii 
CII 
II: Denormals 

0 00 .. 00 00 .. 01 

Zero 0 00 .. 00 00 .. 00 

Zero 1 00 .. 00 00.00 

1 00 .. 00 00 .. 01 

Denormals 
I/) 

1 00 .. 00 11 .. 11 iii 
CII 
II: 

1 00 .. 01 00 .. 00 

Normals 

I/) 1 11 .. 10 11 .. 11 
CII 
> Infinity 1 11 .. 11 00 .. 00 ~ 
Cl 
CII 1 11 .. 11 00 .. 01 z 

Signaling 

I/) 1 11 .. 11 01 .. 11 
z 
IU Indefinite 1 11 .. 11 10 .. 00 z 

Quiet 

1 11 .. 11 11 .. 11 

Single: - 8 bits - - 23 bits -
Double: - 11 bits - - 52 bits -

*Integer bit is implied and not stored. 

16-16 



intel® SPECIAL COMPUTATIONAL SITUATIONS 

Table 16-9. Extended Real Encodings 

Class Sign 
Biased Significand 

Exponent I.ff-ff 

0 11 .. 11 1 11 .. 11 

Quiet 

III 0 11 .. 11 1 10 .. 00 
z 
co 0 11 .. 11 1 01 .. 11 z 

Signaling 

0 11 .. 11 1 00 .. 01 

Infinity 0 11 .. 11 1 00 .. 00 

0 11 .. 10 1 11 .. 11 
III 
G.I 

Normals ~ 
'iii 

0 00 .. 01 1 00 .. 00 0 
c.. 

0 00 .. 00 1 11 .. 11 
III Pseudodenormals 
iii 0 00 .. 00 1 00 .. 00 G.I 
a: 

0 00 .. 00 011 .. 11 

Denormals 

0 00 .. 00 000 .. 01 

Zero 0 00 .. 00 000 .. 00 

Zero 1 00 .. 00 000 .. 00 

1 00 .. 00 000 .. 01 

Denormals 

1 00 .. 00 011 .. 11 
III 0 00 .. 00 1 11 .. 11 
iii 
G.I Pseudodenormals a: 

0 00 .. 00 1 00 .. 00 

1 00 .. 01 1 00 .. 00 

III Normals 
G.I 
> 
~ 1 11 .. 10 111 .. 11 
Cl 

Infinity 1 11 .. 11 1 00 .. 00 G.I 
Z 

1 11..11 1 00 .. 01 

Signaling 

III 1 11 .. 11 1 01 .. 11 
z 
co Indefinite 1 11 .. 11 1 10 .. 00 z 

Quiet 

1 11 .. 11 1 11 .. 11 

- 15 bits - - 64 bits -
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Table 16-10. Unsupported Formats 

Class Sign 
Biased Significand 

Exponent f.ff--ff 

0 11 .. 11 011 .. 11 
Quiet 

o II) 
0 11 .. 11 010 .. 00 

"t:JZ 
;:, lIS 0 11 .. 11 o 01 .. 11 
lJlZ 

Signaling II) 0-
CII 0 11 .. 11 000 .. 01 
f; 
'iii Pseudoinfinity 0 11 .. 11 000 .. 00 0 
0-

0 11 .. 10 011 .. 11 
II) 

Unnormals (;j 
CII 0 00 .. 01 000 .. 00 a: 

1 11 .. 10 011 .. 11 
..!!l Unnormals lIS 
CII 1 00 .. 01 000 .. 00 a: 

Pseudoinfinity 1 11 .. 11 000 .. 00 

II) 1 11 .. 11 o 01 .. 11 CII 
> Signaling i 

.g~ 
1 11 .. 11 000 .. 01 

CII 
Z ;:, lIS 1 11 .. 11 011 .. 11 

lJlZ 
0- Quiet 

1 11 .. 11 010 .. 00 

- 15 bits - - 64 bits -

16.2 NUMERIC EXCEPTIONS 

The Intel486 processor can recognize six classes of numeric exception conditions while 
executing numeric instructions: 

1. I - Invalid operation 

• Stack fault 

• IEEE standard invalid operation 

2. Z - Divide-by-zero 

3. D - Denormalized operand 

4. a - Numeric overflow 

5. U -' Numeric underflow 

6. p- Inexact result (precision) 
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16.2.1 Handling Numeric Exceptions 

When numeric exceptions occur, the Intel486 processor takes one of two possible 
courses of action: 

• The FPU can itself handle the exception, producing the most reasonable result and 
allowing numeric program execution to continue undisturbed. 

• A software exception handler can be invoked to handle the exception. 

Each of the six exception conditions described above has a corresponding flag bit in the 
FPU status word and a mask bit in the FPU control word. If an exception is masked (the 
corresponding mask bit in the control word = 1), the Intel486 processor takes an appro­
priate default action and continues with the computation. If the exception is unmasked 
(mask = 0), a software exception handler is invoked immediately before execution of the 
next WAIT or non-control floating-point instruction. Depending on the value of the NE 
bit of the CRO control register, the exception handler is invoked either (NE = 1) 
through interrupt vector 16 or (NE = 0) through an external interrupt. 

Note that when exceptions are masked, the FPU may detect multiple exceptions in a 
single instruction, because it continues executing the instruction after performing its 
masked response. For example, the FPU could detect a denormalized operand, perform 
its masked response to this exception, and then detect an underflow. 

16.2.1.1 AUTOMATIC EXCEPTION HANDLING 

The Intel486 processor has a default fix-up activity for every possible exception condition 
it may encounter. These masked-exception responses are designed to be safe and are 
generally acceptable for most numeric applications. 

As an example of how even severe exceptions can be handled safely and automatically 
using the default exception responses, consider a calculation of the parallel resistance of 
several values using only the standard formula (Figure 16-3). If R1 becomes zero, the 
circuit resistance becomes zero. With the divide-by-zero and precision exceptions 
masked, the Intel486 processor will produce the correct result. 

By masking or unmasking specific numeric exceptions in the FPU control word, pro­
grammers can delegate responsibility for most exceptions to the Intel486 processor, 
reserving the most severe exceptions for programmed exception handlers. Exception­
handling software is often difficult to write, and the masked responses have been tai­
lored to deliver the most reasonable result for each condition. For the majority of 
applications, masking all exceptions yields satisfactory results with the least program­
ming effort. Certain exceptions can usefully be left unmasked during the debugging 
phase of software development, and then masked when the clean software is actually 
run. An invalid-operation exception for example, typically indicates a program error that 
must be corrected. 

The exception flags in the FPU status word provide a cumulative record of exceptions 
that have occurred since these flags were last cleared. Once set, these flags can be 
cleared only by executing the FCLEX (clear exceptions) instruction, by reinitializing the 
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R, ~ R. 

EQUIVALENT RESISTANCE = 

R, 

R3 

+ 
R. 

+ 1 
R3 

Figure 16-3. Arithmetic Example Using Infinity 

240486i16·3 

FPU, or by overwriting the flags with an FRSTOR or FLDENV instruction. This allows 
a programmer to mask all exceptions, run a calculation, and then inspect the status word 
to see if any exceptions were detected at any point in the calculation. 

16.2.1.2 SOFTWARE EXCEPTION HANDLING 

If the FPU encounters an unmasked exception condition, a software exception handler is 
invoked immediately before execution of the next WAIT or non-control floating-point 
instruction. The exception handler is invoked either through interrupt vector 16 or 
through an external interrupt, depending on the value of the NE bit of the CRO control 
register. 

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately 
before the execution of the next non-control floating-point or WAIT instruction. Inter­
rupt 16 is an operating-system call that invokes the exception handler. Chapter 9 con­
tains a general discussion of exceptions and interrupts on the Intel486 processor. 

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception 
causes the processor to freeze immediately before executing the next non-control 
floating-point or WAIT instruction. The frozen processor waits for an external interrupt, 
which must be supplied by external hardware in response to the FERR# output of the 
processor. (Regardless of the value of NE, an unmasked numerical exception causes the 
FERR# output to be activated.) In this case, the external interrupt invokes the 
exception-handling routine. If NE =0 but the IGNNE# input is active, the processor 
disregards the exception and continues. Error reporting via external interrupt is sup­
ported for DOS compatibility. Chapter 25 contains further discussion of compatibility 
issues. 

16-20 



intel® SPECIAL COMPUTATIONAL SITUATIONS 

The exception-handling routine is normally a part of the systems software. Typical 
exception responses may include: 

• Incrementing an exception counter for later display or printing 

• Printing or displaying diagnostic information (e.g., the FPU environment and 
registers) 

• Aborting further execution, or using the exception pointers to build an instruction 
that will run without exception and executing it 

Applications programmers should consult their operating system's reference manuals for 
the appropriate system response to numerical exceptions. For systems programmers, 
some details on writing software exception handlers are provided in Chapter 19. 

16.2.2 Invalid Operation 

This exception may occur in response to two general classes of operations: 

1. Stack operations 

2. Arithmetic operations 

The stack flag (SF) of the status word indicates which class of operation caused the 
exception. When SF is 1 a stack operation has resulted in stack overflow or underflow; 
when SF is 0, an arithmetic instruction has encountered an invalid operand. 

16.2.2.1 STACK EXCEPTION 

When SF is 1, indicating a stack operation, the 01U# bit of the condition code (bit C1) 
distinguishes between stack overflow and underflow as follows: . 

O/U # = 1 Stack overflow - an instruction attempted to push down a non empty stack 
location. 

01U# = ° Stack underflow-an instruction attempted to read an operand from an 
empty stack location. 

When the invalid-operation exception is masked, theFPU returns the QNaN indefinite. 
This value overwrites the destination register, destroying its original contents. 

When the invalid-operation exception is not masked, an exception handler is invoked. 
TOP is not changed, and the source operands remain unaffected. 
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16.2.2.2 INVALID ARITHMETIC OPERATION 

This class includes the invalid operations defined in IEEE Std 854. The FPU reports an 
invalid operation in any of the cases shown in Table 16-11. Also shown in this table are 
the FPU's responses when the invalid exception is masked. When unmasked, an excep­
tion handler is invoked, and the operands remain unaltered. An invalid operation gen­
erally indicates a program error. 

16.2.3 Division by Zero 

If an instruction attempts to divide a finite nonzero operand by zero, the FPU will report 
a zero-divide exception. This is possible for F(I)DIV(R)(P) as well as the other instruc­
tions that perform division internally: FYL2X and FXTRACT. The masked response for 
FDIV is to return an infinity signed with the exclusive OR of the sign of the operand. 

Table 16-11. Masked Responses to Invalid Operations 

Condition Masked Response 

Any arithmetic operation on an unsupported Return the QNaN indefinite. 
format. 

Any arithmetic operation on a signaling NaN. Return a QNaN (refer to the section "Rules for 
Generating QNaNs"). 

. Compare and test operations: one or both oper- Set condition codes "not comparable." 
ands is a NaN. 

Addition of opposite-signed infinities or subtrac- Return the QNaN indefinite. 
tion of like-signed infinities. 

Multiplication: 00 x 0; or 0 x 00. Return theQNaN indefinite. . 

Division: 00 7 00; or 0 7 O. Return the QNaN indefinite. 

Remainder instructions FPREM, FPREM1 when Return the QNaN indefinite; set C2 = O. 
modulus (divisor) is zero or dividend is 00. 

Trigonometric instructions FCOS, FPTAN, FSIN, Return theQNaN indefinite; set C2 = O. 
FSINCOS when argument is 00. 

FSQRT of negative operand (except FSQRT (-0) Return the QNaN indefinite. 
= -0), FYL2X of negative operand (except 
FYL2X (-0) = -(0), FYL2XP1 of operand more 
negative than ~ 1 . 

FIST(P) instructions when source register is Store integer indefinite. 
empty, a NaN, 00, or exceeds representable 
range of destination. 

FBSTP instruction when source register is Store packed decimal indefinite. 
empty, a NaN, 00, or exceeds 18 decimal digits. 

FXCH instruction when one or both registers are Change empty registers to the QNaN indefinite 
tagged empty. and then perform exchange. . 
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FYL2X returns an infinity signed with the opposite sign of the non-zero operand. For 
FXTRACT, ST(l) is set to -00; ST is set to zero with the same sign as the original 
operand. If the divide-by-zero exception is unmasked, an exception handler is invoked; 
the operands remain unaltered. 

16.2.4 Denormal Operand 

If an arithmetic instruction attempts to operate on a denormal operand, the FPU reports 
the denormal-operand exception. Denormal operands may have reduced significance 
due to lost low-order bits, therefore it may be advisable in certain applications to pre­
clude operations on these operands. This can be accomplished by an exception handler 
that responds to unmasked denormal exceptions. Most users will mask this exception so 
that computation may proceed; any loss of accuracy will be analyzed by the user ·when 
the final result is delivered. 

When this exception is masked, the FPU sets the D-bit in the status word, then proceeds 
with the instruction. Gradual underflow and denormal numbers as handled on the 
Intel486 processor will produce results at least as good as, and often better than what 
could be obtained from a machine that flushes underflows to zero. In fact, a denormal 
operand in single- or double-precision format will be normalized to the extended-real 
format when loaded into the FPU. Subsequent operations will benefit from the· addi­
tional precision of the extended-real format used internally. 

When this exception is not masked, the D-bit is set and the exception handler is invoked. 
The operands are not changed by the instruction and are available for inspection by the 
exception handler. 

The Intel486 FPU and Intel387 math coprocessors handle denormal values differently 
than the 8087 and Intel287 math coprocessors. This change is due to revisions in the 
IEEE standard before being approved. The difference in operation occurs when the 
denormal exception is masked. The Intel486 FPU and Intel387 math coprocessors will 
automatically normalize denormals. The 8087 and Intel287 math coprocessors will gen­
erate a denormal result. 

The difference in denormal handling is usually not an issue. The denormal exception is 
normally masked for the Inte1387 and Intel486 FPUs. For programs that also run on an 
Intel287 math coprocessor, the denormal exception is often unmasked and an exception 
handler is provided to normalize any denormal values. Such an exception handler is 
redundant for the Intel486 and Intel387 DX FPUs. The default exception handler 
should be used~ 

A program can detect at run-time whether it is running on an Inte1387 or Intel486 FPU 
or the older 8087/Inte1287 math coprocessors. The code sequence in Figure 16-4 is rec­
ommended to recognize 8087/Inte1287 math coprocessors. Refer to Figure 3-23 to iden­
tify an Intel387 or Intel486 CPU. The example in Figure 16-4 can be used to selectively 
mask the denormal exception for an Intel387 DX or Intel486 FPU. A denormal excep­
tion handler should also be provided to support 8087/Inte1287 math coprocessors. This 
code example can also be used to set a flag to allow use of new instructions added to the 
Intel387 and Intel486 FPUs beyond the instructions of the 8087/Inte1287 math 
coprocessors. 
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FLDZ 
FDIV 
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FCHS 
FCOMPP 
FSTSW 
MOV 
SAHF 

ST 
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AX, temp 
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Use default infinity mode: 
projective for 8387/Inte1287 math coprocessors, 
affine for Inte1387 DX and Inte1486 FPU 

Generate infinity 

Form negative infinity 

Compare +infinity with -infinity 
8387/Inte1287 math coprocessors will say they are equal 

JZ Using_8387 

Figure 16-4. Coprocessor Detection Code 

16.2.5 Numeric Overflow and Underflow 

If the exponent of a numeric result is too large for the destination real format, the FPU 
signals a numeric-overflow. Conversely, if the exponent of a result is too small to be 
represented in the destination format, a numeric underflow is signaled. If either of these 
exceptions occur, the result of the operation is outside the range of the destination real 
format. 

Typical algorithms are most likely to produce extremely large and small numbers.in the 
calculation of intermediate, rather than final, results. Because of the great range of toe 
extended-precision format, overflow and underflow are relatively rare events in most 
numerical applications for the Intel486 processor. 

16.2.5.1 OVERFLOW 

The overflow exception can occur whenever the rounded true result would exceed in 
magnitude the largest finite number in the destination format. The exception can occur 
in the execution of most of the arithmetic instructions and ,in some of the conversion 
instructions; namely, FST(P), F(I)ADD(P), F(I)SUB(R)(P), F(I)MUL(P), FDIV(R)(P), 
FSCALE, FYL2X, and FYL2XPl. 
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The response to an overflow condition depends on whether the overflow exception is 
masked: 

• Overflow exception masked. The value returned depends on the rounding mode as 
Table 16-12 illustrates. 

• Overflow exception not masked. The unmasked response depends on whether the 
instruction is supposed to store the result on the stack or in memory: 

If the destination is the stack, then true result is divided by 224,576 and rounded. 
(The bias 24,576 is equal to 3 x 213.) The significand is rounded to the appro­
priate precision (according to the precision control (PC) bit of the control word, 
for those instructions controlled by PC, otherwise to extended precision). The 
roundup bit (C1) of the status word is set if the significand was rounded upward. 

The biasing of the exponent by 24,576 normally translates the number as nearly 
as possible to the middle of the exponent range so that, if desired, it can be used 
in subsequent scaled operations with less risk of causing further exceptions. With 
the instruction FSCALE, however, it can happen that the result is too large and 
overflows even after biasing. In this case, .the unmasked response is exactly the 
same as the masked round-to-nearest response, namely ±. infinity. The intention 
of this feature is to ensure the trap handler will discover that a translation of the 
exponent by -24574 would not work correctly without obliging the programmer 
of Decimal-to-Binary or Exponential functions to determine which trap handier, 
if any, should be invoked. 

If the destination is memory (this can occur only with the store instructions), 
then no result is stored in memory. Instead, the operand is left intact in the 
stack. Because the data in the stack is in extended-precision format, the excep­
tion handler has the option either of reexecuting the store instruction after 
proper adjustment of the operand or of rounding the significand on the stack to 
the destination's precision as the standard requires. The exception handler 
should ultimately store a value into the destination location in memory if the 
program is to continue. 

Table 16-12. Masked Overflow Results 

Rounding Sign of 
Result 

Mode True Result 

To nearest + +00 
- -00 

Toward -00 + Largest finite positive number 
- -00 

Toward +00 + +00 
- Largest finite negative number 

Toward zero + Largest finite positive number 
- Largest finite negative number 
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16.2.5.2 UNDERFLOW 

Underflow can occur in the execution of the instructions FST(P), FADD(P), 
FSUB(RP), FMUL(P), F(I)DIV(RP), FSCALE, FPREM(l), FPTAN, FSIN, FCOS, 
FSINCOS, FPATAN, F2XMl, FYL2X, and FYL2XP1. 

Two related events contribute to underflow: 

1. Creation of a tiny result which, because it is so small, may cause some other excep­
tion later (such as overflow upon division). 

2. Creation of an inexact result; i.e. the delivered result differs from what would have 
been computed were both the exponent range and precision unbounded. 

Which of these events triggers the underflow exception depends on whether the under­
flow exception is masked: 

1. Underflow exception masked. The underflow exception is signaled when the result is 
both tiny and inexact. 

2. Underflow exception not masked. The underflow exception is signaled when the 
result is tiny, regardless of inexactness. 

The response to an underflow exception also depends on whether the exception is 
masked: 

1. Masked response. The result is denormal or zero. The precision exception is also 
triggered. 

2. Unmasked response. The unmasked response depends on whether the instruction is 
supposed to store the result on the stack or in memory: 

• If the destination is the stack, then the true result is multiplied by 224,576 and 
rounded. (The bias 24,576 is equal to 3 x 213.) The significand is rounded to the 
appropriate precision (according to the precision control (PC) bit of the control 
word, for those instructions controlled by PC, otherwise to extended precision). 
The roundup bit (C1) of the status word is set if the significand was rounded 
upward. 

The biasing of the exponent by 24,576 normally translates the number as nearly 
as possible to the middle of the exponent range so that, if desired,it can be used 
in subsequent scaled operations with less risk of causing further exceptions. With 
the instruction FSCALE, however, it can happen that the result is too tiny and 
underflows even after biasing. In this case, the unmasked response is exactly the 
same as the masked round-to-nearest response, namely ±O. The intention of this 
feature is to ensure the trap handler will discover that a translation by + 24576 
would not work correctly without obliging the programmer of Decimal-to-Binary 
or Exponential functions to determine which trap handler, if any, should be 
invoked. 

• If the destination is memory (this can occur only with the store instructions), then 
no result is stored in memory. Instead, the operand is left intact in the stack. 
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Because the data in the stack is in extended-precision format, the exception han­
dIer has the option either of reexecuting the store instruction after proper adjust­
ment of the operand or of rounding the significand on the stack to the 
destination's precision as the standard requires. The exception handler should 
ultimately store a value into the destination location in memory if the program is 
to continue. 

16.2~6 Inexact (Precision) 

This exception condition occurs if the result of an operation is not exactly representable 
in the destination format. For example, the fraction 1/3 cannot be precisely represented 
in binary form. This exception occurs frequently and indicates that some (generaIIy 
acceptable) accuracy has been lost. 

By their nature, the. transcendental instructions typicaIIy cause the inexact exception. 

The C1 (roundup) bit of the status word indicates whether the inexact result was 
rounded up (C1 = 1) or chopped (C1 = 0). 

The inexact exception accompanies the underflow exception when there is also a loss of 
accuracy. When underflow is masked, the underflow exception is signaled only whcn 
there is a loss of accuracy; therefore the precision flag is always set as well. Whcn 
underflow is unmasked, there mayor may not have been a loss of accuracy; the precision 
bit indicates which is the case. 

This exception is provided for applications that need to perform exact arithmetic only. 
Most applications will mask this exception. The FPU delivers the rounded or over/ 
underflowed result to the destination, regardless of whether a trap occurs. 

16.2.7 1E}{ception Priority 

The Intel486 processor deals with exceptions according to a predetermined precedence. 
Precedence in exception handling means that higher-priority exceptions are flagged and 
results are delivered according to the requirements of that exception. Lower-priority 
exceptions may not be flagged even if they occur. For example, dividing an SNaN by zero 
causes an invalid-operand exception (due to the SNaN) and not a zero-divide exception; 
the masked result is the QNaN real indefinite, not co. A denormal or inexact (precision) 
exception, however, can accompany a numeric underflow or overflow exception. 

The precedence among numeric exceptions is as follows: 

1. Invalid operation exception, subdivided as foIIows: 

a. Stack underflow. 

b. Stack overflow. 

c. Operand of unsupported format. 

d. SNaN operand. 
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2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing 
with it has precedence over lower"priority exceptions. For example, a QNaN divided 
by zero results ina QNaN, not a zero-divide exception. 

3. Any other invalid-operation exception not mentioned above or zero divide. 

4. Denormal operand. If masked, then instruction execution continues, and a lower­
priority exception can occur as well. 

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well. 

6. Inexact result (precision). 

16.2.8 Standard Underflow/Overflow Exception Handler 

As long as the underflow and overflow exceptions are masked, no additional software is 
required to cause the output of the Intel486 processor to conform to the requirements of 
IEEE Std 854. When unmasked, these exceptions give the exception handler an addi­
tional option in the case of store instructions. No result is stored in memory; instead, the 
operand is left intact on the stack. The handler may round the significand of the operand 
on the stack to the destination's precision as the standard requires, or it may adjust the 
operand and reexecute the faulting instruction. 
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CHAPTER 17 
FLOATING-POINT INSTRUCTION SET 

The floating-point instructions available on the Intel486 processor can be grouped into 
six functional classes: 

• Data Transfer Instructions 

• Nontranscendental Instructions 

• Comparison Instructions 

• Transcendental Instructions 

o Constant Instructions 

o Control Instructions 

In this chapter, the instruction classes are described as a collection of resources available 
to ASM386/Inte1486 programmers. For details of format, encoding, and execution times, 
see the instruction reference pages in Chapter 26. 

The Intel387 math coprocessors and Intel486 FPU have more instructions than the HOH7/ 
Intel287 math coprocessors. Some Intel386 DX microprocessor systems use an Intcl2H7 
math coprocessor. See Figures 3-23 and 16-4 for examples of how to detect whether an 
8087/Intel287 math coprocessor is present to use the new instructions when available. 

17.1 SOURCE AND DESTINATION OPERANDS 

The typical floating-point instruction takes one or two operands, which can come from 
the FPU register stack or from memory. Many instructions, such as FSIN, automatically 
operate on the top FPU stack element. Others allow, or require, the programmer to 
code the operand(s) explicitly along with the instruction mnemonic. Still others accept 
one explicit operand and one implicit operand (usually the top FPU stack element). 

Whether specified by the programmer or supplied by default, floating-point operands 
are of two basic types, sources and destinations. A source operand provides an input to an 
instruction, but is not altered by its execution. Even when an instruction converts the 
source operand from one format to another (e.g., real to integer), the conversion is 
performed in an internal 'work area to avoid altering the source operand. A destination 
operand may also provide an input to an instruction; on execution, however, the instruc­
tion returns a result to the destination, overwriting its previous contents. 

Many instructions allow their operands to be coded in more than one way. For example, 
FADD (add real) may be written without operands, with only a source, or with a desti­
nation and a source. When both destination and source operands are specified, the 
destination must precede the source on the command line, and both must come from the 
FPU stack. 
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Memory operands can be coded with any of the memory-addressing methods provided 
by the ModR/M byte. To review these methods (BASE = (INDEX X SCALE) + 
DISPLACEMENT), refer to Chapter 2. Floating-point instructions with memory oper­
ands either read from memory or write to it; no floating-point instruction does both.For 
a detailed description of each instruction, including its range of possible encodings, see 
the reference pages in Chapter 26. 

17.2 DATA TRANSFER INSTRUCTIONS 

These instructions (summarized in Table 17-1) move operands among elements of the 
register stack, and between the stack top and memory. Any of the seven data types can 
be converted to extended-real and loaded (pushed) onto the stackin a single operation; 
they can be stored to memory in the same manner. The data transfer instructions auto­
matically update the FPU tag word to reflect. whether the register is empty or full fol­
lowing the instruction. 

17.3 NONTRANSCENDENTAl INSTRUCTIONS 

The nontranscendental instruction set provides a wealth of variations on the basic add, 
subtract, multiply, and divide operations, and a number of other useful functions. These 
range from a simple absolute value instruction to instructions which perform exact mod­
ulo division, round real numbers to integers, and scale values by powers of two. 
Table 17 -2 shows the nontranscendental operations provided, apart from basic 
arithmetic. 

The basic arithmetic instructions (addition, subtraction, multiplication and division) are 
designed to encourage the development of very efficient algorithms. In particular, they 
allow the programmer to reference memory as easily as the FPU register stack. 
Table 17-3 summarizes the available operation/operand forms that are provided for basic 
arithmetic. In addition to the four normal operations, there are "reversed" subtraction 

Table 17-1 .. Data Transfer Instructions 
.. 

Real Integer Packed Decimal 

FLD Load Real FILD Load Integer FBLD Load Packed Decimal 

FST Store Real FIST Store Integer 

FSTP Store Real and Pop FISTP Store Integer and FBSTP Load Packed Decimal 
Pop and Pop 

FXCH Exchange registers 
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Table 17-2. Nontranscendentallnstructions (Besides Basic Arithmetic) 

. Mnemonic Operation 

FSQRT Square Root 
FSCALE Scale 
FXTRACT· Extract Exponent and Significand 
FPREM Partial Remainder 
FPREM1* IEEE Standard Partial Remainder 
FRNDINT Round to Integer 
FABS Absolute Value 
FCHS Change Sign 

*Not available on 8087/lnteI287'M math coprocessor. 

Table 17-3. Basic Arithmetic Instructions and Operands 

Instruction Form 
Mnemonic Operand Forms: 

Form Destination, Source 

Classical Stack Fop {ST(1), ST} 
Classical Stack, extra pop FopP {ST(1), ST} 
Register Fop ST(i), ST or ST, ST(i) 
Register, pop FopP ST(i), ST 
Real Memory Fop {ST} single-real/double-real 
Integer Memory Flop {ST} word-integer/short-integer 

NOTES: 

Braces ({}) surround implicit operands; these are not coded, but are supplied by the assembler. 

op= ADD· DEST <- DEST + SRC 
SUB DEST <- ST - Other Operand 
SUBR DEST <- Other Operand - ST 
MUL DEST <- DEST x SRC 
DIV DEST <- DEST + SRC 
DIVR DEST <- SRC + DEST 

and division instructions which eliminate the need for many' exchanges between ST(O) 
and ST(l). The variety of instruction and operand forms give' the programmer unusual 
flexibility: 

• Operands can. be located in registers or memory. 

• Results can be deposited in a choice of registers. 

• Operands can be a variety of numerical data types: extended real, double real, single 
real, short integer or word integer, with automatic conversion to extended real per­
formed by the FPU. 

Five basic instruction forms can be used across all six operations, as shown in Table 17-3. 
The classical stack form can be used to 'make the FPU operate like a classical stack 
machine. No operands are coded ih this form, only the instruction mnemonic. The FPU 
picks the source operand from the stack top (ST) and the destination from the next stack 
element (ST(l». After performing its calculation, it returns the result to ST(l)and then 
pops ST, effectively replacing the operands by the. result ... 
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The register form is a generalization of the classical stack form; the programmer speci­
fies the stack top as one operand and any register on the stack· as the other operand. 
Coding the stack top as the destination provides a convenient way to. access a constant, 
held elsewhere in the stack, from the top stack. The destination need not always be ST, 
however. The basic two-operand instructions allow the use of another register as the 
destination. Using ST as the source allows, for example, adding the stack top into a 
register used as an accumulator. 

Often the operand in the stack top is needed for one operation but then is of no further 
use in the computation. The register pop form can be used to pick up the stack top as 
the source operand, and then discard it by popping the stack. Coding operands of ST(1), 
ST with a register pop mnemonic is equivalent toa classical stack operation: the top is 
popped and the result is left at the new top. 

The two memory forms increase the flexibility of the non transcendental ihstructions. 
They permit .~ real number or a binary integer in memory to be used directly as a source 
operand. This is useful in situations where operands are not used frequently enough to 
justify holding them in registers. Note that any memory-addressing method can be used 
to define these operands, so they c,an be elements in arrays, structures, or other data 
organizations, as well as simple scalars. 

17.4 COMPARISON INSTRUCTIONS 

The instruCtions 'of this class allow numbers of all supported real and integer data types 
to be compared. Each of these instructions (Table 17-4) analyzes the top stack element, 
often in relationship to another operand, and reports the result as a condition code 
(flags CO, C2, and C3) in the status word. 

The basic operations are compare, test (compare with· zero), and examine (report type, 
sign, and normalization). Special forms of the compare operation are provided to opti­
mize algorithms by allowing direct comparisons with binary integers and real numbers in 
memory, as well as popping the stack after a comparison. 

Table 17-4. Comparison Instructions 

Mnemonic Operation 

FCOM Compare Real 
FCOMP Compare Real and Pop 
FCOMPP Com'pare Real and Pop Twice 
FICOM Compare Integer 
FICOMP Compare Integer and Pop 
FTST Test 
FUCOM* Unqrdered Compare Real 
FUCOMP* Unordered Compare Realand Pop 
FUCOMPP" Unordered CompareRei:iI and PopTwice 
FXAM Examine 

*Not available on 8087/lnteI287'" math coprocessor. 
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The FSTSW AX (store status word) instruction can be used after a comparison to trans­
fer the condition code to the AX register for inspection. The TEST instruction is recom­
mended for using the FPU flags (once they are in the AX register) to control conditional 
branching. First check to see if the comparison resulted in unordered. This can happen, 
for instance, if one of the operands is a NaN. TEST the contents of the AX register 
against the constant 0400H; this will clear ZF (the Zero Flag of the EFLAGS register) if 
the original comparison was unordered, and set ZF otherwise. The JNZ instruction can 
now be used to transfer control (if necessary) to code which handles the case of unor­
dered operands. With the unordered case now filtered out, TEST the contents of the 
AX register against the appropriate constant from Table 17-5, and then use the corre­
sponding conditional branch. 

It is not always necessary to filter out the unordered case when using this algorithm for 
conditional jumps. If the software has been thoroughly tested, and incorporates periodic 
checks for QNaN results (as recommended in Chapter 16), then it is not necessary to 
check for unordered every time a comparison is made. 

Instructions other than those in the comparison group can update the condition code. To 
ensure that the status word is not altered inadvertently, store it immediately following a 
comparison operation. 

17.5 TRANSCENDENTAL INSTRUCTIONS 

The instructions in this group (Table 17-6) perform the time-consuming core calcula­
tions for all common trigonometric, inverse trigonometric, hyperbolic, inverse hyper­
bolic, logarithmic, and exponential functions. The transcendentals operate on the top 
one or two stack elements, and they return their results to the stack. The trigonometric 
operations assume their arguments are expressed in radians. The logarithmic and expo­
nential operations work in base 2. 

The results of transcendental instructions are highly accurate. The absolute value of the 
relative error of the transcendental instructions is guaranteed to be less than 2-62. (Rel­
ative error is the ratio between the absolute error and the exact value.) 

The trigonometric functions accept a practically unrestricted range of operands, whereas 
the other transcendental instructions require that arguments be more restricted in range. 
FPREM or FPREM1 can be used to bring the otherwise valid operand of a periodic 
function into range. Prologue and epilogue software can be used to reduce arguments 

Table 17-5. TEST Constants for Conditional Branching 

Order Constant Branch 

ST> Operand 4500H JZ 
ST < Operand 0100H JNZ 
ST = Operand 4000H JNZ 
Unordered 0400H JNZ 
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Table 17-6. Transcendental Instructions 

Mnemonic Operation 

FSIN* Sine 
FCOS* Cosine 
FSINCOS* Sine and. Cosine 
FPTAN** Tangent 
FPATAN Arctangent of ST(1) 7 ST 
F2XM1** 2X - 1; X is in ST 
FYL2X Y x IOg2X; Y is in ST(1), X is in ST 
FYL2XP1 Y x IOg2(X + 1); Y is in ST(1), X is in ST 

*Not available on 8087/lnteI287'M math coprocessor. 
**Operand range extended over 8087/lnte1287 math coprocessor. 

for other instructions to the expected range and to adjust the result to correspond to the 
original arguments if necessary. The instruction descriptions in the reference pages of 
Chapter 26 document the allowed operand range for each instruction. 

When the argument of a trigonometric function is in range, it is automatically reduced 
by the appropriate multiple of 21T (in 66-bit precision), by means of the same mechanism 
used in the FPREM and FPREM1 instructions. The value of 1T used in the automatic 
reduction has been chosen so as to guarantee no loss of significance in the operand, 
provided it is within the specified range. The internal value of 1T is: 

4 * O.C90FDAA2 2168C234 C H . 

A program may use an explicit value for 1T in computations whose results later appear as 
arguments to trigonometric functions. In such a case (in explicit reduction of a trigono­
metric operand outside the specified range, for example), the value used for 1T should be 
the same as the full 66-bit internal1T. This will insure that the results are consistent with 
the automatic argument reduction performed by the trigonometric functions. The 66-bit 
1T cannot be represented as an extended-real value, so it must be encoded as two or more 
numbers. A common solution is to represent 1T as the sum of a high1T which contains the 
33 most-significant bits and a 10w1T which contains the 33 least-significant bits. When 
using this two-part 1T, all computations should be performed separately on each part, 
with the results added only at the end. 

The complications of maintaining a consistent value of 1T for argument reduction can be 
avoided, either by applying the trigonometric functions only to arguments within the 
range of the automatic reduction mechanism, or by performing all argument reductions 
(down to a magnitude less than 1T/4) explicitly in software. 

17.6 CONSTANT INSTRUCTIONS 

Each of these instructions (Table 17-7) pushes a commonly used constant onto the stack. 
(ST(7) must be empty to avoid an invalid exception.) The values have full extended real 
precision (64 bits) and are accurate to approximately 19 decimal digits. Because an 
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Table 17-7. Constant Instructions 

Mnemonic Operation 

FLDZ Load +0.0 
FLD1 Load +1.0 
FLDPI Load 'IT 

FLDL2T Load log2 10 
FLDL2E Load log2e 
FLDLG2 Load log'02 
FLDLN2 Load log.2 

external real constant occupies 10 memory bytes, the constant instructions, which are 
only two bytes long, save storage and improve execution speed, in addition to simplifying 
programming. 

The constants used by these instructions are stored internally in a format more precise 
than extended real. When loading the constant, the FPU rounds the more precise inter­
nal constant according the RC (rounding control) bit of the control word. However, in 
spite of this rounding, the precision exception is not raised (to maintain compatibility). 
When the rounding control is set to round to nearest, the FPU produces the same 
constant that is produced by the 8087 and Intel287 numeric coprocessors. 

17.7 CONTROL INSTRUCTIONS 

The FPU control instructions are shown in Table 17-8. The FSTSW instruction is com­
monly used for conditional branching. The remaining instructions are not typically used 
in calculations; they provide control over the FPU for system-level activities. These activ­
ities include initialization of the FPU, numeric exception handling, and task switching. 

Table 17·8. Control Instructions 

Mnemonic Operation 

FINIT / FNINIT Initialize FPU 
FLDCW Load Control Word 
FSTCW / FNSTCW Store Control Word 
FSTSW / FNSTSW Store Status Word 
FSTSW AX / FNSTSW AX* Store Status Word to AX Register 
FCLEX / FNCLEX Clear Exceptions 
FSTENV / FNSTENV Store Environment 
FLDENV Load Environment 
FSAVE / FNSAVE Save State 
FRSTOR Restore State 
FINCSTP Increment Stack-Top Pointer 
FDECSTP Decrement Stack-Top Pointer 
FFREE Free Register 
FNOP No Operation 
FWAIT Report FPU Error 

*Not available on 8087 math coprocessor. 
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As shown in Table 17-8, certain instructions have alternative mnemonics. The instruc­
tions which initialize the FPU, clear exceptions, or store (all or part of) the FPU envi­
ronment come in two forms: 

• Wait-the mnemonic is prefixed only with an F, such as FSTSW. This form checks for 
unmasked numeric exceptions. 

41 No-wait-the mnemonic is prefixed with an FN, such as FNSTSW. This form ignores 
unmasked numeric exceptions. 

When the control instruction is coded using the no-wait form of the mnemonic, the 
ASM386/486 assembler does not precede the ESC instruction with a WAIT instruction, 
and the processor does not test for a floating-point error condition before executing the 
control instruction. 

The only no-wait instructions are those shown in Table 17-8. All other floatiI1g-point 
instructions are automatically synchronized by the processor; all operands are trans­
ferred before the next instruction is initiated. Because of this automatic synchronization, 
non-control floating-point instructions need not be preceded by a WAIT instruction in 
order to execute correctly. . 

Exception synchronization relies on the WAIT instruction. Since the Integer Unit and 
the FPU operate in parallel, it is possible in the case of a floating-point exception for the 
processor to disturb information vital to exception recovery before the exception-handler 
can be invoked. Coding a WAIT or FW AIT instruction in the proper place can prevent 
this. See Chapter 18 for details. 

It should also be noted that the 8087 instructions FENI and FDISI and the Intel287 
instruction FSETPM perform no function in the Intel486 processor. If these opcodes are 
detected in the instruction stream, the Intel486 processor performs no specific operation 
and no internal states are affected. Chapter 25 contain a more complete description of 
the differences between floating-point operations on the Intel486 processor and on 8087, 
Inte1287, and Intel387 DX numeric coprocessors. 
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CHAPTER 18 
NUMERIC APPLICATIONS 

18.1 PROGRAMMING FACILITIES 

This section describes how programmers in ASM386/486 and in a variety of higher-level 
languages can make use of the Inte1486 processor's numerics capabilities . 

. The level of detail in this section is intended to give programmers a basic understanding 
of the software tools that can be used for numeric programming, but this information 
does not document the full capabilities of these facilities. Complete documentation is 
available with each program development product. 

18.1.1 High-Level Languages 

A variety of Intel high-level languages are available that automatically make lise of the 
numeric instruction set when appropriate. These lilnguagesinclude C-386/486 and 
PL/M-386/486. In addition many high-level language compilers are available from inde-
pendent software vendors. . 

Each of these high-level languages has special numeric libraries allowing programs to 
take advantage of the capabilities of the FPU. No special programming conventions are 
necessary to make use of the' FPU when programming numeric applications in any of 
these languages. ,. 

Programmers in PL/M-386/486 and ASM386/486 can also make use of many of these 
library routines by using routines contained in the Support Library. These libraries 
implement many of the functions provided by higher-level languages, including exception 
handlers, ASCII-to-floating-point conversions,and a more complete set of transcenden­
tal functions than that provided by the Intel486 numeric instruction set. 

18.1.2 C Programs 

C programmers automatically cause the C compiler to generate Intel486 numeric 
instructions when they use the double and float data types. The float type corresponds to 
the single reaUormat; the double type corresponds to the double real format. The state­
ment #include (math.h) causes mathematical functions such as sin and sqrt to return 
values of type double. Figure 18-1 illustrates the ease with which C programs can make 
use of the Intel486 processor's numerics capabilities. 
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1****************************************************** 

* 
* 
* 

SAMPLE C PROGRAM 
* 
* 
* 

******************************************************/ 

/** Include /usr/include/stdio.h if necessary **/ 
/** Include math declarations for transcendenatals and others **/ 

#include </usr/include/math.h> 
#define P13.1415926535897943 

mainO 
( 

double 
double 
int 

sin_result, cos_result; 
angle_deg = 0.0, angle_rad; 
i, no_of_trial = 4; 

fore i = 1; i <= no_of_trial; i++){ 
angle_rad = angle_deg * PI / 180.0; 
sin_result = sin (angle_rad); 
cos result = cos (angle rad); 
pri~tf(IIsine of %f degr;es equals %f\n", angle_deg, sinJesult); 
printf("cosine of %f degrees equals %f\n\n", angle_deg, cosJesult);. 
angle_deg = angle_deg + 30.0; 
} 

/** etc. **/ 
} 

Figure 18-1. Sample C-386/486 Program 

18.1.3 PL/M-386/486 

240486i 18-1 

Programmers in PL/M-386/486 can access a very useful subset of the Intel486 processor's 
numeric capabilities. The PL/M-386/486 REAL data type corresponds to the single real 
(32-bit) format. This data type provides a range of about 8.43 X 10-37 ::;; I X I ::;; 3.38 X 

1038, with about seven significant decimal digits. This representation is adequate for the 
data manipulated by many microcomputer applications. 

The utility of the REAL data type is extended by the PL/M-386/486 compiler's practice 
of holding intermediate results in the extended real format. This means that the full 
range and precision of the processor are utilized for intermediate results. Underflow, 
overflow, and rounding exceptions are most likely to occur during intermediate compu­
tations rather than during calculation of an expression's final result. Holding intermedi­
ate results in extended-precision real format greatly reduces the likelihood of overflow 
and underflow and eliminates roundoff as a serious source of error until the final assign­
ment of the result is performed. 
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The compiler generates floating-point instructions to evaluate expressions that contain 
REAL data types, whether variables or constants or both. This means that addition, 
subtraction, multiplication, division, comparison, and assignment of REALs will be per­
formed by the FPU. INTEGER expressions, on the other hand, are evaluated by the 
Integer Unit. 

Five built-in procedures (Table 18-1) give the PL/M-386/486 programmer access to FPU 
control instructions. Prior to any arithmetic operations, a typical PL/M-386/486 program 
will set up the FPU using the INIT$REAL$MATH$UNIT procedure and then issue 
SET$REAL$MODE to configure the FPo. SET$REAL$MODE loads the FPU control 
word, and its 16-bit parameter has the format shown for the control word in Chapter 14. 
The recommended value of this parameter is 033EH (round to nearest, 64-bit precision, 
all exceptions masked except invalid operation). Other settings may be used at the pro­
grammer's discretion. 

If any exceptions are unmasked, an exception handler must be- provided in the form of 
an interrupt procedure that is designated to be invoked via interrupt vector number 16. 
The exception handler can use the GET$REAL$ERROR procedure to obtain the low­
order byte of the FPU status word and to then clear the exception flags. Thc bytc 
returned by GET$REAL$ERROR contains the exception flags; these can be examilled 
to determine the source of the exception. 

The SA VE$REAL$STATUS and RESTORE$REAL$STATUS procedures are pro­
vided for multitasking environments where a running task that uses the FPU may be 
preempted by another task that also uses the FPU. It is the responsibility of the operat­
ing system to issue SA VE$REAL$ST ATUS before it executes any statements that affect 
the FPU; these include the INIT$REAL$MATH$UNIT and SET$REAL$MODE pro­
cedures as well as arithmetic expressions. SA VE$REAL$ST ATUS saves the FPU state 
(registers, status, and control words, etc.) on the memory stack. RESTORE$REAL­
$STATUS reloads the state information; the preempting task must invoke this proce­
dure before terminating in order to restore the FPU to its state at the time the running 
task was preempted. This enables the preempted task to resume execution from the 
point of its preemption. 

Table 18-1. PL/M-386/486 Built-In Procedures 

Procedure 
FPU Control 

Description 
Instruction 

INIT$REAL$MATH$UNIT FINIT Initialize FPU 

SET$REAL$MODE FLDCW Set exception masks, rounding precision, and 
infinity controls. 

GET$REAL$ERROR FNSTSW Store, then clear, exception flags. 
& FNCLEX 

SAVE$REAL$STATUS FNSAVE Save FPU state. 

RESTORE$REAL$STATUS FRSTOR Restore FPU state. 
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18.1.4 ASM386/486 

The ASM386/486 assembly language provides programmers with complete access to all 
of the facilities of the processor. 

18.1.4.1 DEFINING DATA 

The ASM386/486 directives shown in Table 18-2 allocate storage for numeric variables 
and constants. As with other storage allocation directives, the assembler associates a 
type with any variable defined with these directives. The type value is equal to the length 
of the storage unit in bytes (10 for DT, 8 for DQ, etc.). The assembler checks the type of 
any variable coded in an instruction to be certain that it is compatible with the instruc­
tion. For example, the coding FIADD ALPHA will be flagged as an error if ALPHA's 
type is not 2 or 4, because integer addition is only available for word and short integer 
(doubleword) data types. The operand's type also tells the assembler which machine 
instruction to produce; although to the programmer there is only an FIADD instruction, 
a different machine instruction is required for each operand type. 

On occasion it is desirable to use an instruction with an operand that has no declared 
type. For example, if register BX points to a short integer variable, a programmer may 
want to code FIADD [BX]. This can be done by informing the assembler of the oper­
and's type in the instruction, coding FIADD DWORD PTR [BX]. The corresponding 
overrides for the other storage allocations are WORD PTR, QWORD PTR, and 
TBYTE PTR. 

The assembler does not, however, check the types of operands used in processor control 
instructions. Coding FRSTOR [BP] implies that the programmer has set up register BP 
to point to the location (probably in the stack) where the processor's 94-byte state record 
has been previously saved. 

The initial values for numeric constants may be coded in several different ways. Binary 
integer constants may be specified as bit strings, decimal integers, octal integers, or 
hexadecimal strings. Packed decimal values are normally written as decimal integers, 
although the assembler will accept and convert other representations of integers. Real 
values may be written as ordinary decimal real numbers (decimal point required), as 
decimal numbers in scientific notation, or as hexadecimal strings. Using hexadecimal 
strings is primarily intended for defining special values such as infinities, NaNs, and 
denormalized numbers. Most programmers will find that ordinary decimal and scientific 
decimal provide the simplest way to initialize numeric constants. Figure 18-2 compares 
several ways of setting the various numeric data types to the same initial value. 

Table 18-2. ASM386/486 Storage Allocation Directives 

Directives Interpretation Data Types 

DW Define Word Word integer 
DD Define Doubleword Short integer, short real 
DQ Define Quadword Long integer, long real 
DT Define Tenbyte Packed decimal, temporary real 
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THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126 
NOTE TWO'S COMPLETE STORAGE OF NEGATIVE BINARY INTEGERS. 

; EVE N FORCE WORD ALIGNMENT 
WORD_INTEGER DW 1 1 1 1 1 1 1 1 1 0 0 0 0 1 OB BIT STRING 
SHORT_I NTEGER DD OFFFFFFB2H HEX STRING MUST START 

WITH DIGIT 
LONG_INTEGER DQ - 1 26 ORDINARY DECIMAL 
SINGLE_REAL DD - 1 26 • 0 NOTE PRESENCE OF , , 
DOUBLE_REAL DD -1.26E2 "SCIENTIFIC" 
PACKED_DECIMAL DT - 1 26 ORDINARY DECIMAL INTEGER 

IN THE FOLLOWING, SIGN AND EXPONENT IS 'COOS' 
SIGNIFICAND IS '7EOO ... OO', 'R' INFORMS ASSEMBLER THAT 
THE STRING REPRESENTS A REAL DATA TYPE. 

DT OCOOS7EOOOOOOOOOOOOOOR ; HEX STRING 

240486i18·2 

Figure 18-2. Sample Numeric Constants 

Note that preceding numeric variables and constants with the ASM386/486 EVEN direc­
tive ensures that the operands will be word-aligned in memory. The best performance is 
obtained when data transfers are double-word aligned. All numeric data types occupy 
integral numbers of words so that no storage is "wasted" if blocks of variables are 
defined together and preceded by a single EVEN declarative. 

18.1.4.2 RECORDS AND STRUCTURES 

The ASM386/486 RECORD and STRUC (structure) declaratives can be very useful in 
numeric programming. The record facility can be used to define the bit fields of the 
control, status, and tag words. Figure 18-3 shows one definition of the status word and 
how it might be used in a routine that polls the FPU until it has completed an 
instruction. 

Because structures allow different but related data types to be grouped together, they 
often provide a natural way to represent "real world" data organizations. The fact that 
the structure template may be "moved" about in memory adds to its flexibility. 
Figure 18-4 shows a simple structure that might be used to represent data consisting of a 
series of test score samples. This sample structure can be reorganized, if necessary, for 
the sake of more efficient execution. If the two double real fields were listed before the 
integer fields, then (provided that the structure is instantiated only at addresses divisible 
by eight) all the fields would be optimally aligned for efficient memory access and cach­
ing. A structure could also be used to define the organization of the information stored 
and loaded by the FSTENV and FLDENV instructions. 
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; RESERVE SPACE FOR STATUS WORD 
STATUS_WORD 
; LAY OUT STATUS WORD FIELDS 
STATUS RECORD 

BUSY: 
CONLCODE3 : 
STACCTOP: 
COND_CODE2: 
CONLCODE1: 
COND_CODEO: 
INT_REQ: 
LF L AG: . 
P_FLAG: 
LF L AG: 
LF LAG: 
LF L AG: 
D_FL A G: 
I_FLAG: 

; REDUCE UNTIL 
REDUCE: FPREMl 

FNSTSW 
TE S T 
JNZ 

1, 
1, 
3 , 
1, 
1, 
1, 
1, 
1, 
1, 
1, 
1, 
1, 
1, 
1 

COMPLETE 

STATUS_WORD 
STATUS_WORD, MASK_COND_CODE2 
REDUCE 

Figure 18-3. Status Word Record Definition 

SAMPLE STRUC 
N_OBS DD SHORT INTEGER 
MEAN DQ DOUBLE REAL 
MODE DW WORD INTEGER 
STD_DEV DQ DOUBLE REAL 
i ARRAY OF OBSERVATIONS -- WORD INTEGER 
TEST_SCORES DW 1000 DUP (?) 

SAMPLE ENDS 

Figure 18-4. Structure Definition 

18.1.4.3. Addressing Methods 

240486i18-3 

240486i18-4 

Numeric data in memory can be accessed with any of the memory addressing methods 
provided by the ModR/M byte and (optionally) the SIB byte. This means that numeric 
data types can be incorporated in data aggregates ranging from simple to complex 
according to the needs of the application; The addressing methods and the ASM386/486 
notation used to specify them in instructions make the accessing of structures, arrays, 
arrays of structures, and other organizations direct and straightforward. Table 18-3 gives 
several examples of numeric instructions coded with operands that illustrate different 
addressing methods. 
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Table 18·3. Addressing Method Examples 

Coding Interpretation 

FIAOO ALPHA ALPHA is a simple scalar (mode is direct). 

FOIVR ALPHA. BETA BETA is a field in a structure that is "overlaid" on ALPHA 
(mode is direct). 

FMUL aWORO PTR [BX] BX contains the address of a long real variable (mode is 
register indirect). 

FSUB ALPHA [SI] ALPHA is an array and SI contains the offset of an array 
element from the start of the array (mode is indexed). 

FILO [BP].BETA BP contains the address of a structure on the CPU stack 
and BETA is a field in the structure (mode is based). 

FBLO TBYTE PTR [BX] [01] BX contains the address of a packed decimal array and 01 
contains the offset of an array element (mode is based 
indexed). 

18.1.5 Comparative Programming Example 

Figures 18-5 and 18-6 show the PL/M-386/486 and ASM386/486 code for a simple 
numeric program, called ARRSUM. The program references an array (X$ARRA Y), 
which contains 0-100 single real values; the integer variable N$OF$X indicates the num­
ber of array elements the program is to consider. ARRSUM steps through X$ARRA Y 
accumulating three sums: 

o SUM$X, the sum of the array values 

o SUM$INDEXES, the sum of each array value times its index, where the index of the 
first element is 1, the second is 2, etc. 

o SUM$SQUARES, the sum of each array element squared 

(A true program, of course, would go beyond these steps to store and use the results of 
these calculations.) The control word is set with the recommended values: round to 
nearest, 64-bit precision, interrupts enabled, and all exceptions masked except invalid 
operation. It is assumed that an exception handler has been written to field the invalid 
operation if it occurs, and that it is invoked by interrupt pointer 16. 

The PL/M-386/486 version of ARRSUM (Figure 18-5) is very straightforward and illus­
trates how easily the numerics capabilities of the Intel486 processor can be used in this 
language. After declaring variables, the program calls built-in procedures to initialize the 
FPU and to load to the control word. The program clears the sum variables and then 
steps through X$ARRA Y with a DO-loop. The loop control takes into account 
PL/M-386/486's practice of considering the index of the first element of an array to be O. 
In the computation of SUM$INDEXES, the built-in procedure FLOAT converts 1+1 
from integer to real because the language does not support "mixed mode" arithmetic. 
One of the strengths of the Intel486 FPU, of course, is that it does support arithmetic on 
mixed data types (because all values are converted internally to the 80-bit extended-
precision real format). . 
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/*********************************************************** 

* * 
* 
* 

ARRAY SUM MODDULE * 
* 

*****************************************************.****** / 

array$sum: do; 

declare (sum$x, sum$indexes, sum$squares) real; 
declare x$array(100) real; 
declare (l1$of$x,'i) integer; 
dec l are control $ FPU.l i tera II y I 033eh I ; 

/* Assume x$array and n$of$x are initialized */ 
call init$real$math$unit; 
call set$real$mode(control $ FPU); 

/* Clear sums */ 
sum$x, sum$;ndexes, sum$squares = 0.0; 

./* Loop through array, accumulating sums */ 
do i = 0 to n$of$x· . 1; 

end; 

sum$x = sum$x + x$array(i); 
sum$indexes = sum$indexes + (x$array(i)*float(i+1»; 
sum$squares = sum$squares + (x$array(i)*x$array(i»; 

/*etc. */ 

end array$sum; 

. Figure 18-5. Sample PL/M-386/486 Program 

240486i18-5 

The ASM386/486 version (Figure 18-6) defines the external procedure INITFPU, which 
makes the different initialization requirements of the processor and its emulator trans­
parent to the source code. After defining the data and setting up the segment registers 
and stack pointer, the program calls INITFPU and loads the control word. The compu­
tation begins with the next three instructions, which clear three registers by . loading 
(pushing) zeros onto the stack. As shown in Figure 18-7,these registers remain at the 
bottom of the stack throughout the. computation while temporary values are pushed on 
and popped off the stack above them. 

The program uses the LOOP instruction to control its iteration through XARRAY; 
register ECX, which LOOP automatically decrements, is loaded with N_OF.JC, the num­
ber of array elements to be summed. Register ESI is used to select (index) the array 
elements. The program steps through XARRA Y from back to front, so ESI is initialized 
to point at the element just beyond the first element to be processed. The ASM386/486 
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name arraysum 

; Define initialization routine 

extrn initFPU:far 

; Allocate space for data 

data segment rw public 
control FPU dw 033eh 

dd ? 
dd 100 dup (?) 

sum_squares 
sum_indexes 

ends 

dd ? 
dd ? 
dd ? 

; Allocate CPU stack space 

stack stackseg 400 

; Begin code 

code segment er public 

assume ds:data, ss:stack 

start: 
rnov ax, data 
rnov ds, ax 
rnov ax, stack 
rnov eax, Dh 
rnov SS, ax 
rnov esp, stacks tart stack 

Assume x_array and n_of_x have 
been initialized 

Prepare the FPU or its emulator 

call initFPU 
fldcw control_FPU 

Clear three registers to hold 
running sums 

fldz 
fldz 
fldz 

Figure 18·6. Sample ASM386/486 Program 
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Setup ECX as loop counter and ESI 
as index into x_array 

mav ecx, n~of_x 

inul ecx 
mav esi, eax 

ESI now contains index of last 
element .j. 1 
Loop through x_array and 
accunulate SI.ll1 

sl.ll1_next: 
backup one element and push on 
the stack 

sub esi, type x_array 
fld x_array[esi] 

add to the sUm and duplicate x 
on the stack ' 

fadd st(3), st 
fld st 

square it and add into the sum of 
(index+1) and discard 

fnul 
faddp 

st, st 
st(2), st 

'; reduce index for next iteration 

dec n_of_x 
loop sl.ll1_next 

Pop SI.ll1S into memory 

poPJesults: 
fstp sl.ll1_squares 
fstp' sum_indexes 
fstp sI.ll1_x . 

. fwait 

Etc. 

code ends 
end start, ds:data, ss:stack 

Figure 18·6. 'Sample ASM386/486 Program (Contd.) 
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FLDZ FLDZ FLDZ FLD X ARRA YISI] , -
ST(O) 

ST(l) 

ST(2) 

0.0 

0.0 

0.0 

SU 

SU 

SU 

M_saUARES 

M_INDEXES 

M_X 

ST(O) 

ST(l) 

ST(2) 

ST(3) --FADD ST(3) ST _ - . - , 
2.5 ST(O) lLARRAY (19) ST(O) 

ST(l) UM_SaUARES 0.0 S ST(l) 

ST(2) U~INDEXES 0.0 S ST(2) 

ST(3) UM.-X 2.5 S ST(3) 

ST(4) 

2.5 

0.0 

0.0 

FLD ST -

2.5 

2.5 

0.0 

0.0 

2.5 

FMULST ST , --_ - FADDP ST(2), ST -

ST(O) 

ST(1) 

ST(2) 

ST(3) 

ST(4) 

ST(O) 

ST(l) 

ST(2) 

ST(3) 

6.25 

2.5 

0.0 

0.0 

2.5 

FIMUL tLol.-X 

50.0 

6.25 

0.0 

2.5 

X 

SU 

SU 

..-ARRAY(19); 

lLARRAY (19) 

M_SaUARES 

~INDEXES 

SU 

lLA RRAY (19)"20 

_SaUARES 

~INDEXES 

_x 

SUM 

SU 

SUM 

S T(O) 

ST(l) 

T(2) S 

S T(3) 

...... 

ST(O) 

ST(l) 

ST(2) 

2.5 

6.25 

0.0 

2.5 

FADDP ST(2), ST -
6.25 

50.0 

2.5 

X_ARRAY (19) 

SUM_SaUARES 

SUM_INDEXES 

X_ARRAY (19) 

X_ARRAY(19) 

SU~SaUARES 

SUM_INDEXES 

SUM.-X 

X_ARRAY (19) 

SUM_SaUARES 

SUM_INDEXES 

SUM.-X 

SUM_saUARES 

SU~INDEXES 

SU~X 

Figure 18-7. Instructions and Register Stack 

240486i18-7 

TYPE operator is used to determine the number of bytes in each array element. This 
permits changing XARRA Y to a double-precision real array by simply changing its 
definition (DD to DQ) and reassembling. 

Figure 18-7 shows the effect of the instructions in the program loop on the FPU register 
stack. The figure assumes that the program is in its first iteration, that N_OF..x is 20, and 
that XARRA Y(19) (the 20th element) contains the value 2.5. When the loop termi­
nates, the three sums are left as the top stack elements so that the program ends by 
simply popping them into memory variables. 
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18.2 CONCURRENT PROCESSING 

Because the Intel486 Integer Unit and FPU are separate execution units, it is possible 
for the FPU to execute numeric instructions in parallel with instructions executed by the 
IV. This simultaneous execution of different instructions is called concurrency. 

No special programming techniques are required to gain the advantages of concurrent 
execution; numeric instructions for the FPU are simply placed in line with the instruc­
tions for the IV. Integer and numeric instructions are initiated in the same order as they 
are encountered in the instruction stream. However, because numeric operations per­
formed by the FPU generally require more time than integer operations, the IU can 
often execute several of its instructions before the FPU completes a numeric instruction 
previously initiated. 

This concurrency offers obvious advantages in terms of execution performance, but con­
currency also imposes several rules that must be observed in order to assure proper 
synchronization of the IU and FPV. 

All Intel high-level languages automatically provide for and manage concurrency in the 
FPU. Assembly-language programmers, however, must understand and manage some 
areas of concurrency in exchange for the flexibility and performance of programming in 
assembly language. This section is for the assembly-language programmer or well­
informed high-level-language programmer. 

18.2.1 Managing Concurrency 

The activities of numeric programs can be split into. two major areas: program control 
and arithmetic. The program control part performs activities such as deciding what func­
tions to perform, calculating addresses of numeric operands, and loop control. The arith­
metic part simply adds, subtracts, multiplies, and performs other operations on the 
numeric operands. The Intel486 processor is designed to handle these two parts sepa­
rately and effiCiently. 

Concurrency management is required to check for an exception before letting the pro­
cessor change a value just used by the FPU. Almost any numeric instruction can, under 
the wrong circumstances, produce a numeric exception. For programmers in higher-level 
languages, all required synchronization is automatically provided by the appropriate 
compiler. For assembly-language programmers exception synchronization remains the 
responsibility of the programmer. 

A complication is that a programmer may not expect his numeric program to cause 
numeric exceptions, but in some systems, they may regularly happen. To better under­
stand these points, consider what can happen when the FPU detects an exception. 
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Depending on options determined by the software system designer, the Intel4S6 proces­
sor can perform one of two things when a numeric exception occurs: 

• The FPU can provide a default fix-up for selected numeric exceptions. Programs can 
mask individual exception types to indicate that the FPU should generate a safe, 
reasonable result whenever that exception occurs. The default exception fix-up activ­
ity is treated by the FPU as part of the instruction causing the exception; no external 
indication of the exception is given. When exceptions are detected, a flag is set in the 
numeric status register, but no information regarding where or when is available. If 
the FPU performs its default action for all exceptions, then the need for exception 
synchronization is not manifest. However, as will be shown later, this is not sufficient 
reason to ignore exception synchronization when designing programs that use the 
FPU. 

• As an alternative to the default fix-up of numeric exceptions, the IU can be notified 
whenever an exception occurs. When a numeric exception is unmasked and the 
exception occurs, the FPU stops further execution of the numeric instruction and 
signals this event. On the next occurrence of an ESC or WAIT instruction, the pro­
cessor traps to a software exception handler. The exception handler can then imple­
ment any sort of recovery procedures desired for any numeric exception detectable by 
the FPU. Some ESC instructions do not check for exceptions. These are the nonwait­
ing forms FNINIT, FNSTENY, FNSA YE, FNSTSW, FNSTCW, and FNCLEX. 

When the FPU signals an unmasked exception condition, it is requesting help. The fact 
that the exception was unmasked indicates that further numeric program execution 
under the arithmetic and programming rules of the FPU is unreasonable. 

If concurrent execution is allowed, the state of the processor when it recognizes the 
exception is undefined. It may have changed many of its internal registers and be exe­
cuting a totally different program by the time the exception occurs. To handle this situ­
ation, the FPU has special registers updated at the start of each numeric instruction to 
describe the state of the numeric program when the failed instruction was attempted. 

Exception synchronization ensures that the FPU is in a well-defined state after an 
unmasked numeric exception occurs. Without a well-defined state, it would be impossi­
ble for exception recovery routines to determine why the numeric exception occurred, or 
to recover successfully from the exception. 

The following two sections illustrate the need to always consider exception synchroniza­
tion when writing numeric code, even when the code is initially intended for exeGution 
with exceptions masked. If the code is later moved to an environment where exceptions 
are unmasked, the same code may not work correctly. An example of how some instruc­
tions written without exception synchronization will work initially, but fail when moved 
into a new environment, is shown in Figure IS-S. 

18.2.1.1 INCORRECT EXCEPTION SYNCHRONIZATION 

In Figure IS-S, three instructions are shown to load an integer, calculate its square root, 
then increment the integer. The synchronous execution of the FPU will allow this pro­
gram to execute correctly when no exceptions occur on the FILD instruction. 
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FILD COUNT 
INC COUNT 
FSQRT 

FILD COUNT 
FSQRT 

INC COUNT 

NUMERIC APPLICATIONS 

INCORRECT ERROR SYNCHRONIZATION 

FPU In~tructlon 
integer Instruction elten operand 
subsequent FPU Instruction -- error from 

previous FPU instruction detected here 

PROPER ERROR SYNCHRONIZATION 

FPU instruction 
subsequent FPU instruction -- error from 

previous FPU instruction detected here 
integer instruction alters operand 

Figure 18-8. Exception Synchronization Examples 
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This situation changes if the numeric register stack is extended to memory. To extend 
the FPU stack to memory, the invalid exception is unmasked. A push to a full register or 
pop from an empty register sets SF and causes an invalid exception. 

The recovery routine for the exception must recognize this situation, fix up the stack, 
then perform the original operation. The recovery routine will not work correctly in the 
first example shown in the figure. The problem is that the value of COUNT is incre­
mented before the exception handler is invoked, so that the recovery routine will load an 
incorrect value of COUNT, causing the program to fail or behave unreliably. 

18.2.1.2 PROPER EXCEPTION SYNCHRONIZATION 

Exception synchronization relies on the WAIT instruction. Whenever an unmasked 
numerical exception occurs, the FPU asserts an error-condition signal internal to the 
processor. When the next WAIT instruction (or non-control ESC instruction) is encoun­
tered, the error-condition signal is .. acknowledged and a software exception handler is 
invoked. (See Chapter 16 for a more detailed discussion of the various floating-point 
error-reporting mechanisms.) If this WAIT or ESC instruction is properly placed, the 
processor will not yet have disturbed any information vital to recovery from the 
exception. 
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CHAPTER 19 
SYSTEM-LEVEL CONSIDERATIONS 

System programming for Intel486 processor systems requires a more detailed under­
standing of the FPU than does application programming. Such things as initialization, 
exception handling, and data and error synchronization are all the responsibility of the 
systems programmer. These topics are covered in detail in the sections that follow. 

19.1 ARCHITECTURE 

On a software level, the FPU appears as an extension of the Integer Unit. On the 
hardware level, however, the mechanisms by which the FPU and IU interact are more 
complex. This section describes this interaction and points out features that are of inter­
est to systems programmers. 

19.1.1 Independent of Addressing Mode 

Unlike the Intel287 NPX (but like the Inte1387 NPX), the FPU of the Intel486 proces­
sor operates the same regardless of whether the processor is operating in real-address 
mode, in protected mode, or in virtual 8086 mode. 

Numeric instructions can utilize any memory location accessible by the task currently 
executing. When operating in protected mode, all references to memory operands are 
automatically verified by the memory management and protection mechanisms as for any 
other memory references by the currently-executing task. Protection violations associ­
ated with numeric instructions automatically cause the processor to trap to an appropri­
ate exception handler. 

To the numerics programmer, the operating mode affects only the manner in which the 
FPU instruction and data pointers are represented in memory following an FSA VE or 
FSTENV instruction. Each of these instructions produces one of four formats depending 
on both the operating mode and on the operand-size attribute in effect for the instruc­
tion. The differences are detailed in the discussion of the FSA VE and FSTENV instruc­
tions in Chapter 26. 

19.2 PROCESSOR INITIALIZATION AND CONTROL 

One of the principal responsibilities of systems software is the initialization, monitoring, 
and control of the hardware and software resources of the system, induding the FPU. In 
this section, issues related to system initialization and control are described, induding 
the handling of exceptions that may occur during the execution of numeric instructions. 
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19.2.1 System Initialization 

During initialization of an Intel486 processor system, systems software must initialize the 
FPU and set flags in CRO to reflect the state of the numeric environment. Refer to 
Section 3.11 (Figure 3-23) to determine the presence of an 1nte1486 FPU. These activi­
ties can be quickly and easily performed as 'part of the overall system initialization. 

19.2.2 Configuring the Numerics Environment· 

System software must load the appropriate values into the MP, EM, and NE bits of the 
CRO control register. 

The MP (Monitor coProcessor) bit determines whether WAIT instructions trap when 
the context ofthe FPU is different·from that of the currently executing task. If MP = 1 
and TS = 1, then a WAIT instruction will cause a Device Not Available fault (interrupt 
vector 7). The MP bit was used on the 286 and Intel386 DX microprocessors to support 
the use of a WAIT instruction to wait on a device other than a numeric coprocessor. The 
device would report its status through the BUSY # pin. It should be set for processors 
with integrated FPD, and reset in the Intel486 SX Cpu. 

The EM (EMulate coprocessor) bit determines whether ESC instructions are executed 
by the FPU (EM = 0) or trap via interrupt vector 7 to be handled by software (EM = 
1). The EM bit was used on the Intel386 DX microprocessor so that numeric applica­
tions written for an Intel386 DX CPU/InteI387 DX system could be run in the absence 
of an Intel387 DX coprocessor with a software Intel387 DX emulator. For normal oper­
ation of the Intel486 FPU, the EM bit should be cleared to O. The EM bit must be set in 
the Intel486 SX Cpu. 

The NE(Numeric Exception) bit determines whether unmasked floating-point excep­
tions are handled through interrupt vector 16 (NE = 1) or through external interrupt 
(NE =0). In systems using an external interrupt controller to invoke numeric exception 
handlers, the NE bit should be cleared to O. Other systems can make use of the auto­
matic error reporting through interrupt 16, and should set the NE bit to 1. See Section 
19.2.4 for a discussion of numeric exception handling. 

19.2.3 Initializing the FPU 

Initializing the FPU simply means placing the FPU in a known state unaffected by any 
activity performed earlier. A single FNINIT instruction performs this initialization. All 
the error masks are set, all registers are tagged empty, TOP is set to zero, and default 
rounding and precision controls are set. Table 19-1 shows the state of the FPU following 
FINIT or FNINIT. 

The FNINIT instruction leaves the FPU in the same state as that which results from a 
hardware RESET signal with Built-In Self-Test. When the Built-In Self-Test is not 
requested, a hardware RESET leaves theFPU state unchanged. An FNINIT instruction 
should be executed after reset. 
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Table 19-1. FPU State Following Initialization 

Field Value Interpretation 

Control Word 037FH 
(Infinity Control)* 0 Affine 
Rounding Control 00 Round to nearest 
Precision Control 11 64 bits 
Exception Masks 111111 All exceptions masked 

Status Word OOOOH 
(Busy) 0 -
Condition Code 0000 -
Stack Top 000 Register 0 is stack top 
Exception Summary 0 No exceptions 
Stack Flag 0 -
Exception Flags 000000 No exceptions 

Tag Word FFFFH 
Tags 11 Empty 

Registers N.C. Not changed 

Exception Pointers 
Instruction Code Cleared 
Instruction Address Cleared 
Operand Address Cleared 

*The InteI486'· processor does not have infinity control. This value is listed to emphasize that programs 
written for the Intel287 math coprocessor may not behave the same on the Intel486 processor if they 
depend on this bit. 

19.2.3.1 Intel486 OX CPU SOFTWARE EMULATION 

Setting the EM bit to 1 will cause the Intel486 processor to trap via interrupt vector 7 
(Device Not Available) to a software exception handler whenever it encounters an ESC 
instruction. The EM bit was used to run numeric applications on an Intel386 processor 
with a software Inte1387 emulator. Numeric applications designed to be run with a non­
standard Intel387 emulator may not run successfully on the Intel486 processor without 
the emulator. Setting the EM bit to 1 makes it possible to run such applications, or 
programs which use non-standard floating-point arithmetic, on the Intel486 processor. 

19.2.3.2 Intel486 SX CPU SOFTWARE EMULATION PROCEDURE 

If the Intel487 SX math coprocessor is not present in the Intel486 SX system, floating 
point instructions can be emulated. The system is set up for software emulation 
accordingly: 

CRO bit 
EM 1 
MP 0 
NE 1 
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The EM bit must be set in order for the Intel486 SX to function properly. Setting the 
EM bit to 1 will cause. the Intel486 processor to trap via interrupt vector 7 (Device Not 
Available) to a software exception handler whenever it encounters an ESC instruction. If 
the EM bit is set and no coprocessor or emulator is present, the system will hang. 

The MP bit is used in conjunction with the TS bit to determine if WAIT instructions 
should trap when the context of the FPU is different from that of the currently executing 
task. When no FPU is present, this information is irrelevent and therefore the bit should 
be set to O. . 

Regardless of the value of the NE bit, the Intel486 SX processor will generate an inter­
rupt vector 7 upon encountering any floating point instruction. It is recommended that 
NE be set to 1 for normal operation. If a Floating Point Unit is present, this bit follows 
the description described in Section 19.2.4. 

19.2.4 Handling Numerics Exceptions 

Once the FPU has been initialized and normal execution of applications has been com­
menced, the FPU may occasionally require attention in order to recover from numeric 
processing exceptions. This section provides details for writing software exception han­
dlers for numeric exceptions. Numeric processing exceptions have already been intro­
duced in Chapter 16. 

If the FPU encounters an unmasked exception condition, a software exception handler is 
invoked immediately before execution of the next WAIT or non-control floating-point 
instruction. The exception handler is invoked either through interrupt vector 16 or 
through an external interrupt, depending on the value of the NE bit of the CRO control 
register. 

If NE = 1, an uIimaskedfloating-point exception results in interrupt 16, immediately 
before the execution of the next non-control floating-point or WAIT instruction. Inter­
rupt 16' is an operating-system call that invokes the exception handler. Chapter 9 con­
tains a general discussion of exceptions and interrupts on the Intel486 processor. 

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception 
causes the processor to freeze immediately before executing the next non-control 
floating-point or W AITinstruction. The frozen processor waits for an external interrupt, 
which must be supplied by external hardware in response to the FERR# output of the 
processor. (Regardless of the value of NE, an unmasked numerical exception causes the 
FERR# output to be activated.) In this case, the external interrupt invokes the 
exception-handling routine. If NE = 0 but the IGNNE# input is active, the processor 
disregards the exception and continues. Error reporting via external interrupt is sup­
ported for DOS compatibility. Chapter 25 contains further discussion of compatibility 
issues. 
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When handling numeric errors, the processor has two responsibilities: 

• It must not disturb the numeric context when an error is detected. 

• It must clear the error and attempt recovery from the error. 

Although the manner in which programmers may treat these responsibilities varies from 
one implementation to the next, most exception handlers will include these basic steps: 

• Store the FPU environment (control, status, and tag words, operand and instruction 
pointers) as it existed at the time of the exception. 

• Clear the exception bits in the status word. 

• Enable interrupts. 

• Identify the exception by examining the status and control words in the saved 
environment. 

• Take some system-dependent action to rectify the exception. 

• Return to the interrupted program and resume normal execution. 

19.2.5 Simultaneous Exception Response 

In cases where multiple exceptions arise simultaneously, the FPU signals one exception 
according to the precedence shown at the end of Chapter 16. This means, for example, 
that an SNaN divided by zero results in an invalid operation, not in a zero divide 
exception. 

19.2.6 Exception Recovery Examples 

Recovery routines for numeric exceptions can take a variety of forms. They can change 
the arithmetic and programming rules of the FPU. These changes may redefine the 
default fix-up for an error, change the appearance of the FPU to the programmer, or 
change how arithmetic is defined on the FPU. 

A change to an exception response might be to perform denormal arithmetic on denor­
mals loaded from memory. A change in appearance might be extending the register stack 
into meinory to provide an "infinite" number of numeric registers. The arithmetic of the 
FPU can be changed to automatically extend the precision and range of variables when 
exceeded. All these functions can be implemented on the Intel486 processor via numeric 
exceptions and associated recovery routines in a manner transparent to the application 
programmer. 

Some other possible application-dependent actions might include: 

• Incrementing an exception counter for later display or printing 

• Printing or displaying diagnostic information (e.g.,' the FPU environment and 
registers) 

• Aborting further execution 

• Storing a diagnostic value (a NaN) in the result and continuing with the computation 
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Notice that an exception mayor may not constitute an error, depending on the applica­
tion. Once the exception handler corrects the condition causing the exception, the 
floating-point instruction that caused the exception can be restarted, if appropriate. This 
cannot be accomplished using the IRET instruction; however, because the trap occurs at 
the ESC or WAIT instruction following the offending ESC instruction. The exception 
handler must obtain (using FSAVE or FSTENV) the address of the offending instruc­
tion in the task that initiated it, make a copy of it, execute the copy in the context of the 
offending task, and then return via IRET to the current instruction stream. 

In order to correct the condition causing the numeric exception, exception handlers must 
recognize the precise state of the FPU at the time the exception handler was invoked, 
and be able to reconstruct the state of the FPU when the exception initially occurred. To 
reconstruct the state of the FPU, programmers must understand when, during the exe­
cution of a numeric instruction, exceptions are actually recognized. 

Invalid operation, zero divide, and denormalized exceptions are detected before an 
operation begins, whereas overflow, underflow, and precision exceptions are not raised 
until a true result has been computed. When a before exception is detected, the FPU 
register stack and memory have not yet been updated, and appear as if the offending 
instructions has not been executed. 

When an after exception is detected, the register stack and memory appear as if the 
instruction has run to completion; i.e., they may be updated. (However, in a store or 
store-and-pop operation, unmasked over/underflow is handled like a before exception; 
memory is not updated and the stack is not popped.) The programming examples con­
tained in Chapter 20 include an outline of several exception handlers to process numeric 
exceptions. 
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CHAPTER 20 
NUMERIC PROGRAMMING EXAMPLES 

The following sections contain examples of numeric programs for the Intel486 processor 
written in ASM386/486. These examples are intended to illustrate some of the tech­
niques useful for programming Intel486 processor systems for numeric applications. 

20.1 CONDITIONAL BRANCHING EXAMPLE 

As discussed in Chapter 15, several numeric instructions post their results to the condi­
tion code bits of the FPU status word. Although there are many ways to implement 
conditional branching following a comparison, the basic approach is as follows: 

• Execute the comparison. 

• Store the status word. (The FPU status word can be stored directly into AX register.) 

• Inspect the condition code bits. 

• Jump on the result. 

Figure 20-1 is a code fragment that illustrates how two memory-resident double-format 
real numbers might be compared (similar code could be used with the FTST instruc­
tion). The numbers are called A and B, and the comparison is A to B. 

The comparison itself requires loading A onto the top of the FPU register stack and 
then comparing it to B, while popping the stack with the same instruction. The status 
word is then written into the AX register. 

A and B have four possible orderings, and bits C3, C2, and CO of the condition code 
indicate which ordering holds. These bits are positioned in the upper byte of the FPU 
status word so as to correspond to the zero, parity, and carry flags (ZF, PF, and CF), 
when the byte is written into the flags. The code fragment sets ZF, PF, and CF of the 
EFLAGS register to the values of C3, C2, and CO of the FPU status word, and then uses 
the conditional jump instructions to test the flags. The resulting code is extremely com­
pact, requiring only seven instructions. 

The FXAM instruction updates all four condition code bits. Figure 20-2 shows how a 
jump table can be used to determine the characteristics of the value examined. The jump 
table (FXAM_TBL) is initialized to contain the 32-bit displacement of 16 labels, one for 
each possible condition code setting. Note that four of the table entries contain the same 
value, "EMPTY." The first two condition code settings correspond to "EMPTY." The 
two other table entries that contain "EMPTY" will never be used on the Intel486 pro­
cessor or the Intel387 math coprocessors, but may be used if the code is executed with 
an Intel287 math coprocessor. 

The program fragment performs the FXAM and stores the status word. It then manip­
ulates the condition code bits to finally produce a number in register AX that equals the 
condition code times 2. This involves zeroing the unused bits in the byte that contains 
the code, shifting C3to the right so that it is adjacent to C2, and then shifting the code 
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A D Q 

B DQ 

F L D A 
FCOMP B 
FSTSW AX 

LOAD A ONTO TOP OF FPU STACK 
COMPARE A:B, POPA 
STORE RESULT TO AX REGISTER 

CPU AX REGISTER CONTAINS CONDITION conES 
(RESULTS OF COMPARE) 

LOAD CONDITION CODES INTO FLAGS 

SA H F 

USE CONDITIONAL JUMPS TO DETERMINE ORDERING OF A TO B 

J P A B UNORDERED ; TEST C2 ( P F ) 
JB LLESS TEST CO (C Fl 
JE LEQUAL TEST C3 (ZF) 

LGREATER: CO ( C F ) , o , C 3 ( Z F) , 

A_EQUAL: CO ( C F ) o , C3 ( Z F) , 

LESS: CO (CF) 
" 

C3 ( Z F) 

A B UNORDERED: C2 ( P F) 

Figure 20-1. Conditional Branching for Compares 

. 

240486i20-1 

to multiply it by 2. The resulting value is used as an index that selects one of the dis­
placements from F~TBL (the multiplication of the condition code is required 
because of the 2-byte length of each value in FXAM~TBL). The unconditional JMP 
instruction effectively vectors through the jump table to the labeled routine that contains 
code (not shown in the example) to process each possible result of the FXAM 
instruction. 

20.2 EXCEPTION HANDLING EXAMPLES 

There are many approaches to writing exception hand,lers. One useful technique. is to 
consider the exception handler procedure as consisting of "prologue," "body," and "epi­
logue" sections of code. This procedure is invoked via interrupt number 16. 
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; JUMP TABLE FOR EXAMINE ROUTINE 

DD POS_UNNORM, POS NAN, NEG_UNNORM, NEG_NAN, 
POS_NORM, POS_INFINITY, NEG_NORM, 
NEG_INFINITY, POS_ZERO, EMPTY, NEG_ZERO, 
EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY 

EXAMINE ST AND STORE RESULT (CONDITION CODES) 

F X A M 
XOR EAX,EAX ; CLEAR EAX 
FSTSW AX 

CALCULATE OFFSET INTO JUMP TABLE 

AND AX,0100011100000000B ; CLEAR ALL BITS 
SHR EAX,6 SHIFT C2-CO INTO PLACE 
SAL AH,S POSITION C3 

.OR AL,AH DROP C3 IN ADJACENT TO C2 
XOR AH,AH CLEAR OUT THE OLD COPY OF 

EXCEPT C3, 
(OOOXXXOO) 
(OOXOOOOO) 
(OOXXXXOO) 
C3 

JU~IP TO THE ROUTINE 'ADDRESSED' BY CONDITION CODE 

JMP FXAM_TBLIEAXI 

HERE ARE THE JUMP TARGETS, ONE TO HANDLE 
EACH POSSIBLE RESULT OF FXAM 

POLUNNORM: 

POS_NAN: 

NELUNNORM: 

NELNAN: 

POLINFINITY: 

NELN ORM: 

NELINFINITY: 

PO LZ E R 0 : 

EMPTY: 

N E LZ E R 0 : 

POLDENORM: 

NEG_DENORM: 

Figure 20-2. Conditional Branching for FXAM 
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In the transfer of control to the exception handler, interrupts have been disabled by 
hardware. The prologue performs all functions that must be protected from possible 
interruption by higher-priority sources. Typically, this involves saving registers and trans­
ferring diagnostic information from the FPU to memory. When the critical processing 
has been completed, the prologue may re-enable interrupts to allow higher-priority 
interrupt handlers to preempt the exception handler. 

The body of the exception handler examines the diagnostic information and makes a 
response that is necessarily application-dependent. This response may range from halt­
ing execution, to displaying a message, to attempting to repair the problem and proceed 
with normal execution. 

The epilogue essentially reverses the actions of the prologue, restoring the prbcessor so 
that normal execution can be resumed. The epilogue must not load an unmasked excep­
tion flag into the FPU or another exception will be requested immediately. 

Figures 20-3. through 20-5 show the ASM386/486 coding of three skeleton exception 
handlers. They show how prologues and epilogues can be written for various situations, 
but provide comments indicating only where the application dependent exception han­
dling body should be placed. 

PRO C 

SAVE REGISTERS, ALLOCATE STACK SPACE 
FOR WU STATE IMAGE 

PUSH EBP 
MOV EBP,ESP 
SUB ESP,10B 

S A V E F U L L FPU S TATE, E NAB LEI N TE R R U P T S 
FNSAVE IEBP-10BI 
S T I 

APPLICATION-DEPENDENT EXCEPTION HANDLING 
CODE GOES HERE 

CLEAR EXCEPTION FLAGS IN STATUS WORD 
(WHICH IS IN MEMORY> 

RESTORE MODIFIED STATE IMAGE 
MOV BYTE PTR IEBP-1041, OH 
FRSTOR IEBP-10BI 

DEALLOCATE STACK SPACE, RESTORE REGISTERS 
MOVE ESP,EBP 

PDP EBP 

RETURN TO INTERRUPTED CALCULATION 
IRE T 

SAVE_ALL ENDP 

Figure 20-3. Full-State Exception Handler 
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SAVE_ENVIRONMENT PRoC 

SAVE REGISTERS, ALLOCATE STACK SPACE 
FOR FPU E N V I RON MEN T 

PUSH EBP 

MoV EBP,ESP 
SUB ESP,28 

SAVE ENVIRONMENT, ENABLE INTERRUPTS 
FNSTENV IEBP-281 
S T I 

APPLICATION EXCEPTION-HANDLING CODE GOES HERE 

CLEAR EXCEPTION FLAGS IN STATUS WORD 
(WHICH IS IN MEMORY) 

RESTORE MODIFIED ENVIRONMENT IMAGE 
MoV BYTE PTR IEBP-241, OH 
FLDENV IEBP-281 

DE-ALLOCATE STACK SPACE, RESTORE REGISTERS 
MoV ESP,EBP 
POP EBP 

RETURN TO INTERRUPTED CALCULATION 
IRE T 

SAVE_ENVIRONMENT ENDP 

240486;20-4 

Figure 20-4. Reduced-Latency Exception Handler 

Figures 20-3 and 20-4 are very similar; their only substantial difference is their choice of 
instructions to save and restore the FPU. The tradeoff here is between the increased 
diagnostic information provided by FNSAVE and. the. faster execution of FNSTENV. 
For applications that are sensitive to interrupt latency or that do not need to examine 
register contents, FNSTENV reduces the duration of the "critical region," during which 
the processor does not recognize another interrupt request. 

After the exception handler body, the epilogues prepare the processor to resume execu­
tion from the point of interruption (i.e., the instruction following the one that generated 
the unmasked exception). Notice that the exception flags in the memory image ~hat is 
loaded into the FPU are cleared to zero prior to reloading (in fact, in these examples, 
the entire status word image is cleared). 

The examples in Figures 20-3 and 20-4 assume that the exception himdler itself will not 
cause an unmasked exception. Where this is a possibility, the general approach shown in 
Figure 20-5 can be employed. The basic technique is to save the full FPU state and then 
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LOCAL CONTROL DW ASSUME INITIALIZED 

REENTRANT PROC 

SAVE REGISTERS, ALLOCATE STACK SPACE FOR 
FPU STATE IMAGE 

PUSH EEP 

MOV EEP,ESP 
SUE ESP,10B 

SAVE STATE, LOAD NEW CONTROL WORD, 
ENAELE INTERRUPTS 

FNSAVE IEEP-10BJ 
FLDCW LOCAL_CONTROL 
S T I 

APPLICATION EXCEPTION HANDLING CODE GOES HERE. 
AN UNMASKED EXCEPTJON GENERATED HERE WILL 
CAUSE THE EXCEPTION HANDLER TO BE REENTERED. 
IF LOCAL STORAGE IS NEEDED, IT MUST EE 
ALLOCATED ON THE STACK. 

CLEAR EXCEPTION FLAGS IN STATUS WORD 
(WHICH IS IN MEMORY) 
RESTORE MODIF.IED STATE IMABE 

MOV BYTE PTR[EBP-104J, OH 
FRSTOR IEBP-10BJ 

DE-ALLOCATE STACK SPACE, RESTORE REGISTERS 
MOV ESP,EBP 

POP EBP 
RETURN TO POINT OF INTERRUPTION 

IRE T 
REENTRANT ENDP 

Figure 20-5. Reentrant Exception Handler 
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to load a new control word in the prologue. Note that considerable care should be taken 
when designing an exception handler of this type to prevent the handler from being 
reentered endlessly. 

20.3 FLOATING-POINT TO ASCII CONVERSION EXAMPLES 

Numeric programs must typically format their results at some point for presentation and 
inspection by the program user. In many cases, numeric results are formatted as ASCII 
strings for printing or display. This example shows how floating-point values can be 
converted to decimal ASCII character strings. The function shown in Figure 20-6 can be 
invoked from PL/M-386/486, Pascal-386/486, FORTRAN-386/486, or ASM386/486 
routines. 

Shortness, speed, and accuracy were chosen rather than providing the maximum number 
of significant digits possible. An attempt is made to keep integers in their own domain to 
avoid unnecessary conversion errors. 

Using the extended precision real number format, this routine achieves a worst case 
accuracy of three units in the 16th decimal position for a noninteger value or integers 
greater than 1018. This is double precision accuracy. With values having decimal expo­
nents less than 100 in magnitude, the accuracy is one unit in the 17th decimal position. 

Higher precision can be achieved with greater care in programming, larger program size, 
and lower performance. . 

20.3.1 Function Partitioning 

Three separate modules implement the conversion. Most of the work of the conversion 
is done in the module FLOATING_TO-.ASCII. The other modules are provided sepa­
rately, because they have a more general use. One of them, GET_POWER_10, is also 
used by the ASCII to floating-point conversion routine. The other small module, 
TOS_STATUS, identifies what, if anything, is in the top of the numeric register stack. 

20.3.2 Exception Considerations 

Care is taken inside the function to avoid generating exceptions. Any possible numeric 
value is accepted. The only possible exception is insufficient space on the numeric reg­
ister stack. 

The value passed in the numeric stack is checked for existence, type (NaN or infinity), 
and status (denormal, zero, sign). The string size is tested for a minimum and maximum 
value. If the top of the register stack is empty, or the string size is too small, the function 
returns with an error code. 

Overflow and underflow is avoided inside the function for very large or very small 
numbers. 
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SOURCE 

+1 $title('Convert a floating point number to ASCII 'J 

name 

publ ic 
extrn 

floating_to~ascii 
get_power_10:near,tos_status:near 

This subroutine will convert the floating point 
number in the' top' of the NPX stack to an ASCII 
string and separate power of 10 scaling value 
(in binary). The maximum width of the ASCII string 
formed is controlled by a parameter which must be 
>1. Unnormal values, denormal values, and psuedo 
zeroes will be correctly converted. However, unnormals 
and pseudo zeros are no longer supported formats on the i486 processor 
( in conformance with the IEEE floating point 
standard) and hence not generated internally. A 
returned value will indicate how many binary bits 
of precision were lost inan unnormal or denormal 
value. The magnitude (in terms of binary power) 
of a pseudo zero will also be indicated. Integers 
less than 10**18 in magnitude are accurately converted 
if the destination ASCII string field is wide enough 
to hold all the digits. Otherwise the value is converted 
to scientific notation. 

The status of the conversion is identified by the 
return value, it can be: 

o conversion complete, string_size is defined 
1 inval id arguments 
2 exact integer conversion, string_size is defined 
3 indefinite 
4 + NAN (Not A Number) 
5 NAN 
6 + Infini ty 
7 Infinity 
8 pseudo zero found, string_size is defined 

The PLM-386/486 calling convention is: 

floating_to_ascii: 
procedure (number,denormal_ptr,string_ptr,size_ptr, 
field_size, power_ptr) word external; 
declare (denormal_ptr,string_ptr,power_ptr,size_ptr) 
,pointer; 
declare field_size word, 
string_size based size_ptr word; 
declare number real; 
declare denormal integer based denormal_ptr; 

Figure 20-6. Floating-Point to ASCII Conversion Routine 
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declare power integer based power_ptri 
end floating_to_asciii 

The floating point value is expected to be 
on the top of the FPU stack. This subroutine 
expects 3 free entries on the FPU stack and 
will pop the passed value 6ff when done. The 
generated ASCII string will have a leading 
character either ,-, or '+' indicating the sign 
of the value. The ASCII decimal digits will 
immediately follow. The numeric value of the 
ASCII string is (ASCII STRING.)*10**POWER. If 
the given number was zero, the ASCII string will 
contain a sign and a single zero chacter. The 
value string size indicates the total length of 
the ASCII string including the sign character. 
String(O) will always hold the sign. It .is 
possible for string_size to be less than 
field_size. This occurs for zeroes or integer 
values. A pseudo zero will return a special 
return code. The denormal count will indicate 

the power of two originally associated .with the 
value. The power of ten and ASCII string will 
be as if the value was an ordinary zero. . 

This subroutine is accurate up to a maximum. of . 
18 decimal digits for integers. Integer values 
will have a decimal power of zero associated 
with them. For non integers, the result will be 
accurate to within 2 decimal digits of the 16th 
decimal place(double precision). The exponentiate 
instruction is also used for scaling,the value into 
the range acceptable for the BCD data type. The 
rounding mode in effect on entry to the 
subroutine is used for the conversion_ 

The following registers are not transparent: 

eax ebx ecx edx esi edi eflags 

Define the stack layout. 

ebp_save 
es_save 
returnJltr 
power_ptr 
fie.ld_size 
s;ze_ptr 
stringJltr 
denormalJltr 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

dword pt r [ebpl 
ebp_save + size ebp_save 
es_save + size es_save 
return_ptr + size returnJltr 
powerJPtr + size power_ptr 
field_size + size field_size 
size_ptr + size size_ptr 
stringJltr + size string_ptr 

equ size powerJltr + size field_size + 
size size_ptr + size string_ptr + 
size denormalJltr 

Figure 20-6. Floating-Point to ASCII Conversion Routine' (Contd.) 
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Define constants used 

BCD_DIGITS equ 18 Number of digits in bcd_value 
WORD_SIZE eql! 4 
BCD_SIZE equ 10 
MINUS Eiqu 1 Define return values 
NAN equ 4 The exact values chosen 
INFINITY equ 6 here are important. They niust 
INDEFINITE equ :5 correspond to the possible return 
PSEUDO_ZERO equ 8 values and be in the 'same numeric 

order as tested by the program. INVALID 
ZERO 
DENORMAL 
UN NORMAL 
NORMAL 
EXACT 

power two 
bcd_value 
bcd_byte 
fraction 

equ ·2 
equ ·4 
equ ·6 
equ -8 
equ 0 
equ 2 

Define layout of temporary storage area_ 

equ 
equ 
equ 
equ 

equ 

word ptr [ebp - WORD_SIZE] 
tby~e ptr power_two BCD_SIZE 
byte' ptr bcd_value 
bcd_value 

size power_two + size bcd_value 

Allocate stack space for the temporaries so 
the stack will be big enough 

stack stacks'eg (local_size+6) Allocate stack 
space for locals 

+1 Seject 

Figure 20-6. ,FIQating-Point to ASCII Conversion Routine (Contd.) 
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code 

const10 

segment public er 
extrn power_table:qword 

Constants used by this function. 

even 
dw 10 

; too big BCD 

Optimize for 16 bits 
Adjustment value for 

Convert the C3,C2,C1,CO encoding from tos_status 
into meaningful bit flags and values. 

; 
status_table db UNNORMAL, NAN, UN NORMAL + MINUS, 
& NAN + MINUS, NORMAL, INFINITY, 
& NORMAL + MINUS, 'INFINITY + MINUS, 
& ZERO, INVALID, ZERO + MINUS, INVALID, 
& DENORMAL, INVALID, DENORMAL + MINUS, INVALID 

floating_to_ascii proc 

call Look at status of ST(O) 

Get descriptor from table 
'movzx eax, status_table[eaxl 
cmp al,INVALlD Look for empty sT( 0) 
jne not_empty 

ST(O) is empty! Return the status value. 

ret parms_size 

Remove infinity from stack and exit. 

found_infinity: 
fstp st(O) OK to leave fstp running 
jmp short exit_proc 

String space is too small! 
Return invalid code. 

, 
small_string: 

mov al,INVALID 
exit_proc: 

leave ; Restore stack setup 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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pop es 
ret parms_size 

ST(O) is NAN or indefinite. Store the 
value in memory and look at the fraction 
field to separate indefinite from an ordinary NAN. 

i 
NAN_or_indefinite: 

fstp fraction 

test al,MINUS 
fwait 
jz exityroc 

i Remove valu~ from stack 
for examination ' 

Look at sign bit 
Insure store is done 

i Can't be indefinite if 
i positive 

mov ebx,OCOOOOOOOH i Match against upper 32 
ibits of fraction 

Compare bits 63-32 
sub ebx, dword ptr fraction + 4 

Bits 31-0 must be zero 
or ebx, dword ptr fraction 
jnz exit_proc 

Set return value for indefinite value 
mov al,INDEFINITE 

jmp exit_proc 

Ailocate stack space for local variables 
and establish parameter addressibility. 

not_empty: 
push es 
enter local_size, 0 

Save working register 
Setup stack addressing 

Check for enough string space 
mov ecx,field_size 
cmp ecx,2 
j l small_string 

dec ecx i Adjust for sign character 

See if string is too large for BCD 
cmp ecx,BCD_DIGITS 
jbe size_ok 

Else set maximum string size 
mov ecx,BCD_DIGITS 

size_ok: 
cmp al,INFINITY i Look for infinity 

Return status value for + or inf 
jge found_infinity 

Figure 20-6. Floating-Point to ,ASCII Conversion Routine, (Contd.) 
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cmp al,NAN ; Look for NAN or INDEFINITE 
jge NAN_or_indefinite 

Set default return values and check that 
the number is normalized. 

fabs ; Use positive value only 
; sign bit in al has true sign of value 

xor edx,edx ; Form a constant 
mav edi,denormal_ptr; Zero denormal count 
mav [edil, dx 
mav ebx,power_ptr Zero power of ten value 
mov [ebxl, dx 
mov dl, al 
and dl, 1 

add dl, EXACT 
cmp al,ZERO ; Test for zero 
jae convert_integer Skip power code if value 

fstp fraction 
fwait 
mov al, bcd_byte + 7 
or byte ptr bcd_byte + 7, Bah 
fld fraction 
fxtract 
test al, Bah 
jnz normal value 

fld1 
fsub 
ftst 
fstsw ax 
sahf 
jnz set_unnormal_count 

Found a pseudo zero 

; is zero 

fldlg2 ; Develop power of ten estimate 
add dl, PSEUDO_ZERO· EXACT 
fmulp st(2), st 
fxch Get power of ten 
fistp word ptr [ebxl Set power of ten 
jmp convert_integer 

set_unnormal_count: 
fxtract 

fxch 
fchs 
fistp word ptr [edil 

Get original fraction, 
now normalized 
Get unnormal count 

Set unnormal count 

Calculate the decimal magnitude associated 
with this number to within one order. This 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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error will always be inevitable due to 
rounding and lost precision. As a result, 
we will deliberately fail to consider the 
LOG10 of the fraction value in calculating 
the order. Since the fraction will always 
be 1 <= F < 2, its LOG10 will not change 
the basic accuracy of the function. To 
get the decimal order of magnitude, simply 
multiply the power of two by LOG10(2) and 
truncate the result to an integer. 

normal_value: 
fstp fraction 

fist power two 
fldlg2 

Save the fraction field 
for later use 

Save power of two 
; Get LOG10(2) 
; Power_two is now safe to use 

fmul ; Form LOG10(of exponent of number) 
fistp word ptr [ebx) ; Any rounding mode 

; wi II work here 

Check if the magnitude of the number rules 
out treating it as an integer. 

CX has the maximum number of decimal digits 
allowed. 

fwait ; Wait for power_ten to be valid 

Get power of ten of value 
movsx si, word ptr [ebx) 
sub esi ,ecx ; Form scaling factor 

necessary in ax 
ja adjust_result Jump if number will not fit 

The number is between and 10**(field_size). 
Test if it is an integer. 

fild power_two Restore original number 
sub dl,NORMAL·EXACT Convert to exact return 

; value 
fld fraction 
fscale ; Form full value, this 

is safe here . 
fst st(l) Copy va lye for compare 
frndint Test if its an integer 
fcomp Compare values 
fstsw ax Save status 
sahf C3=1 implies it was 

; an i~teger 

jnz convert _integer 

fstp st(O) Remove non integer value 
add dl,NORMAL:EXACT Restore ori ghml return value 

Figure 20-6. Floating"Point to ASCILConversion Routine (Contd.) 
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Scale the number to within the range allowed 
by the BCD format.The scaling operation should 
produce a number within one decimal order of 
magnitude of the largest decimal number 
representable within the given string width. 

The scaling power of ten value is in si. 

adjust_result: 
mov 
mov 

eax,esi 
word ptr [ebx],ax 

; Setup for pow10 
; Se.t initial power 

of ten return value 
neg eax Subtract one for each order of 

magnitude the value is scaled by 
call get_power_10 Scaling factor is 

returned as 
exponent and fraction 

fld fraction ; Get fraction 
fmul ; Combine fractions 
mov esi,ecx Form power of ten of 

the maximum 
shl esi ,3 ; BCD value to fit 

the string 
fild power two Combine powers of two 

st(2),st faddp 
fscale Form full value, 

exponent was safe 
fstp st(1) Remove exponent 

Test the adjusted value against a table 
of exact powers of ten. The combined errors 
of the magnitude estimate and power function 
can result in a value one order of magnitude 
too small or too large to fit correctly in 
the BCD field. To handle this problem, pretest 
the adjusted value, if it is too small or 
large, then adjust it by ten and adjust the 
power of ten value. 

Compare against exact power entry. Use the next 
entry since ex has been decremented by one 

fcom power_table[esi]+type power_table 
fstsw ax ;. No wait is necessary 
sahf ; If C3 = CO= 0 then 
jb test_for _small too big 

fidiv 
and 
inc 
jmp 

test_for_small: 
fcom 

const10 Else adjust value 
dl,not EXACT Remove exact flag 
word ptr [ebx] Adjust power of ten value 
short in_range Convert the value to a BCD 

; integer 

power_table[esi] Test relative size 

in 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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fstsw ax No wait is necess 
ary 

sBhf [f co = o then 
st(O) >= lower bound 

jc inJange ; Convert 
to a 

; BCD integer 

fimul const1D Adjust value into range 
dec word ptr [ebx] Adjust power of ten value 

in_range: 
frndint ; Form integer value 

Assert: 0 <= TOS <= 999,999,999,999,999,999 
The TOS number will be exactly representable 

in 18 digit BCD format. 

convert_integer: 
fbstp bcd_value ; Store as BCD format number 

While the store BCD runs, setup registers 
for the convers ion to ASC[ [ • 

Initial BCD index value 

the value 

mov 
mov 
mov 

esi ,BCD_S[ZE-2 
cX,Of04h 
ebx,1 

Set shift count and mask 
Set initial size of ASC[I 

; field for sign 
mov edi,string_ptr; Get address of start·of 

; ASC[[ string 
mov aX,ds Copy ds to es 
mov 
cld 
mov 
test 
jz 

eS,ax 

al,I+' 
dl,M[NUS 
positiveJesult 

mov al,'·' 
positive result: 

stosb 

Set autoincrement mode 
1 Clear sign field 

Look for negative value 

; Bump string pointer 
past sign 

and dl,not M[NUS ; Turn off sign bit 
fwait ; Wait for fbstp to finish 

Register usage: 
ah: BCD byte value in use 
al: ASC[[ character value 
dx: Return value 
ch: BCD mask = Ofh 
cl: BCD shift count = 4 
bx: ASC[[ string field width 
esi: BCD field index 
di: ASCII string field pointer 
ds,es: . ASC[ [ string segment base 

Remove leading zeroes from the number. 

Figure.20.S:Floating-Point to ASCII Conversion Routine (Contd.) 
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skip_leading_zeroes: 
mov ah,bcd_byte[esiJ 
mov al,ah 
shr al,cl 
and al,Ofh 
jnz enter_odd 

non zero 

mov al,ah 
and al,Ofh 
jnz enter_even 

; Get BCD byte 
Copy value 
Get high order digit 
Set zero flag 
Exit loop .if leading 

found 

Get BCD byte again 
Get low order digit 
Exit loop if non zero 

digit found 

dec esi Decrement BCD index 
jns skip_leading_zeroes 

The significand was all zeroes. 

mov al,'O' Set initial zero 
stosb 
inc ebx ; Bump string length 
jmp short exit_with_value 

Now expand the BCD string into digit 
per, byte values 0·9. 

digit_loop: 
mov 
mov 
shr 

enter_odd: 
add 
stosb 

mov 
and 
inc 

enter_even: 
add 
stosb 
inc 
dec 
jns 

ah,bcd_byte[esiJ 
al,ah 
al,cl 

al, '0' 

Get BCD byte 

Get high order digit 

Convert to ASCII 
Put digit into ASCII 

string area 
al,ah 
al,Ofh 
ebx 

al, '0' 

ebx 
esi 
digit_loop 

Get low order digit 

Bump field size counter 

Convert to ASCII 
Put digit into ASCII area 

Bump field size counter 
; Go to next BCD byte 

Conversion complete. Set the string 
size and remainder. 

mov 
mov 
mov 
j~ 

edi,size_ptr 
'word pt r [ediJ I bx 
eax,edx 
exit_proc 

endp 
code 

Set return value 

ends 
end 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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+1 Stitle(Ca'lculate the value of 10**ax) 

stack 

code 

This sUbroutine will calculate the 
value of 10""eax. For values of 
o <= eax < 19, the resul t will exact. 
All registers are transparent 
and the va l ue is returned on the TOS 
as two nunbers, exponent in ST( 1) and 
fraction in ST(O). The exponent value 
can be larger than the largest 

, exponent of an extended real format 
nunber. Three stack entries are used. 

name 
public 

stackseg 

get _power _10 
get_power _10, power _table 

S 

segment publ i c' er 

Use exact values from 1.0 to lelS. 

cmp 
ja 

even 
dq 

; Optimize 16 bit access 
1.0,lel,le2,l';3 

dq le4,1e5,1e6,le7 

dq 1eS,le9,1e10,1e11 

dq 1e12,le13,1e14,1e15 

dq 1e16,1e17,1e18 

eax,18 Test for 0 <= ax < 19 
out _of _range 

fld power_table [eax"S] ; Get exact value 
fxtract ; . Separate power 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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; and fraction 
ret OK to leave fxtract running 

Calculate the value using the 
exponentiate instruction. lhe following 
relations are used: 

10**x = 2**(log2(10)*x) 
2**(I+F) = 2**1 * 2**F 

if st(1) = I and st(O) = 2**F then 
fscale produces 2**(I+F) 

fldl2t 
enter 4,0 

save power of 10 value, P 

105 LOG2( 1 0) 

mov [ebp·4],eax 

code 

10S,X 
fimul 
fld1 

LOG2(10)*P = LOG2(10**P) 
dword ptr [ebp·4] 

fchs 
fld st(1) 

frndint 

fxch st(2) 

fsub st,st(2) 

Set 105 = ·1.0 

Copy power value 
in base two 
105 = I: ·inf < I <= X 
where I is an integer 
Rounding mode does 
not matter 
105 = X, 51(1) = ·1.0 

ST(2) = I 
10S,F = X·I: 
·1.0 < 105 <= 1.0 

; Restore orignal rounding control 
pop eax 
f2xm1 105 = 2**(F) 1.0 
leave 
fsubr 
ret 

endp 

ends 
end 

Restore stack 
Form 2**(F) 
OK to leave fsubr running 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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+1 $title(Determine TOS register contents) 

stack 

code 

This subroutine will return a value 
from 0-15 ineax corresponding 

to the contents of FPU TOS _ All 
registers are transparent and no 

errors are possible_ The return 
value corresponds to c3,c2,c1,cO 

of FXAM instruction_ 

name 
public 

tos_status 
tos_status 

stackseg 6 

segment public er 

fxam 
fstsw 
mov 
and 
shr 
or 
mov 
ret 

proc 

ax ; Get 
al,ah 
eax,4007h 
ah, 3 
al,ah 
ah,O 

; Get status of TOS register 
current status 

Put bit 10-8 into bits 2-0 
Mask out bits c3,c2,c1,cO 
Put bit c3 into bit 11 
Put c3 into bit 3 
Clear return value 

tos_status endp 

code ends 
end 

Figure 20-6. Floating-Point to ASCJI Conversion Routine (Contd.) 
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20.3.3 Special Instructions 

The functions demonstrate the operation of several numeric instructions, different data 
types, and precision control. Shown are instructions for automatic conversion to BCD, 
calculating the value of 10 raised to an integer value, establishing and maintaining con­
currency, data synchronization, and use of directed rounding on the FPU. 

Without the extended precision data type and built-in exponential function, the double 
precision accuracy of this function could not be attained with the size and speed of the 
shown example. 

The function relies on the numeric BCD data type for conversion from binary floating­
point to decimal. It is not difficult to unpack the BCD digits into separate ASCII deci­
mal digits. The major work involves scaling the floating-point value to the comparatively 
limited range of BCD values. To print a 9-digit result requires accurately scaling the 
given value to an integer between 108 and 109. For example, the number +0.123456789 
requires a scaling factor of 109 to produce the value + 123456789.0, which can be stored 
in 9 BCD digits. The scale factor must be an exact power of 10 to avoid changing any of 
the printed digit values. 

These routines should exactly convert all values exactly representable in decimal in the 
field size given. Integer values that fit in the given string size are not be scaled, but 
directly stored into the BCD form. Noninteger values exactly representable in decimal 
within the string size limits are also exactly converted. For example, 0.125 is exactly 
representable in binary or decimal. To convert this floating-point value to decimal, the 
scaling factor is 1000, resulting in 125. When scaling a value, the function must keep 
track of where the decimal point lies in the final decimal value. 

20.3.4 Description of Operation 

Converting a floating-point number to decimal ASCII takes three major steps: identify­
ing the magnitude of the number, scaling it for the BCD data type, and converting the 
BCD data type to a decimal ASCII string. 

Identifying the magnitude of the result requires finding the value X such that the num­
ber is represented by I x lOx, where 1.0 :::; I < 10.0. Scaling the number requires 
multiplying it by a scaling factor lOs, so that the result is an integer requiring no more 
decimal digits than provided for in the ASCII string. 

Once scaled, the numeric rounding modes and BCD conversion put the number in a 
form easy to convert to decimal ASCII by host software. 

Implementing each of these three steps requires attention to detail. To begin with, not 
all floating-point values have a numeric meaning. Values such as infinity, indefinite, or 
NaN may be encountered by the conversion routine. The conversion routine should 
recognize these values and identify them uniquely. 
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Special cases of numeric values also exist. Denormals have numeric values, but should be 
recognized because they indicate that precision was lost during some earlier calculations. 

Once it has been determined that the number has a numeric value, and it is normalized 
(setting appropriate de normal flags, if necessary, to indicate this to the calling program), 
the value must be scaled to the BCD ran!Se. 

20.3.5 Scaling the Value 

To scale the number, its magnitude must be determined. It is sufficient to calculate the 
magnitude to an accuracy of 1 unit, or within a factor of 10 of the required value. After 
scaling the number, a check is made to see if the result falls in the range expected. If not, 
the result can be adjusted one decimal order of magnitude up or down. The adjustment 
test after the scaling is necessary due to inevitable inaccuracies in the scaling value. 

Because the magnitude estimate for the scale factor need only be close, a fast technique 
is used. The magnitude is estimated by multiplying the power of 2, the unbiased floating­
point exponent, associated with the number by IOg102. Rounding the result to an integer 
produces an estimate of sufficient accuracy. Ignoring the fraction value can introduce a 
maximum error of 0.32 in the result. 

Using the magnitude of the value and size of the number string, the scaling factor can be 
calculated. Calculating the scaling factor is the most inaccurate operation of the conver­
sion process. The relation lOX = 2(X*logzlO) is used for this function. The exponentiate 
instruction F2XM1 is used. 

Due to restrictions on the range of values allowed by the F2XM1 instruction, the power 
of 2 value is split into integer and fraction components. The relation 2(1 + F) = 2 X 2F 
allows using the FSCALE instruction to recombine the 2F value, calculated through 
F2XM1, and the 21 part. 

20.3.5.1 INACCURACY IN SCALING 

The inaccuracy in calculating the scale factor arises because of the trailing zeros placed 
into the fraction value of the power of two when stripping off the integer valued bits. For 
each integer valued bit in the power of 2 value separated from the fraction bits, one bit 
of precision is lost in the fraction field due to the zero fill occurring in the least signifi­
cant bits. 

Up to 14 bits may be lost in the fraction because the largest allowed floating point 
exponent value is 214 -1. These bits directly reduce the accuracy of the calculated scale 
factor, thereby reducing the accuracy of the scaled value. For numbers in the range of 
10±3o, a maximum of 8 bits of precision are lost in the scaling process. 
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20.3.5.2 AVOIDING UNDERFLOW AND OVERFLOW 

The fraction and exponent fields of the number are separated to avoid underflow and 
overflow in calculatinJ6 the scaling values. For example~ to scale 10-4932 . to 108 requires a 
scaling factor of 1049 ,which cannot be represented by the Intel486 processor. 

By separating the exponent and fraction, the scaling operation involves adding the expo­
nents separate from multiplying the fractions. The exponent arithmetic involves small 
integers, all easily represented by the Intel486 processor. 

20.3.5.3 FINAL ADJUSTMENTS 

It is po~sible that the power function (GeLPoweL10) could produce a scaling value such 
that it forms a scaled result lar~er than the ASCII field could allow. For example, scaling 
9.9999999999999999 x 104 00 by 1.00000000000000010 X 10-4883 produces 

. 1.00000000000000009 x 1018• The scale factor is within the accuracy of the FPU and the 
result is within the conversion accuracy, but it cannot be represented in BCD format. 
This is why there is a post-scaling test on the magnitude of the result. The result can be 
multiplied or divided by 10, depending on whether the result was too small or too large, 
respectively. 

20.3.6 Output Format 

For maximum flexibility in output formats, the position of the decimal point is indicated 
by a binary integer called the power value. If the power value is zero, then the decimal 
point is assumed to be at the right of the rightmost digit. Power values greater than zero 
indicate how many trailing zeros are not shown. For each unit below zero, move the 
decimal point to the left in the string. 

The last step of the conversion is storing the result in BCD and indicating where the 
decimal point lies. The BCD string is then unpacked into ASCII decimal characters. The 
ASCII sign is set corresponding to the sign of the original value. 

20.4 TRIGONOMETRIC CALCULATION EXAMPLES 

In this example, the kinematics of a robot arm is modeled with the 4 x 4 homogeneous 
transformation matrices proposed by Denavit and Hartenberg1,2. The translational and 
rotational relationships between adjacent links are described with these matrices using 
the D-H matrix method. For each link, there is a 4 x 4 homogeneous transformation 

1. J. Denavit and R.S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices," 
J. Applied Mechanics, June 1955, pp. 215-221. 

2. C.S. George Lee, "Robert Arm Kinematics, Dynamics, and Control," IEEE Computer, Dec. 1982. 

20-23 



intel® NUMERIC PROGRAMMING EXAMPLES 

matrix that represents the link's coordinate system (Li) at the joint (Ji) with respect to 
the previous link's coordinate system (Ji- 1, Li- 1). The following four geometric quanti­
ties completely describe the. motion of any rigid joint/link pair (Ji, Li), as Figure 20-7 
illustrates. 

8i The angular displacement of the Xi axis from the Xi_l axis by rotating around the 
Zi_l axis (anticlockwise). 

di The distance from the origin of the (i_1)th coordinate system along the Zi-l axis 
to the Xi axis. 

ai The distance of the origin of the ith coordinate system from the Zi_l axis along 
the -Xi axis. 

(Xi The angular displacement of the Zi axis from the Zi-l about the Xi axis 
( an ticlockwise ). 

Zl-l 

240486;20-7 

Figure 20-7. Relationships Between Adjacent Joints 
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The D-H transformation matrix ALI for adjacent coordinate frames (from jointi _l to 
jointi is calculated as follows: 1 

ALI = Tzd X Tz8 X Txa x Tx~ I ' • , , ...... 

where: 

Tz•d represents a translation along the Zi-l axis 

TZ •8 represents a rotation of angle S about the Zi-l axis 

Tx•a represents a translation along the Xi axis 

Tx.c< represents a rotation of angle (X about the Xi axis 

A;-l 
-cos (Xi SIN Si 

COS (Xi COS Si 

SIN (Xi 

o 

SIN (Xi SIN Si 

-SIN (Xi COS Si 

COS (Xi 
0' 

COS Si 

SIN Si 

di 

1 

The composite homogeneous matrix T which represents the position and orientation of 
the joint/link pair with respect to the base system is obtained by successively multiplying 
the D-H transformation matrices for adjacent coordinate frames. 

i I 2 i 
T;; = A(j x Al x ... x A;-l 

This example in Figure 20-8 illustrates how the transformation process can be accom­
plished using the floating-point capabilities of the Intel486 processor. The program con­
sists of two major procedures. The first procedure TRANS_PROC is used to calculate 
the elements in each D-H matrix, A~-l' The second procedure MATRIXMULPROC 
finds the product of two successive D-H matrices. , 
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Name ROT_MATRIX_CAL 

This example illustrates the use 
of the i4B6 floating point 
instructions, in particular, the 
FSINCOS function which gives both 
the SIN and COS values. 
The program calculates the 
composite matrix for base to end· 
effector transformation. 

Only the kinematics is considered in 
this example. 

If the composite matrix mentioned above 
is given by: 
T1n =,A1 x A2 x .•. x An 
T1n is found by successively calling 
trans_proc and matrixmul_pro until 
all matrices have been exhausted. 

trans-proc calculates entries in each 
A(A1, ••• ,An) while matrixmul_proc 
performs the matrix multiplication for 
Ai and Ai+1. matrixmul_proc in turn 
calls matrix_row and matrix_elem to 
do the multiplication. 

; Define stack space 

trans_stack stackseg 400 

Define the matrix structure for 
4X4 transformational matrices 

a_matrix struc 
a11 dq ? 
a12 dq ? 
a13 dq ? 
a14 dq ? 
a21 dq ? 
a22 dq ? 
a23 dq ? 
a24 dq ? 
a31 dq Oh 
a32 dq ? 
a33 dq ? 
a34 dq ? 
a41 dq Oh 
a42 dq Oh 
a43 dq Oh 
a44 dq 1h 

Figure 20-8. Robot Arm Kinematics Example 
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Assume One joint in the storage 
allocation and hence for 
two sets of parameters; however, 
more joints are possible 

alp_deg struc 
alpha_deg1 dd ? 
alpha_deg2 dd ? 

alp_deg ends 

tht deg struc 
- theta_deg1 dd ? 

theta_deg2 dd ? 

tht_deg ends 

A_array stru~ 
A1 dq ? 

A2. dq ? 
A_array ends 

O_array struc 
01 dq ? 
02 dq ? 

O_array ends 

trans_data is the data segment 

trans_data segment rw pUblic 

AmX a_matrix<> 

Brnx a_matrix<> 

Trnx a_matrix<> 

ALPHA_OEG alp_deg<> 

THETA_OEG tht_deg<> 

A_VECTOR A_array<> 

O_VECTOR O_array<> 

ZERO dd 
d180 dd 
NUM_JOINT equ 
NUM_ROII equ 
NUM_COL equ 
REVERSE db 

trans_data ends 

0 
180 

1 
4 
4 
lh 

assune ds:trans_data, es:trans_data 

Figure 20-8. Robot Arm Kinematics. Example (Contd.) 
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trans code contains the procedures 
for c;lculating matrix elements and 
matrix multiplications 

segment er public 
transJProc proc far 

Calculate alpha and theta in radians 
from their values in degrees 

fldpi 
fdiv dlS0 

Duplicate pi/1S0 
fld st 

fmul qword ptr ALPHA_DEG[ecx*S] 
fxch st(1) 
fmul qword ptr THETA_DEG[ecx*S] 

theta(radians) in ST and 
alpha(radians) in ST(1) 

Calculate matrix elements 
all = cos theta 
a12 = - cos alpha * sin thet 
a13 = sin alpha * sin theta 
a14 = A * cos theta 
a21 = sin theta 
a22 = cos alpha * cos .theta 
a23 = -sin alpha * cos theta 
a24 = A * sin theta 
a32 = sin alpha 
a33 = cos alpha 
a34 = D 
a31 = a41 = a42 = a43 = 0.0 
a44 =1 

ebx contains the offset for the matrix 

fsincos . ;cos theta in ST 
;sin theta in ST(1) 

fld st ;dupl icate cos theta 
fst [ebx].all ;cos theta in all 
fmul qword ptr A_VECTOR[ecx*S] 
fstp [ebx].a14;A * cos thetain a14 
fxch st(1) ;sin theta inST 
fst [ebx].a21 ;sin theta in a21 
fld st ;duplicate sin theta 
fmul qword ptr A_VECTOR [ecx*S] 
fstp [ebx].a24;A * sin theta in a24 
fld st(2) ;alpha in ST 
fsincos;cos alpha in ST 

Figure 20-S .. Robot Arm Kinematics Example (Contd.) 
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isin alpha in ST(1) 
;sin theta in ST(2) 
iCOS theta in ST(3) 

. fst [ebx] .a33 ;cos alpha in a33 
fxch st(1) isin alpha in ST 
fst [ebx] .a32 isin alpha in a32 
fld ST(2) isin theta in ST 

isin alpha in ST(1) 
flWl st,st(1) isin alpha * sin theta 
fstp [ebx] .a13 istored in a13 
flWl st,st(3) ;cos theta * sin alpha 
fchs i·COS theta * sin alpha 
fstp [ebx] .a23 istored in a23 
fld st(2) iCOS theta in ST 

;cos alpha in ST(1) 
isin theta in ST(2) 
iCOS theta in ST(3) 

flWl st,st(1) iCOS theta * cos alpha 
fstp [ebx] .a22 istored in a22 
flWl st,st(1) iCOS alpha * sin theta 

To take advantage of parallel operations 
between the IU and FPU 

push eax i save eax 

also move 0 into a34 in a faster way 
mov eax, dword ptr O_VECTOR[ecx*8] 
mov dword ptr [ebx + 88], eax 
mov eax, dword ptr O_VECTOR[ecx*8 + 4] 
mov dword ptr [ebx + 92], eax 
pop eax i restore eax 
fchs i ·cos alpha * sin theta 
fstp [ebx].a12 istored in a12 

ret 

transJlroc endp 

matrlx_elem proc far 

iand all nonzero elements 
ihave been calculated 

This procedure calculate the dot product 
of the ith row of the first matrix and 
the jth column of the second matrix: 

Tij where Tij = sum of Aik x Bkj over k 

parameters passed from the calling routine, 
matrixJow: 
ESI = (i·1)*8 
EOI = 0·1)*8 
local register,EBP = (k·1)*8 

Figure 20-8; Robot Arm Kinematics Example (Contd.) 
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NXT_k: 
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push " ebp save ebp 
push ecx" ecx to be used as a tmp reg 
mov ecx, esi; save it for later indexing 

locating the element in the first matrix, A 
imul ecx, NUM_COL ecx contains offset due 

to preceding rows; the 
offset is from the 
beginning of the matrix 

xor ebp, ebp; clear ebp, which wit [be 
used a temp reg to i ndex( k) 
across the ith row of the first 
matrix as well as down the jth 
column of the second matrix 

clear Tij for accumulating Aik*Bkj 
mov dword'ptr [edx] [edi],ebp 
mov dword ptr [edx ][ed i +4] , ebp 

push ecx save on stack: esi * hum_col 
the offset of the beginnging 
of "the ith row from the 
t>eginning of the A matrix 

add ecx, ebp get to the kth column entry 
of the ith row of theA matrix 

load Aik into FPU 
fld qword ptr [eax] [ecx] 

locating Bkj 
mov ecx, ebp 
imul ecx, 'NUM_ROW ; ecx contains the offset 

add 

fmul 
pop 

push', , 

ecx, edi 

of the beginning of the 
kth row from the 
beginning of theB matrix 
get to the jth column 

of the kth row of the B 
; matrix 

qword ptr [ebx] [ecx];' Aik *Bkj 
ecx esi * nurn_col 

'in ecxagain 
ecx also at top' of program 

stack 

add to the result in the output matrix,Tij 
add ecx, edi 

accumulating the surn of Aik * Bkj 
fadd qword ptr [edx] [ecx] 
fstp qword ptr [edx] [ecx] 
increment k by 1, i.e., ebp by 8 
add ebp, 8 

Figure 20"8. Robot Arm Kinematics Examp,le (Contc;t.) 
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Has k reached the width of the matrix yet? 
cmp ebp, NUM_COL*8 
j l NXT_k 

Restore registers 
pop ecx clear esi*num_col from stack 
pop ecx restore ecx 
pop ebp restore ebp 
ret 

matrix_row proc far 

xor edi, edi 
scan across a row 

NXT_COL: 
call matrix_elem 
add edi, 8 
cmp edi, NUM_COL*8 
jl NXT_COL 
ret 

matrixJow endp 

matrixmul-proc proc far 

This procedure does the matrix 
multiplication by calling matrix_row 
to calculate entries in each row 

The matrix multiplication is 
performed in the following manner, 

Tij = Aik x Skj 
where i and j denote the row and column 
respectively and k is the index for 
scanning across the ith row of the 
first matrix and the jth column of the 
second matrix. 

mov ebp. esp 
mov edx. dword ptr [ebp+4) 
mov ebx. dword ptr [ebp+8j 
mov eax, dword plr [ebp=12) 

setupesi and edi 
edi points to the column 
es i poi nts to. the row 

xor esi, esi ; clear eSi. 

NXT_ROW: 
call matrix_row 

;use base pointer for indexing 
;offset Tmx In edx 
;0115et Bmx in ebx 
;o11sel Amx in eax 

Figure 20-8, Robot Arm Kinematics Example (Contd.) 
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acid ;es,i, .8 
c~ esi, NUM_R0II*8 
jl NXT_ROW 
ret 12 ;pop off matrix pOinterS 

.*************************************** , 

Main program 

; ; 
;*************************************** 

main_code segment er 

START: 

mov esp, stacks tart trans_stack 
save all registers 

pushad 

ECX denotes the number of joints 
where no of matrices = NUM_JOINT+ 
Find t~efirst matrix( from the base 
of the system to the ,fi rst joint) 
and call it Bmx ., , 
xor ecx, ecx 
mov ebx,off~et anix 
call transJlroc 
inc ecx 

1st matrix 

isBmx 

NXT_MATRIX: 
From the' ~ndmatrix and on, it 
will be stored In ArnX. 
The result from the first matrix multo 
isst~red in Tmx but will be accessed 

'as Bmxi~the next multiplication. " 
Asarilatter of fact, the rolesofBmx 
'a~ l'mx alternate in successive 
mul tipl ications. This, is achieved by 
reversing the order Of the BrnX'and Trnx 
pointers being passed onto the program 
stack. Thus, this is invisible to the 
matrix mul tipl ication' 'procedure. ' 
REVERSE serves as the indicator; 
REVERSE = 0 means that the result 

is to placedln Tmx. 

Figure 20-8. RobotArm Kinematics. Example. (Contd;) 
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mov ebx, offset Arnx ifind Arnx 
call transyroc 
inc ecx 
xor REVERSE, 1h 
jnz Brnx_as_Trnx 

no reversing. Brnx as the second input 
matrix while Trnx as the output matrix. 
push offset Arnx 
push offset Brnx 
push offset Trnx 
jmp CONTINUE 

reversing. Trnx as the second input 
matrix while Brnx as the output matrix. 

offset Arnx 
Brnx_as_Trnx: 

push 
push 
push 

offset Trnx ireversing the 
offset Brnx ipointers passed 

CONTINUE: 
call 
cmp 
jle 

matrixmulyroc 
ecx, NUM_JOINT 
NXT_MATRIX 

if REVERSE = 1 then the final answer 
will be in Brnx otherwise, in Trnx. 

popad 

e~ START, ds:trans_data, ss:trans_stack 

Figure 20-8. Robot Arm Kinematics Example (Contd.) 
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CHAPTER 21 
EXECUTING 286 AND 

Intel386 DX OR SX CPU PROGRAMS 

In general, programs written for protected mode on a 286 processor run without modi­
fication on the Inte1486 processor. The features of the 286 processor are an object-code 
compatible subset of those of the Inte1486 processor. The Default bit in segment descrip­
tors indicates whether the processor is to treat a code, data, or stack segment as a 286 or 
Inte1386/Inte1486 CPU segment. 

To software, the features of the Inte1386 DX or SX processors are virtually identical to 
the Inte1486 processor. For the most part, the differences are in the underlying hardware 
implementation. 

The segment descriptors used by the 286 processor are supported by the Inte1486 pro­
cessor if the Intel-reserved word (highest word) of the descriptor is clear. On the 
Inte1486 processor, this word includes the upper bits of the base address and the seg­
ment limit. 

The segment descriptors for data segments, code segments, local descriptor tables (there 
are no descriptors for global descriptor tables), and task gates are the same for the 286, 
Inte1386, and Inte1486 processors. Other 286 CPU descriptors (TSS segment, call gate, 
interrupt gate, and trap gate) are supported by the Inte1486 processor. The Inte1486 
processor also has descriptors for TSS segments, call gates, interrupt gates, and trap 
gates which support the 32-bit architecture of the Inte1486 processor. Both kinds of 
descriptors can be used in the same system. 

For those segment descriptors common to both the 286 and Inte1486 processors, clear 
bits in the reserved word cause the Inte1486 processor to interpret these descriptors 
exactly as a 286 processor does; for example: 

Base Address- The upper eight bits of the 32-bit base address are clear, which limits 
base addresses to 24 bits. 

Limit - The upper four bits of the limit field are clear, restricting the value of the limit 
field to 64K bytes. 

Granularity bit- The Granularity bit is clear, indicating the value of the 16-bit limit is 
interpreted in units of 1 byte. 

Big bit-In a data-segment descriptor, the B bit is clear, indicating the segment is no 
larger than 64 Kbytes. 

Default bit - In an code-segment descriptor, the D bit is clear, indicating 16-bit address­
ing and operands are the default. In a stack-segment descriptor, the D bit is clear, 
indicating use of the SP register (instead of the ESP register) and a 64K byte maximum 
segment limit. 
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For formats of these descriptors and documentation of their use see the iAPX 286 Pro­
grammer's Reference Manual. 

21.1 TWO WAYS TO RUN 286 CPU TASKS 
. ", ,', , 

When porting 286 programs to the Intel486 processor, there are two approaches to 
consider: .. 

1. Porting an entire 286 software system to the Intel486 processor, complete with the 
old operating system, loader, and system builder . 

. In this case, all tasks will have 286 TSSs. The Intel486 processor is being used as if it 
were a faster version ofthe 286 processor. 

2. Porting selected 286 applications to run in an Intel486 CPU processor environment 
with an Intel486 CPU operating system, loader, and system builder. . 

In this case, the TSSs used to represent 286 tasks should be changed to Intel486 
CPU TSSs. It is possible to mix 286 and Intel486 CPU TSSs, but the benefits are 
small and the problems are great. All tasks in an Intel486 CPU software system 
should have Intel486 CPU TSSs. It is not necessary to change the 286 object mod­
ulesthemselves; TSSs are usually constructed by the operating system,by the loader, 
or· by the system builder. See Chapter 24 for more discussion of the interface 
between: 16"bit and 32-bit code. 

21.2 DIFFERENCES FROM 286 CPU 

The few. differences between the 286 and Intel486 processors affect operating systems 
more, than application programs. . 

2t.2.1 Wraparound of 286 Processor 24-Bit Physical Address Space 

With the 286 processor, any base and offset combination which addresses beyond 
16, megabytes wraps around to the first megabyte of the address space. With the Intel486 
processor, because it has a greater physical address space, any such address maps to the 
17th megabyte. In the unlikely event that any software depends on address wraparound, 
the same effect can be simulated on the Intel486 processor by using paging to map the 
first 64K bytes past the top of the 16-megabyte address space to the bottom 64K bytes of 
the segment. 

21.2.2 Reserved Word of Segment Descriptor 

Because the Intel486 processor uses the contents of the reserved word of 286 segment 
descriptors, 286 programs which place values in this word may not run correctly on the 
Intel486 processor. 
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21.2.3 New Segment Descriptor Type Codes 

Operating-system code which manages space in descriptor tables often uses an invalid 
value in the access-rights field of descriptor-table entries to identify unused entries. 
Access rights values of 80H and OOH remain invalid for both the 286 and Intel486 pro­
cessors. Other values which were invalid on the 286 processor may be valid on the 
Intel486 processor because uses for these bits are defined for the Intel486 processor. 

21.2.4 Restricted Semantics of LOCK Prefix 

The 286 processor performs the bus lock function differently than the Intel486 proces­
sor. Programs which use forms of memory locking specific to the 286 processor may not 
run properly when run on the Intel486 processor. 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following Intel486 instructions when they modify memory~ An invalid-opcode excep­
tion results from using the LOCK prefix before any other instruction, or with these 
instructions when no write operation is made to memory (i.e., when the destination 
operand is in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

" Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

" One-operand arithmetic and logical: the INC, DEC, NOT, NEG Instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
286 configurations lock the entire physical memory space. 

On the 286 processor, the LOCK prefix is sensitive to IOPL; if CPL is less privileged 
than the IOPL, a general protection exception is generated. On the Intel386 DX and 
Intel486 processors, no check against IOPL is performed. 

21.2.5 Additional Exceptions 

The Intel386 and Inte1486 processors have new exceptions which can occur even in 
systems designed for the 286 processor. 

• Exception #6 - invalid opcode 
This exception can result from improper use of the LOCK instruction prefix. 

• Exception #14-page fault 

This exception may occur in a 286 program if the operating system enables paging. 
Paging can be used in a system with 286 tasks if all tasks use the same page directory. 
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Because there is no place in a 286 TSS to store the PDBR register, switching to a 286 
task does not change the value of the PDBR register. Tasks ported from the 286 
processor should be given Intel486 CPU TSSs so they can make full use of paging. 

21.3 DIFFERENCES FROM Intel386 CPU 

Very few differences exist between the programming models of the Intel386 DX or SX 
and Intel486 processors. The Intel486 processor defines new bits in the EFLAGS, CRO, 
and CR3 registers, and in entries in the first- and second-level page tables. On the 
Inte1386. processors, these bits were reserved,so the new architectural features should 
not be a compatibility issue. 

21.3.1 New Flag 

The AC flag (bit position 18), in conjunction with the AM bit in the CRO register, 
controls alignment checking. 

21.3.2 New Exception 

The alignment-check exception (exception vector 17) reports unaligned memory refer­
ences when alignment checking is being performed. 

21.3.3 New Instructions 

There are three new application instructions: 

• BSW AP instruction 

• XADD instruction 

• CMPXCHG instruction 

There are three new system instructions, used for managing the cache and TLB: 

• INVD instruction 

• WBINVD instruction 

• INVLPG instruction 

The form of the MOV instruction used to access the test registers has changed. New test 
registers have been defined for the cache, and the model of the TLB accessed through 
the test registers has changed. 
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21.3.4 New Control Register Bits 

Five new bits have been defined in the CRO register: 

• NE bit 
o WP bit 

• AM bit 
o NW bit 

• CD bit 

Two new bits have been defined in the CR3 register: 

co PCD bit 

.. PWT bit 

21.3.5 New Page-Table Entry Bits 

Two bits have been defined in page table entries for controlling caching of pages: 

.. PCD bit 

.. PWT bit 

21.3.6 Changes in Segment Descriptor Loads 

On the Intel386 processors, loading a segment descriptor would always cause a locked 
read and write to set the accessed bit of the descriptor. On the Intel486 processor, the 
locked read and write occur only if the bit is not already set. 
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CHAPTER 22 
REAL-ADDRESS MODE 

The real-address mode of the Intel486 processor runs programs written for the 8086, 
8088, 80186, or 80188 processors, or for the real-address mode of a 286 or Intel386 
processor. 

The architecture of the Intel486 processor in this mode is almost identical to that of the 
8086, 8088, 80186, and 80188 processors. To a programmer, an Intel486 processor in 
real-address mode appears as a high-speed 8086 processor with extensions to the instruc­
tion set and registers. The principal features of this architecture are defined in Chapters 
2 and 3. 

This chapter discusses certain additional topics which complete the system programmer's 
view of the Intel486 processor in real-address mode: 

• Address formation. 

• Extensions to registers and instructions. 

• Interrupt and exception handling. 

• Entering and leaving real-address mode. 

I) Real-address mode exceptions. 

C) Differences from 8086 processor. 

• Differences from 286 processor in real-address mode. 

• Differences from Intel386 processors in real-address mode. 

• Processor detection code 

22.1 ADDRESS TRANSLATION 

In real-address mode, the Intel486 processor does not interpret 8086 selectors by refer­
ring to descriptors; instead, it forms linear addresses as an 8086 processor would. It shifts 
the selector left by four bits to form a 20-bit base address. The effective address is 
extended with four clear bits in the upper bit positions and added to the base address to 
create a linear address, as shown in Figure 22-1. 

Because of the possibility of a carry, the resulting linear address may have as many as 21 
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 
to lOFFEFH (1 megabyte plus approximately 64K bytes) of the linear address space. 
Because paging is not available in real-address mode, the linear address is used as the 
physical address. 

Unlike the 8086 and 286 processors, but like the Inte1386 processors, the Intel486 pro­
cessor can generate 32-bit effective addresses using an address override prefix; however 
in real-address mode, the value of a 32-bit address may not exceed 65,535 without 
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Figure 22·1. 8086 Address Translation 

causing an exception. For full compatibility with 286 real-address mode, pseudo­
protection faults (interrupt 12 or 13 with no error code) occur if an effective address is 
generated outside the range 0 through 65,535. 

22.2 REGISTERS AND INSTRUCTIONS 

The register set available in real-address mode includes all the registers defined for the 
8086 processor plus the new registers introduced with the Intel386 processor and 
Intel387 coprocessor: FS, GS, debug registers, control registers, test registers, and 
floating-point unit registers. New instructions which explicitly operate on the segment 
registers FS and GS are available, and the new segment-override prefixes can be used to 
cause instructions to use the FS and GS registers for address calculations. 

The. instruction codes which generate invalid-opcode exceptions include instructions 
from protected mode which move or test Intel486 CPU segment selectors and segment 
descriptors,i.e., the VERR, VERW, LAR:, LSL, LTR, STR, LLDT; and SLDT instruc­
tions. Programs executing in: real-address mode are able to take advantage of the new 
application-oriented instructions added to the architecture with the introduction of the 
80186, 80188; 80286, Inte1386DX; SX and Intel486 processors: 

• New instructions introduced on the 80186, 80188, and 286 processors.' 

PUSH iIm,ne,diflte data 

Push all and pop all (PU~HA andPOPA) 

Multiply immediate data: 

Shift and rotate by immediate count 

String I/O 

ENTER and LEAVE instructions 

, BOUND instruction 
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• New instructions introduced on the Intel386 DX processor. 

LSS, LFS, LGS instructions 

Long-displacement conditional jumps 

Single-bit instructions 

Bit scan instructions 

Double-shift instructions 

Byte set on condition instruction 

Move with sign/zero extension 

Generalized multiply instruction 

MOV to and from control registers 

MOV to and from test registers 

MOV to and from debug registers 

• New instructions introduced on the Intel486 processor. 

BSW AP instruction 

XADD instruction 

CMPXCHG instruction 

INVD instruction (privileged) 

WBINVD instruction (privileged) 

INVLPG instruction (privileged). 

22.3 INTERRUPT AND EXCEPTION HANDLING 

Interrupts and exceptions in Intel486 CPU real-address mode work much as they do on 
an 8086 processor. Interrupts and exceptions call interrupt procedures through an inter­
rupt table. The processor scales the interrupt or exception identifier by four to obtain an 
index into the interrupt table. The entries of the interrupt table are far pointers to the 
entry points of interrupt or exception handler procedures. When an interrupt occurs, the 
processor pushes the current values of the CS and IP'registers onto the stack, disables 
interrupts, clears the TF flag, and transfers control to the location specified in the inter­
rupt table. An IRET instruction at the end of the handler procedure reverses these steps 
before returning control to the interrupted procedure. Exceptions do not return error 
codes in real-address mode. 

The primary difference in the interrupt handling of the Intel486 processor compared to 
the 8086 processor is the location and size of the interrupt table depend on the contents 
of the IDTR register. Ordinarily, this fact is not apparent to programmers, because, after 
reset initialization, the IDTR register contains a base address of 0 and a limit of 3FFH, 
which is compatible with the 8086 processor. However, the LIDT instruction.can be used 
in real-address mode to change the base and limit values in the IDTR register. See 
Chapter 9 for details on the IDTR register, and the LIDT and SIDT instructions. If an 
interrupt occurs and its entry in the interrupt table is beyond the limit stored in the 
IDTR register, a double-fault exception is generated. 
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22.4 ENTERING AND LEAVING REAL-ADDRESS MODE 

Real-address mode is in effect after reset initialization. Even if the system is going to run 
in protected mode, the start-up program runs in real-address mode while preparing to 
switch to protected mode. 

22.4.1 Switching to Protected Mode 

The only way to leave real-address mode is to switch to protected mode. The processor 
enters protected mode when a MOV to CRO instruction sets the PE (protection enable) 
bit in the CRO register. (For compatibility with the 286 processor, the LMSW instruction 
also may be used to set the PE bit.) 

See Chapter 10 "Initialization" for other aspects of switching to protected mode. 

22.5 SWITCHING BACK TO REAL-ADDRESS MODE 

The processor re-enters real-address mode if software clears the PE bit in the CRO 
register with a MOV CRO instruction (for compatibility with the 286 processor, the 
LMSW instruction can set the PE bit, but cannot clear it). A procedure which re-enters 
real-address mode should proceed as follows: 

1. If paging is enabled, perform the following sequence: 

• Transfer control to linear addresses which have an identity mapping; i.e., linear 
addresses equal physical addresses. Ensure GDT and IDT are in identity maps. 

• Clear the PG bit in the CRO register. 

• Move a 0 into the CR3 register to flush the TLB. 

2. Transfer control to a segment which has a limit of 64K (OFFFFH). This loads the CS 
register with the segment limit it needs to have in real mode. Ensure GOT and IDT 
are in real memory. 

3. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor 
containing the following values, which are appropriate for real mode: 

• Limit = 64K (OFFFFH) 

• Byte granular (G == 0) 
• Expand up (E = 0) 

• Writable (W = 1) 

• Present (P = 1) 

• Base = any value 

Note that if the segment registers are not reloaded, execution continues using the 
descriptors loaded during protected mode. 

4. Disable interrupts. A CLI instruction disables INTR interrupts. NMI interrupts can 
be disabled with external circuitry. 

5. Clear the PE bit in the CRO register. 
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6. Jump to the real mode program using a far JMP instruction. This flushes the instruc­
tion queue and puts appropriate values in the access rights of the CS register. 

7. Use the LIDT instruction to load the base and limit of the real-mode interrupt 
vector table. 

8. Enable interrupts. 

9. Load the segment registers as needed by the real-mode code. 

22.6 REAL-ADDRESS MODE EXCEPTIONS 

The Intel486 processor reports some exceptions differently when executing in real­
address mode than when executing in protected mode. Table 22-1 details the real­
address-mode exceptions. 

22.7 DIFFERENCES FROM 8086 CPU 

In general, the Intel486 processor in real-address mode will correctly run ROM-based 
software designed for the 8086, 8088, 80186, and 80188 processors. Following is a list of 
the minor differences between program execution on the 8086 and Intel486 processors. 

1. Instruction clock counts. 

The Intel486 processor takes fewer clocks for most instructions than the 8086 pro­
cessor. The areas most likely to be affected are: 

o Delays required by I/O devices between I/O operations. 

o Assumed delays with 8086 processor operating in parallel with an 8087. 

2. Divide-error exceptions point to the DIV instruction. 

Divide-error exceptions on the Intel486 processor always leave the saved CS:IP 
value pointing to the instruction which failed. On the 8086 processor, the CS:IP 
value points to the next instruction. 

3. Undefined 8086 processor opcodes. 

Opcodes which were not defined for the 8086 processor generate an invalid-opcode 
exception or execute one of the new instructions introduced with the 286, Intel386 
DX or Intel486 processors. 

4. Value written by PUSH SP. 

The Intel486 processor pushes a different value on the stack for a PUSH SP instruc­
tion than the 8086 processor. The Intel486 processor pushes the value of the SP 
register before it is decremented as part of the push operation; the 8086 processor 
pushes the value of the SP register after it is decremented. If the value pushed is 
important, replace PUSH SP instructions with the following three instructions: 
PUSH BP 
MOV BP, SP 
XCHG BP, [BPl 
This code functions as the 8086 processor PUSH SP instruction on the Intel486 
processor. 
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Table 22-1. Exceptions and Interrupts 

Does the Return Address 

Description Vector 
Source of the Point to the 

Exception Instruction Which Caused 
the Exception? 

Divide Error 0 DIV and IDIV instructions yes 

Debug 1 any . *1 

Breakpoint 3 INT iristruction no 

Overflow 4 INTO instruction no 

Bounds Check 5 BOUND instruction yes 

Invalid Opcode 6 reserved opcodes and yes 
improper use of LOCK prefix 

Device not 7 ESC or WAIT instructions yes 
available 

Double Fault 8 Interrupt table limit too small, yes 
fault occurring while handling 
another fault 

Reserved 9 

Invalid Task State 10 JMP, CALL, IRET yes 
Segment3 instructions, interrupts and 

exceptions 

Segment not 11 any instruction which yes 
present3 changes segments 

Stack Exception 12 stack operation crosses yes 
address limit (beyond offset 
OFFFFH) 

CS, OS, ES, FS, 13 Word memory reference yes 
GS beyond offset OFFFFH. An 
Segment Overrun attempt to execute past the 

end of CS segment. 

Page Fault3 14 any instruction that yes. 
references memory 

Reserved 15 

Floating-Point Error 16 ESC or WAIT instructions yes2 

Alignment Check 17 Any data reference no 

Intel Reserved 18-31 

Software Interrupt o to 255 INT n instructions no 

NOTES: 
1. Some debug exceptions point to the faulting instruction, others point to the following instruction. The 

exception handler can test the DR6 register to determine which has occurred. 
2. Floating-point errors are reported on the first ESC or WAIT instruction after the ESC instruction which 

generated the error. 
3. Exceptions 10, 11, 14 and 17 will not occur in Real Mode, but are possible in VM86 mode. 
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5. Shift or rotate by more than 31 bits. 

The Intel486 processor masks all shift and rotate counts to the lowest five bits. This 
MOD 32 operation limits the count to a maximum of 31 bits, which limits the 
amount of time that interrupt response may be delayed while the instruction is 
executing. 

6. Redundant prefixes. 

The Intel486 processor sets a limit of 15 bytes on instruction length. The only way to 
violate this limit is by putting redundant prefixes before an instruction. A general­
protection exception is generated if the limit on instruction length is violated. The 
8086 processor has no instruction length limit. 

7. Operand crossing offset 0 or 65,535. 

On the 8086 processor, an attempt to access a memory operand which crosses offset 
65,535 (e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when SP 
= 1) causes the offset to wrap around modulo 65,536. The Intel486 processor gen­
erates an exception in these cases: a general-protection exception if the segment is a 
data segment (i.e. if the CS, DS, ES, FS, or GS register is being used to address the 
segment) or a stack exception if the segment is a stack segment (i.e., if the SS 
register is being used). 

8. Sequential execution across offset 65,535. 

On the 8086 processor, if sequential execution of instructions proceeds past offset 
65,535, the processor fetches the next instruction byte from offset 0 of the same 
segment. On the Intel486 processor, the processor generates a general-protection 
exception in such a case. 

9. LOCK is restricted to certain instructions. 

The LOCK prefix and its output signal should only be used to prevent other bus 
masters from interrupting a data movement operation. The LOCK prefix only may 
be used with the following Intel486 CPU instructions when they modify memory. An 
invalid-opcode exception results from using LOCK before any other instruction, or 
with these instructions when no write operation is made to memory. 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

II One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

10. Single-stepping external interrupt handlers. 

The priority of the Intel486 CPU single-step exception is different from the 8086 
processor. The change prevents an external interrupt handler from being single­
stepped if the interrupt occurs while a program is being single-stepped. The Intel486 
CPU single-step exception has higher priority than any external interrupt. The 
Intel486 processor still may single-step through an interrupt handler called by the 
INT instructions or by an exception. 
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11. IDIV exceptions for quotients of 80H or 8000H. 

The Intel486 processor can generate the largest negative number as a quotient for 
the IDIV instruction. The 8086 processor generates a divide-error exception instead. 

12. Flags in stack. 

The setting of the flags stored by the PUSHF instruction, by interrupts, and by 
exceptions is different from that stored by the 8086 processor in bit positions 12 
through 15. On the 8086 processor these bits are set, but in the Intel486 CPU 
real-address mode, bit 15 is always clear, and bits 14 through 12 have the last value 
loaded into them. 

13. NMI interrupting NMI handlers. 

After an NMI interrupt is recognized by the Intel486 processor, the NMI interrupt 
is masked until an IRET instruction is executed. 

14. Floating-point errors call the floating-point error exception. 

Floating-point exceptions on the Intel486 processor call the floating-point error 
exception handler. If an 8086 processor uses another exception for the 8087 inter­
rupt, both exception vectors should call the floating-point error exception handler. 
The Intel486 processor has signals which, with the addition of external logic, support 
usercdefined error reporting for emulation of the interrupt mechanism used in many 
personal computers. 

15. Numeric exception handlers should allow prefixes. 

On the Intel486 processor, the value of the CS and IP registers saved for floating­
point exceptions points at any prefixes which come before the ESC instruction. On 
the 8086 processor, the saved CS:IP points to the ESC instruction. 

16. Floating-Point Unit does not use interrupt controller. 

The floating-point error signal to the Intel486 processor does not pass through an 
interrupt controller (an INT signal from 8087 coprocessor does).Sorne instructions 
in a floating-point error exception handler may need to be deleted if they use the 
interrupt controller. The Intel486 processor has signals which, with the addition of 
external logic, support user-defined error reporting for emulation of the interrupt 
mechanism used in many personal computers. . 

17. Seven new interrupt vectors. 

The Intel486 processor adds seven exceptions which are generated on an 8086 pro­
cessor only by program bugs. Exception handlers should be added which treat these 
exceptions as invalid. operations. This additional software does not significantly 
affect the existing 8086 processor software, because these interrupts do not occur 
normally. These interrupt identifiers should not already have been used by the 8086 
processor software, because they are reserved by Intel. Table 22-2 describes the new 
Intel486 processor exceptions. 

18. The denormal exception of the Intel486 FPU is handled differently than on the 8087 
math coprocessor. See Section 16.2.4 for more details. 
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Table 22-2. New Intel486™ CPU Exceptions 

Vector Description 

5 A BOUND instruction was executed with a register value outside the limit 
values. 

6 A reserved opcode was encountered, or a LOCK prefix was used 
improperly. 

7 The EM bit in the CRO register was set when an ESC instruction executed, 
or the TS bit was set when a WAIT instruction was executed. 

8 A vector indexes to an entry in the lOT which is beyond the segment limit 
for the lOT. This can only occur if the default limit has been changed. 

12 A stack operation crossed the address limit. 

13 An operation (other than a stack operation) exceeds the base or bounds of 
a segment, instruction execution is crossing the address limit (OFFFFH), or 
an instruction exceeds 15 bytes. 

17 Alignment-check. Cannot occur without setting previously reserved bits. 

19. One megabyte wraparound. 

The address space of the Intel486 processor may not wraparound at 1 megabyte in 
real-address mode. An external pin A20M# forces wraparound if enabled. On mem­
bers of the 8086 family, it is possible to specify addresses greater than 1 megabyte. 
For example, with a selector value OFFFFH and an offset of OFFFFH, the effective 
address would be 10FFEFH (1 megabyte + 65519 bytes). The 8086 processor, which 
can form addresses up to 20 bits long, truncates the uppermost bit, which "wraps" 
this address to OFFEFH. However, the Intel486 processor does not truncate this bit 
if A20M# is not enabled. 

20. Response to bus hold. 

Unlike the 8086 and 286 processors, but like the Inte1386 processors, the Intel486 
processor responds to requests for control of the bus from other potential bus mas­
ters, such as DMA controllers, between transfers of parts of an unaligned operand, 
such as two words which form a doubleword. Unlike the Inte1386 processors, the 
Intel486 processor responds to bus hold during reset initialization. 

21. Interrupt vector table limit. 

The LIDT instruction can be used to set a limit on the size of the interrupt vector 
table. Shutdown occurs if an interrupt or exception attempts to read a vector beyond 
the limit. (The 8086 processor does not have a shutdown mode.) 

22. If a stack operation wraps around the address limit, shutdown occurs. (The 8086 
processor does not have a shutdown mode.) 

22.8 DIFFERENCES FROM 286 CPU IN REAL-ADDRESS MODE 

The few differences which exist between Intel486 CPU real-address mode and 286 CPU 
real-address mode are not likely to affect any existing 286 CPU programs except possibly 
the system initialization procedures. 
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22.8.1 Bus Lock 

The 286 processor implements the bus lock function differently than the Intel486 pro­
cessor. Programs which use forms of memory locking specific to the 286 processor may 
not run properly if transported to a specific application of the Intel486 processor.· 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following Intel486 CPU instructions when they modify memory. An invalid-opcode 
exception results from using the LOCK prefix before any other instruction, or with these 
instructions when no write operation is made to memory (i.e., when the destination 
operand is in a register). 

• Bit lest and change: the BTS, BTR, and BTC instructions. 

.. Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction) . 

.. One-operand arithmetic and logical: theINC, DEC, NOT, NEG instructions. 

.. Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example; typical 8086 and 
80286 CPU configurations lock the entire physical memory space. 

22.8.2 Location of First Instruction 

, <,", 

The starting location is OFFFFFFFOH (16 bytes from end of the 32-bit address space) on 
the Intel486 processor rather than OFFFFFOH (16 bytes from end of the 24-bit address 
space) as on the 286 processor. Many 286 ROM initialization programs will work cor­
rectly in this new environment. Others can be made to work correctly with external 
hardware. to interpret the signals on the address signals A31-20• . 

22.8.3 Initial Values of General Registers 

On the Intel486 processor, certain general registers may contain different values after 
reset initialization than on the 286 processor. This should not cause compatibility prob­
lems, because the contents of 8086 registers after reset initialization are undefined. If 
self-test is requested during the reset sequence and errors are detected in the Intel486 
processor, the EAX register will contain a non-zero value. The EDX register contains 
the component and revision identifier. See Chapter 10 for more information. 
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22.8.4 Bus Hold 

Unlike the 8086 and 286 processors, the Intel386 and Intel486 processors respond to 
requests for control of the bus from other potential bus masters, such as DMA control­
lers, between transfers of parts of an unaligned operand, such as two words which form 
a doubleword. 

22.8.5 Math Coprocessor Differences 

The Intel486 FPU denormal exception works differently than on the Intel287 math 
coprocessor. See Section 16.2.4 for more details. 

Exception 9 cannot occur on Intel486 microprocessors. 

22.9 DIFFERENCES FROM Intel386 DX CPU IN REAL-ADDRESS MODE 

The instructions and architectural features which are new with the Intel486 processor 
can be accessed in real-address mode. This should not affect most software, because the 
new opcodes previously generated the invalid-opcode exception. The new flag and reg­
ister bits were previolisly reserved, so there should be no software which uses them 
improperly. 

Caching can be enabled in real-address mpde. For maximum performance, initialization 
software must enable caching. 

22.10 PROCESSOR DETECTION CODE 

The following code sequence (see Figure 22-2) can be used to distinguish between 8086, 
286 and Intel386 processors. This code is intended for application programs executing in 
real-address mode. Refer to Figure 3-23 for complete CPU and coprocessor identifica­
tion code. 
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proc near 

Returns the processor type in the AX register. 

pushf 
pop bx 
and bx,Offfh 
push bx 
popf 
pushf 
pop ax 

and ax,OfOOOh 
cmp ax,OfOOOh 
jz is_8086 

or bx,OfOOOh 
push bx 
popf 
pushf 
pop ax 

and ax,OfOOOh 
jz is_80286 

is 80386: 
mov ax,386h 
jmp done 

is 80286: 
mov ax,286h 
jmp done 

is 8086: 
mov ax,86h 

done: 
popf 
ret 

is 386 endp 

save FLAG register 
store FLAGs in BX 
clear bits 12-15 
store on stack 
pop word into the FLAG register 
store FLAGs on stack 
recover FLAG word 

if bits 12-15 are set, then the 
processor is an 8086 

try to set FLAG bits 12-15 
store on stack 
pop word into the FLAG register 
store FLAGs on stack 
recover FLAG word 

if bits 12-15 are cleared, then 
the processor is an 80286 

else the processor is a 386 OX CPU 
set the 386 OX CPU indicator 

set the 80286 indicator 

set the 8086 indicator 

recover FLAG register 

240486i22-2 

Figure 22-2. Real-Address Detection Code 
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CHAPTER 23 
VIRTUAL~8086 MODE 

The Intel486 processor supports execution of one or more 8086, 8088, 80186, or 80188 
programs in an Intel486 protected-mode environment. An 8086 program runs in this 
environment as part of a virtual-8086 task. Virtual-8086 tasks take advantage of the 
hardware support of multitasking offered by the protected mode. Not only can there be 
multiple virtual-8086 tasks, each one running an 8086 program, but virtual-8086 tasks can 
run in multitasking with other Intel486 tasks. 

The purpose of a virtual-8086 task is to form a "virtual machine" for ruIming programs 
written for the 8086 processor. A complete virtual machine consists of Intel486 hardware 
and system software. The emulation of an 8086 processor is the result of software using 
hardware in the following ways: 

• The hardware provides a virtual set of registers (through the TSS), a virtual memory 
space (the first megabyte of the linear address space of the task), and directly exe­
cutes all instructions. which deal with these registers and with this address space. 

• The software controls the external interfaces of the virtual machine (I/O, interrupts, 
and exceptions) in a manner .consistent with the larger environment in which it runs. 
In the case of I/O, software can choose either to emulate I/O instructions or to let the 
hardware execute them directly without software intervention. 

Software which supports virtual 8086 machines is called a virtual-8086 monitor. 

23.1 EXECUTING 8086 CPU CODE 

The processor runs in virtual-8086 mode when the VM (virtual machine) bit in the 
EFLAGS register is set. The processor tests this flag under two general conditions: 

1. When loading segment registers, to know whether to use 8086-style address 
translation. 

2. When decoding instructions, to determine which instructions are sensitive to 10PL, 
and which instructions are not supported (as in real mode). 

23.1.1 Registers and Instructions 

The register set available in virtual-8086 mode includes all the registers defined for the 
8086 processor plus the new registers introduced by the Intel486 processor: FS, GS, 
debug registers, control registers, and test registers. New instructions, which explicitly 
operate on the segment registers FS and GS, are available. The new segment-override 
prefixes can be used to cause instructions to use the FS and GS registers for address 
calculations. Instructions can use 32-bit operands through the use of the operand size 
prefix. 
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Programs running as virtual-8086 tasks can take advantage of the new application­
oriented instructions added to the architecture by the introduction of the 80186, 80188, 
286, Intel386 DX, SX and Intel486 processors: 

• New instructions introduced on the 80186, 80188, and 286 processors. 

PUSH immediate data 

Push all and pop all (PUSHA and POPA) 

Multiply immediate data 

Shift and rotate by immediate count 

String I/O 

ENTER and LEAVE instructions 

BOUND instruction 

• New instructions introduced on the Intel386 DX and SX processors. 

LSS, LFS, LGS instructions 

Long-displacement conditional jumps 

Single-bit instructions 

Bit scan instructions 

Double-shift instructions 

Byte set on condition instruction 

Move with sign/zero extension 

Generalized multiply instruction 

• New instructions introduced on the Intel486 processor. 

BSW AP instruction 

XADD instruction 

CMPXCHG instruction 

23.1.2 Address Translation 

In virtual-8086 mode, the Intel486 processor does not interpret 8086 selectors by refer­
ring to descriptors; instead, it forms linear addresses as an 8086 processor would. It shifts 
the selector left by four bits to form a 20-bit base address. The effective address is 
extended with four clear bits in the upper bit positions and added to the base address to 
create a linear address, as shown in Figure 23-1. 

Because of the possibility of a carry, the resulting linear address may have as many as 21 
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 
to 10FFEFH (1 megabyte plus approximately 64K bytes) of the task's linear address 
space. 

Virtual-8086 tasks generate 32-bit linear addresses. While an 8086 program only can use 
the lowest 21 bits of a linear address, the linear address can be mapped using paging to 
any 32-bit physical address. 
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19 3 0 

1 16·81T SEGMENT SELECTOR 10 0 001 
19 15 0 

10 0 0 01 16·81T EFFECTIVE ADDRESS 1 

~ 0 

Ixxxxxxxxxxxxxxxxxxxxxi 

Figure 23-1. SOS6 Address Translation 
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Unlike the 8086 and 286 processors, but like the Inte1386 processors, the Intel486 pro­
cessor can generate 32-bit effective addresses using an address override prefix; however 
in virtual-8086 mode, the value of a 32-bit address may not exceed 65,535 without caus­
ing an exception. For full compatibility with 286 real-address mode, pseudo-protection 
faults (interrupt 12 or 13 with no error code) occur if an effective address is generated 
outside the range 0 through 65,535. 

23.2 STRUCTURE OF A VIRTUAL-BOBS TASK 

A virtual-8086 task consists of the 8086 program to be run and the Intel486 CPU "native 
mode" code which serves as the virtual-machine monitor. The task must be represented 
by an Intel486 CPU TSS (not a 286 TSS). The processor enters virtual-8086 mode to run· 
the 8086 program and returns to protected mode to run the monitor or other Intel486 
CPU tasks. 

To run in virtual-8086 mode, an existing 8086 processor program needs the following: 

G A virtuaHm86 monitor. 

o Operating-system services. 

The virtual-8086 monitor is Intel486 CPU protected-mode code which runs at privilege­
level 0 (most privileged). The monitor mostly consists of initialization and exception­
handling procedures. As with any other Intel486 CPU program, code-segment 
descriptors for the monitor must exist in the GDT or in the task's LDT. The linear 
addresses above lOFFEFH are available for the virtual-8086 monitor, the operating sys­
tem, and other system software. The monitor also may need data-segment descriptors so 
it can examine the interrupt vector table or other parts of the 8086 program in the first 
megabyte of the address space. 
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In general, there are two options for implementing the 8086 operating system: 

1. The 8086 operating system may run as part of the 8086 program. This approach is 
desirable for either of the following reasons: 

• The 8086 application code modifies the operating system. 

• There is not sufficient development time to reimplement the 8086 operating sys­
tem as an Intel486 CPU operating system. 

2. The 8086 operating system may be implemented or emulated in the virtual-8086 
monitor. This approach is desirable for any of the following reasons: 

• Operating system functions can be more easily coordinated among several virtual-
8086 tasks. 

• The functions of the 8086 operating system can be easily emulated by calls to the 
Intel486 CPU operating system. 

Note that the approach chosen for implementing the 8086 processor operating system 
may have different virtual-8086 tasks using different 8086 operating systems. 

23 .. 2.1 Paging for Virt~al-8086 Tasks, .' 

Paging is not necessary for a single virtual-8086 task, but paging is useful or necessary for 
any of the following reasons: 

• Creating multiple virtual-8086 tasks. Each task ~ust map the lower megabyte of lin­
. ear addresses to different physical locations. 

• Emulating the address wraparound which occurs at 1 megabyte. With members of the 
8086 family, it is possible to specify addresses larger than 1 megabyte. For example, 
with a selector value of OFFFFH and an offset of OFFFFH, the effective address 
would be lOFFEFH (1 megabyte plus 65519 bytes). The 8086 processor, which can 
form addresses only up to 20 bits long, truncates the high-order bit, thereby "wrap­
ping" this address to OFFEFH. The Intel486 processor, however, does not truncate 
such an address. If any 8086 processor programs depend on address wraparound, the 
same effect can be achieved in a virtual-8086 task by mapping linear addresses 
between 100000H and 1l0000H and linear addresses between 0 and 10000H to the 
same physical addresses. 

• Creating a virtual address space larger than the physical address space. 

• Snaring 8086 operating system or ROM code which.is common to' several 8086 pro­
grams running in multitasking . 

• ' Redirecting or trapping references to memory-mapped I/O devices. 
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23.2.2 Protection within a Virtual-BOB6 Task 

Protection is not enforced between the segments of an 8086 program. To protect the 
system software running in a virtual-8086 task from the 8086 application program, soft­
ware designers may follow either of these approaches: 

• Reserve the first megabyte (plus 64K bytes) of each task's linear address space for the 
8086 processor program. An 8086 processor task cannot generate addresses outside 
this range. 

• Use the U/S bit of page-table entries to protect the virtual-machine monitor and 
other system software in each virtual-8086 task's space. When the processor is in 
virtual-8086 mode, the CPL is 3 (least privileged). Therefore, an 8086 processor pro­
gram has only user privileges. If the pages of the virtual-machine monitor have super­
visor privilege, they cannot be accessed by the 8086 program. 

23.3 ENTERING AND LEAVING VIRTUAL-BOB6 Mode 

Figure 23-2 summarizes the ways to enter and leave an 8086 program. Virtual-8086 
mode is entered by setting the VM flag. There are two ways to do this: 

1. A task switch to an Intel486 processor task loads the image of the EFLAGS register 
from the new TSS. The TSS of the new task must be an Intel486 CPU TSS, not an 
80286 TSS, because the 80286 TSS does not load the high word of the EFLAGS 
register, which contains the VM flag. A set VM flag in the new contents of the 
EFLAGS register indicates that the new task is executing 8086 instructions; there­
fore, while loading the segment registers from the TSS, the Intel486 processor forms 
base addresses in the 8086 style. 

2. An IRET instruction from a procedure of an Intel486 CPU task loads the EFLAGS 
register from the stack. A set VM flag indicates the procedure to which control is 
being returned to be an 8086 procedure. The CPL at the time the IRET instruction 
is executed must be 0, otherwise the processor does not change the state of the VM 
flag. 

MODE TRANSITION DIAGRAM 

TASK SWITCH 
ORIRET 

INTERRUPT, EXCEPTION 

IRET 

c.....;:=-:..:.=..:.~ OTHER i486N CPU TASKS I-+"'-!!..!.!.~-' 

(PROTECTED MODE) 

Figure 23·2. Entering and Leaving Virtual·SOS6 Mode 
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When a task switch is used to enter virtual-8086 mode, the segment registers are loaded 
from a TSS. But when an IRET instruction is used to set the VM flag, the segment 
registers keep the contents loaded during protected mode. Software should then reload 
these registers with segment selectors appropriate for virtual-8086 mode. 

The processor leaves virtual-8086 mode when an interrupt or exception occurs. There 
are two cases: 

1. The interrupt or exception causes a task switch. A task switch from a virtual-8086 
task to any other task loads the EFLAGS register from the TSS of the new task. If 
the new TSS is an Intel486 TSS and the VM flag in the new contents of the 
EFLAGS register is clear or if the new TSS is an 80286 TSS, the processor clears the 
VM flag of the EFLAGS register, loads the segment registers from the new TSS 
using Intel486 CPU-style address formation, and begins executing the instructions of 
the new task in Intel486 CPU protected mode. 

2. The interrupt or exception calls a privilege-level 0 procedure (most privileged). The 
processor stores the current contents of the EFLAGS register on the stack, then 
clears the VM flag. The interrupt or exception handler, therefore, runs as "native" 
Intel486 CPU protected-mode code. If an interrupt or exception calls a procedure in 
a conforming segment or in a segment at a privilege level other than 0 (most privi­
leged), the processor generates a general-protection exception; the error code is the 
selector of the code segment to which a call was attempted. 

System software does not change the state oUhe VM flag directly, but instead changes 
states in the image of the EFLAGS register stored on the stack or in the TSS. The 
virtual-8086 monitor sets the VM flag in the EFLAGS image on the stack or in the TSS 
when first creating a virtual-8086 task. Exception and interrupt handlers can examine the 
VM flag on the stack. If the interrupted procedure was running in virtual-8086 mode, the 
handler may need to call the virtual-8086 monitor. 

23.3.1 Transitions Through Task Switches 

A task switch to or from a virtual-8086 task may come from any of three causes: 

1. An interrupt which calls a task gate. 

2. An action of the scheduler of the Intel486 CPU operating system. 

3. Executing an IRET instruction when the NT flag is set. 

In any of these cases, the processor changes the VM flag in the EFLAGS register 
according to the image in the new TSS. If the new TSS is an 80286 TSS, the upper word 
of the EFLAGS register is not in the TSS; the processor clears the VM flag in this case. 
The processor updates the VM flag prior to loading the segment registers from their 
images in the new TSS. The new setting of the VM flag determines whether the proces­
sor interprets the new segment-register images as 8086 selectors or 80286 and Intel486 
CPU selectors. 

23-6 



VIRTUAL-SOS6 MODE 

23.3.2 Transitions Through Trap Gates and Interrupt Gates 

The Intel486 processor leaves virtual-8086 mode as the result of an exception or inter­
rupt which calls a trap or interrupt gate. The exception or interrupt handler returns to 
the 8086 program by executing an IRET instruction. 

Because it was designed to run on an 8086 processor, an 8086 program in a virtual-8086 
task will have an 8086-style interrupt table, which starts at linear address O. However, the 
Intel486 processor does not use this table directly. For all exceptions and interrupts 
which occur virtual-8086 mode, the processor calls handlers through the lOT. The lOT 
entry for an interrupt or exception in a virtual-8086 task must contain either: 

o A task gate. 

• An Intel486 CPU trap gate (descriptor type 14) or Intel486 CPU interrupt gate 
(descriptor type 15), which must point to a nonconforming, privilege-level 0 (most 
privileged), code segment. 

Interrupts and exceptions which call Intel486 CPU trap or interrupt gates use privilege­
level O. The contents of the segment registers are stored on the stack for this privilege 
level. Figure 23-3 shows the format of this stack after an exception or interrupt which 
occurs while a virtual-8086 task is running an 8086 program. 

WITHOUT ERROR CODE 

UNUSED 

OLD GS 

OLD FS 

OLD DS 

OLD ES 

OLD SS 

OLD ESP 

OLD EFLAGS 

OLD CS 

OLD EIP 

-ESP FROM 
TSS 

--NEW ESP 

WITH ERROR CODE 

UNUSED 

OLD GS 

OLD FS 

OLD DS 

OLD ES 

OLD SS 

OLD ESP 

OLD EFLAGS 

OLD CS 

OLD EIP 

ERROR CODE 

-ESP FROM 
TSS 

-NEW ESP 
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Figure 23-3. Privilege Level 0 Stack After Interrupt in Virtual-SOS6 Mode 
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After the processor saves the 8086 segment registers on the stack for privilege level 0, it 
clears the segment registers before running the handler procedure. This lets the inter­
rupt handler safely save and restore the DS, ES, FS, and GS registers as though they 
were Intel486 CPU selectors. Interrupt handlers, which may be called in the context of 
either a regular task or a virtual-8086 task, can use the same code sequences for saving 
and restoring the registers for any task. Clearing these registers before execution of the 
IRET instruction does not cause a trap in the interrupt handler. Interrupt procedures 
which expect values in the segmerit registers or which return values in the segment 
registers must use the register images saved on the stack for privilege level O. Interrupt 
handlers which need to know whether the interrupt occurred in virtual-8086 mode can 
examine the VM flag in the stored contents of the EFLAGS register. . 

An interrupt handler passes control to the virtual-8086 monitor if the VM flag is set in 
the EFLAGS image stored on the stack and the interrupt or exception is one which the 
monitor needs to handle. The virtual-8086 monitor may either: 

o Handle the interrupt within the virtual-8086 monitor. 

o Call the 8086 program's interrupt handler. 

Sending an interrupt or exception back to the 8086 program involves the following steps: 

1. Use the 8086 interrupt vector to locate the appropriate handler procedure. 

2. Store the state of the 8086 program on the privilege-level 3 stack (least privileged). 

3. Change the return link on the privilege-level 3 stack to point to the privilege-level 3 
handler procedure .. 

4. Execute an IRET instruction to pass control to the handler. 

5. When the IRET instruction from the privilege-level 3 handler again calls the virtual-
8086 monitor, restore the return link on the privilege-level a stack to point to the 
original, interrupted, privilege-level 3 procedure. 

6. Execute an IRET instruction to pass control back to the interrupted procedure. 

23.4 ADDITIONAL SENSITIVE INSTRUCTIONS 

When the Intel486 processor is running in virtual-8086 mode, the PUSHF, POPF, INT n 
and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS instruc­
tions, which are sensitive to IOPL in protected mode, are not sensitive in virtual-8086 
mode. Following is a complete list of instructions which are sensitive in virtual-8086 
mode: 

eLI 
STI 
PUSHF 
POPF 
INTn 
IRET 

- Clear interrupt-Eimble Flag 
- Set Interrupt-Enable Flag 
- Push Flags 
- Pop Flags 
- Software Interrupt 
- Interrupt Return 
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The CPL is always 3 while running in virtual-8086 mode; if the 10PL is less than 3, an 
attempt to use the instructions listed above will trigger a general-protection exception. 
These instructions are sensitive to the 10PL to give the virtual-8086 monitor a chance to 
emulate the facilities they affect. 

23.4.1 IEmul@'i:ing 31OS6 Oper@iiUlg Sys'~em Calls 

The INT n instruction is sensitive to 10PL so a virtual-8086 monitor can intercept calls 
to the 8086 operating system. Many 8086 operating systems are called by pushing param­
eters onto the stack, then executing an INT n instruction. If the 10PL is less than 3, 
INT n instructions are intercepted by the virtual-8086 monitor. The virtual-8086 monitor 
then can emulate the function of the 8086 operating system or send the interrupt back to 
the 8086 operating system. 

When the Intel486 processor is running an 8086 program in a virtual-8086 task, the 
PUSHF, POPF, and IRET instructions are sensitive to the 10PL. This lets the virtual-
8086 monitor protect the interrupt-enable flag (IF). Other instructions which affect the 
IF flag (such as the STI and CLI instructions) are sensitive to the 10PL in both 8086 and 
Intel486 CPU programs. 

Many 8086 programs written for non-multitasking systems set and clear the IF flag to 
control interrupts. This may cause problems in a multitasking environment. If the 10PL 
is less than 3, all instructions which change or test the IF flag generate an exception. The 
virtual-8086 monitor then can control the IF flag in a manner compatible with the 
Intel486 CPU environment and transparent to 8086 programs. 

23.5 VmmJAl ~/O 

Many 8086 programs written for non-multitasking systems directly access I/O ports. This 
may cause problems in a multitasking environment. If more than one program accesses 
the same port, they may interfere with each other. Most multitasking systems require 
application programs to access I/O ports through the operating system. This results in 
simplified, centralized control. 

The Intel486 processor provides I/O protection for creating I/O which is compatible with 
the Intel486 CPU environment and transparent to 8086 programs. Designers may take 
any of several possible approaches to protecting I/O ports: 

o Protect the I/O address space and generate exceptions for all attempts to perform I/O 
directly. 

o Let the 8086 processor program perform I/O directly. 

o Generate exceptions on attempts to access specific I/O ports. 

o Generate exceptions on attempts to access specific memory-mapped I/O ports. 
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The method of controlling access to I/O ports depends upon whether they are 1/0-
mapped or memory-mapped. 

23.5.1 I/O-Mapped I/O 

The I/O address space in virtual-8086 mode differs from protected mode only because 
the 10PL is not checked. Only the I/O permission bit map is checked when virtual-8086 
tasks access the I/O address space. 

The I/O permission bit map can be used to generate exceptions on attempts to access 
specific I/O addresses. The I/O permission bit map of each virtual-8086 task determines 
which I/O addresses generate exceptions for that task. Because each task may have a 
different I/O permission bit map, the addresses which generate exceptions for one task 
may be different from the addresses for another task. See Chapter 8 for more informa­
tion about the I/O permission bit map. 

23.5.2 Memory-Mapped 1/0 

In systems which use memory-mapped I/O, the paging facilities of the Intel486 processor 
can be used to generate exceptions for attempts to access I/O ports. The virtual-8086 
monitor may use paging to control memory-mapped I/O in these ways: 

• . Map part of the linear address space of each task which needs to perform I/O to the 
physical address space where I/O ports are placed. By putting the I/O ports at differ­
ent addresses (in different pages), the paging mechanism can enforce isolation· 
between tasks. 

• Map part of the linear address space to pages which are not-present. This generates 
an exception whenever a task attempts to perform I/O to those pages. System soft­
ware then can interpret the I/O operation being attempted. 

Software emulation of the I/O space may require too much operating system interven­
tion under some conditions. In these cases, it may be possible to generate an exception 
for only the first attempt to access I/O. The system software then may determine 
whether a program can be given exclusive control of I/O temporarily, the protection of 
the I/O space may be lifted, and the program allowed to run at full speed. 

23.5.3 Special I/O Buffers 

Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be 
emulated using page mapping. The linear space for the buffer can be mapped to a 
different physical space for each virtual-8086 task. The virtual-8086 monitor then can 
control which virtual buffer to copy onto the real buffer in the physical address space. 
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23.6 DIFFERENCES FROM 8086 CPU 

In general, virtual-8086 mode will run software written for the 8086, 8088, 80186, and 
80188 processors. The following list shows the minor differences between the 8086 pro­
cessor and the virtual-8086 mode of the Intel486 processor. 

1. Instruction clock counts. 

The Intel486 processor takes fewer clocks for most instructions than the 8086 pro­
cessor. The areas most likely to be affected are: 

• Delays required by I/O devices between I/O operations. 

• Assumed delays with 8086 processor operating in parallel with an 8087. 

2. Divide exceptions point to the DIV instruction. 

Divide exceptions on the Intel486 processor always leave the saved CS:IP value 
pointing to the instruction which failed. On the 8086 processor, the CS:IP value 
points to the next instruction. 

3. Undefined 8086 processor opcodes. 

Opcodes which were not defined for the 8086 processor generate an invalid-opcode 
or execute as one of the new instructions defined for the Intel486 processor. 

4. Value written by PUSH SP. 

The Intel486 processor pushes a different value on the stack for PUSH SP than the 
8086 processor. The Intel486 processor pushes the value in the SP register before it 
is decremented as part of the push operation; the 8086 processor pushes the value of 
the SP register after it is decremented. If the pushed value is important, replace 
PUSH SP instructions with the following three instructions: 

PUSH BP 
MOV BP, SP 
XCHG BP, [BPl 

This code functions as the 8086 PUSH SP instruction on the Intel486 processor. 

5. Shift or rotate by more than 31 bits. 

The Intel486 processor masks all shift and rotate counts to the lowest five bits. This 
limits the count to a maximum of 31 bit positions, thereby limiting the time that 
interrupt response is delayed while the instruction executes. 

6. Redundant prefixes. 

The Intel486 processor limits instructions to 15 bytes. The only way to violate this 
limit is with redundant prefixes before an instruction. A general-protection excep­
tion is generated if the limit on instruction length is violated. The 8086 processor has 
no instruction length limit. 

7. Operand crossing offset 0 or 65,535. 

On the 8086 processor, an attempt to access a memory operand which crosses offset 
65,535 (e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when the 
contents of the SP register are 1) causes the offset to wrap around modulo 65,536. 
The Intel486 processor generates an exception in these cases, a general-protection 
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exception if the segment is a data segment (i.e., if the CS, DS, ES, FS, or GS register 
is being used to address the segment), or a stack exception if the segment is a stack 

. segment (i.e., if the SS register is being used). 

8. Sequential execution across offset 65,535. 

On the 8086 processor, if sequential execution of instructions proceeds past offset 
65,535, the processor fetches the next instruction byte from offset 0 of the same 
segment. On the Intel486 processor, the processor generates a general-protection 
exception. 

9. LOCK is restricted to certain instructions. 

The LOCK prefix and its output signal should only be used to prevent other bus 
masters from interrupting a data movement operation. The LOCK prefix only may 
be used with the following Intel486 CPU instructions when they modify memory. An 
invalid-opcode exception results from using LOCK before any other instruction, or 
with these instructions when no write operation is made to memory. 

c> Bit test and change: the BTS, BTR, and. BTC instructions . 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

o One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions . 

• Two-operand arithmetic and logical: the ADD, ADC, SUB,SBB, AND, OR, and 
XOR instructions. 

10. Single-stepping external interrupt handlers. 

The priority of the Intel486 processor single-step exception is different from that of 
the 8086 processor. This change prevents an external interrupt handler from being 
single-stepped if the interrupt occurs while a program is being single-stepped. The 
Intel486 processor single-step exception has higher priority than any external inter­
rupt. The Intel486 processor will still single-step through an interrupt handler called 
by the INT instruction or by an exception. 

11. IDlY exceptions for quotients of 80H or 8000H. 

The Intel486 proces.sor can generate the largest negative number as a quotient from 
the IDlY instruction. The 8086 processor generates a divide-error exception instead. 

12. Flags in stack. 

The contents of the EFLAGS register stored by the PUSHF instruction, by inter­
rupts, and by exceptions is different from that stored by the 8086 processor in bit 
positions ·12 through 15. On the 8086 processor these bits are stored as though they 
were set, but in virtual-8086 mode bit 15 is always clear, and bits 14 through 12 have 
the last value loaded into them. 

13 .. NMI interrupting NMI handlers. 

After an NMI interrupt is accepted by the Intel486 processor, the NMI interrupt is 
masked until an IRET instruction is executed. 
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14. Floating-point errors call the floating-point-error exception. 

Floating-point exceptions on the Intel486 processor call the floating-point error 
exception handler. If an 8086 processor uses another exception for the 8087 inter­
rupt, both exception vectors should call the floating-point error exception handler. 
The Intel486 processor has signals which, with the addition of external logic, support 
user-defined error reporting for emulation of the interrupt mechanism used in many 
personal computers. . 

15. Numeric exception handlers should allow prefixes. 

On the Intel486 processor, the value of the CS and IP registers .saved for floating­
point exceptions points at any prefixes which come before the ESC instruction. On 
the 8086 processor, the saved CS:IP points to the ESC instruction. 

16. Floating-Point Unit does not use interrupt controller. 

The floating-point error signal to the Intel486 processor does not pass through an 
interrupt controller (an INT signal from 8087 coprocessor does). Some instructions 
in a coprocessor-error exception handler may need to be deleted if they use the 
interrupt controller. The Intel486 processor has signals which, with the addition of 
external logic, support user-defined error reporting for emulation of the interrupt 
mechan'ism used in many personal computers. 

17. Response to bus hold. 

Unlike the 8086 and 286 processors, the Intel486 processor responds to requests for 
control of the bus from other potential bus masters, such as DMA controllers, 
between transfers of parts of an unaligned operand, such as two words which form a 
doubleword. 

18. CPL is 3 in virtual-8086 mode. 

The 8086 processor does not support protection, so it has no CPL. Virtual-8086 
mode uses a CPL of 3, which prevents the execution of privileged instructions. 
These are: 

• LIDT instruction 

• LGDT instruction 

• LMSW instruction 

• special forms of the MOV instruction for loading and storing the control registers 

• CLTS instruction 

• HLT instruction 

• INVD instruction 

• WBINVD instruction 

• INVLPG instruction 
These instructions may be executed while the processor is in real-address mode 
following reset initialization. They allow system data structures, such as descriptor 
tables, to be set up before entering protected mode. Virtual-8086 mode is entered 
from protected mode, so it has no need for these instructions. 

19. Denormal exception handling is different. See Section 16.2.4. 
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23.7 DIFFERENCES FROM 286 CPU IN REAL-ADDRESS MODE 

The differences between virtual-8086 mode and 286 real-address mode affect the inter­
face. between applications and the operating system. The application . runs at privilege 
level 3 (user mode), so all attempts to use privilege-protected instructions and architec­
tural features generate calls to the virtual-machine monitor. The monitor examines these 
calls and emulates them. 

23.7.1 Privilege Level 

Programs running in virtual-8086 mode have a privilege level of 3 (user mode), which 
prevents the execution of privileged instructions. These are: 

• LIDT instruction 

• LGDT instruction 

• LMSW instruction 

• special forms of the MOV instruction for loading and storing the control registers 

• CLTS instruction 

• HL T instruction 

• INVD instruction 

• WBINVD instruction 

• INVLPG instruction 

Virtual-8086 mode is entered from protected mode, so it has no need for these instruc­
tions. These instructions can be executed in real-address mode. 

23.7.2 Bus Lock 

The 286 processor implements the bus lock function differently than the Intel386 DX 
and Intel486 processors. This fact may or may not be apparent to 8086 programs, 
depending on how the virtual-8086 monitor handles the LOCK prefix. Instructions with 
the LOCK prefix are sensitive to the IOPL; software designers can choose to emulate its 
function. If, however, 8086 programs are allowed to execute LOCK directly, programs 
which use forms of memory locking specific to the 8086 processor may not run properly 
when run on the Intel486 processor. 

The LOCK prefix and its bus signal only should be· used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following Intel486 CPU· instructions when they modify memory. An invalid-opcode 
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exception results from using the LOCK prefix before any other instruction, or with these 
instructions when no write operation is made to memory (i.e., when the destination 
operand is in a register). 

o Bit test and change: the BTS, BTR, and BTC instructions. 

o Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

o One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

o Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memOlY defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
80286 configurations lock the entire physical memory space. 

Unlike the 8086 and 286 processors, the Intel386 and Intel486 processors respond to 
requests for control of the bus from other potential bus masters, such as DMA control­
lers, between transfers of parts of an unaligned operand, such as two words which form 
a doubleword. 

23.8 DIFFERENCES FROM Intel386 0)( AND S){ CPUs 

Real-address mode and virtual-8086 mode are implemented in the same way on the 
Intel486 processor as on the Intel386 processors. For maximum performance, programs 
ported to the Intel486 processor should be run with the cache enabled. 

23·15 





Mixing 16-Bit 
and 32-Bit Code 

24 





CHAPTER 24 
Mi}(~NG i 6Q ranr Au~D 32 Q BIT CODE 

The Intel486 processor running in protected mode, like the Intel386 processors is a 
complete 32-bit architecture, but it supports programs written for the 16-bit architecture 
of earlier Intel processors. There are three levels of this support: 

1. Running 8086 and 80286 code with complete compatibility. 

2. Mixing 16-bit modules with 32-bit modules. 

3. Mixing 16-bit and 32-bit addresses and data within one module. 

The first level is discussed in Chapter 21, Chapter 22, and Chapter 23. This chapter 
shows how 16-bit and 32-bit modules can cooperate with one another, and how one 
module can use both 16-bit and 32-bit operands and addressing. 

The Intd486 processor functions most efficiently when it is possible to distinguish 
between pure 16-bit modules and pure 32-bit modules. A pure 16-bit module has these 
characteristics: 

o All segments occupy 64K bytes or less. 

o Data items are either 8 bits or 16 bits wide. 

o Pointers to code and data have 16-bit offsets. 

o Control is transferred only among 16-bit segments. 

A pure 32-bit module has these characteristics: 

o Segments may occupy more than 64K bytes (0 bytes to 4 gigabytes). 

o Data items are either 8 bits or 32 bits wide. 

o Pointers to code and data have 32-bit offsets. 

o Control is transferred only among 32-bit segments. 

A program written for 16-bit processor would be pure 16-bit code. A new program 
written for the protected mode of the Intel486 processor would be pure 32-bit code. As 
applications move from 16-bit processors to the 32-bit Intel486 processor, there will be 
cases where 16-bit and 32-bit code will need to be mixed. Reasons for mixing code are: 

.. Modules will be converted one-by-one from 16-bit environments to 32-bit 
environments. 

o Older, 16-bit compilers and software-development tools will be used in the new 32-bit 
operating environment until new 32-bit tools are available. 

o The source code of 16-bit modules is not available for modification. 

o The specific data structures used by a given module are fixed at 16-bit word size. 

o The native word size of the source language is 16 bits. 
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24.1 USING 16-81T AND 32-81T ENVIRONMENTS 

The features of the architecture which permit the Intel486 processor to mix 16-bit and 
32-bit address and operand size include: 

• The D-bit (default bit) of code-segment descriptors, which determines the default 
choice of operand-size and address-size for the instructions of a code segment. (In 
real-address mode and virtual-8086 mode, which do not use descriptors, the default is 
16 bits.) A code segment whose D-bit is set is a 32-bit segment; a code segment whose 
D-bit is clear is a 16-bit segment. The D-bit eliminates the need to put the operand 
size and address size in instructions when all instructions use operands and effective 
addresses of the same size. 

• Instruction prefixes to override the default choice of operand size and address size 
(available in protected mode as well as in real-address mode and virtual-8086 mode). 

• Separate 32-bit and 16-bit gates for intersegment control transfers (including call 
gates, interrupt gates, and trap gates). The operand size for the control transfer is 
determined by the type of gate, not by the D-bit or prefix of the transfer instruction. 

• Registers which can be used both for 16-bit and 32-bit operands and effective-address 
calculations. 

• The B bit (Big bit) of the stack segment descriptor, which specifies the size of stack 
pointer (the 32-bit ESP register or the 16-bit SP register) used by the processor for 
implicit stack references. The B bit for all data descriptors also controls upper ADD 
range for expanded down. 

24.2 MIXING 16-81T AND 32-81T OPERATIONS 

The Intel486 processor has two instruction prefixes which allow mixing of 32-bit and 
16-bit operations within one segment: 

• The operand-size prefix (66H) 

<II The address-size prefix (67H) 

These prefixes reverse the default size selected by the Default bit. For example, the 
processor can interpret the MOV mem, reg instruction in any of four ways: 

• In a 32-bit segment: 

1. Moves 32 bits from a 32-bit register to memory using a 32-bit effective address. 

2. If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address. 

3. If preceded by an address-size prefix, moves 32 bits from a 32~bit register to 
memory using a 16-bit effective address. 

4. If preceded by both an address-size prefix and an operand-size prefix, moves 
16 bits from a 16-bit register to memory using a 16-bit effective address. 
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• In a 16-bit segment: 

1. Moves 16 bits from a 16-bit register to memory using a 16-bit effective address. 

2. If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address. 

3. If preceded by an address-size prefix, moves 16 bits from .a 16-bit register to 
memory using a 32-bit effective address. 

4. If preceded by both an address-size prefix and an operand-size prefix, moves 
32 bits from a 32-bit register to memory using a 32-bit effective address. 

These examples show that any instruction can generate any combination of operand size 
and address size regardless of whether the instruction is in a 16- or 32-bit segment. The 
choice of the 16- or 32-bit default for a code segment is based upon these criteria: 

1. The need to address instructions or data in segments which are larger than 
64K bytes. 

2. The predominant size of operands. 

3. The addressing modes desired. 

The Default bit should be given a setting which allows the predominant size of operands 
to be accessed without operand-size prefixes. 

24.3 SHARING DATA AMONG MIXED·SIZE CODE SEGMENTS 

Because the choice of operand size and address size .is specified in code· segments and 
their descriptors, data segments can be shared freely among both 16-bit and 32-bit code 
segments. The only limitation is imposed by pointers with 16-bit offsets, which only can 
point to the first 64K bytes of a segment. When a data segment with more than 64K 
bytes is to be shared among 16- and 32-bit segments, the data which is to be accessed by 
the 16-bit segments must be located within the first 64K bytes. 

A stack which spans less than 64K bytes can be shared by both 16- and 32-bit code 
segments. This class of stacks includes: 

o Stacks in expand-up segments with the Granularity and Big bits clear. 

" Stacks in expand-down segments with the Granularity and Big bits clear. 

• Stacks in expand-up segments with the Granularity bit set and the Big bit clear, in 
which the stack is contained completely within the lower 64K bytes. (Offsets greater 
than OFFFFH can be used for data, other than the stack, which is not shared.) 

The B-bit ofa stack segment cannot, in general, be used to change the size of stack used 
by a 16-bit code segment. The size of stack pointer used by the processor for implicit 
stack references is controlled by the B~bit of the data-segment descriptor for the stack. 
Implicit references are those caused by interrupts, exceptions, and instructions such as 
the PUSH, POP, CALL, and RET instructions. Although it seems like the B bit could be 
used to increase the stack segment for 16-bit programs beyond 64K bytes, this may not 
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be done. The B-bit does not control explicit stack references, such as accesses to param­
eters or local variables. A 16-bit code segment can use a "big" stack only if the code is 
modified so that all explicit references to the stack are preceded by the address-size 
prefix,causing those references to use 32-bit addressing. 

In big, expand-down segments (the Granularity, Big, and Expand-down bits set), all 
offsets are greater than 64K, therefore 16-bit code cannot use this kind of stack segment 
unless the code segment is modified to use 32-bit addressing. (See Chapter 6 for more 
information about the G, B, and E bits.) 

24.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE 
SEGMENTS 

When transferring control among procedures in 16-bit and 32-bit code segments, pro­
grammers must be aware of three points: 

• Addressing limitations imposed by pointers with 16-bit offsets. 

• Matching of operand-size attribute in effect for the CALL/RET instruction pair and 
. the Interrupt/IRET pair for managing the stack correctly. 

• Translation of parameters, especially pointer parameters. 

Clearly, 16-bit effective addresses cannot be used to address data or code located beyond 
OFFFFH in a 32-bit segment, nor can large 32-bit parameters be squeezed into a 16-bit 
word; however, except for these obvious limits, most interface problems between 16-bit 
and 32-bit modules can be solved. Some solutions involve inserting interface code 
between modules.'· . 

24.4.1 Size of Code-Segment Pointer' 

For control-transfer instructions which use a pointer to identify the next instruction (Le., 
those which do not use gates), the size of the offset portion of the pointer is determined 
by the operand-size attribute. The implications of the use of two different sizes of code­
segment pointer are: 

• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is 
always possible .using a 32-bit operand size. 

• A JMP, CALL, or RET instruction from'a 16-bit segment using a 16-bit operand size 
: cannot address a destination in a 32-bit segment if the address of the destination is 

greater than OFFFFH. 

An interface- procedure can provide a mechanism for transfers from 16-bit segments to 
destinations in ·32-bit segments beyond 64K. The requirements for this kind of interface 
procedure are discussed later in this chapter. 
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24.4.2 Stack Management for Control Transfers 

Because stack management is different for 16-bit CALL and RET instructions than for 
32-bit CALL and RET instructions, the operand size of the RET instruction must match 
the CALL instruction. (See Figure 24-1.) A 16-bit CALL instruction pushes the contents 
of the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. 
The matching RET instruction also must use a 16-bit operand size to pop these 16-bit 
values from the stack into the 16-bit registers. A 32-bit CALL instruction pushes the 
contents of the 32-bit EIP register and (for interlevel calls) the 32-bit ESP register. The 
matching RET instruction also must use a 32-bit operand size to pop these 32-bit values 
from the stack into the 32-bit registers. If the two parts of a CALL/RET instruction pair 
do not have matching operand sizes, the stack will not be managed correctly and the 
values of the instruction pointer and stack pointer will not be restored to correct values. 

While executing 32-bit code, if a call to 16-bit code at a more privileged level (i.e., 
dpl<cpl) is made via a 286 processor 16-bit call gate, then the upper 16-bits of the ESP 
register may be unreliable upon returning to the 32-bit code (i.e., after executing a RET 
in the 16-bit code segment). 

When the CALL instruction and its matching RET instruction are in segments which 
have D bits with the same values (i.e., both have 32-bit defaults or both have 16-bit 
defaults), the default settings may be used. When the CALL instruction and its matching 
RET instruction are in segments which have different D-bit values, an operand size 
prefix must be used. 
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Figure 24-1. Stack After Far 16- and 32-Bit Calls 
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There are three ways for a 16-bit procedure to make a 32-bit call: 

1. Use a 16-bit call to a 32-bit interface procedure. The interface procedure uses a 
32-bit call to the intended destination. 

2. Make the call through a 32-bit call gate. 

3. Modify the 16-bit procedure, inserting an operand-size prefix before the call, to 
change it to a 32-bit call. . 

Likewise, there are three ways to cause a 32-bit procedure to make a 16-bit call: 

1 .. Use a 32-bit call to a 32-bit interface procedure. The interface procedure uses a 
16-bit call to the intended destination. . 

2. Make the call through a 16-bit call gate. 

3. Modify the 32-bit procedure, inserting an operand-size prefix before the call, 
thereby changing it to a 16-bit call. (Be certain that the return offset does not exceed 
OFFFFH.) . 

Programmers can use any of the preceding methods to make a CALL instruction in a 
16-bit segment match the corresponding RET instruction in a 32-bit segment, or to make 
a CALL instruction in a 32-bit segment match the corresponding RET instruction in a 
16-bit segment. 

24.4.2.1 CONTROLLING THE OPERAND SIZE FOR A CALL 

The operand-size attribute in effect for the CALL instruction is specified by the D bit 
for the segment containing the destination and by any operand-size instruction prefix. 

When the selector of the pointer referenced by. a CALL instruction selects a gate 
descriptor, the type of call is determined by the type of call gate. A call through a 286 
call gate (descriptor type 4) has a 16-bit operand-size attribute; a call through an 
Intel386/Intel486 CPU call gate (descriptor type 12) has a 32-bit operand-size attribute. 
The offset to the destination is taken from the gate descriptor; therefore, even a 16-bit 
procedure can calla procedure located more than 64K bytes from the base of a 32-bit 
segment, because a 32-bit call gate contains a 32-bit offset. 

An unmodified 16-bit code segment which has run successfully on an 8086 processor or 
in real-mode on a 286 processor will have a D-bit which is clear and will not use 
operand-size override prefixes; therefore, it will use 16-bit versions of the CALL instruc­
tion. The only modification needed to make a 16-bit procedure produce a 32-bit call is to 
relink the call to an Intel386/Intel486 CPU call gate. 

24.4.2.2 CHANGING SIZE OF A CALL 

When adding 3:2-bit gates to 16-bit procedures, it is important to considerthe numberof 
parameters. The count field of the gate descriptor specifies the size of the parameter 
string to copy from the current stack to the stack of the more privileged procedure. The 
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count field of a 16-bit gate specifies the number of words to be copied, whereas the count 
field of a 32-bit gate specifies the number of doublewords to be copied; therefore, the 
16-bit procedure must use an even number of words as parameters. 

24.4.3 Interrupt Control Transfers 

With a control transfer caused by an exception or interrupt, a gate is used. The operand­
size attribute for the interrupt is determined by the gate descriptor in the interrupt 
descriptor table (IDT). 

An Intel386/Intel486 CPU interrupt or trap gate (descriptor type 14 or 15) to a 32-bit 
interrupt handler can be used to interrupt either 32-bit or 16-bit procedures. However, 
sometimes it is not practical to permit an interrupt or exception to call a 16-bit handler 
when 32-bit code is running, because a 16-bit interrupt procedure has a return offset of 
only 16 bits saved on its stack. If the 32-bit procedure is running at an address beyond 
OFFFFH, the 16-bit interrupt procedure cannot provide the return address. 

24.4.4 Parameter Translation 

When segment offsets or pointers (which contain segment offsets) are passed as param­
eters between 16-bit and 32-bit procedures, some translation is required. If a 32-bit 
procedure passes a pointer to data located beyond 64K to a 16-bit procedure, the 16-bit 
procedure cannot use it. Except for this limitation, interface code can perform any for­
mat conversion between 32-bit and 16-bit pointers which may be needed. 

Parameters passed by value between 32-bit and 16-bit code also may require translation 
between 32-bit and 16-bit formats. The form of the translation is application-dependent. 

24.4.5 The Interface Procedure 

Placing interface code between 32-bit and 16-bit procedures can be the solution to sev­
eral interface problems: 

o Allowing procedures in 16-bit segments to call procedures with offsets greater than 
OFFFFH in 32-bit segments. 

o Matching operand size between CALL and RET instructions. 

o Translating parameters (data). 

The interface code is simplified where these restrictions are followed. 

o Interface code -resides in a code segment whose D-bit is set, which indicates a default 
operand size of 32-bits. 

o All procedures which may be called by 16-bit procedures have offsets which are not 
greater than OFFFFH. 

o All return addresses saved by 16-bit procedures also have offsets not greater than 
OFFFFH. 
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The interface code becomes more complex if any ofthese restrictions are violated. For 
example, if a 16-bit procedure calls a 32-bit procedure with an entry. point beyond 
OFFFFH, the interface code will have to provide the offset to the entry point. The 
mapping between 16- and 32-bit addresses only is performed automatically when a call 
gate is used, because the descriptor for a call gate contains a 32-bit address. When a call 
gate is not used, the descriptor must provide the 32-bit address. 

The interface code calls procedures in other segments. There may be two kinds of 
interface: 

o Where 16-bit procedures call 32-bit procedures. The interface code is called by 16-bit 
CALL instructions and uses the operand-size prefix before RET instructions for per­
forming a 16-bit RET instruction. Calls to 32-bit segments are 32-bit CALL instruc­
tions (by default, because the D-bit is set), and the 32-bit. code returns with 32-bit 
RET instructions. . 

o Where 32-bit procedures call 16-bit procedures. The interface code is called by 32-bit 
CALL instructions, and returns with 32-bit RET instructions (by default, because the 
D-bit is set). CALL instructions to 16-bit procedures use the operand-size prefix; 
16-bit procedures return with 16-bit RET instructions. 
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CHAPTER 25 
COMPATIBILITY WITH THE 8087, 

Intel287 AND Intel387 MATH COPROCESSORS 

This chapter addresses the issues that must be faced when transporting numerical soft­
ware to an Intel486 processor with integrated FPU from one of its predecessor systems. 
To software, the Intel486 processor looks very much like an Intel386 CPU/lnte1387 math 
coprocessor system. Software which runs on an Inte1386 CPU/Inte1387 NPX system, 
whether it was originally created for the Intel386 CPU/lnte1387 or was transported from 
a 286/Inte1287 or 8086/8087 system, will run with at most minor modifications on the 
Intel486 processor. To transport code directly from a 286/Inte1287 or 8086/8087 system 
to the Intel486 processor, certain additional issues must be addressed. Separate sections 
of this chapter are devoted to the differences between the Intel486 processor and each 
of its predecessors. . 

25.1 DIFFERENCES FROM Intel386 CPU/lntel387 NPX SYSTEMS 

This section 'summarizes those differences between the Intel386 CPU/lnte1387 NPX sys­
·tem and the Intel486 processor which may·affect numerical software. 

1. Control Register Bits: 

The ET (Extention Type) bit of the CRO control register is used in the Inte1386 
processor to indicate whether the math coprocessor in the system is an Intel287 
(ET = 0) or an Intel387 DX (ET = 1). This bit is not used by Intel486 processor 
hardware. The ET bit is hardwired to "1." 

The NE (Numeric Exception) bit of the CRO register is used in the Intel486 proces­
sor to determine whether. unmasked floating-point exceptions are reported inter­
nally via interrupt vector 16 (NE = 1) or through external interrupt (NE == 0). On 
reset, the NE bit is initialized to 0, so software using the automatic internal error­
reporting mechanism must set this bit to 1. 

As on the 286 and Intel386 processors, the MP (Monitor coProcessor) bit of the 
CRO control register determines whether WAIT instructions trap when the context 
of the FPU is different from that of the currently-executing task. If MP =:= 1 and 
TS = 1, then a WAIT instruction will cause a Device Not Available fault (interrupt 
vector 7). The MP bit is used on the 286 and Inte1386 microprocessors to support 
the use of a WAIT instruction to wait on a <;levice other than a numeric coprocessor. 
The device reports its status through the BUSY # pin. Since the Intel486 processor 
does not have such a pin, the MP bit has no relevant use, and should be set to 1 for 
normal operation. 

2. Initialization and RESET: 

Upon hardware RESET, the floating-point registers will remain unchanged unless 
the Built-In Self-Test (BIST) is requested. When the BIST is requested, hardware 
RESET has almost the same effect as the FINIT instruction; the only difference is 
that FINIT leaves the stack registers unchanged, while hardware RESET with BIST 
resets them to O. 
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Upon hardware RESET or FINIT, the Intel387 math coprocessor signals an error 
condition. The Intel486 processor, like the Intel287 coprocessor, does not. 

On the Intel486 processor, the FINIT instruction clears the error pointers (data and 
instruction). 

3. Exceptions: 

On the Intel486 processor, an undefined ESC opcode will cause an Illegal Opcode 
exception (interrupt vector 6). Undefined ESC opcodes, like legal ESC opcodes, 
cause a Device Not Available exception (interrupt vector 7) when either the TS or 
the EM bit of CRO is set. The Intel486 processor does not check for floating-point 
error conditions on encountering an undefined ESC opcode. 

A misaligned data operand will calise an alignment exception (interrupt vector 17) 
in level 3 software, except for the stack portion of an FSA VE/FRSTOR operation. 

On the Intel486 processor, a WAIT instruction will sometimes be executed as Nap. 
This happens when the WAIT precedes an instruction which itself waits anywhere in 
the course of its execution. In such a case, the report of a numeric exception may 
come one instruction later on the Intel486 processor than on an Intel386 CPU/ 
Intel387 NPX system. 

On the Intel486 processor, when the first half of an operand to be written is inside a 
page or segment and the second half is outside, a memory fault can cause the first. 
half to be stored without the second. In such cases, Intel386 CPU/lntel387 NPX 
systems store nothing. 

On the Intel486 processor, when a segment fault occurs in the middle of an 
FLDENV operation, it can happen that part of the environment is loaded and part 
not. In such cases, the FPU control word is left with a value of 007F H. 

Interrupt 9 does not occur in the Intel486 processor. In cases where the Intel387 
would cause interrupt 9, the Intel486 processor simply aborts the instruction. Some 
care is necessary, however. Memory faults (especially page faults), if they occur in 
FLDENV or FRSTOR while the operating system is performing a task switch, can 
cause the floating-point environment to be lost. Intel strongly recommends that the 
floating-point save area be the same page as the TSS. 

4. Transcendental Instructions: 

On the Intel486 processor, transcendental instructions can .be aborted at certain 
checkpoints during execution if an INTR is pending. Transcendental instructions 
should therefore be used only in an environment where INTRs are not expected to 
come as close as 200 clocks apart. 

25.2 DIFFERENCES FROM 286/lnte1287 SYSTEMS 

This section summarizes the differences between Intel486 processor and Inte1386 CPU/ 
Intel387 math coprocessor systems on the one hand, and 286/Inte1287 and 8086/8087 
systems on the other, and analyzes the impact of these differences on software that must 
be transported from a 286/Inte1287 system to the Intel486 processor. Any migration 
directly from the 8086/8087 must also take into account the additional issues addressed 
in Section 25.3. 
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25.2.1 Data Types and Exception Handling 

Difference Description 

Impact on Reason 
Issue InteI486'" CPU/ for the 

InteI387'" NPX Intel28T" /8087 Software Difference 
Behavior CPU Behavior 

NaN The Intel486 CPU/ The Inte1287/ Uninitialized IEEE Stan-
Intel387 NPX distin- 8087 CPU only memory loca- dard 754 
guishes between generates one tions that contain compatibility. 

. signaling NaNs and kind of NaN (the QNaNs should 
quiet NaNs. The equivalent of a be changed to 
Intel486 CPU/lntel387 quiet NaN) but SNaNs to cause 
NPX only generates raises an invalid- the Intel486 
quiet NaNs. An invalid- operation excep- CPU/lntel387 
operation exception is tion upon NPX to fault 
raised only upon encountering any when uninitial-
encountering a signal- kind of NaN. ized memory 
ing NaN (except for locations are 
FCOM, FIST, and referenced. 
FBSTP which also 
raise IE for quiet 
NaNs). 

Pseudozero, The Intel486 CPU/ The Inte1287/ None. The IEEE Stan-
Pseudo-NaN, Intel387 NPX neither 8087 CPU Intel486 CPU/ dard 754 
Pseudoinfinity, generates nor sup- defines and sup- Intel387 DX does compatibility. 
and Un normal . ports these formats; it ports special not generate 
Formats raises an invalid- handling for these formats, 

operation exception these formats. and therefore will 
whenever it encoun- not encounter 
ters them in an arith- them unless a 
metic operation. programmer 

deliberately 
enters them. 

Tag Word Bits The encoding in the The encoding for The exception IEEE Stan-
for Unsupported tag word for the pseudo-zero and handler may dard 754 
Data Formats unsupported data for- unnormal is need to be compatibility. 

mats mentioned in "valid" (type 00); changed if pro-
Section 25.2.1 is "spe- the others are grammers. use 
cial data" (type 10). "special data" such data types. 

(type 10). 

Invalid-Operation No invalid-operation Upon encounter- None. Software Upgrade, to 
Exception exception is raised ing a denormal on the.lnfel486 eliminate 

upon encountering a in FSQRT, FDIV, CPU/lntel387 exception. 
denormal in FSQRT, or FPREM or NPX will continue 
FDIV, or FPREM or upon conversion to execute in 
upon conversion to to BCD or to cases where the 
BCD or to integer. The integer, the Inte1287/8087 
operation proceeds by invalid-operation CPU would trap. 
first normalizing the exception is 
value. raised. 
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Difference Description 

Impact on Reason. 
Issue InteI486'" CPUI for the 

InteI387'" NPX InteI287'" 18087 Software Difference 
Behavior CPU Behavior 

Denormal The denormal excep- The denormal The exception Performance 
Exception tion is raised in tran- exception is not handler needs to enhance-

scendental instructions raised in tran- be changed only ment for nor-
and FXTRACT. scendental ifit gives special mal case. 

instructions and treatment to dif-

: FXTRACT. ferent opcodes. 

. Overflow Overflow exception Overflow excep~ . Overflow excep- IEEE Stan-
Exception masked. tion masked. tion masked. dard 754 

If the rounding mode The Inte1287/ Under the most compatibility. 

is set to chop (toward 8087 CPU does common round-
zero), the result is the not signal the ing modes, no 
most positive or more overflow excep7 impact. If round-
negative number. tion when the ing is toward 

masked zero (chop), a 
response is not program on the 
infinity; Le., it Intel486 CPU! 
signals overflow Intel387 NPX 
only when the produces under 
rounding control overflow condi-
is not set to tions a result that 
round to zero. If is different in the 
rounding is set least significant 
to chop (toward bit of the signifi-
zero), the result cand, compared 
is positive or to the result on 
negative infinity. the Intel287 

CPU. 

Overflow exception Overflow Overflow 
not masked. exception not exception not 

The preciSion excep- masked. masked. 

tion is flagged. When The precision If the result is 
the result is stored in exception is not stored on the 
the stack,the signifi- flagged and the stack, a program 
cand is rounded '. signficand is not on the Intel486 
according to the preci- rounded. CPU/lntel387 
sion control (PC) bit of NPX produces a 
the control word or different result 
according to the under overflow 
opcode. conditions than 

on the Inte1287/ 
8087 CPU. The 
difference is 
apparent only to 

. the exception 
handler. 
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Difference Description 

Impact on Reason 
Issue InteI486'" CPU/ for the 

Intel38T" NPX Intel28T" /8087 Software 
Difference 

Behavior CPU Behavior 

Underflow Conditions for under- Conditions for Underflow IEEE Stan-
Exception flow. underflow. exception dard 754 

Two related When the underflow When the under- masked. compatibility. 

events contribute exception is masked, flow exception is No impact. The 
to underflow: the underflow excep- masked and underflow excep-

1. The creation tion is signaled when rounding is tion occurs less 

tiny result. A both the result is tiny toward zero, the often when 

tiny number, and denormalization underflow excep- rounding is 

because it is results in a loss of tion flag is raised toward zero. 

so small, may accuracy. on tininess, Underflow 
cause some Response to regardless of e)(ception not 
other underflow. loss of accuracy. masl<ed. 
exception When the underflow Response to A program on 
later (such as exception is unmasked underflow. the Intel486 
overflow upon and the instruction is When the under- CPU/lntel387 
division). supposed to store the flow exception is NPX produces a 

2. Loss of result on the stack, the not masked and different result 
accuracy significand is rounded the destination is during underflow 
during the to the appropriate pre- the stack, the conditions than 
denormalization cision (according to signficand is not on the Inte1287/ 
of a tiny the precision control rounded but 8087 CPU if the 
number. (PC) bit of the control rather is left as result is stored 

Which of these word, for those instruc- is. on the stack. The 

events triggers tions controlled by PC, difference is only 

the underflow otherwise to extended in the least sig-

exception precision). nificant bit of the 

depends on significand and is 

whether the apparent only to 

underflow the exception 

exception is handler. 

masked. 

Exception There is no difference When the denor- None, but some Operational 
Precedence in the precedence of mal exception is unneeded nor- improvement. 

the denormal excep- not masked, it malization of 
tion, whether it be takes prece- denormal oper-
masked or not. dence over all ands is pre-

other exceptions. vented on the 
Intel486 
CPU/lntel387 NPX. 
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25.2.2 Tag, Status, and Control Words 

Difference Description 

Impact on Reason 
Issue InteI486'· CPU/ for the 

InteI387'· NPX InteI287'· /8087 Software Difference 
Behavior CPU Behavior 

Bits C3-CO After FINIT, incomplete After FINIT, None. Upgrade, to pro-
of Status FPREM, and hardware incomplete vide consistent 
Word reset, these bits are FPREM, and state after reset. 

set to zero. hardware reset, 
the Inte1287/8087 
CPU leaves these 
bits intact (they 
contain the prior 
value). 

Bit C2 of Bit 10 (C2) serves as This bit is unde- None. Programs Upgrade to allow 
Status an incomplete bit for fined for FPTAN. don't check C2 fast checking of 
Word FPTAN. after FPTAN. operand range. 

Infinity Only affine closure is Both affine and Software that IEEE Standard 
Control supported. Bit 12 projective clo- requires projec- 754 compatibility. 

remains programmable sures are sup- tive infinity arith-
but has no effect on ported. After metic may give 
operation. RESET, the different results. 

default value in 
the control word 
is projective. 

Status When an invalid- When an invalid- None. Existing Upgrade and per-
Word Bit 6 operation exception operation excep- exception han- formance 
for Stack occurs due to stack tion occurs due dlers need not improvement. 
Fault overflow or underflow, to stack overflow change, but may 

not only is bit 0 (IE) of or underflow, only be upgraded to 
the status word set, bit 0 (I E) of the take advantage of 
but also bit 6 is set to status word is the additional 
indicate a stack fault set. Bit 6 is information. 
and bit 9 (C1) speci- RESERVED. Newly written 
fies overflow or under- handlers will be 
flow. Bit 6 is called SF more effective. 
and serves to distin-
guish invalid excep-
tions caused by stack 
overflow/underflow 
from those caused by 
numeric operations. 
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Difference Description 

Impact on Reason 
Issue Intel486 '" CPU/ for the 

InteI387'" NPX InteI287'" /8087 Software Difference 
Behavior 

CPU Behavior 

Tag Word When loading the tag The correspond- Software may not Performance 
word with an FLDENV ing tag is operate correctly improvement. 
or FRSTOR instruction, checked before if it uses FLDENV 
the only interpretations each register or FRSTOR to 
of tag values are access to deter- change tags to 
empty (value 11) and mine the class of values (other than 
nonempty (values 00, operand in the empty) that are 
01, and 10). Subse- register; the tag different from 
quent operations on a is updated after actual register 
nonempty register every change to a contents. 
always examine the register so that 
value in the register, the tag always 
not the value in its tag. reflects the most 
The FSTENV and recent status of 
FSAVE instructions the register. Pro-
examine the nonempty grammers can 
registers and put the load a tag with a 
correct values in the value that dis-
tags before storing the agrees with the 
tag word. contents of a reg-

ister (for example, 
the register con-
tains valid con-
tents, but the tag 
says special; the 
Inte1287/8087 
CPU, in this case, 
honors the tag 
and does not 
examine the 
register). 
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25.2.3 Instruction Set 

Difference Description 

Impact on 
Reason 

Issue InteI486'· CPU/· for the 
InteI387'" NPX InteI287'" 18087 Software Difference. 

Behavior CPU Behavior 

FBSTP, FDIV, Operation on denormal Operation on The exception IEEE 
FIST(P), operand is supported. denormal oper- handler for Standard 754 
FPREM, An underflow excep- and raises underflow may compatibility. 

tion can occur. invalid-operation require change 
exception. only if it gives 
Underflow is not different treat-
possible. ment to different 

opcodes. Possi-
bly fewer invalid-
operation 
exceptions will 
occur. 

FSCALE The range of the scal- The range of the Different result Upgrade. 
ing operand is not scaling operand when 0 < I 
restricted. If 0 < I is restricted. If 0 ST(1) I < 1. 
ST(1) I <: 1, the scal- < I ST(1) I < 1, 
ing factor is zero; the result is 
therefore, ST(O) undefined and . 
remains unchanged. If no exception is 
the rounded result is signaled. 
not exact or if there 
was a loss of accuracy 
(masked underflow), 
the precision excep-
tion is signaled. 

FPREM1 Performs partial Does not exist. None. IEEE Standard 
remainder according 754 compatibility 
to IEEE Standard 754 and upgrade. 
standard. 

FPREM Bits CO, C3, C1 of the The quotient bits None. Software Upgrade. 
status word, correctly are incorrect that works 
reflect the three low- when performing around the bug 
order bits of the a reduction of should not be 
quotient. 64N+M when N affected. 

~ 1 and M=1 
or M=2. 

FUCOM, Perform unordered Do not exist. None. IEEE 
FUCOMP, compare according to Standard 754 
FUCOMPP IEEE Standard 754 compatibility. 

standard. 
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Difference Description 

Impact on Reason 
Issue InteI486'" CPU/ for the 

InteI387'" NPX InteI287'" /8087 Software 
Difference 

Behavior CPU Behavior 

FPTAN Range of operand is Range of oper- None. Upgrade. 
much less restricted (I and is restricted 
ST(O) 1 < 263); reduces (I ST(O) 1 < 1T/4); 
operand internally operand must 
using an internal1T/4 be reduced to 
constant that is mor~ range using 
accurate. FPREM. 

After a stack overflow After a stack IEEE 
when the invalid- overflow when Standard 754 
operation exception is the invalid- compatibility. 
masked, both ST and operation excep-
ST(1) contain quiet tion is masked, 
NaNs. the original 

operand remains 
unchanged, but 
is pushed to 
ST(1). 

FSIN, FCOS, Perform three common Do not exist. None. Upgrade. 
FSINCOS trigonometric 

functions. 

FPATAN Range of operands is 1 ST(O) 1 must be None. Upgrade. 
unrestricted. smaller than 

1 ST(1) I· 

F2XM1 Wider range of oper- The supported None. Upgrade. 
and (-1sST(O)s+1). operand range 

is OsST(O)sO.5. 

FLO Does not report denor- Reports denor- None. Upgrade. 
extended-real mal exception because mal exception. 

the instruction is not 
arithmetic. 

FXTRACT If the operand is zero, If the operand is None. Software IEEE 754 rec-
the zero-divide excep- zero, ST(1) is usually ommendation to 
tion is reported and zero and no bypasses zero· fully support the 
ST(1) is -00. If the exception is \ and 00. 10gb function. 
operand is + 00, no reported. If the 
exception is reported. operand is + 00, 

the invalid-
operation excep-
tion is reported. 
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Difference Description 

Impact on Reason 
Issue Inte1486'· CPU/ for the 

Inte1387'· NPX 
Intel287 ,. /8087 Software Difference 

Behavior 
CPU Behavior 

FLD constant Rounding control is in Rounding con- Results for iEEE 754 
effect. trol is not in FLOPI, FLDLN2, recommendations. 

effect. FLDLG2, and 
FLDL2E are the 
same as for the 
8087/lnte1287 
CPU when 
rounding control 
.is .setto round 
to nearest or 
round to +00. 
They are the the 
same for 
FLDL2Twhen 
rounding control 
is set to round 
to nearest, 
round to -00, or 
round to zero. 
Results are dif-
ferent from. the 
8087/lnte1287 
CPU in the 
leaast significant 
bit of the man-· 
tissa if rounding 
control is set to 
round to _00 or 
round to 0 for 
FLDPI, FLDLN2, 
FLDLG2, and 
FLDL2E; they 
are diferenUor 
FLDL2T if round 
to +00 is 
specified. 

FLD Loading a denormal Loading a If the next IEEE 
single/double causes the number to denormal instruction is Standard 754 
precision be converted to causes the num- FXTRACTor compatibility. 

extended precision ber to be con- FXAM, the 
(because it is put on verted to an Intel486 CPU! 
the stack). unnormal. Intel387 NPX will 

give a different 
result than the 
Inte1287/8087 
CPU. 

FLD When loading a signal- Does not raise The exception IEEE 
single/double ing NaN, raises invalid an exception handler needs Standard 754 
precision exception. when loading a to be updated to compatibility. 

signaling NaN. handle this 
condition. 
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Difference Description 

Impact on Reason 
Issue InteI486'" CPU! for the 

Intel38T" NPX Intel28T" 18087 Software Difference 
Behavior 

CPU Behavior 

FSETPM Treated as FNOP (no Informs the None. The Intel4861 
operation). Intel287 CPU Intel386 CPU 

that the system handles all 
is in protected addressing and 
mode. exception-

pointer informa-
tion, whether in 
protected mode 
or not. 

FXAM Encountering an May generate None. Upgrade, to pro-
empty register will not these combina- vide repeatable 
generate combinatioris tions, among results. 
of C3-CO equal to others. 
1101 or 1111. 

All May generate different Round-up bit of None. Upgrade, to sig-
Transcendental results in round-up bit status word is nal rounding 
Instructions of status word. undefined for status. 

these 
instructions. 

25.3 DIFFERENCES FROM 8086/8087 SYSTEMS 

The Intel486 processor operating in real-address mode will execute 8087 programs with­
out major modification. However, because of differences in the handling of numeric 
exceptions between the Intel486 processor and the 8087 NPX, exception-handling rou­
tines may need to be changed. This section provides details showing how 8087 programs 
can be ported to the Intel486 processor. 

1. The 8087 requires an interrupt controller (8259A) to interrupt the CPU when an 
unmasked exception occurs. Therefore, any interrupt-controller-oriented instruc­
tions in numeric exception handlers for the 8087 should be deleted. 

2. The 8087 instructions FENI/FNENI and FDISI/FNDISI perform no useful function 
in the Intel486 processor. If the Intel486 processor encounters one of these opcodes 
in its instruction stream, the instruction will effectively be ignored - none of the, 
Intel486 processor internal states will be updated. While 8087 code containing these 
instructions may be executed on the Intel486 processor, it is unlikely that the 
exception-handling routines containing these instructions will be completely 
portable. 

3. In real mode and protected mode (not including virtual 8086 mode), interrupt vector 
16 must point to the numeric exception handling routine. In virtual 8086 mode, the 
V86 monitor can be programmed to accommodate a different location of the inter­
rupt vector for numeric exceptions. 
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4. The ESC instruction address saved in the Iritel486 processor includes any leading 
prefixes before the ESC opcode. The corresponding address saved in the 8086/8087 
does not include leading prefixes. 

5. In protected mode (not including virtual 8086 mode), the format of the Intel486 
processor saved instruction and address pointers is different than for the 8087. The 
instruction opcode is not saved in protected mode - exception handlers will have to 
retrieve the opcode from memory if needed. 

6. Interrupt 7 will occur in the Intel486 processor when executing ESC instructions 
with either TS (task switched) or EM (emulation) of the MSW set (TS = 1 or 
EM = 1). If TS and MP are set, then a WAIT instruction will also cause interrupt 7. 
An exception handler should be included in Intel486 processor code to handle these 
situations. 

7. Interrupt 13 will occur if the starting address of a numeric operand falls outside a 
segment's size. An exception handler should be included to report these program­
ming errors. 

8. Except for the. FPU control instructions, all of the Inte1486 processor numeric 
instructions are automatically synchronized - the processor automatically waits until 
all operands have been transferred before executing the next ESC instruction. No 
explicit WAIT instructions are required to assure this synchronization. For the 8087 
used with 8086 and 8088 processors, explicit WAITs are required before each 
numeric instruction to ensure synchronization. Although 8087 programs having 
explicit WAIT instructions will execute perfectly on the Intel486 processor without 
reassembly, these WAIT instructions are unnecessary. 

9. Since the Intel486 processor does not require WAIT instructions before each 
numeric instruction, the ASM386/486 assembler does not automatically generate 
these WAIT instructions. The ASM86 assembler, however, automatically precedes 
every ESC instruction with a WAIT instruction. Although numeric routines gener­
ated using the ASM86 assembler will generally execute correctly on the Intel486 
processor, reassembly using ASM386/486 may result in a more compact code image 
and faster execution. 

The control instructions for the Intel486 FPU can be coded using either a WAIT or 
No-WAIT form of mnemonic. The WAIT forms of these instructions cause 
ASM386/486 to precede the ESC instruction with a WAIT instruction, in the iden­
tical manner as does ASM86. 

10. The address of a memory operand ~tored by FSA VE or FSTENV is undefined if the 
previous ESC instruction did not refer to memory. 

11. Because the Intel486 processor automatically normalizes denormal numbers when 
possible, an 8087 program that uses the denormal exception solely to normalize 
denormal operands can run on an Intel486 processor by masking the denormal 
exception. The 8087 de normal exception handler would not be used by the Intel486 
processor in this case. A numerics program runs faster when the Intel486 processor 

. performs normalization of denormal operands. . 
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CHAPTER 26 
INSTRUCTION SET 

This chapter presents instructions for the Intel486 processor in alphabetical order. For 
each instruction, the forms are given for each operand combination, including object 
code produced, operands required, execution time, and a description. For each instruc­
tion, there is an operational description and a summary of exceptions generated. 

26.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES 

When executing an instruction, the Intel486 processor can address memory using either 
16 or 32-bitaddresses. Consequently, each instruction that uses memory addresses has 
associated with it an address-size attribute of either 16 or 32 bits. The use of 16-bit 
addresses implies both the use of 16-bit displacements in instructions and the generation 
of 16-bit address offsets (segment relative addresses) as the result of the effective 
address calculations. 32-bit addresses imply the use of 32-bit displacements and· the 
generation of 32-bit address offsets. Similarly, an instruction that accesses words 
(16 bits) or doublewords (32 bits) has an operand-size attribute of either 16 or 32 bits. 

The attributes are determined by a combination of defaults, instruction prefixes; and 
(for programs executing in protected mode) size-specification bits in segment 
descriptors. 

26.1.1 Default Segment Attribute 

For programs running in protected mode, the D bit in executable-segment descriptors 
specifies the default attribute for both address size and operand size. These default 
attributes apply to the execution of all instructions in the segment. A clear D bit sets the 
default address size and operand size to 16 bits; a set D bit, to 32 bits. 

Programs th~t execute in real mode or virtual-8086 mode have 16-bit addresses and 
operands by default. 

26.1.2 Operand-Size and Address-Size Instruction Prefixes 

The internal encoding of an instruction can include two byte-long prefixes: the address­
~ize prefix, 67H, and the operand-size prefix, 66H. (A later section, "Instruction For­
mat," shows the position of the prefixes in an instruction's encoding.) These prefixes 
override the default segment attributes for the instruction that follows. Table 26-1 shows 
the effect of each possible combination of defaults and overrides. 
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Table 26·1. Effective Size Attributes 

Segment Default D = ... 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N V V N N V V 

Address-Size Prefix 67H N V N V N V N V 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32 32 16 32 16 

V = Yes, this instruction prefix is present 
N = No, this instruction prefix is not present 

26.1.3 Address-Size Attribute for Stack 

Instructions that use the stack implicitly (for example: POP EAX) also have a stack 
address-size attribute of either 16 or 32 bits. Instructions with a stack address-size 
attribute of 16 use the 16-bit SP stack pointer register; instructions with a stack address­
size attribute of 32 bits use the 32-bit ESP register to form the address of the top of the 
stack. 

The stack address-size attribute is controlled by the B bit of the data-segment descriptor 
in the SS register. A value of zero in the B bit selects a stack address-size attribute of 16; 
a value of one selects a stack address-size attribute of 32. 

26.2 INSTRUCTION FORMAT 

All instruction encodings are subsets of the general instruction format shown in 
Figure 26-1. Instructions consist of optional instruction prefixes, one or two primary 
opcode bytes, possibly an address specifier consisting of the ModR/M byte and the SIB 
(Scale Index Base) byte, a displacement, if required, and an immediate data field, if 
required. 

INSTRUCTION I ADDRESS· I OPERAND· I SEGMENT 
PREFIX SIZE PREFIX SIZE PREFIX OVERRIDE 

o OR 1 0 OR 1 0 OR 1 0 OR 1 ----------------------------
NUMBER OF BYTES 

OPCODE I MODR/M I SIB I DISPLACEMENT I IMMEDIATE 

10R2 OORl OORl 0,1,20R4 0,1,2 OR 4 

~-~---------------------NUMBER OF BYTES 

240486i26·1 

Figure 26·1. Intel486™ Processor Instruction Format 
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Smaller encoding fields can be defined within the primary opcode or opcodes. These 
fields define the direction of the operation, the size of the displacements, the register 
encoding, or sign extension; encoding fields vary depending on the class of operation. 

Most instructions that can refer to an operand in memory have an addressing form byte 
following the primary opcode byte(s). This byte, called the ModR/M byte, specifies the 
address form to be used. Certain encodings of the ModR/M byte indicate a second 
addressing byte, the SIB (Scale Index Base) byte, which follows the ModR/M byte and is 
required to fully specify the addressing form. 

Addressing forms can include a displacement immediately following either the ModR/M 
or SIB byte. If a displacement is present, it can be 8-, 16- or 32-bits. 

If the instruction specifies an immediate operand, the immediate operand always follows 
any displacement bytes. The immediate operand, if specified, is always the last field of 
the instruction. 

The following are the allowable instruction prefix codes: 

F3H REP prefix (used only with string instructions) 
F3H REPE/REPZ prefix (used only with string instructions) 
F2H REPNE/REPNZ prefix (used only with string instructions) 
FOH LOCK prefix 

The following are the segment override prefixes: 

2EH CS segment override prefix 
36H SS segment override prefix 
3EH DS segment override prefix 
26H ES segment override prefix 
64H FS segment override prefix 
65H GS segment override prefix 
66H Operand-size override 
67H Address-size override 

26.2.1 ModR/M and SIB Bytes 

The ModR/M and SIB bytes follow the opcode byte(s) in many of the Intel486 processor 
instructions. They contain the following information: 

o The indexing type or register number to be used in the instruction 

• The register to be used, or more information to select the instruction 

• The base, index, and scale information 

The ModR/M byte contains three fields of information: 

• The mod field, which occupies the two most significant bits of the byte, combines with 
the rim field to form 32 possible values: eight registers and 24 indexing modes. 
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• The reg field, which occupies the next. three bits following the mod field, specifies 
either a register number or three more bits of opcode information. The meaning of 
the reg field is determined by the first (opcode) byte of the instruction. 

• The rim field, which occupies the three least significant bits of the byte, can specify a 
register as the location of an operand, or can form part of the addressing-mode 
encoding in combination with the mod field as described above. 

The based indexed and scaled indexed forms of 32-bit addressing require the SIB byte. 
The presence of the SIB byte is indicated by certain encodings of the Mod RIM byte. The 
SIB byte then includes the following fields: 

• The ss field, which occupies the two most significant bits of the byte, specifies the 
scale factor. 

• The index field, which occupies the next three bits following the ss field and specifies 
the register number of the index register. 

• The base field, which occupies the three least significant bits of the byte, specifies the 
register number of the base register. . 

Figure 26-2 shows the formats of the ModR/M and SIB bytes. 

The values and the corresponding addressing forms of the ModR/M and SIB bytes are 
shown in Tables 26-2, 26-3, and 26-4. The 16-bit addressing forms specified by the 
ModR/M byte are in Table 26-2. The 32-bit addressing forms specified by the ModR/M 
byte are in Table 26-3. Table 26-4 shows the 32-bit addressing forms specified by the SIB 
byte. 

MODR/M BYTE 

7 6 5 4 3 2 0 

MOD I REG/OPCODE I RIM 

SIB (SCALE INDEX BASE) BYTE 

7 6 5 4 3 2 0 

SS INDEX BASE 

240486;26-2 

Figure 26-2. ModR/M and SIB Byte Formats 
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Table 26-2. 16-Bit Addressing Forms with the ModR/M Byte 

r8(/r) AL CL OL BL AH CH OH BH 
r16(/r) AX CX OX BX SP BP SI 01 
r32(/r) EAX ECX EOX EBX ESP EBP ESI EDI 
/digit (Opcode) 0 1 2 3 4 5 6 7 
REG = 000 001 010 011 100 101 110 111 

Effective 
Mod R/M ModR/M Values in Hexadecimal 

Address 

[BX+SI] 00 000 00 08 10 18 20 28 30 38 
[BX+DI] 001 01 09 11 19 21 29 31 39 
[BP+SI] 010 02 OA 12 1A 22 2A 32 3A 
[BP+DI] 011 03 OB 13 1B 23 2B 33 3B 
[SI] 100 04 OC 14 1C 24 2C 34 3C 
[DI] 101 05 OD 15 10 25 2D 35 3D 
disp16 110 06 OE 16 1E 26 2E 36 3E 
[BX] 111 07 OF 17 1F 27 2F 37 3F 

[BX + SI] + disp8 01 000 40 48 50 58 60 68 70 78 
[BX + DI] + disp8 001 41 49 51 59 61 69 71 79 
[BP + SI] + disp8 010 42 4A 52 5A 62 6A 72 7A 
[BP + DI] + disp8 011 43 4B 53 5B 63 6B 73 7B 
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C 
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D 
[BP] +disp8 110 46 4E 56 5E 66 6E 76 7E 
[BX] +disp8 111 47 4F 57 5F 67 6F 77 7F 

[BX + SI] + disp16 10 000 80 88 90 98 AO A8 BO B8 
[BX + DI] + disp16 001 81 89 91 99 A1 A9 B1 B9 
[BP + SI] + disp16 010 82 8A 92 9A A2 AA B2 BA 
[BP+ DI] +disp16 011 83 8B 93 9B A3 AB 83 BB 
[SI] + disp16 100 84 8C 94 9C A4 AC B4 BC 
[DI] + disp16 101 85 8D 95 9D A5 AD B5 BD 
[BP] + disp16 110 86 8E 96 9E A6 AE B6 BE 
[BX] +disp16 111 87 8F 97 9F -A7 AF B7 BF 

EAX/AX/AL 11 000 CO C8 DO D8 EO E8 FO F8 
ECX/CX/CL 001 C1 C9 D1 D9 EO E9 F1 F9 
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA 
EBX/BX/BL 011 C3 CB D3 DB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC 
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD 
ESI/SI/DH 110 C6 CE 06 DE E6 EE F6 FE 
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF 

NOTES: disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added 
to the index. disp16 denotes a 16-bitdisplacement following the ModR/M byte, to be added to the 
index. Default segment register is· SS for the effective addresses containing a BP index, DS for 
other effective addresses. 
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Table 26-3. 32-Bit Addressing Forms with the ModR/M Byte 

r8(/r) AL CL OL BL AH CH OH BH 
r16(/r) AX CX OX BX SP BP SI 01 
r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI 
/digit (Opcode) 0 1 2 3 4 5 6 7 
REG = 000 001 010 011 100 101 110 111 

Effective Mod R/M ModR/M Values in Hexadecimal Address 

[EAX] 00 000 00 08 10 18 20 28 30 38 
[ECX] 001 01 , 09 11 19 21 29 31 39 
[EDX] 010 02 OA 12 1A 22 2A 32 3A 
[EBX] 011 03 OB 13 1B 23 2B 33 3B 
HH1 100 04 OC 14 1C 24 2C 34 3C 
disp32 101 05 OD 15 10 25 2D 35 3D 
[ESI] 110 06 OE 16 1E 26 2E 36 3E 
[EDI] 111 07 OF 17 1F 27 2F 37 3F 

disp8[EAX] 01 000 40 48 50 58 60 68 70 78 
disp8[ECX] 001 41 49 51 59 61 69 71 79 
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A 
disp8[EBX] ; 011 43 4B 53 5B 63 6B 73 7B 
disp8[--] [--] 100 44 4C 54 5C 64 6C 74 7C 
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D 
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E 
disp8[EDI] 111 47 4F 57 5F 67 6F 77 7F 

disp32[EAX] 10 000 80 88 90 98 AO A8 BO B8 
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9 
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA 
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB 
disp32 [--][--] 100 84 8C 94 9C A4 AC B4 BC 
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD 
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE 
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF 

EAX/AX/AL 11 000 CO C8 DO D8 EO E8 FO F8 
ECX/CX/CL 001 Cl C9 D1 D9 E1 E9 F1 F9 
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA 
EBX/BX/BL 011 C3 CB D3 DB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4. FC 
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD 
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE 
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF 

NOTES: 1[--][--] means a SIB follows the ModR/M byte. 
2disp8 denotes an 8-bit displacement following the SIB byte, to be sign-extended and added to 
the index. disp32 denotes a 32-bit displacement following the SIB byte, to be added to the index. 
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Table 26-4. 32-Bit Addressing Forms with the SIB Byte 

r32 EAX ECX EDX EBX ESP [*] ESI EDI 
Base = 0 1 2 3 4 5 6 7 
Base = 000 001 010 011 100 101 110 111 

Scaled Index SS Index SIB Values in Hexadecimal 

[EAX] 00 000 00 01 02 03 04 05 06 07 
[ECX] 001 08 09 OA OB OC 00 OE OF 
[EOX] 010 10 '11 12 13 14 15 16 17 
[EBX] 011 18 19 1A 1B 1C 10 1E 1F 
none 100 20 21 22 23 24 25 26 27 
[EBP] 101 28 29 2A 2B 2C 20 2E 2F 
[ESI] 110 30 31 32 33 34 35 36 37 
[EOI] 111 38 39 3A 3B 3C 30 3E 3F 

[EAX*2] 01 000 40 41 42 43 44 45 46 47 
[ECX*2] 001 48 49 4A 4B 4C 40 4E 4F 
[ECX*2] 010 50 51 52 53 54 55 56 57 
[EBX*2] 011 58 59 5A 5B 5C 50 5E 5F 
none 100 60 61 62 63 64 65 66 67 
[EBP*2] 101 68 69 6A 6B 6C 60 6E 6F 
[ESI*2] 110 70 71 72 73 74 75 76 77 
[EOI*2] 111 78 79 7A 7B 7C 70 7E 7F 

[EAX*4] 10 000 80 81 82 83 84 85 86 87 
[ECX*4] 001 88 89 8A 8B 8C 80 8E 8F 
[EOX*4] 010 90 91 92 93 94 95 96 97 
[EBX*4] 011 98 89 9A 9B 9C 90 9E 9F 
none 100 AO A1 A2 A3 A4 A5 A6 A7 
[EBP*4] 101 A8 A9 AA AB AC AO AE AF 
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7 
[EOI*4] 111 B8 B9 BA BB BC BO BE BF 

[EAX*8] 11 000 CO C1 C2 C3 C4 C5 C6 C7 
[ECX*8] 001 C8 C9 CA CB CC CO CE CF 
[EOX*8] 010 00 01 02 03 04 05 06 07 
[EBX*8] 011 08 09 OA OB OC 00 OE OF 
none 100 EO E1 E2 E3 E4 E5 E6 E7 
[EBP*8] 101 E8 E9 EA EB EC EO EE EF 
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7 
[EOI*8] 111 F8 F9 FA FB FC FO FE .FF 

NOTES: [*]means a disp32 with no base if MOO is 00, [EBP] otherwise. This provides the following 
addressing modes: 
disp32[index] 
disp8[EBP] [index] 
disp32[EBP] [index] 

(MOO = 00) 
(MOO=01) 
(MOO=10) 
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26.2.2 How to Read the Instruction Set Pages 

The following is an example of the format used for each Intel486 processor instruc;tion 
description in this chapter: . 

CMC - Complement Carry Flag 

Opcode 

F5 

Instruction 

CMC 

Clocks 

2 

Description 

Complement carry flag 

The above table is followed by paragraphs labelled "Operation," "Description/' "Flags 
Affected," "Protected Mode Exceptions," "Real Address Mode Exceptions," and, 
optionally, "Notes." The following sections explain the notational conventions and 
abbreviations used in these paragraphs of the instruction descriptions. 

26.2.2.1 OPCODE COLUMN 

The "Opcode" column gives the complete object code produced for each form of the 
instruction. When possible, the codes are given as hexadecimal bytes, in the same order 
in which they appear in memory. Definitions of entries other than hexadecimal bytes are 
as follows: . 

Idigit: (digit is between 0 and 7) indicates that the ModR/M byte of the instruction uses 
only the rim (register or memory) operand. The reg field contains the digit that provides 
an extension to the instruction's opcode. 

Ir: indicates that the ModR/M byte of the instruction c()ntains both a register operand 
and an rim operand. . 

cb, cw, cd, cp: a 1-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the 
opcode that is used to specify a code offset and possibly a new value for the code 
segment register. . 

ib, iw, id: a 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction 
that follows the opcode, Mod RIM bytes or scale-indexing bytes. The opcode determines 
if the operand is a signed value. All words and doublewords are given with the low-order 
byte first. 
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+ rb, + rw, + rd: a register code, from 0 through 7, added to the hexadecimal byte given 
at the left of the plus sign to form a single opcode byte. The codes are-

rb rw rd 
AL 0 AA 0 EAA 0 
CL 1 CX ECX 
OL 2 OX 2 EOX 2 
BL 3 BX 3 EBX 3 

rb rw rd 
AH 4 SP 4 ESP 4 
CH 5 BP 5 EBP 5 
OH 6 SI 6 ESI 6 
BH 7 01 7 EOI 7 

+ i: used in floating-point instructions when one of the operands is ST(i) from the FPU 
register stack. The number i (which can range from 0 to 7) is added to the hexadecimal 
byte given at the left of the plus sign to form a single opcode byte. 

26.2.2.2 INSTRUCTION COLUMN 

The "Instruction" column gives the syntax of the instruction statement as it would 
appear in an ASM386 program. The following is a list of the symbols used to represent 
operands in the instruction statements: 

rel8: a relative address in the range from 128 bytes before the end of the instruction to 
127 bytes after the end of the instruction. 

re116, re132: a relative address within the same code segment as the instruction assem­
bled. re116 applies to instructions with an operand-size attribute of 16 bits; rel32 applies 
to instructions with an operand-size attribute of 32 bits. 

ptr16:16, ptr16:32: a far pointer, typically in a code segment different from that of the 
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The 
value to the left of the colon is a 16-bit selector or value destined for the code segment 
register. The value to the right corresponds to the offset within the destination segment. 
ptr16:16 is used when the instruction's operand-size attribute is 16 bits; ptr16:32 is used 
with the 32-bit attribute. 

r8: one of the byte registers AL, CL, DL,BL, AH, CH, DH, or BH. 

r16: one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI. 

r32: one of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI. 

imm8: an immediate byte value. imm8 is a signed number between -128 and + 127 
inclusive. For instructions in which imm8 is combined with a word or doubleword oper­
and, the immediate value is sign-extended to form a word or doubleword. The upper 
byte of the word is filled with the topmost bit of the immediate value. 
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imm16: an immediate word value used for instructions whose operand-size attribute is 
16 bits. This is a number between -32768 and + 32767 inclusive. 

imm32: an immediate doubleword value used for instructions whose operand-size 
attribute is 32-bits. It allows the use of a number between + 2147483647 and 
-2147483648 inclusive. 

rimS: a one-byte operand that is either the contents of a byte register (AL, BL, CL, DL, 
AH, BH, CH, DH), or a byte from memory. 

r/m16: a word register or memory operand used for instructions whose operand-size 
attribute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, DI. The 
contents of memory are found at the address provided by the effective address 
computation. 

r/m32: a doubleword register or memory operand used for instructions whose operand­
size attribute is 32-bits. The'doubleword registers are: EAX, EBX, ECX, ED X, ESP, 
EBP, ESI, EDI. The contents of memory are found at the address provided by the 
effective address computation. 

m: a 16 or 32-bit memory operand. 

mS: a memory byte addressed by DS:[E]SI or ES:[E]DI (used only by string instruc­
tions). 

m16: a memory word addressed by DS:[E]SI or ES:[E]DI (used only by string instruc­
tions). 

m32: a memory doubleword addressed by DS:[E]SI or ES:[E]DI (used only by string 
instructions ). 

m16:16, m16:32: a memory operand containing a far pointer composed of two numbers. 
The number to the left of the colon corresponds to the pointer's segment selector. The 
number to the right corresponds to its offset. 

m16&32, m16&16, m32&32: a memory operand consisting of data item pairs whose sizes 
are indicated on the left and the right side of the ampersand. All memory addressing 
modes are allowed. m16&16 and m32&32 operands are used by the BOUND instruction 
to provide an operand containing an upper and lower bounds for array indices. m16&32 
is used by LIDT and LGDT to provide a word with which to load the limit field, and a 
doubleword with which to load the base field of the corresponding Global and IIiterrupt 
Descriptor Table Registers. 

moffsS, moffs16, moffs32: (memory offset) a simple memory variable of type BYTE, 
WORD, or DWORDused by some variants, of the MOV instruction. The actual address 
is given by a simple offset· relative to the segment base. No ModRIM byte is used in the 
instruction. The number shown with moffs indicates its size, which is determined by the 
address-size attribute ofthe instruction. 
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Sreg: a segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, 
DS=3, FS=4, and GS=5. 

m32real, m64real, m80real: (respectively) single-, double-, and extended-real floating­
point operands in memory. 

m16int, m32int, m64int: (respectively) word-, short-, and long-integer floating-point 
operands in memory. 

mNbyte: N-byte floating-point operand in memory. 

ST or ST(O): Top element of the FPU register stack. 

ST(i): ith element from the top of the FPU register stack. (i = 0 .. 7) 

26.2.2.3 CLOCKS COLUMN 

The "Clocks" column gives the approximate number of clock cycles the instruction takes 
to execute. The clock count calculations makes the following assumptions: 

o Data and instruction accesses hit in the cache. 

o The target of a jump instruction is in the cache. 

o No invalidate cycles contend with the instruction for use of the cache. 

o Page translation hits in the TLB. 

o Memory operands are aligned. 

(\) Effective address calculations use one base register and no index register, and the 
base register is not the destination register of the preceding instruction. 

(\) Displacement and immediate are not used together. 

.. No exceptions are detected during execution. 

e There are no write-buffer delays. 

For a discussion of the performance penalties incurred when these conditions do not 
hold, see Appendix E. 

The following symbols are used in the clock count specifications: 

.. n, which represents a number of repetitions. 

'" m, which represents the number of components in the next instruction executed, 
where the entire displacement (if any) counts as one component, the entire immedi­
ate data (if any) counts as one component, and every other byte of the instruction and 
prefix( es) each counts as one component. 

• pm =, a clock count that applies when the instruction executes in Protected Mode. 
pm = is not given when the clock counts are the same for Protected and Real Address 
Modes. 
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When an exception occurs during the execution of an instruction and the exception. 
handler is in another task, the instruction execution time is increased by the number of 
clocks to effect a task switch. This parameter depends on several factors: 

• The type ofTSS used to represent the new task (Inte1486 CPU TSS or 80286 TSS). 

• Whether the current task is in V86 mode. 

• Whether the new task is in V86 mode. 

• Whether accesses hit in the cache. 

• Whether a task gate on an interrupt/trap gate is used. 

Table 26-5 summarizes the task switch times for exceptions, assuming cache hits and the 
use of task gates. For full details, see Appendix E. 

26.2.2.4 DESCRIPTION COLUMN 

The "Description" column following the "Clocks" column briefly explains the various 
forms of the instruction. The "Operation" and "Description" sections contain more 
details of the instruction's operation. 

26.2.2.5 OPERATION 

The "Operation" section contains an algorithmic description of the instruction which 
uses a notation similar to the Algol or Pascal language. The algorithms are composed of 
the following elements: 

Comments are enclosed within the symbol pairs "(*" and "*)". 

Compound statements are enclosed between the keywords of the "if' statement (IF, 
THEN, ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement 
(CASE ... OF, ESAC). 

A register name implies the contents of the register. A register name enclosed in brack­
ets implies the contents of the location whose address is contained in that register. For 
example, ES:[DI] indicates the contents of the location whose ES segment relative 
address is in register DI. [SI] indicates the contents of the address contained in register 
SI relative to SI's default segment (DS) or overridden segment. 

Table 26-5. Task Switch Times for Exceptions 

New Task 
Old Task 

to Intel486™ CPU TSS to 80286 TSS to VM TSS . 

VM/lntel486 CPU/80286 TSS 199 180 177 
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Brackets are also used for memory operands, where they mean that the contents of the 
memory location is a segment-relative offset. For example, [SRC] indicates that the 
contents of the source operand is a segment-relative offset. 

A ~ B; indicates that the value of B is assigned to A. 

The symbols =, < >, :2':, and :::; are relational operators used ~ to compare two values, 
meaning equal, not equal, greater or equal, less or equal, respectively. A relational 
expression such as A = B is TRUE if the value of A is equal to B; otherwise it is 
FALSE. 

The following identifiers are used in the algorithmic descriptions: 
.. Operand Size represents the operand-size attribute of the instruction, which is either 

16 or 32 bits. AddressSize represents the address-size attribute, which is either 16 or 
32 bits. For example, 
IF instruction = CMPSW 
THEN OperandSize ~ 16; 
ELSE 

FI; 

IF instruction = CMPSD 
THEN OperandSize ~ 32; 
FI; 

indicates that the operand-size attribute depends on the form of the CMPS instruc­
tion used. Refer to the explanation of address-size and operand-size attributes at the 
beginning of this chapter for general guidelines on how these attributes are 
determined. 

.. StackAddrSize represents the stack address-size attribute associated with the instruc­
tion, which has a value of 16 or 32 bits, as explained earlier in the chapter. 

.. SRC represents the source operand. When there are two operands, SRC is the one on 
the right. 

.. DEST represents the destination operand. When there are two operands, DEST is 
the one on the left. 

.. LeftSRC, RightSRC distinguishes between two operands when both are source 
operands. 

.. eSP represents either the SP register or the ESP register depending on the setting of 
the B-bit for the current stack segment. 

The following functions are used in the algorithmic descriptions: 
.. Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding 

the uppermost bits as needed. 
.. Addr(operand) returns the effective address of the operand (the result of the effec­

tive address calculation prior to adding the segment base). 
.. ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the 

instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of -10 
converts the byte from F6H to doubleword with hexadecimal value 000000F6H. If the 
value passed to ZeroExtend and the operand-size attribute are the same size, 
ZeroExtend returns the value unaltered. 
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• SignExtend(value) returns a value sign-extended to the operand-size attribute of the 
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the 
value -10 converts the byte from F6H to a doubleword with hexadecimal value 
FFFFFFF6H. If the value passed to SignExtend and the operand-size attribute are 
the same size, SignExtend returns the value unaltered. 

• Push(value) pushes a value onto the stack. The number of byteS pushed is deter­
mined by the operand-size attribute of the instruction. The action of Push is as 
follows: 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

SP ~ SP - 2; 
SS: [SP] ~ value; (* 2 bytes assigned starting at 

byte address in SP *) 
ELSE (* OperandSize = 32 *) 

FI; 

SP ~ SP - 4; 
SS:[SP] ~ value; (* 4 bytes assigned starting at 

byte address in SP *) 

ELSE (* StackAddrSize = 32 *) 
IF OperandSize = 16 
THEN 

FI; 

ESP~ ESP - 2; 
SS:[ESP] ~ value; (* 2 bytes assigned starting at 

byte address in. ESP*) 
ELSE (* OperandSize = 32 *) 

FI; 

ESP ~ ESP - 4; 
SS:[ESP] ~. value; (* 4 bytes assigned starting at 

byte address in ESP*) 

• Pop (value) removes the value from the top of the stack and returns it. The statement 
EAX +- Pop( ); assigns to EAX the 32-bit value that Pop took from the top of the 
stack. Pop will return either a word or a doubleword depending on the operand-size 
attribute. The action of Pop is as follows: . 
IF StackAddrSize = 16 
THEN 

IF Operand Size = 16 
THEN 

retval ~ SS:[SP]; (* 2-byte value *) 
SP ~ SP + 2; 

ELSE (* OperandSize = 32 *) 
ret val ~ SS:[SP]; (* 4-byte value *) 
SP ~ SP + 4; 

FI; 
ELSE (* StackAddrSize = 32 *) 
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FI; 

IF OperandSize = 16 
THEN 

ret val +--- SS: [ESP]; (* 2 byte value *) 
ESP +--- ESP + 2; 

ELSE (* OperandSize = 32 *) 

FI; 

ret val +--- SS: [ESP]; (* 4 byte value *) 
ESP +--- ESP + 4; 

RETURN(ret val); (*returns a word or doubleword*) 

Pop ST is used on floating-point instruction pages to mean pop the FPU register stack. 

• Bit[BitBase, BitOffset] returns the address of a bit within a bit string, which is a 
sequence of bits in memory or a register. Bits are numbered from low-order to high­
order within registers and within memory bytes. In memory, the two bytes of a word 
are stored with the low-order byte at the lower address. 

If the base operand is a register, the offset can be in the range 0 .. 31. This offset 
addresses a bit within the indicated register. An example, 'BIT[EAX, 21]' is illus­
trated in Figure 26-3. 

If BitBase is a memory address, BitOffset can range from - 2 gigabits to 2 gigabits. 
The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase 
+ (Bit Offset DIY 8)), where DIY is signed division with rounding towards negative 
infinity, and MOD returns a positive number. This is illustrated in Figure 26-4. 

• I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O 
permission bitmap and other factors. This function is defined as follows: 
IF TSS type is 80286 THEN RETURN FALSE; FI; 
Ptr +--- [TSS + 66]; (* fetch bitmap pointer *) 
BitStringAddr +--- SHR (I-G-Address, 3) + Ptr; 
MaskShift +--- I-O-Address AND 7; 
CASE width OF: 

BYTE: nBitMask +--- 1; 
WORD: nBitMask +--- 3; 
DWORD: nBitMask .;- 15; 

31 21 

Figure 26-3. Bit Offset for BIT[EAX, 21] 

26-15 

o 

240486i26-15 



int:eL 

ESAC; 

INSTRUCTION SET 

BIT INDEXING (POSITIVE OFFSET) 

765432 1 07654 32 10765432 1 O' 

I I I 
I BITBASE + 1 I BIT BASE I BITBASE - 1 

L-OFFSET = - 13---.J 

BIT INDEXING (NEGATIVE OFFSET) 

765432107654321076543210 

BITBASE 
I I 

I BITBASE - 1 I BITBASE -' 2 

LOFFSET = -11~ 

Figure 26-4. Memory Bit Indexing 

mask ~SHL (nBitMask, MaskShift); 
CheckString - [BitStringAddrj AND mask; 
IF CheckString = 0 
THEN RETURN (TRUE); 
ELSE RETURN (FALSE); 
FI; 

• Switch-Tasks is the task switching function described in Chapter 7. 

26.2.2.6 DESCRIPTION 

240486i26-4 

The "Description" section contains further explanation of the instruction's operation. 

26.2.2.7 FLAGS AFFECTED 

The "Flags Affected" section lists the flags that are affected by the instruction, as 
follows: 

• If a flag is always cleared or always set by the instruction, the value is given (0 or 1) 
after the flag name. Arithmetic and logical instructions usually assign values to the 
status flags in the uniform manner described in Appendix C. Nonconventional assign­
ments are described in the "Operation" section. 

• The values of flags listed as "undefined" may be changed by the instruction in an 
indeterminate manner. 

All flags not listed are unchanged by the instruction. 

26-16 



intel® INSTRUCTION SET 

The floating-point instruction pages have a section called "FPU Flags Affected," which 
tells how each instruction can affect the four condition code bits of the FPU status word. 
These pages also have a section called "Numeric Exceptions," which lists the exception 
flags of the FPU status word that each instruction can set. 

26.2.2.8 PROTECTED MODE EXCEPTIONS 

This section lists the exceptions that can occur when the instruction is executed in 
protected mode. The exception names are a pound sign (#) followed by two letters and 
an optional error code in parentheses. For example, #GP(O) denotes a general protec­
tion exception with an error code of O. Table 26-6 associates each two-letter name with 
the corresponding interrupt number. 

Chapter 9 describes the exceptions and the Intel486 processor state upon entry to the 
exception. 

Application programmers should consult the documentation provided with their operat­
ing systems to determine the actions taken when exceptions occur. 

26.2.2.9 REAL ADDRESS MODE EXCEPTIONS 

Because less error checking is performed by the Intel486 processor in Real Address 
Mode, this mode has fewer exception conditions. Refer to Chapter 22 for further infor­
mation on these exceptions. 

26.2.2.10 VIRTUAL-8086 MODE EXCEPTIONS 

Virtual 8086 tasks provide the ability to simulate Virtual 8086 machines. Virtual 8086 
Mode exceptions are similar to those for the 8086 processor, but there are some differ­
ences. Refer to Chapter 23 for details. 

Table 26-6. Exceptions . 

Mnemonic Interrupt Description 

#UD 6 Invalid opcode 

#NM 7 Device not available 

#DF 8 Doubel fault 

#TS 10 Invalid TSS 

#NP 11 Segment or gate not present 

#SS 12 Stack fault 

#GP 13 General protection fault 

#PF 14 Page fault 

#MF 16 Floating-point error 

#AC 17 Alignment check 
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AAA-ASCII Adjust after Addition 

Opcode 

37 

Operation 

Instruction 

AAA 

Clocks 

3 

IF ((AL AND OFH) > 9) OR (AF = 1) 
THEN , " 

AL ~ (AL + 6) AND OFH; 
AH ~ AH + 1; 
AF~ 1; 
CF~ 1; 

ELSE 
CF~O; 

AF~O; 
FI; 

Description 

Description 

ASCII 'adjust AL after addition 

Execute the AAA instruction only following an ADD instruction of two unpacked BCD 
bytes that leaves a byte result in the AL register. In this case, the AAA instruction 
adjusts the AL register to contain the correct decimal digit result. If the addition pro­
duced a decimal carry, the AH register is incremented, and the CF and AF flags are set. 
If there was no decImal carry, the CF and AF flags are cleared and the AH register is 
unchanged. In either case, the AL register is left with its top nibble set to O. To convert 
the AL register to an ASCII result, follow the AAA instruction with OR AL, 30H. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the OF, SF, ZF, and PF flags are undefined. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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AAD - ASCII Adjust AX before Division 

Opcode 

D5 OA 

Operation 

Instruction 

AAD 

AL <- AH * 10 + AL; 
AH <- 0; 

Description 

Clocks 

14 

Description 

ASCII adjust AX before division 

The AAD instruction is used to prepare two unpacked BCD digits (the least-significant 
digit in the AL register, the most-significant digit in the AH register) for a division 
operation that will yield an unpacked result. This is accomplished by setting the AL 
register to AL + (10 * AH), and then clearing the AH register. The AX register is then 
equal to the binary equivalent of the original unpacked two-digit number. 

Flags Affected 

The SF; ZF, and PF flags are set.according to the result; the OF, AF, and CF flags are 
undefined. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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AAM -ASCII Adjust AX after Multiply.·· 

Opcode 

04 OA 

InstructIon 

AAM· 

Operation 

AH +- AL/10; 
AL +- AL MOD 10; 

Description 

Clocks 

.15 

DescrIptIon 

ASCII adjust AX after multiply 

ExecUte· the AAM instruction only after executing a MUL instruction between two 
unpacked BCD digits that leaves the result in the AX register. Because the result is less 
than 100, it is contained entirely iIi the AL !register.' The AAM instruction unpacks the 
AL result by dividing'AL by 10, leaving the quotient (most-significant digit) in the AH 
register and the remainder (least~significantdigit) in the AL register. 

Flags Affected 

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are 
undefmed. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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AAS - ASCII Adjust AL after Subtraction 

Opcode 

3F 

Operation 

Instruction 

AAS 

IF (AL AND OFH) >9 OR AF = 1 
THEN 

AL ~ AL - 6; 
AL ~ AL AND OFH; 
AH ~ AH - 1; 
AF~ 1; 
CF~ 1; 

ELSE 
CF~O; 

AF~O; 

FI; 

Description 

Clocks 

3 

Description 

ASCII adjust AL after subtraction 

Execute the AAS instruction only after a SUB instruction of two unpacked BCD bytes 
that leaves the byte result in the AL register. In this case, the AAS instruction adjusts 
the AL register so it contains the correct decimal digit result. If the subtraction pro­
duced a decimal carry, the AH register is decremented, and the CF and AF flags are set. 
If no decimal carry occurred, the CF and AF flags are cleared, and the AH register is 
unchanged. In either case, the AL register is left with its top nibble set to O. To convert 
the AL result to an ASCII result, follow theAAS instruction with OR AL, 30H. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the OF, SF, ZF, and PF flags are undefined. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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ADC - Add with Carry 

Opcode Instruction Clocks 

14 ib ADCAL,immB ' . 1. 
15 iw ... ADCAX,imm,16, 1 
15 id ADC EAX,imm32 1 
80 /2 ib ADC rlmB,immB 1/3 
81 /2 iw ADC rlml6,imml6 1/3 
81 /2 id ADC rlm32,imm32 1/3 
83 /2 ib ADC rlml6,immB 1/3 
83 /2 ib ADC rlm32,immB 1/3 

10 /r ADC rlmB,rB 1/3 
11 /r ADC rlml6,rl6 1/3 
11 /r ADC rlm32,r32 1/3 
12 /r ADC rB,rlmB 1/2 
13 /r ADC rl6,rlml6 1/2 
13 /r ADC r32,rlm32 1/2 

Operation 

DEST <c- DEST + SRC + CF; 

Description 

INSTRUCTION. SET 

Description 

Add with carry immediate byte to AL 
Add with carry immediate word to AX 
Add with carry immediate dword to EAX 
Add with carry immediate byte to rim byte 
Add with carry immediate word to rim word 
Add with CF immediate dword to rim dword 
Add with CF sign-extended immediate byte to rlr;n word 
Add with CF sign-extended immediate byte into rim. 
~o~ , 
Add with carry byte register to rim byte 
Add with carry word register to rim word 
Add with CF dword register to rim dword 
Add with carry rim byte to byte register 
Add with carry rim word to word register 
Add with CF rim dword to dword register 

the Abc instruction performs iln,integer addition of the tWQ.operands DEST and SRC 
and .the .C';lHy flag, CF. T:heresultof the addition is, assigned to the first operand 
(DEST), andthe,flggs are set accordingly. The ADC instruction is usually executed as 
part of a mu,lti-byte.or muIti-wonl addition opet;ation. When an immediate byte value is 
added to, a word Qr doubleword operal!d,the immediate value is first sign-extended to 
the size of the word or doubleword operand. ' . 

Flags Affected 

The OF, SF, ZF, AF, CF, and PF flags are set accordiIlg to th~ result. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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ADD-Add 
Opcode 

04 ib 
05 iw 
05 id 
80 /0 ib 
81 /0 iw 
81 /0 id 
83 /0 ib 
83 /0 ib 
OO/r 
01 /r 
01 /r 
02 /r 
03/r 
03 /r 

Operation 

Instruction 

ADDAL,imm8 
ADDAX,immI6 
ADD EAX,imm32 
ADD rlm8,imm8 
ADD rlml6,imml6 
ADD rlm32,imm32 
ADD rlml6,imm8 
ADD rlm32,immB 
ADD rlmB,r8 
ADD rlml6,rl6 
ADD rlm32,r32 
ADD r8,rlm8 
ADD rl6,rlml6 
ADO r32,rlm32 

DEST +- DEST + SRC; 

Description 

INSTRUCTION SET 

Clocks 

1 
1 
1 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/2 
1/2 
1/2 

Description 

. Add immediate byte to AL 
Add immediate word to AX 
Add immediate dword to EAX 
Add immediate byte to rim byte 
Add immediate word to rim word 
Add immediate dword to rim dword 
Add sign-extended immediate byte to rim word 
Add sign-extended immediate byte to rim dword 
Add byte register to rim byte 
Add word register to rim word 
Add dword register to rim dword 
Add rim byte to byte register 
Add rim word to word register 
Add rim dword to dword register 

The ADD instruction performs an integer addition of the two operands (DEST and 
SRC). The result of the addition is assigned to the first operand (DEST), and the flags 
are set accordingly. 

When an immediate byte is added to a word or doubleword operand, the immediate 
value is sign-extended to the size of the word or doubleword operand. 

Flags Affected 

The OF, SF, ZF, AF, CF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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AND-Logical AND 

Opcode 

24 ib 
25 iw 
25 id 
80/4 ib 
81 /4 iw 
81 /4 id 
83/4 ib 
83/4 ib 
20. /r 
21 /r 
21 /r 
22/r 
23/r 
23/r 

Operation 

Instruction 

ANDAL,immB 
AND AX,Imm16 
AND EAX,imm32 
AND rlmB,immB 
AND rlm16,imm16 
AND rlm32,imm32 
AND rlm16,immB 
AND rlm32,immB 
AND rlmB,rB 
AND rlm16,r16 
AND rlm32,r32 
AND rB,rlmB 
AND r16,rlm16 
AND r32,rlm32 

DEST +- DEST AND SRC; 
CF +- 0; 
OF +- 0; 

Description 

Clocks 

1 
1 
1 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/2 
1/2 
1/2 

Description 

. AND immediate byte to AL 
AND immediate word to AX 
AND immediate dword to EAX 
AND immediate byte to rim byte 
AND immediate word to rim word 
AND immediate dword to rim dword 
AND sign-extended immediate byte with rim word 
AND sign-extended immediate byte with rim dword 
AND byte register to rim byte 
AND word register to rim word 
AND dword register to rim dword 
AND rim byte to byte register 
AND rim word to word register 
AND rim dword to dword register 

Each bit of the result of the AND instruction is a 1 if both corresponding bits of the 
operands are 1; othelWise, it becomes a O. 

Flags Affected 

The CF and OF flags are cleared; the PF, SF, and ZF flags are set according to the 
result; the AF flag is undefined. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-oode) for a page fault; #AC for, unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside' of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. . 
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ARPL-Adjust RPL Field of Selector 

Opcode 

63 Ir 

Operation 

Instruction 

ARPL rlml6,rl6 

Clocks 

pm =9/9 

IF RPL bits(0,1) of DEST < RPL bits(0,1) of SRC 
THEN 
ZF~ 1; 
RPL bits(0,1) of DEST ~ RPL bits(0,1) of SRC; 

ELSE 
ZF ~ 0; 

FI; 

Description 

Description . 

. Adjust RPL'of rim 16 to not less than RPL of r16' 

The ARPL instruction has two operands. The first operand is a 16-bit memory variable 
or word register that contains the value of a selector. The second operand is a word 
register. If the RPL field ("requested privilege level"-bottom two bits) of the first 
operand is less than the RPL field of the second operand, the ZF flag is set and the RPL 
field of the first operand is increased to match the second operand. Otherwise, the ZF 
flag is cleared and no change is made to the first operand. 

The ARPL instruction appears in operating system software, not in application pro­
grams. It is used to guarantee that a selector parameter to a subroutine does not request 
more privilege than the caller is allowed. The second operand of the ARPL instruction is 
normally a register that contains the CS selector value of the caller. 

Flags Affected 

The ZF flag is set if the RPL field of the first operand is less than that of the second 
operand. 

Protected Mode Exceptions 

#Of(O) if the result is a nonwritable segment; #OP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or OS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 6; the ARPL instruction is not recognized in Real Address Mode. 
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Virtual 8086 Mode exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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BOUND - Check Array Index Against Bounds 

Opcode 

62 /r 
62/r 

Operation 

Instruction Clocks 

BOUND rI6,mI6&16 7 
BOUND r32,m32&32 7 

Description 

Check if r16 is within bounds (passes test) 
Check if r32 is within bounds (passes test) 

IF (LeftSRC < [RightSRC] OR LeftSRC > [RightSRC + OperandSize/8j) 
(* Under lower bound or over upper bound *) 

THEN Interrupt 5; 
FI; 

Description 

The BOUND instruction ensures that a signed array index is within the limits specified 
by a block of memory consisting of an upper and a lower bound. Each bound uses one 
word when the operand-size attribute is 16 bits and a doubleword when the operand-size 
attribute is 32 bits. The first operand (a register) must be gr~ater than or equal to the 
first bound in memory (lower bound), and less than or equal to the second bound in 
memory (upper bound) plus the number of bytes occupied for the operand size. If the 
register is not within bounds, an Interrupt 5 occurs; the return EIP points to the 
BOUND instruction. 

The bounds limit data structure is usually placed just before the array itself, making the 
limits addressable via a constant offset from the beginning of the array. 

Flags Affected 

None. 

Protected Mode Exceptions 

Interrupt 5 if the bounds test fails, as described above; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3. 

The second operand must be a memory operand, not a register. If the BOUND instruc­
tion is executed with a ModR/M byte representing a register as the second operand, 
#UD occurs. 

Real Address Mode Exceptions 

Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie 
outside of the effective address space from 0 to OFFFFH; Interrupt 6 if the second 
operand is a register. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #Ac for 
unaligned memory reference if the Gurrent privilege level is 3. 
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BSF - Bit Scan Forward 

Opcode 

OF BC 
OF BC 

Operation 

IF rim = 0 
THEN 
ZF~ 1; 

Instruction 

BSF r16,rlm16 
BSF r32,rlm32 

register ~ UNDEFINED; 
ELSE 

temp ~ 0; 
ZF~O; 

WHILE BIT[rlm, temp] = 0 
DO 

temp ~ temp + 1; 
register ~ temp; 

00; 
FI; 

Description 

Clocks 

6-42/7-43 
6-42/7-43 

Description 

Bit scan forward on rim word 
Bit scan forward on rim dword 

The BSF instruction scans the bits in the second word or doubleword operand starting 
with bit O. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the 
destination register is loaded with the bit index of the first set bit. 

Flags Affected 

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared. OF, SF, AF, PF, 
CF = undefined. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; # AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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BSR - Bit Scan Reverse 

·Opcode 

OF BD 
OF BD 

Operation 

IF rim = 0 
THEN 
ZF~ 1; 

. Instruction 

BSR r16,rlm16 
BSR r32,rlm32 

register ~ UNDEFINED; 
ELSE 

temp ~ Operand Size - 1; 
ZF~O; . 
WHILE BIT[rlm, temp] = 0 
DO 

temp ~ temp - 1; 
register ~ temp; 

00; 
FI; 

Description 

Clocks 

6-103/7-104 
6-103/7-104 

Description 

Bit scan reverse 'on rim word 
Bit scan reverse on rim dword 

The BSR instruction scans the bits in the second word or doubleword operand from the 
most significant bit to the least significant bit_ The ZF flag is set if all the bits are 0; 
otherwise, the ZF flag is cleared and the destination register is loaded with the bit index 
of the first set bit found when scanning in the reverse direction_ 

Flags Affected 

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared_ as, SF, AF, PF, 
CF = undefined_ 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3_ 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH_ 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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BSWAP - Byte Swap 

Opcode 

OF CB/r 

Instruction Clocks Description 

BSWAP (32 

Operation 

TEMP ~ r32 
r32(7 .. 0) ~ TEMP(31 .. 24) 
r32(15 .. 8) ~ TEMP(23 .. 16) 
r32(23 .. 16) ~ TEMP(15 .. 8) 
r32(31 .. 24) ~ TEMP(7 .. 0) 

Description 

Swap bytes to convert little/big end ian data in a 
32-bit register to big/little endian form. 

The BSWAP instruction reverses the byte order of a 32-bit register, converting a value in 
little/big endian form to big/little endian form. When BSWAP is used with 16-bit oper­
and size, the result left in the destination register is undefined. 

Flags Affected 

None. 

Protected Mode· Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 

Notes 

BSWAP is not supported on Intel386 processors. See Section 3.11 to use BSWAP com­
patible with Intel386 processors. 
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BT -Bit Test 

Opcode 

OF A3 
OF A3 
OF BA 14 ib 
OF BA/4 ib 

Operation 

Instruction 

BT r/m16,r16 
BTr/m32,r32 
BT r/m16,imm8 
BT r/m32,imm8 

CF ~ BIT[LeftSRC, RightSRC]; 

Description 

Clocks 

3/8 
3/8 
3/3 
3/3 

Description 

Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 

The BT instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag. 

Flags Affected 

The CF flag contains the value of the selected bit. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 3l. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 
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displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the immediate bit offset field, and the high-order bits are shifted 
and combined with the byte displacement in the addressing mode by the assembler. The 
processor will ignore the high order bits if they are not zero. 

When accessing. a bit in memory, the processor may access four bytes starting from the 
memory address given by: 

Effective Address + (4 * (BitOffset DIY 32» 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIY 16» 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOY instructions to lo~d from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 
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BTC - Bit Test and Complement 
'.' 

Opcode Instruction Clocks 

OF BB BTC r/m16,r16 6/13' 
OF BB BTC r/m32,r32 6/13 
OF BA /7 ib BTC r/m16,immB 6/8 
OF BA /1 ib BTC r/m32,immB 6/8 

Operation 

CF <- BIT[LeftSRC, RightSRC]; 

Description 

Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 

BIT[LeftSRC, RightSRC] <- NOT BIT[LeftSRC, RightSRCj; 

Description 

The BTC instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag and then complements the bit. 

Flags Affected 

The CF flag contains the complement of the selected bit. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 
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displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the immediate bit offset field, and the high-order bits are shifted 
and combined with the byte displacement in the addressing mode by the assembler. The 
process<?r will ignore the high order bits if they are not zero. 

When accessing a bit in memory, the processor may access four bytes starting from the 
memory address given by: 

Effective Address + (4 * (BitOffset DIV 32» 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIV 16)) 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOV instructions to load from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 
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BTR - Bit Test and Reset 

Opcode 

OF B3 
OF B3 
OF BA /6 ib 
OF BA /6 ib 

Operation 

Instruction 

BTR r/m16.r16 
BTR r/m32.r32 
BTR r/m16,immB. 
BTR r/m32,immB 

CF ~.BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] ~ 0; 

Description 

Clocks 

6/13 
6/13 
6/8 
6/8 

Description 

Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 

The BTR instructiori saves the value of the bit indicated by tne 'base (first 9perand) and 
the bit offset (secorid operand) into theCF flag arid then stores 0 in the bit. ' 

Flags Affected 

The CF flag contains the value of the selected bit. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 . .3l. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 (or 15) are supported by using the immediate bit offset field in combination with 
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the displacement field of the memory operand. The low-order 3 to 5 bits of the imme­
diate bit offset are stored in the immediate bit offset field, and the high-order bits are 
shifted and combined with the byte displacement in the addressing mode by the assem­
bler. The processor will ignore the high order bits if they are not zero. 

When accessing a bit in memory, the processor may access four bytes starting from the 
memory address given by: 

Effective Address + 4 * (BitOffset DIY 32) 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + 2 * (BitOffset DIY 16) 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOY instructions to load from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 
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,BTS - Bit Test and Set 

Opcode 

OF AS 
OF AS 
OF SA/5 ib 
OF SA /5 ib 

Operation 

Instruction 

STS r/m16,r16 
STS r/m32,r32 
STS r/m16,immB 
STS r/m32,immB 

CF ~ BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] ~ 1; 

Description 

Clocks 

6/13 
6/13 
6/8 
6/8 

Description 

Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 

The BTS instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag and then stores 1 in the bit. 

Flags Affected 

The CF flag contains the value of the selected bit. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 
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displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the immediate bit offset field, and the high order bits are shifted 
and combined with the byte displacement in the addressing mode by the assembler. The 
processor will ignore the high order bits if they are not zero. 

When accessing a bit in memory, the processor may access four bytes starting from the 
memory address given by: 

Effective Address + (4 * (BitOffset DIV 32)) 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIV 16)) 

for a 16-bit operand size. It may do this even when only a single byte needs to be 
accessed in order to get at the given bit. You must therefore be careful to avoid refer­
encing areas of memory close to address space holes. In particular, avoid references to 
memory-mapped I/O registers; Instead, use the MOV instructions to load from or store 
to these addresses, and use the register form of these instructions to manipulate the 
data. 
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CALL - Call Procedure 

Opcode 

E8 cw 
FF /2 
SA cd 
SA cd 
SA cd 
SA cd 
SA cd 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 
E8 cd 
FF /2 
SA cp 
SA cp 
SA.cp 
SA cp 
SA cp' 
FF/3 
FF /3 
FF /3 
FF /3 
FF /3 

Instruction 

CALL re116 
CALLrlm16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL re132 
CALL rlm32 
CALL ptr16:32 . 
CALL ptr16:32 
CALL ptr16:32 
CALL ptr16:32 
CALL ptri6:32 
CALLm16:32 
CALLm16:32 
CALLm16:32 
CALLm16:32 
CALL m16:32 

Clocks 

3 
5/5 
18,pm=20 
pm=35 
pm=6S 
pm=77+4x 
pm=37+ts 
17,pm=20 
pm=35 
pm=6S 
pm=77+4x 
pm=37+ts 
3 
5/5 
18,pm=20 
pm=35 
pm=69 
pm=77+4x 
pm=37+ts 
17,pm=20 
pm=35 
pm=69 
pm=77+4x 
pm=37+ts 

NOTE: Values of ts are given by the following table: 

Old Task 

. Description 

Call near,displacement relative to next instruction 
Call near, register indirect/memory indirect 
Call intersegment, to full pOinter given 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call intersegment, address at rim dword 
Call gate, same privilege 
Can gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call near, displacement relative to next instruction 
Call near, indirect 
Call intersegment, to full pointer given 

. Call gate, 'same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to taSk . 
Call intersegment,. address at rim dword . 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 

New Task 

to Intel486'M CPU TSS to 80286 TSS toVM TSS 

VM/lntel486 CPU/80286 TSS 

Operation 

IF re116 or rel32 type of call 
THEN (* near relative call *) 

IF OperandSize = 16 
THEN 

Push(IP); 
EIP - (EIP + rel16) AND OOOOFFFFH; 

ELSE (* OperandSize = 32 *) 
Push(EIP); 
EIP - EIP + rel32, 

FI; 
FI; 

IF r/m16 or r/m32 type of call 
THEN (* near absolute call *) 

IF OperandSize = 16 
THEN 

Push(IP); 

199 180 177 
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EIP ~ [r/m16] AND OOOOFFFFH; 
ELSE (* OperandSize = 32 *) 

Push(EIP); 
EIP ~ [r/m32]; 

FI; 
FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) 
(* real mode or virtual 8086 mode *) 

AND instruction = far CALL 
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *) 

THEN 
IF OperandSize = 16 
THEN 

Push(CS); 
Push(IP); (* address of next instruction; 16 bits *) 

ELSE 
Push(CS); (* padded with 16 high-order bits *) 
Push(EIP); (* address of next instruction; 32 bits *) 

FI; 
IF operand type is m16:16 or m16:32 
THEN (* indirect far call *) 

IF OperandSize = 16 
THEN 

CS:IP ~ [m16:16]; 
EIP ~ EIP AND OOOOFFFFH; (:I< clear upper 16 bits *) 

ELSE (* OperandSize = 32. *) . 
CS:EIP ~ [m16:32]; 

FI; 
FI; 
IF operand type is ptr16:16 or ptr16:32 
THEN (* direct far call *) 

IF OperandSize = 16 
THEN 

CS:IP ~ ptr16:16; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP ~ ptr16:32, 

FI; 
FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far CALL 

THEN 
If indirect, then check access of EA doubleword; 

#GP(O) if limit violation; 
New CS selector must not be null else #GP(O); 
Check that new CS selector index is within its 
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descriptor table limits; else #GP(new CS selector); 
Examine AR byte of selected descriptor for various legal values; 

depending on value: 
go to CONFORMING-CODE-SEGMENT; 
go to NONCONFORMING-CODE-SEGMENT; 
go to CALL-GATE; 
go to TASK-GATE; 
go to TASK-STATE-SEGMENT; 

ELSE #GP(code segment selector); 
FI; 

CONFORMING-CODE-SEGMENT: 
DPL must be ::; CPL ELSE #GP(code segment selector); 
Segment must be present ELSE #NP(code segment selector); 
Stack must be big enough for return address ELSE #SS(O); 
Instruction pointer must be in code segment limit ELSE#GP(O); 
Load code segment descriptor into CS register; 
Load CS with new code segment selector; 
Load EIP with zero-extend(new offset); 
IF OperandSize = 16 THEN EIP ~ EIP AND OOOOFFFFH; FI; 

NONCONFORMING-CODE-SEGMENT: 
RPL must be ::; CPL ELSE #GP(code segment selector) 
DPL must be = CPL ELSE #GP(code segment selector) 
Segment must be present ELSE #NP(code segment selector) 
Stack must be big enough for return address ELSE#SS(O) 
Instruction pOinter must be in code segment limit ELSE #GP(O) 
Load code segment descriptor into CS register 
Load CS with new code segment selector 
Set RPL of CS to CPL 
Load EIP with zero-extend(new offset); 
IF OperandSize = 16 THEN EIP ~ EIP AND OOOOFFFFH; FI; 

CALL-GATE: 
Call gate DPL must be :2: CPL ELSE #GP(call gate selector) 
Call gate DPL must be :2: RPL ELSE#GP(call gate selector) 
Call gate must be present ELSE #NP(call gate selector) 
Examine code segment selector in call gate descriptor: 

Selector must not be null ELSE #GP(O) 
Selector must be within its descriptor table 

limits ELSE #GP(code segment selector) 
AR byte of selected descriptor must indicate code 

segment ELSE #GP(code segment selector) 
DPL of selected descriptor must be ::; CPL ELSE 

#GP(code segment selector) 
IF non-conforming code segment AND DPL < CPL· 
THEN go to MORE-PRIVILEGE 
ELSE go to SAME-PRIVILEGE 
FI; 
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MORE-PRIVILEGE: 
Get new SS selector for new privilege level from TSS 

Check selector and descriptor for new SS: 
Selector must not be null ELSE #TS(O) 
Selector index must be within its descriptor 

table limits ELSE #TS(SS selector) 
Selector's RPL must equal DPL of code segment 

ELSE #TS(SS selector) 
Stack segment DPL must equal DPL of code 

segment ELSE #TS(SS selector) 
Descriptor must indicate writable data segment 

ELSE #TS(SS selector) 
Segment present ELSE #SS(SS selector) 

IF OperandSize = 32 
THEN 

New stack must have room for parameters plus 16 bytes 
ELSE #SS(SS selector) 

EIP must be in code segment limit ELSE #GP(O) 
Load new SS:eSP value from TSS 
Load new CS:EIP value from gate 

ELSE 
New stack must have room for parameters plus 8 bytes 

ELSE #SS(SS selector) 
IP must be in code segment limit ELSE #GP(O) 
Load new SS:eSP value from TSS 
Load new CS:IP value from gate 

FI; 
Load CS descriptor 
Load SS descriptor 
Push long painter of old stack onto new stack 
Get word count from call gate, mask to 5 bits 
Copy parameters from old stack onto new stack 
Push return address onto new stack 
Set CPL to stack segment DPL 
Set RPL of CS to CPL 

SAME-PRIVILEGE: 
IF OperandSize = 32 
THEN 

Stack must have room for 6-byte return address (padded to 8 bytes) 
ELSE #SS(O) 

EIP must be within code segment limit ELSE #GP(O) 
Load CS:EIP from gate 

ELSE 
Stack must have room for 4-byte return address ELSE #SS(O) 
IP must be within code segment limit ELSE #GP(O) 
Load CS:IP from gate 

FI; 
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Push return address onto stack 
Load code segment descriptor into CS register 
Set RPL of CS to CPL 

TASK-GATE: 
Task gate DPL must be 2: CPL ELSE #TS(gate selector) 
Task gate DPL must be 2: RPL ELSE #TS(gate selector) 
Task Gate must be present ELSE #NP(gate selector) 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE #1'S(TSS selector) 
Index must be within GDT limits ELSE #TS(TSS selector) 
TSS descriptor AR byte must specify non busy TSS 

ELSE #TS(TSS selector) 
Task State Segment must be present ELSE #NP(TSS selector) 

SWITCH-TASKS (with nesting) to TSS 
IP must be in code segment limit ELSE #TS(O) 

TASK-STATE-SEGMENT: 
TSS DPL must be 2: CPL ELSE #TS(TSS selector) 
TSS DPL must be 2: RPL ELSE #TS(TSS selector) 
TSS descriptor AR byte must specify availableTSS 

ELSE #TS(TSS selector) 
Task State Segment must be present ELSE #NP(TSS selector) 
SWITCH-TASKS (with nesting) to TSS 
IP must be in code segment limit ELSE#TS(O) 

Description 

The CALL instruction causes the procedure named in the operand to be executed. 
When the procedure is complete (a return instruction is executed within the procedure), 
execution continues at the instruction that follows the CALL instruction. 

The action of the different forms of the instruction are described below . 

. Near calls are those with destinations of type r/m16, r/m32, re/16, re/32; changing or saving 
the segment register value is not necessary. The CALL re/16 and CALL re/32 forms add 
a signed offset to the address of the instruction following the CALL instruction to deter­
mine the destination. The re(16 form is used when the instruction's operand-size 
attribute is 16 bits; re/32 is used when the operand-size attribute is 32 bits. The result is 
stored in the 32-bit EIP register. With re/16, the upper 16 bits of the EIP register are 
cleared, resulting in an offset whose value does not exceed 16. bits. CALL r/m16 and 
CALL r/m32 specify a register or memory location from which the absolute segment 
offset is fetched. The offset fetched from rim is 32 bits for an operand-size attribute, of 32 
(r/m32), or 16 bits for an operand-size oU6 (r/m16). The offset·of the instruction follow­
ing the CALL instruction is pushed onto the stack. It will be popped bya near RET 
instruction within the procedure. The CS register is not changed by this form of CALL. 
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The far calls, CALL ptr16:16 and CALL ptr16:32, use a four-byte or six-byte operand as 
a long pointer to the procedure called. The CALL m16:16 and m16:32 forms fetch the 
long pointer from the memory.location specified (indirection). In Real Address Mode or 
Virtual 8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits 
for the EIP register (depending on the operand-size attribute). These forms of the 
instruction push both the CS and IP or EIP registers as a return address. 

In Protected Mode, both long pointer forms consult the AR byte in the .descriptor 
indexed by the selector part of the long pointer. Depending .on the value of the AR byte, 
the call will perform one of the following types of control transfers: 

• A far call to the same protection level 

• An inter-protection level far call 

• A task switch 

A CALL-indirect-thru-memory, which uses the stack pointer (ESP) as a base register, 
references memory before the CALL. The base used is the value of the ESP before the 
instruction executes. 

For more information on Protected Mode control transfers, refer to Chapter 6 and 
Chapter 7. 

Flags Affected 

All flags are affected if a task switch occurs; no flags are affected if a task switch does 
not occur. 

Protected Mode Exceptions 

For far calls: #GP, #NP, #SS, and #TS, a~ indicated in the "Operation" section. 

For near direct calls: #GP(O) if procedure location is beyond the code segment limits; 
#SS(O) if pushing the return address exceeds the bounds of the stack segment; #PF 
(fault-code) for a page fault; #AC for unaligned memory reference if the current privi­
lege level is 3. 

For a near indirect call: #GP(O) for an illegal memory operand effective address in the 
CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#GP(O) if the indirect offset obtained is beyond the code segment limits; #PF(fault­
code) for a page fault; # AC for unaligned memory reference if the current privilege 
level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions . . 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. . 

Notes 

Any far call from a 32-bit code segment to a 16-bit code segment should be made from 
the first 64Kbytes of the 32-bit code segment, because the operand-size attribute of the 
instruction is set to 16, allowing only a 16-bit return address offset to be saved. . 
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CBW /CWDE - Convert Byte to Word/Convert Word to Double­
word 

Opcode 

98 
98 

Operation 

Instruction 

CBW 
CWDE 

Clocks 

3 
3 

IF OperandSize = 16 (* instruction = CBW *) 
THEN AX ~ SignExtend(AL); 
ELSE (* Op~randSize = 32, instruction = CWDE *) 

EAX ~ SignExtend(AX);- -
FI; 

Description 

Description 

AX <- sign-extend of AL 
EAX <- sign-extend of AX 

The CBW instruction converts the signed byte in the AL register to a signed word in the 
AX register by extending the most significant bit of the AL register (the sign bit) into all 
of the -bits of the AH register. The CWDE instruction converts the signed word fn the 
AX register to a doubleword in the EAX register by extending the most significant bit of 
the AX register into the two most significant bytes of the EAX register. Note that the 
CWDE instruction is different from the CWD instruction. The CWDinstruction uses 
the DX:AX register pair rather than the EAX register as a destination. 

Flags Affected 

None. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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CLC- Clear Carry Flag 

Opcode 

Fa 

Operation 

CF~O; 

Description 

Instruction 

CLC 

Clocks 

2 

Description 

Clear carry flag 

The CLC instruction clears the CF flag. It does not affect other flags or registers. 

Flags Affected 

The CF flag is cleared. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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ClD - Clear Direction Flag 

Opcode 

FC 

Operation 

DF~O; 

Description 

Instruction 

CLO 

Clocks 

2 

Description 

Clear direction flag; 81 and 01 will increment dur­
ing string instructions 

The CLD instruction clears the direction flag. No othet; flags or registers are affected. 
After a CLD instruction is executed, string operations will increment the index registers 
(SI and/or DI) that they use. 

Flags Affected 

The DF flag is cleared. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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CLI- Clear Interrupt Flag 

Opcode 

FA 

Operation 

IF ~ 0; 

Description 

Instruction 

CLI 

Clocks 

5 

Description 

Clear interrupt flag; interrupts disabled 

The CLI instruction clears the IF flag if the current privilege level is at least as privileged 
astOPL No oth~rflags are affected. External interrupts are not recognized at the end 
of theCLI instruction or from that point on until the IF flag is set. 

Flags Affected 

The IF flag is cleared. 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater (has less privilege) than the I/O privilege 
level in the flags register. The I/O privilege level specifies the least privileged level at 
which I/O can be performed. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) as for Protected Mode. 
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CL TS - Clear Task-Switched Flag in eRO 

Opcode 

OF 06 

Operation 

Instruction 

CLTS 

TS Flag in eRO ~ 0; 

Description 

Clocks 

7 

Description 

Clear task-switched flag 

The CLTS instruction clears the task-switched (TS) flag in the CRO register. This flag is 
set by the processor every time a task switch occurs. The TS flag is used to manage 
processor exten.sions as follows: 

• Every execution of an ESC instruction is trapped if the TSflag is set. 

• Execution of a WAIT instruction is trapped if the MP flag and the TS flag are both 
set. 

Thus, if a task switch was made after an ESC instruction was begun, the floating-point 
unit's context may need to be saved before a new ESC instruction can be issued. The 
fault handler saves the context and clears the TS flag. 

The CLTS instruction appears in operating system software, not in application pro­
grams. It is a privileged instruction that can only be executed at privilege level O. 

Flags Affected 

The TS flag is cleared (the TS flag is in the CRO register, not the flags register). 

Protected Mode Exceptions 

#GP(O) if the CLTS instruction is executed with a current privilege level other than O. 

Real Address Mode Exceptions 

None (valid in Real Address Mode to allow initialization for Protected Mode). 

Virtual 8086 Mode Exceptions 

Same exceptions as in Protected Mode. 
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CMC - Complement Carry Flag 

Opcode 

F5 

Operation 

Instruction 

CMC 

CF ~ NOT CF; 

Description 

Clocks 

2 ' 

Description 

Complement carry flag 

The CMC instruction reverses the setting of the CF flag. No other flags are affected; 

Flags Affected 

The CF flag contain~ the complement of ,its original valut<. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 
: i"· 

None. 

Virtual 8086 Mode Exceptions 

None. 

26-56 ' 



intel® INSTRUCTION SET 

eM P - Compare Two Operands 

Opcode Instruction Clocks 

3C ib CMPAL,immB 1 
3D iw CMP AX,imml6 1 
3D id CMP EAX,imm32 1 
80/7 ib CMP rlmB,immB 1/2 
81 /7 iw CMP rlml6,imml6 1/2 
81 /7 id CMP rlm32,imm32 1/2 
83/7 ib CMP rlml6,immB 1/2 
83/7 ib CMP rlm32,immB 1/2 

38/r CMP rlmB,rB 1/2 
39/r CMP rlml6,rl6 1/2 
39/r CMP rlm32,r32 1/2 
3A /r CMP rB,rlmB 1/2 
38/r CMP rl6,rlml6 1/2 
38/r CMP r32,rlm32 1/2 

Operation 

LeftSRC - SignExtend(RightSRC); 

Description 

Compare immediate byte to AL 
Compare immediate word to AX 
Compare immediate dword to EAX 
Compare immediate byte to rim byte 
Compare immediate word to rim word 
Compare immediate dword to rim dword 
Compare sign extended immediate byte to rim word 
Compare sign extended immediate byte to rim 
dword 
Compare byte register to rim byte 
Compare word register to rim word 
Compare dword register to rim dword 
Compare rim byte to byte register 
Compare rim word to word register 
Compare rim dword to dword register 

(* CMP does not store a result; its purpose is to set the flags *) 

Description 

The CMP instruction subtracts the second operand from the first but, unlike the SUB 
instruction, does not store the result; only the flags are changed. The CMP instruction is 
typically used in conjunction with conditional jumps and the SETcc instruction. (Refer to 
Appendix D for the list of signed and unsigned flag tests provided.) If an operand 
greater than one byte is compared to an immediate byte, the byte value is first 
sign-extended. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result. 

Protected Mode Exceptions 

. #GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference ifthe current privilege level is 3. 
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CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands 

Opcode Instruction Clocks 

A6 CMPS m8,m8 8 

A7 CMPS m16,m16 8 

A7 CMPS m32,m32 8 

A6 CMPSB 8 
A7 CMPSW 8 
A7 CMPSD 8 

Operation 

IF (instruction = CMPSD) OR 
(instruction has operands of type DWORD) 

THEN OperandSize ~ 32; 
ELSE OperandSize ~ 16; 
FI; 
IF AddressSize = 16 
THEN 

use SI for source-index and DI for destination-index 
ELSE (* AddressSize = 32 *) 

Description 

Compare bytes ES:[(E)DI] (second operand) 
with [(E)SI] (first operand) 
Compare words ES:[(E)DI] (second operand) 
with [(E)SI] (first operand) 
Compare dwords ES:[(E)DI] (second operand) 
with [(E)SI] (first operand) 
Compare bytes ES:[(E)DI] with DS:[SI] 
Compare words ES:[(E)DI] with DS:[SI]. 
Compare dwords ES:[(E)DI] with DS:[SI] 

use ESI for source-index and EDI for destination-index; 
FI; 
IF byte type of instruction 
THEN 

set ZF based on 
[source-index] - [destination-indexl~ (* byte comparison *) 
IF DF = 0 THEN IncDec ~ 1 ELSE IncDec ~ -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

set ZF based on 
[source-index] - [destination-index]; (* word comparison *) 
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec ~ -2; FI; 

ELSE (* OperandSize = 32 *) 
set ZF based on 
[source-index] - [destination-index]; (* dword comparison *) 
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ -4; FI; 

FI; 
FI; 
source-index = source-index + IncDec; 
destination-index = destination-index + IncDec; 

Description 

The CMPS instruction compares the byte, word, or doubleword pointed to by the 
source-index register with the byte, word, or doubleword pointed to by the destination­
index register. 
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If the address-size attribute of this instruction is 16 bits, the SIand DI registers will be 
used for source- and destination-index registers; otherwise the ESI and EDI registers 
will be used. Load the correct index values into the SI and D I (or ESI and ED I) registers 
before executing the CMPS instruction. 

The comparison is done by subtracting the operand indexed by the destination-index 
register from the operand indexed by the source-index register. 

Note that the direction of subtraction for the CMPS instruction is [SI] - [DI] or [ESI] -
[EDI]. The left operand (SI or ESI) is the source and the right operand (DI or EDI) is 
the destination. This is the reverse of the usual Intel convention in which the left oper­
and is the destination and the right operand is the source. 

The result of the subtraction is not stored; only the flags reflect the change. The types of 
the operands determine whether bytes, words, or doublewords are compared. For the 
first operand (SI or ESI), the DS register is used, unless a segment override byte is 
present. The second operand (DI or EDI) must be addressable from the ES register; no 
segment override is possible. 

After the comparison is made, both the source-index register and destination-index reg­
ister are automatically advanced. If the DF flag is 0 (a CLD instruction was executed), 
the registers increment; if the DF flag is 1 (an STD instruction was executed), the 
registers decrement. The registers increment or decrement by1 if a byte is compared, by 
2 if a word is compared, or by 4 if a doubleword is compared. 

The CMPSB, CMPSW and CMPSD instructions are synonyms for the byte, word, and 
doubleword CMPS instructions, respectively. . 

The CMPS instruction can be preceded by the REPE or REPNE prefix for block com­
parison of CX or ECX bytes, words, or doublewords. Refer to the description of the 
REP instruction for more information on this operation. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

26-60 



INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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CMPXCHG-Compare and Exchange 

Opcode 

OF BOlr 

OF B11r 

OF B11r 

Operation 

, Instruction 

CMPXCHG rlmB,rB 

CMPXCHG 
rlm16,r16 

CMPXCHG 
rlm32,r32 

I F accumulator = DEST 
ZF ~ 1 
DEST ~ SRC 

ELSE 
ZF ~ 0 
accumulator ~ DEST 

Description 

Clocks' 

6/7 if comparison is ' . 
successful; 6/10 if 
comparison fails 
6/7 if comparison is 
successful; 6/10 if 
comparison fails 
6/7 if comparison is 
successful; 6/10 if 
comparison fails 

Description 

. Compare AL with rIm byte. If equal, set ZF and 
load byte reg into rIm byte. Else, clear ZF and 
load rIm byte into AL. 
Compare AX with rIm word. If equal, set ZF and 
load word reg into rIm word. Else, clear ZF and 
load rIm word into AX. 
Compare EAX with rIm dword. If equal, set ZF 
and load dword reg into rIm dword. Else, clear 
ZF and load rIm dword into EAX. 

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX register) with 
DEST. If they are equal, SRC is loaded into DEST. Otherwise, DEST is loaded into the 
accumulator. 

Flags Affected 

The CF, PF, AF, SF, and OF flags are affected as if a CMP instruction had been 
executed with DEST and the accumulator as operands. The ZF flag is set if the destina­
tion operand and the accumulator are equal; otherwise it is cleared. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF (fault code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH. 

26-62 



int:eL INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

This instruction can be used with a LOCK prefix. In order to simplify interface to the 
processor's bus, the destination operand receives a write cycle without regard to the 
result of the comparison. DEST is written back if the comparison fails, and SRC is 
written into the destination otherwise. (The processor never produces a locked read 
without also producing a locked write.) This instruction is not supported on Inte1386 
processors. See Section 3.11 to use CMPXCHG compatible with Inte1386 processors. 
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CWD/CDQ - Convert Word to Doubleword/Convert Doubleword 
to Quadword . 

Opcode 

99 
99 

Operation 

Instruction 

CWO 
coa 

. Clocks 

3 
3 

.IF OperandSize = 16 (* CWO instruction· *r 
THEN .. 

IFAx<o THEN mn-OFFFFH; ELSE OX ~ 0; FI; 
ELSE (* OperandSize~ 32, COQinstruction *) 

, Description 

DX:AX <- sign-extend of AX 
EDX:EAX <- sign-extend of EAX 

IF EAX < 0 THEN EOX - OFFFFFFFFH; ELSE EOX - 0; FI; 
FI; 

Description 

The CWD instruction converts the signed word in the AX register to a signed double­
word in the DX:AX register pair by extending the most significant bit of the AX register 
into all the bits of the DX register. The CDQ instruction converts the signed doubleword 
in the EAX register to a signed 64-bit integer in the register pair EDX:EAX by extend­
ing the most significant bit of the EAX register (the sign bit) into all the bits of the EDX 
register. Note that the CWD instruction is different from the CWDE instruction_ The 
CWDE instruction uses the EAX register as a destination, instead of the DX:AX regis­
ter pair. 

Flags Affected 

None_ 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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OAA - Decimal Adjust AL after Addition 

Opcode 

27 

Operation 

tmpAL=AL 

Instruction 

DAA 

Clocks 

2 

IF ((tmpAL AND OFH) > 9) OR (AF = 1) 
THEN 

AL ~ tmpAL + 6; 
AF ~ 1; 

ELSE 
AF ~ 0; 

FI; 
IF (tmpAL > 9FH) OR (CF = 1) 
THEN 

AL ~ tmpAL + 60H; 
CF~ 1; 

ELSE CF ~ 0; 
FI; 

Description 

Description 

Decimal adjust AL after addition 

Execute the DM instruction only after executing an ADD instruction that leaves a 
two~BCD-digit byte result in the AL register. The ADD operands should consist of two 
packed BCD digits. The DAA instruction adjusts the AL register to contain the correct 
two-digit packed decimal result. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the SF, ZF and PF flags are set according to the result. The OF flag is undefined. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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DAS - Decimal Adjust AL after Subtraction 

Opcode 

2F 

Operation 

tmpAL=AL 

Instruction 

DAS 

Clocks 

2 

IF (tmpAL AND OFH) > 9 OR AF = 1 
THEN 

AL ~ tmpAL - 6; 
AF~ 1; 

ELSE 
AF~O; 

FI; 
IF (tmpAL > 9FH) OR (CF = 1) 
THEN 

AL ~ tmpAL - 60H; 
CF~ 1; 

ELSE CF ~ 0; 
FI; 

Description 

Description 

Decimal adjust AL after subtraction 

Execute the DAS instruction only after a subtraction instruction that leaves a two-BCD­
digit byte result in the AL register. The operands should consist of two packed BCD 
digits. The DAS instruction adjusts the AL register to contain the correct packed two­
digit decimal result. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if. there is no decimal 
carry; the SF, ZF and PF flags are set according to the result. The OF flag is undefined. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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DEC - Decrement by 1 

Opcode Instruction 

FE 11 DEC rlmB 
FF 11 DEC r/m16 

DEC r/m32 
4B+rw DEC r16 
4B+rw DEC r32 

Operation 

DEST +--- DEST - 1; 

Description 

Clocks 

1/3 
1/3 
1/3 
1 
1 

Description 

Decrement rim byte by 1 
Decrement rim word by 1 
Decrement rim dword by 1 
Decrement word register by 1 
Decrement dword register by 1 

The DEC instruction subtracts 1 from the operand. The DEC instruction does not 
change the CF flag. To affect the CF flag, use the SUB instruction with an immediate 
operand of 1. . 

Flags Affected 

The OF, SF, ZF, AF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the result is a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. . 
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DIV - Unsigned Divide 

Opcode Instruction 

F6/6 DIVAL,rlmB 

F7/6 DIV AX,rlm,16 

F7/6 DiV EAX,rlm32 , 
.. 

Operation 

temp <f- dividend / divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

Clocks 

16/16 

24/24 

40/40 

quotient~ temp; 
remainder<f-dividend MOD (rim); 

FI; 

.' 

Description 

Unsigned divide AX by rim byte (AL=Quo, 
AH=Rem) 
Unsigned divide DX:AX by rim word (AX = Quo, 
DX=Rem) 
Unsigned divide EDX:EAX by rim dword 
(EAX = Quo, EDX = Rem) 

Note: Divisions are unsigned. The divisor is given by the rim operand. The dividend, 
quotient, and remainder use implicit registers. Refer to the table under "Description." 

Description 

The DIV instniction performs an unsigned division. The dividend is implicit; only the 
divisor is given as an operand. The remainder is always less than the divisor. The type of 
the divisor determines which registers to use as follows: . 

Size Dividend Divisor Quotient Remainder 

byte AX rlmB AL AH 
,word OX:AX.' rim 16 AX OX 
dword EOX:EAX rlm32 EAX EOX 

Flags Affected 

The OF, SF, ZF, AF, PF, CF fIag~ areundefit;led. 

Protected Mode Exceptions 

Interrupt 0 if the quotient is too large to fit in the designated register (AL, AX, or 
EAX), or if the divisor is 0; #GP(O) for an iIIegal memory operand effective address in 
the CS, DS, ES, FS, or GS segments; #SS(O) for an iIIegal address in the SS segment; 
#PF(fault-code) for a page fault; #AC for unaligned memory reference if the current 
privilege level is 3. 
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Real Address Mode Exceptions 

Interrupt 0 if the quotient is too big to fit in the designated register (AL, AX, or EAX), 
or if the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the 
effective address space from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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ENTER - Make Stack Frame for Procedure Parameters 

Opcode 

C8 iwOO 
C8 iw01 
C8 iwib 

Operation 

Instruction Clocks . 

ENTER imm16,O 14 
ENTER imm16,1 17 
ENTER imm16,immB 17+3n 

level ~ level MOD 32 

Description 

Make procedure stack frame 
Make stack frame for procedure parameters 
Make stack frame for procedure parameters 

IF OperandSize = 16 THEN Push(BP) ELSE Push (EBP) FI; 
(* Save stack pointer *) 

frame-ptr ~ eSP 
IF level> 0 
THEN (* level is rightmost parameter *) 

FOR i ~ 1 TO level - 1 
DO 

IF OperandSize = 16 
THEN 

BP ~ BP - 2; 
Push [BP] 

ELSE (* OperandSize = 32 *) 
EBP ~ EBP - 4; 
Push[EBP]; 

FI; 
00; 
Push (frame-ptr) 

FI; 
IF OperandSize = 16 THEN BP ~ frame-ptr ELSE EBP ~ frame-ptr; FI; 
IF StackAddrSize =.16 
THEN SP ~ SP - First operand; 
ELSE ESP ~ ESP - ZeroExtend(First operand); 
FI; 

Description 

The ENTER instruction creates the stack frame required by most block-structured high­
level languages. The first operand specifies the number of bytes of dynamic storage 
allocated on the stack for the routine being entered. The second operand gives the 
lexical nesting level (0 to 31) of the routine within the high-level language source code. It 
. determines the number of stack frame pointers copied into the new stack frame from the 
preceding frame. The BP register (or EBP, if the operand-size attribute is 32 bits) is the 
current stack frame pointer. 

If the operand-size attribute is 16 bits, the processor uses the BP register as the frame 
pointer and the SP register as the stack pointer. If the operand-size attribute is 32 bits, 
the processor uses the EBP register for the frame pointer and the ESP register for the 
stack pointer. 
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If the second operand is 0, the ENTER instruction pushes the frame pointer (BP or EBP 
register) onto the stack; the ENTER instruction then subtracts the first operand from 
the stack pointer and sets the frame pointer to the current stack-pointer value. 

For example, a procedure with 12 bytes of local variables would have an ENTER 12,0 
instruction at its entry· point and a LEAVE instruction before every RET instruction. 
The 12 local bytes would be addressed as negative offsets from the frame pointer. 

Flags Affected 

None. 

Protected Mode Exceptions 

#SS(O) if the SP or ESP value would exceed the stack limit at any point during instruc­
tion execution; #PF(fault-code) for a page fault. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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F2XM1-Compute 2x-1 

Opcode 

D9 FO 

Operation 

ST ~ (2ST -1); 

Description 

Instruction Clocks - Concurrent Execution 

F2XM1 242 (140-279) 2 

Description 

Replace ST with (2ST -1) 

F2XMl replaces the contents of ST with (2ST -1). ST must lie in the range -1 <ST < 
1. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

1', U, 0, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

If the operand is outside the acceptable range, the result of F2XMl is undefined. 

The F2XMl instruction is designed to produce a very accurate result even when the 
operand is close to zero. Larger errors are incurred for operands with magnitudes very 
close to 1. 

Values other than 2 can be exponentiated using the formula 
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The instructions FLDL2T and FLDL2E load the constants log21O and log2e, respec­
tively. FYL2X can be used to calculate y x log2x for arbitrary positive x. 
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FABS - Absolute Value 

Opcode 

D9 El 

Operation 

Instruction 

FAB8 

sign bit of ST <- 0 

Description 

Clocks 

3 

Description 

Replace 8T with its absolute value. 

The absolute value instruction clears the sign bit of ST. This operation leaves a positive 
value unchanged, or replaces a negative value with a positive value of equal magnitude. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

The invalid-operation exception is raised only on stack underflow, even if the operand is 
signalling NaN or is in an unsupported format. 
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FADD/FADDP /FIADD - Add 

Opcode Instruction Clocks Concurrent Execution Description 

D8/0 FADD m32 real 10 (8~20) 7 (5-17) Add m32realto ST. 
DC /0 FADD m64real 10 (8-20) 7 (5-17) Add m64real to ST. 
D8 CO+i FADD ST,ST(i) 10 (8-20) 7 (5-17) Add ST(i) to ST. 
DC CO+i FADD ST(i), ST 10 (8-20) 7 (5-17) Add 8T to ST(i). 
DE CO+i FADDP ST(i), ST 10 (8-20) 7 (5-17) Add ST to 8T(i) and pop ST. 
DE C1 FADD 10 (8-20) 7 (5-17) Add 8T to ST(1) and pop ST. 
DA /0 FIADD m32int 22.5 (19-32) 7 (5-17) Add m32int to ST. 
DE /0 FIADD m16int 24 (20-35) 7 (5-17) Add m16intto ST] 

Operation 

DEST ~ DEST+ SRC; 
If instruction = FADDP THEN pop ST FI; 

Description 

The addition instructions add the source and destination operands and return the SlIlll to 
the destination. The operand at the stack top can be doubled by coding: 

FADD ST, ST(O) 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, U, 0, D, I, IS. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF (fault~code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

If the source operand is in memory, it is automatically converted to the extended-real 
format. 
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FBLD - Load Binary Coded Decimal 

Opcode 

DF /4 

Operation 

Instruction Clocks 

FBLD mBOdec 75 (70-103) 

Decrement FPU stack-top pointer; 
ST(O) (- SRC; 

Description 

Concurrent Execution Description 

Push mBOdec onto the FPU stack. 

FBLD converts the BCD source operand into extended-real format, and pushes it onto 
the FPU stack. See Figure 15-10 for BCD data layout. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

IS. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

The source is loaded without rounding error. The sign of the source is preserved, includ­
ing the case where the value is negative zero. 
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The packed decimal digits are assumed to be in the rangeO-9. The instruction does not 
check for invalid digits (A-FH), and the result of attempting to load an invalid encoding 
is undefined. . 

ST(7) must be empty to avoid causing an invalid-operation exception. 



int:et INSTRUCTION SET 

FBSTP - Store Binary Coded Decimai and Pop 

Opcode 

DF /6 

Instruction 

FBSTP m80dec 

Operation 

DEST ~ ST(O); 
pop ST FI; 

Description 

Clocks Description 

175 (172-176) Store ST in m80dec and pop ST. 

FBSTP converts the value in ST into a packed decimal integer, stores the result at the 
destination in memory, and pops ST. Non-integral values are first rounded according to 
the RC field of the control word. See Figure 15-10 for BCD data layout. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, I, IS. 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF (fault-code) for a page fault; #NM if either EM or TS 
in CRO is set; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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FCHS - Change Sign 

Opcode 

D9 EO 

Operation 

Instruction 

FCHS 

Clocks 

. 6. 

sign bit of ST ~ NOT (sign bit of ST) 

Description 

Description 

Replace ST with a value of opposite sign. 

The change sign instruction inverts the sign bit of ST. This operation replaces a positive 
value with a negative value. of equal magnitude, or vice-versa. 

FPU Flags Affected 

CI as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Int~rrupt7 if either EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

The invalid-operation exception is raised only on stack underflow, even if the op'erand is 
a signalling NaN or is in an unsupported format. 
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FCLEX/FNCLEX - Clear Exceptions 

Opcode 

9B DB E2 

DB E2 

Operation 

Instruction 

FCLEX 

FNCLEX 

SW[0 .. 7].·<;- 0; 
SW[15] ~ 0; 

Description 

Clocks 

7 + at least 3 for 
FWAIT 
7 

Description 

Clear floating-point exception flags after check­
ing for floating-point error conditions. 
Clear floating-point exception flags without 
checking for floating-point error conditions. 

FCLEX clears the exception flags, the exception status flag, and the busy flag of the 
FPU status word. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

FCLEX checks for unmasked floating-point error conditions before clearing the excep-
tion flags; FNCLEX does not. . , . 
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FCOM/FCOMP/FCOMPP-Compare Real 

Opcode Instruction Clocks 

08/2 FCOM m32real 4 
DC /2 FCOM m64real 4 
08 OO+i FCOM ST(i) 4 

. 0801 FCOM 4 
08/3 FCOMP m32real 4 
DC /3 FCOMP m64real 4 
08 08+i FCOMPST(i) 4 
0809 FCOMP 4 
DE 09 FCOMPP 5 

Operation 

CASE (relation of operands) OF 
Not comparable: C3, C2, CO ~ 111; 
ST > SAC: C3, C2, CO ~ 000; 
ST < SAC: C3, C2, CO ~ 001; 
ST = SAC: C3, C2, CO ~ 100; 

IF instruction = FCOMP THEN pop ST; FI; 
IF instruction = FCOMPP THEN pop ST; pop ST; FI; 

FPU Flags 

Co 
C1 

C2 

Cs 

Description 

Description 

Compare ST with m32real. 
Compare ST with m64real. 
Compare ST with ST(i). 
Compare ST with ST(1). 
Compare ST with m32real and pop ST. 
Compare ST with m64real and pop ST. 
Compare ST with ST(i) and pop ST. 
Compare ST with ST(1) and pop ST. 
Compare ST with ST(1) and pop ST twice. 

EFlags 

CF 
Zero 
PF 
ZF 

The compare real instructions compare the stack top to the source, which can be a 
register or a single- or double-real memory operand. If no operand is encoded, ST is 
compared to ST(l). FoIIowing the instruction, the condition codes reflect the relation 
between ST and the source operand. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 as specified above. 

Numeric Exceptions 

D, I, IS. 
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Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS. 
segments; #SS(O) for an illegal address in the SS segment; #PF (fault-code) for a page. 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. . 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
. 0 to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the 
invalid-operation exception is raised, and the condition bits ·are set to "unordered." 

The sign of zero is ignored, so that -0.0 = - + 0.0. 
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Feos - Cosine 

Opcode 

09 FF 

Operation 

Instruction 

Feos 

IF operand is in range 
THEN 

C2~O; 

ST ~ cos{ST); 
ELSE 

C2 ~ 1; 
FI; 

Description 

INSTRUCTION SET 

Clocks Concurrent Execution Description 

241 (193-279) 2 Replace ST with its cosine 

The cosine instruction replaces the contents of ST with cos(ST). ST, expressed in radi­
ans, must lie in the range I e I < 263. 

FPU Flags Affected 

Cl, C2 as described in Table 15-1; CO, C3 undefined. 

Numeric Exceptions 

P, U, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 
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Notes 

If the operand is outside the acceptable range, the C2 flag is set, and ST remains 
unchanged. It is the programmer's responsibility to reduce the operand to an absolute 
value smaller than 26 by subtracting an appropriate integer multiple of 2'IT. See Section 
17.5 for a discussion of the proper value touse for 'IT in performing such reductions. 

The Intel4.86 CPU checks for interrupts while performing this instruction. It will be 
aborted to service an interrupt. . 
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FDECSTP - Decrement Stack-Top Pointer 

Opcode 

D9 F6 

Operaticm 

IF TOP=O 

Instruction 

FDECSTP 

THEN TOP <-7; 
ELSE TOP <- TOP-1; 
FI; 

Description 

Clocks 
. 3 

Description 

Decrement top-ol-stack pointer lor FPU register 
stack. 

, . 

FDECSTP subtracts one (without carry) from the three-bit TOP field of the FPU status 
word_ 

FPU Flags Affected 

CI as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set. 

Notes 

The effect of FDECSTP is to rotate the stack. If does not alter register tags or contents, 
nor does it transfer data. 
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FDIV IFDIVP IFI DIV - Divide 

Opcode Instruction Clocks Concurrent execution 

DB /6 FDIV m32real 73 70 
DC /6 FDIV m64real 73 70 
DB FO+i . FDIV ST, ST(i) 73 70 
DC FB+i FDIV ST(i), ST 73 70 
DE FB+i FDIVP ST(i), ST 73 70 
DE F9 FDIVP 73 70 
DA /6 FIDIV m32int 73 70 
DE /6 FIDIV m16int 73 70 

Operation 

F DIV DEST, SCR 
DEST ~ DEST + SCR 
IF instruction = FDIVP THEN pop ST FI; 

Description 

Description 

Divide ST by m32real. 
Divide ST by m64real. 
Divide ST by ST(i) 
Replace ST(i) with ST(i) + ST 
Replace ST(i) with ST(i) + ST; pop ST. 
Replace ST(l) with ST(l) + ST; pop ST. 
Divide ST by m32int. 
Divide ST by ml6int. 

The division instructions divide the stack top by the other operand and return thc quo­
tient to the destination. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, U, 0, Z, D, I, IS. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault~code) for a. page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exc~ptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

If the source operand is in memory, it is automatically converted to the exten.ded-real 
. format. 

The performance of the division instructions depends on the PC (Precision Control) 
field of the FPU control word. If PC specifies a precision of 53 bits, the division instruc­
tions will execute in 62 clocks. If the specified precision is 24 bits, the. division instruc­
tions will take only' 35 clocks. 
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FDIVR/FDIVPR/FIDIVR - Reverse Divide 

Opcode Instruction Clocks Concurrent Execution Description 

08 /7 FDIVR m32rea/ 73 70 Replaces ST with m32rea/7 ST. 
DC /7 FDIVR m64rea/ 73 70 Replace ST with m64rea/ 7 ST. 
08 F8+i FDIVR ST, ST(i) 73 70 Replace ST by ST(i) 7 ST. 
DC FO+i FDIVR ST(i) , ST 73 70 Divide. ST(i) = ST 7 ST(i). 
DE FO+i FDIVRP ST(i). ST 73 70 Divide ST(i) = ST 7. ST(i) and pop ST. 
DE Fl FDIVRP 73 70 Divide ST(l) = ST 7 ST(l) and pop ST. 
DA /7 FIDIVR m32int 73 70 Replace ST with m32int 7 ST. 
DE /7 FIDIVR m16int 73 70 Replace ST with m16int 7 ST. 

Operation 

FDIVR DEST, SRC 
DEST <- SRC -;- DEST 
IF instruction = FDIVRP THEN pop ST FI; 

Description 

The division instructions divide the other operand by the stack top and return the quo­
tient to the destination. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, U, 0, Z, D, I, IS. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

If the source operand is in memory, it is automatically converted to the extended-real 
format. 

The performance of the reverse division instructions depends on the PC (Precision Con­
trol) field of the FPU control word. If PC specifies a precision of 53 bits, the reverse 
division instructions will execute in 62 clocks. If the specified precision is 24 bits, the 
reverse division instructions will take only 35 clocks. 
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FFREE - Free Floating-Point Register 

Opcode 

DO CO+i 

Instruction 

FFREE ST(i) 

Operation 

TAG(i) +---116; 

Description 

Clocks 

3 

FFREE tags the destination register as empty. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TSin CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

Description 

Tag ST(i) as empty. 

FFREE does not affect the contents of the destination register. The floating-point stack­
top pointer (TOP) is also unaffected. 
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FICOM/FICOMP - Compare Integer 

Opcode Instruction Clocks Concurrent Execution Description 

DE /2 FICOM m16real 18 (16-20) Compare ST with ml6int. 
DA /2 FICOM m32real 16.5 (15-17) Compare ST with m32int. 
DE /3 FICOMP m16int 18 (16-20) Compare ST with m16int and pop ST. 
DA /3 FICOMP m32int 16.5 (15-17) Compare ST with m32int and pop ST. 

Operation 

CASE (relation of operands) OF 
Not comparable: C3, C2, CO ~ 111; 
ST > SRC: C3, C2, CO ~ 000; 
ST < SRC: C3, C2, CO ~ 001; 
ST = SRC: C3, C2, CO ~ 100; 

IF instruction = FICOMP THEN pop ST; FI; 

FPU Flags EFlags 

Co CF 

C1 (none) 

C2 PF 

C3 ZF 

Description 

The compare integer instructions compare the stack top to the sour.ce. Following the 
instruction, the condition codes reflect the relation between ST and the source operand. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 as specified above. 

Numeric Exceptions 

D, I, IS. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 
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Real Address Mode Exceptions 

Interupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

The memory operand is converted to extended-real format before the comparison is 
performed. 

If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the 
invalid-operation exception is raised, and the condition bits are set to "unordered." 
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FILD - Load Integer 

Opcode' 

DF /0 
DB /0 
DF /5 

Operation 

Instruction 

FILD m16int 
FILD m32int 
FILD m64int 

Clocks 

14.5 (13-16) 
11.5 (9-12) 
16.8 (10-18) 

Decrement FPU stack-top pointer; 
ST(O) ~ SRC; 

Description 

Concurrent Execution 

4 
4 (2-4)' 
7.8 (2-8) 

Description , 

Push' m16i1itonto the FPU stack. 
Push m32int onto the FPU stack. 
Push m64int onto the f.PU stack. 

FILD converts the source signed integer operand into extended-real format, and pushes 
it onto the FPU stack. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

IS. 

Protected Mode Exceptions 

#GP(O) for an iIIegal memory operand effectivfe address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an iIIegal address in the SS segment; #PF(fault-code) fora page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

The source is loaded without rounding error. 

ST(7) must be empty to avoid causing an invalid-operation exception. 
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FINCSTP -Increment Stack-Top Pointer 

Opcode 

D9 F7 

Operation 

Instruction 

FINCSTP 

IF TOP =7 
THEN TOP +- 0; 
ELSE TOP +- TOP + 1; 
FI; 

Description 

Clocks 

3 

Description 

Increment top-ol-stack pOinter lor FPU register 
, stack; 

FINCSTP adds one (without carry) to the three-bit TOP field of the FPU status word. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM is either EM or TS in CRO is set. 

Notes 

The effect of FINCSTP is to rotate the stack. It does not alter register tags or contents, 
nor does it transfer data. It is not equivalent to popping the stack, because it does not set 
the tag of the old stack-top to empty. 
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FINIT/FNINIT -Initialize Floating-Point Unit 

Opcode 

DB E3 

DB/E3 

Operation 

Instruction 

FINIT 

FNINIT 

CW -<- 037FH; 
SW -<- 0; 
TW -<- FFFFH; 
FEA -<- 0; FDS -<- 0; 

Clocks 

17+at least 3 for 
FWAIT 
17 

(* Control word *) 
(* Status word *) 
(* Tag word *) 
(* Data painter *) 

Description' 

Initialize FPU after checking for unmasked 
floating-point error condition. 
Initialize. FPU without checking for unmasked . 
floating-point error condition. ' 

FIP -<- 0; FOP -<- 0; FCS -<- 0; (* Instruction pointer *) 

Description 

The initialization instructions set the FPU into a known state, unaffected by any previ­
ous activity. 

The FPU control word is set to 037FH (round to nearest, all exceptions masked, (A-bit 
prevision). The status word is cleared (no exception flags set, stack register RO = stack­
top). The stack registers are all tagged as empty. The error pointers (both instruction and 
data) are cleared. 

FPU Flags Affected 

CO, Cl, C2, C3 cleared. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 
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Notes 

FINIT checks for unmasked floating-point error conditions before performing the ini~ 
tialization; FNINIT does not. 

FINIT and FNINIT leave the FPU in the same state as that which results from a hard­
ware RESET signal with Built-In Self-Test. 

On the Intel486 processor, unlike the Intel387 math coprocessor, FINIT and FNINIT 
clear the error pointers. 
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FIST/FISTP-Store Integer 
Opcode Instruction Clocks 

DF /2 FIST m16int 33.4 (29-34) 
DB /2 FIST m32int 32.4 (28-34) 
DF /3 FISTP m16int 33.4 (2!;l-34) 
DB /3 FISTP m32int 33.4 (29-34) 
DF /7 FISTP m64int 33.4 (29-34) 

Operation 

DEST ~ ST(O); 
IF instruction = FISTP THEN pop ST FI; 

Description 

Description 

Store ST in m16int. 
Store ST in m32int.· 

. Store ST in m16intand pop ST. 
Store ST in m32int and pop ST. 
Store ST in m64int and pop ST. 

FIST converts the value in ST into a signed integer according to the RC field of the 
control word and transfers the result to the destination. ST remains unchanged. FIST 
accepts word and short integer destinations; FISTP accepts these and long integers as 
well. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, I, IS. 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; # AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

Negative zero is stored with the same encoding (00 .. 00) as positive zero. 
. . 

. " , 

If the value is too large to represent as an integer, anI exception is raised. The masked 
response is to write~hem:ost negative integer to' memory. 

'.' 

" ,.' 

;', ':, 

26-100 



infel® INSTRUCTION SET 

FLD - Local Real 

Opcode Instruction Clocks Description 

09/0 
DO /0 
DB /5 
09 CO+i 

Operation 

FLO m32real 
FLO m64real 
FLO mBOreal 
FLO ST(i) 

3 
3 
6 
4 

Decrement FPU stack-top pointer; 
ST{O) <-- SRC; 

Description 

Push m32real onto the FPU stack. 
Push m64real onto the FPU stack. 
Push mBOreal onto the FPU stack. 
Push ST(i) onto the FPU stack. 

FLD pushes the source operand onto the FPU stack. If the source is a register, the 
register number used is that before the stack-top pointer is decremented. In particular, 
coding . 

FLD ST(O) 

duplicates the stack top. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

D, I, IS. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 
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Virtual 8086 Mode Exceptions 

Saine exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference ifthe current privilege level is 3. 

Notes 

If the source operand is in single- or double-real format, it is automatically converted to 
the extended-real format. Loading an extended-real operand does not require conver-
sion, so the I and D exceptions will not occur in this case. ' 

ST(7) must be empty to avoid causing an invalid-operation exceptioll; 
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FLD1 /FLDL2T /FLDL2E/ 
FLDPI/FLDLG2/FLDLN2/FLDZ - Load Constant 

Opcode Instruction Clocks 

09 E8 FL01 4 
09 E9 FLOL2T 8 
09 EA FLOL2E 8 
09 EB FLOPI 8 
09 EC FLOLG2 8 
09 EO FLOLN2 8 
09 EE FLOZ 4 

Operation 

Decrement FPU stack-top pointer; 
ST(O) ~ CONSTANT; 

Description 

Concurrent Execution 

2 
2 
2 
2 
2 

Description 

Push + 1.0 onto the FPU Stack. 
Push 109210 onto the FPU Stack. 
Push 1092e onto the FPU Stack. 
Push "IT onto the FPU Stack. 
Push 109102 onto the FPU Stack. 
Push 10902 onto the FPU Stack. 
Push + 0.0 onto the FPU Stack. 

Each of the constant instructions pushes a commonly-used (in extended-real format) 
onto the FPU stack. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

IS. 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

ST(7) must be empty to avoid an invalid exception. 
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An internal 66-bit constant is used and rounded to external-real format (as specified by 
the RC bit of the control words). The precision exception is not raised. 
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FLDCW - Load Control Word 

Opcode 

09/5 

Operation 

CW~SRC; 

Description 

Instruction 

FNLOCW m2byte 

Clocks 

4 

. Description 

Load FPU control word from m2byte. 

FLDCW replaces the current value of the FPU control word with the value contained in 
the specified memory word. . 

FPU Flags Affected 

CO, Cl, C2, C3 undefined. 

Numeric Exceptions 

None, except for unmasking an existing exception. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

FLDCW is typically used to establish or change the FPU's mode of operation. 
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If an exception bit in the status word is set, loading a new control word that· unmasks 
that exception will result in a floating-point error condition. When changing modes, the 
recommended procedure is to cleat any pending exceptions before loading the new con" 
trol word. 
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FLDENV - Load FPU Environment 

Opcode 

09/4 

Operation 

Instruction 

FLOENV m14/ 
28byte 

FPU environment ~ SRC; 

Description 

Clocks 

. 44 real or virlual/34 
protected 

Description 

Load FPU environment from m14byte or 
m28byte. 

FLDENV reloads the FPU environment from the memory area defined by the source 
operand. This data should have been written by previous FSTENV or FNSTENV 
instruction. 

The FPU environment consists of the FPU control word, status word, tag word, and 
error pointers (both data and instruction). The environment layout in memory depends 
on both the operand size and the current operating mode of the processor. The USE 
attribute of the current code segment determines the operand size: the 14-byte operand 
applies to a USE16 segment, and the 28-byte operand applies to a USE32 segment. 
Figures 15-5 through 15-8 show the environment layouts for both operand sizes in both 
real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) 
FLDENV should be executed in the same operating mode as the corresponding 
FSTENV or FNSTENV. 

FPU Flags Affected 

CO, C1, C2, C3 as loaded. 

Numeric Exceptions 

None, except for loading an unmasked exception. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. . 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

If the environment image contains an unmasked exception, loading it will result in a 
floating-point error condition. 

26-108 



intel® INSTRUCTION SET 

FMUL/FMULP/FIMUl- Multiply 

Opcode Instruction Clocks Concurrent Execution Description 

DB /1 FMUL m32reaf 11 B Multiply ST by m32real. 
DC /1 FMUL m64reaf 14 11 Multiply ST by m64reaf. 
DB CB+i FMUL ST, ST(i) 16 13 Multiply ST by ST(i) 
DC CB+i FMUL ST(i), ST 16 13 Multiply ST(i) by ST. 
DE C8+i FMULP ST(i), ST 16 13 Multiply ST(i) by ST and pop ST. 
DE C9 FMUL 16 13 Multiply ST(1) by ST and pop ST. 
DA /1 FIMUL m32int 23.5 (22-24) B Multiply ST by m32int. 
DE /1 FIMUL m16int 25 (23-27) B Multiply ST by ml6int. 

Operation 

DEST ~ DEST x SRC; 
IF instruction = FMULP THEN pop ST FI; 

Description 

The multiplication instructions multiply the destination operand by the source operand 
and return the product to the destination. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, U, 0, D, I. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

If the source operand is in meniory~ i~ is automatically converted to the extended-real 
format. ' . , ' 

''': ,. 

'i 

"'., ; 

'", 
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FNOP - No Operation 

Opcode 

D9 DO 

Description 

Instruction 

FNOP 

Clocks 

3 

Description 

No operation is performed. 

FNOP performs no operation. It affects nothing except instruction pointers. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 
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FPATAN - Partial Arctangent 

Opcode 

D9 F3 

Operation 

Instruction Clocks" 

FPATAN '; 289(218-303) 

ST(1) ~ arctan(ST(1j' -i-'ST);' 
pop ST; 

Description 

Concurrent Execution' 

5 (2-17) 

Description 

Replace ST(1) with arctan(ST(1) +'ST) 
and pop ST. 

The partial arctangent instruction computes the arctflngent of ST(I) -;- ST, and returns 
the computed value, expressed in radians, to ST(I). It then pops ST. The result has the 
same sign as the operand from ST(I), and a magnitude less than 'IT. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

,P, U, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions ",":' 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

There is no restriction on the range of arguments that FPATAN can accept. 

The fact that FPATAN takes two arguments and computes the arctangent of their ratio 
simplifies the calculation of other trigonometric functions. For instance, arcsin(x) (which 
is the arctangent of x -;- v(1-x2» can be computed using the following sequence of 
operations: Push x onto the FPU stack; compute V(I-~) and push the resulting value 
onto the stack; execute FPATAN. 

The Intel486 CPU checks for interrupts while performing this instruction. It will abort 
this instruction to serve an interrupt. 
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FPREM - Partial Remainder 

Opcode 

09 F8 

Operation 

Instruction Clocks 

FPREM 84 (70-138) 

Concurrent Execution 

2 (2-8) 

EXPDIF ~ exponent(ST) - exponent(ST(1)); 
IF EXPDIF < 64 
THEN 

Description 

Replace ST with the remainder obtained on 
dividing ST by ST(1). 

a ~ integer obtained by chopping ST + ST(1) toward zero; 
ST ~ ST - (ST(1) x a); 
C2~O; 

co. C1. C3 ~ three least-significant bits of a; (* a2. 01. ao *) 
E~E . 

C2""': 1; 
N ~ a number between 32 and 63; 
aa ~ integer obtained by chopping (ST + ST(1)) . .;- 2EXPDIF-N 

toward· zero; 
ST ~ ST - (ST(1) x aa x 2EXPDIF-N; 

F.I; 

Description 

The partial remainder instruction computes the remainder obtained on dividing ST by 
ST(I), and leaves the result in ST. The sign of the remainder is the same as the sign of 
the original dividend in ST. The magnitude of the remainder is less than that of the 
modulus. 

FPU Flags Affected 

CO, Cl, C2, C3 as described in Table 15-1. 

Numeric Exceptions 

U, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 
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Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

FPREM produces an exact result; the precision (inexact) exception does not occur and 
the rounding control has no effect. 

The FPREM instruction is not the remainder operation specified in IEEE Std 754. To 
get that remainder, the FPREMt instruction should be used. FPREM is supported for 
compatibility with the 8087 and 80287 math coprocessors. 

FPREM works by iterative subtraction, and can reduce the exponent of ST by no more 
than 63 in one execution. If FPREM succeeds in producing a remainder that is less than 
the modulus, the function is complete and the C2 flag is cleared. Otherwise, C2 is set, 
and the result in ST is called the partial remainder. The exponent of the partial remain­
der is less than the exponent of the original dividend by at least 32. Software can 
re-execute the instruction (using the partial remainder in ST as the dividend) until C2 is 
cleared. A higher-priority interrupting routine that needs theFPU can forte a context 
switch between the instructions in the remainder loop. . 

An important use of FPREM is to reduce the arguments of periodic functions. When: 
reduction is complete, FPREM provides the three least-significant bits of the quotient in 
flags C3, Ct, and CO. This is important in argument reduction for the tangent function 
(using a modulus of 71'/4), because it locates the original angle in the correct one of eight 
sectors of the unit circle .. 
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FPREM 1 - Partial Remainder 

Opcode Instruction Clocks Concurrent Execution 

D9 F5 FPREM1 94.5 (72-167) 5.5 (2-18) 

Operation 

EXPDIF ~ exponent(ST) - exponent(ST(1)); 
IF EXPDIF < 64 
THEN 

Description 

Replace ST with the remainder obtained on 
dividing ST by ST(1). 

Q ~ integerobtained by chopping ST + ST(1) toward zero; 
ST ~ ST - (ST(1) x Q); 
C2~O; 

CO, C1, C3 ~ three least-significant bits of Q; (* Q2, Q1, QO *) 
ELSE 

C2~ 1; 
N ~ a number between 32 and 63; 
QQ ~ integer nearest to (ST + ST(1)) .+ 2EXPDIF-N; 
ST ~ ST - (ST(1) x QQ x 2EXPDIF-N; 

FI; 

Description 

The partial remainder instruction computes the remainder obtained on dividing ST by 
ST(I), and leaves the result in ST. The magnitude of the remainder is less than half the 
magnitude of the modulus. 

FPU Flags Affected 

CO, Cl, C2, C3 as described in Table 15-1. 

Numeric Exceptions 

U, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 
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Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CR.O is set. 

Notes 

FPREMl produces an exact result; the precision (inexact) exception does not occur and 
the rounding control has no effect. . 

The FPREMl instruction is the remainder operation specified in IEEE Std 754. It dif­
fers from FPREM in the way it rounds the quotient of ST and ST(l). 

FPREMl works by iterative subtraction, and can reduce the exponent of ST by no more 
than 63 in one execution. If FPREMl succeeds in producing a remainder that is less 
than one half the modulus, the function is complete and the C2 flag is cleared. Other­
wise, C2 is set, and the result in ST is called the partial remainder. The exponent of the 
partial remainder is less than the exponent of the original dividend by at least 32. Soft­
ware can re-execute the instruction (using the partial remainder in ST as the dividend) 
until C2 is cleared. A higher-priority interrupting routine that needs the FPU can force 
a context switch between the instructions in the remainder loop. 

An important use of FPREMl is to reduce the arguments of periodic functions. When 
reduction is complete, FPREMl provides the three least-significant bits of the quotient 
in flags C3, Cl, and CO. This is important in argument reduction for the tangent function 
(using a modulus of "./4), because it locates the original angle in the correct one of eight 
sectors of the unit circle. 
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FPTAN - Partial Tangent 

Opcode 

09 F2 

Instruction Clocks Concurrent Execution 

FPTAN 244 (200-273) 70 

Operation 

IF operand is in range 
THEN 

C2~0; 

ST ~ tan(ST); 
Decrement stack-top pointer; 
ST ~ 1.0; 

ELSE 
C24- 1; 

FI; 

Description 

Description 

Replace ST with its tangent and push 1 
onto the FPU stack. 

The partial tangent instruction replaces the contents of ST with tan(ST), and then 
pushes 1.0 onto the FPU stack. ST, expressed in radians, must lie in the range I e I < 263. 

FPU Flags Affected 

C1, C2 as described in Table 15-1; CO, C3 undefined. 

Numeric Exceptions 

P, U, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 
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Notes 

If the operand is outside the acceptable range,. the. C2 flag is· set, and STremains 
unchanged. It is the programmer's responsibility to reduce the operand to an absolute 
value smaller than 263 by subtracting an appropriate integer multiple of 2".. See 
Section 17.5 fora discussion of the proper value to use for". in performing such 
reductions. 

The fact that FPTAN pushes 1.0 onto the FPU stack after computing tan(ST) maintains 
compatibility with the 8087 and 80287 math coprocessors, and simplifies the calculation 
of other trigonometric functions. For instance, the cotangent (which is the reciprocal of 
the tangent) can be computed by executing FDIVR after FPTAN. 

ST(7) must be empty to avoid an invalid-operation exception. 

The Intel486 CPU periodically checks for interrupts while performing this instruction. It 
will be aborted to service an interrupt. 
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FRNDINT - Round to Integer 

Opcode 

D9 Fe 

Operation 

Instruction 

FRNDINT 

ST ~ rounded ST; 

Description 

Clocks Concurrent Execution 

29.1 (21-30) 7.4 (2-8) 

Description 

Round ST to an integer. 

The round to integer instruction rounds the value in ST to an integer according to the 
RC field of the FPU control word_ 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 
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FRSTOR - Restore FPU State 

Opcode 

DD /4 

Operation 

Instruction 

FRSTOR m94/ 
10Bby'te 

FPU state +- SRC; 

Description 

Clocks 

131 real or virtual/120 
protected .. 

Description 

Load FPU state from .m94byte or m 1OBbyte. 

... 

FRSTOR reloads the FPUstate (environment and register stack) from the memory area 
defined by the source operand. This data should have been written by a previous 
FSA VE or FNSA VE instruction. 

The FPU environment consists of the FPU control word, status word, tag word, and 
error pointers (both data and instruction). The environment layout in memory depends· 
on both the operand size and the current operating mode of the processor. The USE 
attribute of the current code segment determines the operand size: the 14-byte operand 
applies to a USE16 segment, and the 28-byte operand applies to a USE32 segment. 
Figures 15-5 through 15-8 show the environment layouts for both operand sizes in both 
real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) 
The stack registers, beginning with ST and ending with ST(7), are in the 80 bytes th~t 
immediately follow the environment image. FRS TOR should be executed in the same 
operating mode as the corresponding FSA VE or FNSA VE. 

FPU Flags Affected 

CO, C1, C2, C3 as loaded. 

Numeric Exceptions 

None, except for loading an unmasked exception. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code} for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(faultcode) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

If the state image contains an unmasked exception, loading it will result in a floating~ 
point error condition. 
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FSAVE/FNSAVE - Store FPU State 

Opcode 

98 DD /6 

DD /6 

Operation 

Instruction Clocks 

FSAVE m94/108byte 154 real or virtual/143 
protected; + at least 3 
for FWAIT 

FNSAVE m94/ 154 real or virtual/143 
108byte protected 

DEST ~ FPU state; 
initialize FPU; (* Equivalent to FNINIT *) 

Description 

Description 

Store FPU state to m94byte or m 108byte after 
checking for unmasked floating-point error con­
dition. Then re-initialize the FPU. 
Store FPU environment to m94byte or m108byte 
without checking for unmasked floating-point 
error condition. Then re-initialize the FPU. 

The save instructions write the current FPU state (environment and register stack) to 
the specified destination, and then re-initialize the FPU. The environment consists of 
the FPU control word, status word, tag word, and error pointers (both data and 
instruction). 

The state layout in memory depends on both the operand size and the current operating 
mode of the processor. The USE attribute of the current code segment determines the 
operand size: the 94-byte operand applies to USE16 segment, and the lO8-byte operand 
applies to a USE32 segment. Figures 15-5 through 15-8 show the environment layouts for 
both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the 
real mode layout is used.) The stack registers, beginning with ST and ending with ST(7), 
are stored in the 80 bytes that immediately follow the environment image. 

FPU Flags Affected 

CO, C1, C2, C3 cleared. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #AC for unaligned memory reference if the current privilege level is 3. 
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Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

FSA VE and FNSA VE do not store the FPU state until all FPU activity is complete. 
Thus, the saved image reflects the state of the FPU after any previously decoded instruc­
tion has been executed. 

If a program is to read from the memory image of the state following a save instruction, 
it must issue an FW AIT instruction to ensure that the storage is complete. 

The save instructions are typically used when an operating system needs to perform a 
context switch, or an exception handler needs to use the FPU, or an application program 
wants to pass a "clean" FPU to a subroutine. 
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Opcode 

09 FO 

Operation 

Description 

Instruction 

FSCALE 

INSTRUCTION SET 

Clocks 

31(30-32) 

Concurrent Execution 

2 

Description 

Scale ST by ST(1). 

The scale instruction interprets the value in ST(I) as an integer, and adds this integer to 
the exponent of ST_ Thus, FSCALE provides rapid multiplication or division by integral 
powers of 2. 

FPU Flags Affected 

Cl as described in Table IS-I; CO, C2, C3 undefined. 

Numeric Exceptions . 

P, U, 0, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO· is set. 

Notes 

FSCALE can be used as an inverse to FXTRACT. Since FSCALE does not pop the 
exponent part, however, FSCALE must be followed by FSTP ST(I) in order to com­
pletely undo the effect of a preceding FXTRACT. 

There is no limit on the range of the scale factor in ST(l). If the value is not integral, 
FSCALE uses the nearest integer smaller in magnitude; i.e., it chops the value toward O. 
If the resulting integer is zero, the value in ST is not changed. 

26-124 



intel® 

FSIN-Sine 

Opcode 

09 FE 

Operation 

Instruction 

FSIN 

IF operand is in range 
THEN 

C2 <E- 0; 
ST <E- sin(ST); 

ELSE 
C2 <E- 1; 

FI: 

Description 

INSTRUCTION SET 

Clocks Concurrent Execution Description 

241 (193-279) 2 Replace ST with its sine. 

The sine instruction replaces the contents of ST with sin(ST). ST, expressed in radians, 
must lie in the range I 8 I < 263 • 

FPU Flags Affected 

C1, C2 as described in Table 15-1; CO, C3 undefined. 

Numeric Exceptions 

P, U, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set. 
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Notes 

If the operand is outside the acceptable. range, the C2 flag is set, and ST remains 
unchanged. It is the. programmer's responsibility to reduce the operand to an absolute 
value smaller than 263 by subtracting an appropriate integer multiple of 2'1T. See 
Section 17.5 for a discussion of the proper value to use for '1T in performing such 
reductions. 

The Intel486 CPU periodically checks for interrupts while performing this instruction. It 
will be aborted to service an interrupt. 
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FSINCOS - Sine and Cosine 

Opcode Instruction Clocks Concurrent Execution 

09 FB FSINCOS 291 (243-329) 2 

Operation 

IF operand is in range 
THEN 

C2~O; 

TEMP ~ cos(ST); 
ST ~ sin(ST); 
Decrement FPU stack-top pointer; 
ST~TEMP; 

ELSE 
C2 ~ 1; 

FI: 

Description 

Description . 

Compute the sine and cosine of ST; 
replace ST with the sine, and then 
push the cosine onto the FPU stack. 

FSINCOS computes both sin(ST) and cos(ST), replaces ST with the sine and then 
pushes the cosine onto the FPU stack. ST, expressed in radians, must lie in the range 
181 < 263.' . 

FPU Flags Affected 

C1, C2 as described in Table 15-1; CO, C3 undefined. 

Numeric Exceptions 

P, U, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set. 
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Notes 

If the operand is outside. the acc~ptable range, the C2 flag is set, .and ST remains 
unchanged. It is the programmer's responsibility to reduce the operand to an absolute 
value smaller than 26 . by subtracting an appropriate integer multiple of 21T. See Section 
:17.5 for a discussion of the proper value to use for 1T in performing such reductions. 

It is faster to execute FSINCOS than to execute both FSIN and FCOS. 

The Intel486 CPU periodically checks for interrupts while performing this instruction. It 
will be aborted to service an interrupt. 
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FSQRT - Square Root 

Opcode 

09 FA 

Operation 

Instruction 

FSQRT 

ST ~ square root of ST; 

Description 

Clocks Concurrent Execution 

85.5 (83-87) 70 

Description 

Replace ST with its square root. 

The square root instruction replaces the value in ST with its square root. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

The square root of -0 is -0. 
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FST /FSTP - Store Real 

Opcode Instruction Clocks 
" "., 

09/2 FST m32real 7 
DO /2 FST iTl64real 8 
DO DO+i FST ST(i) 3 
09/3 FSTP m32real 7 
OD /3 FSTP m64real 8 
DB /7 FSTP mBOreal 6 
DO 08+i FSTP ST(i) 3 

Operation 

DEST ~ ST(O); 
IF instruction = FSTP THEN pop ST FI; 

Description 

Description 

Copy ST·to m32real. 
Copy ST to m64real. 
Copy ST to ST(i). 
Copy ST to m32real and pop ST. 
Copy ST to m64real and pop ST. 
Copy ST to mBOreal and pop ST. 
Copy ST to ST(i) and pop ST. 

FST copies the current value in the ST register to the destination, which can be another 
register or a single- or double-real memory operand. FSTP copies and then pops ST; it 
accepts extended-real memory operands as well as the types accepted by FST. 

If the source is a register, the register number used is that before the stack is popped. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

Register or extended-real destinations: IS 
Single- or double-real destinations: P, U, 0, D, I, IS 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

If the destination is single- or double-real, the significand is rounded to the width of the 
destination according to the RC field of the control word, and the exponent is converted 
to the width and bias of the destination format. The over/underflow condition is checked 
for as well. 

If ST contains zero, ±oo, or a NaN, then the significand is not rounded, but chopped (on 
the right) to fit the destination. Nor is the exponent converted; it too is chopped on the 
right. These operations preserve the value's identity as 00 or NaN (exponent all ones). 

The invalid-operation exception is not raised when the destination is a nonempty stack 
element. 
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FSTCW/FNSTCW - Store Control Word 

Opcode ' Instruction 

98 D9 /7 FSTCW m2byte 

D9 /7 FNSTCW m2byte 

Operation' 

DEST +- CW; 

p~sC?ription . c' 

" Clocks 

3 + at least 3 for 
FWAIT 
3 

Description 

Store FPU control word to m2byte after checking 
for unmasked floating-point error condition. 
Store FPU control word to m2byte without 
checking for unmasked floating-point error 
condition. 

FStCW and FNSTCWwrite the crirrent value ofth~FPU control word to the specified 
destination. 
I'''' .I i 

FPU Flags Affected 

CO, Cl, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in th~ CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode. Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

FSTCW checks for unmasked floating-point error conditions before storing the control 
word; FNSTCW does not. 
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FSTENV /FNSTENV - Store FPU Environment 

Opcode 

98 D9 /6 

D9/6 

Operation 

Instruction Clocks 

FSTENV m 14/28byte 67 real or virtual/56 
protected; + at least 3 
for FWAIT 

FNSTENV m14/ 67 real or virtual/56 
28byte protected; 

DEST ~ FPU environment; 
CW[O .. 5] ~ 111111 B; 

Description 

Description 

Store FPU environment to m14byte or m28byte 
after checking for unmasked floating-point error 
condition. Then mask all floating-point 
exceptions. 
Store FPU environment to m 14byte or m28byte 
without checking for unmasked floating-point 
error condition. Then mask all floating-paint 
exceptions. 

The store environment instructions write the current FPU environment to the specified 
destination, and then mask all floating-point exceptions. The FPU environment consists 
of the FPU control word, status word, tag word, and error pointer (both data and 
instruction). 

The environment layout in memory depends on both the operand size and the current 
operating mode of the processor. The USE attribute of the current code segment deter­
mines the operand size: the 14-byte operand applies to a USE16 segment, and the 
28-byte operand applies to a USE32 segment. Figures 15-5 through 15-8 show the envi­
ronment layouts for both operand sizes in both real mode and protected mode. (In 
virtual-8086 mode, the real mode layout is used.) 

FPU Flags Affected 

CO, C1, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #AC for unaligned memory reference if the current privilege level is 3. 
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Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would He outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO ,is set. 

Virtual 8086 Mode Ex~eptions 

Same exceptions as in Re~l Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

FSTENV and FNSTENV do not store the environment until all FPU activity is com­
plete. Thus, the saved environment reflects the state of the FPU after any previously 
decoded instruction has been executed. 

The store environment instructions are often used by exception handlers because they 
provide access to the FPU error pointers. The environment is typically saved onto the 
memory stack. After saving the environment, FSTENV and FNSTENV sets all the 
exception masks in the FPU control word. This prevents floating-point errors from inter-
~upting the exception handler. ' 

FSTENV checks for unmasked floating-point error conditions before storing the FPU 
environment; FNSTENV does not. 
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FSTSW jFNSTSW - Store Status Word 

Opcode Instruction Clocks Description 

9B 00/7 FSTSW m2byte 3 + at least 3 for 
FWAIT 

Store FPU status word to mbyte after checking 
for unmasked floating-point error condition. 

9B OF EO FSTSW 3 + at least 3 for Store FPU status word to AX register after 
FWAIT checking for unmasked floating-point error 

condition. 
00/7 FNSTSW m2byte 3 Store FPU status word to m2byte without check-

ing for unmasked floating-point error condition. 
OF EO FNSTSW AX 3 Store FPU status word to AX register without 

checking for unmasked floating-point error 
condition. 

Operation 

DEST~ SW; 

Description 

FSTSW and FNSTSW write the current value of the FPU status word to the specified 
destination, which can be either a two-byte location in memory or the AX register. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #Ac for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

FSTSW checks for unmasked floating-point error conditions before storing the status 
word;FNSTSW does not. 

FSTSW and· FNSTSW are used primarily in conditional branching (after a comparison, 
FPREM, FPREMl, or FXAM instruction). They can also be used to invoke exception 
handlers (by polling the exception bits) in environments that do not use interrupts. 

When FNSTSWAX is executed, the AX register is updated before the Intel486 Proces7 
sor executes any further instructions. The status stored is that from the completion of 
the prior ESC instruction. . 
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FSUB/FSUBP/FISUB - Subtract 

Opcode Instruction Clocks Concurrent Execution Description 

08/4 FSUB m32reaJ 10 (8-20) 7 (5-17) Subtract m32reaJfrom ST. 
DC /4 FSUB m64reaJ 10 (8-20) 7 (5-17) Subtract m64reaJ from ST. 
08 EO+i FSUB ST, ST(i) 10 (8-20) 7 (5-17) Subtract ST(i) from ST ..... STO. 
DC E8+i FSUB ST(i); ST 10 (8-20) 7 (5-17) Replace ST(i) with ST -ST(i). 
DE E8+i FSUBP ST(i), ST 10 (8-20) 7 (5-17) Replace ST(i) with ST -ST(i); pop ST. 
DE E9 FSUBP 10 (8-20) 7 (5-17) Replace ST(1) with ST -ST(1); pop ST. 
DA /4 FISUB m32int 22.5 (19-32) 7 (5-17) Subtract m32int from ST. 
DE /4 FISUBm16int 24 (20-35) 7 (5-17) Subtract m16int from ST. 

Operation 

DEST ~ ST - Other Operand; 
IF instruction = FSUBP THEN pop ST FI; 

Description 

The subtraction instructions subtract the other operand from the stack top and return 
the difference to the destination. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, U, 0, D, I, IS. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; # NM if either EM or TS in CRO is set; # AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

If the source operand is in memory, it is automatically converted to the extended-real 
format. 
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FSUBR/FSUBPR/FISUBR - Reverse Subtract 

Opccide Instruction Clocks Concurrent Execution Description 

D8/5 FSUBR m32real 10 (8-20) 7 (5-17) Replace ST with m32real - ST. 
DC /5 FSUBR m64real 10 (8-20) 7 (5-17) Replace ST with m64real - ST. 
D8 E8+i FSUBR ST, ST(i) 10 (8-20) 7 (5-17) Replace ST with ST(i) - ST. 
DC EO+i FSUBR ST(i), ST 10 (8-20) 7 (5-17) Subtract ST from ST(i)~ST(i). 
DE EO+i FSUBRP ST(i), ST 10 (8-20) 7 (5-17) Subtract ST from ST(i) and pop ST. 
DE E1 FSUBR 10 (8-20) 7 (5-17) Subtract ST from ST(l) and pop ST. 
DA /5 FISUBR m32int 22.5 (19-32) 7 (5-17) Replace ST with m32int - ST. 
DE /5 FISUBR m16int 24 (20-35) 7 (5-17) Replace ST with m16int - ST. 

Operation 

DEST ~ Other Operand - ST; 
IF instruction = FSUBRP THEN pop ST FI; 

Description 

The reverse subtraction instructions subtract the stack top from the other operand and 
return the difference to the destination. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, U, 0, D, I, IS. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

If the source operand is in memory, it is automatically converted to the. extended-real 
format. 
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FTST-TEST 

Opcode 

D9 E4 

Operation 

Instruction 

FTST 

CASE (relation of operands) OF 

Clocks 

4 

Not comparable: C3, C2, CO ~ 111; 
ST > SRC: C3, C2, CO ~ 000; 
ST < SRC: C3, C2, CO ~ 001 ; 
ST = SRC: C3, C2, CO ~ 100; 

FPU Flags 

Co 
C1 

C2 

C3 

Description 

Concurrent Execution Description 

Compare ST with 0.0. 

EFlags 

CF 
(none) 

PF 
ZF 

The test instruction compares the stack top to 0.0. Following the instruction, the condi­
tion codes reflect the result of the comparison. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 as specified above. 

Numeric Exceptions 

D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 
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Notes 

If ST contains a NaN or an object of undeCuied format, or ifa.stack fault occurs, the. 
invalid-operation exception is raised, and the condition bits are set to "unordered." 

The sign of zero is ignored, so that "':0.0 = :.... + 0.0. 

26-142 



intel® INSTRUCTION SET 

FUCOM/FUCOMP/FUCOMPP - Unordered Compare Real 

Opcode Instruction Clocks Concurrent Execution Description 

DD EO+i FUCOM ST(i) 4 Compare ST with ST(i). 
DD E1 FUCOM 4 Compare ST with ST(1). 
DD EB+i FUCOMP ST(i) 4 Compare ST with ST(i) and pop ST. 
DD E9 FUCOMP 4 Compare ST with ST(1) and pop ST. 
DA E9 FUCOMPP 5 Compare ST with ST(1) and pop ST twice. 

Operation 

CASE (relation of operands) OF 
Not comparable: C3, C2, CO ~ 111; 
ST > SRC: C3, C2, CO ~ 000; 
ST < SRC: C3, C2, CO ~ 001; 
ST = SRC: C3, C2, CO ~ 100; 

IF instruction = FUCOMP THEN pop ST; FI; 
IF instruction = FUCOMPP THEN pop ST; pop ST; FI; 

FPU Flags EFlags 

Co CF 

C1 (none) 

C2 PF 

Ca ZF 

Description 

The unordered compare real instructions compare the stack top to the source, which 
must be a register. If no operand is encoded, ST is compared to ST(I). Following the 
instruction, the condition codes reflect the relation between ST and the source operand. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 as specified above. 

Numeric Exceptions 

D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 
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Real Address Mode Exceptions 

Interrupt? if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM orTS in eRO is set. 

Notes 

If either operand is an SNaN or is in an undefined format, or if a stack fault occurs, the 
invalid-operation exception is raised, and the condition bits are set to "unordered." 

If either operand is a QNaN, the condition bits are set to "unordered." Unlike the 
ordinary compare instructions (FCOM, etc.), the unordered compare instructions do not 
raise the invalid-operation exception on account of a QNaN operand. . 

The sign of zero is ignored, so that -0.0 = - + 0.0. 
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FWAIT-Wait 
Opcode 

98 

Description 

Instruction 

FWAIT 

Clocks 

(1-3) 

Description 

Alias for WAIT. 

FW AIT causes the processor to check for pending unmasked numeric exceptions before 
proceding. 

FPU Flags Affected 

CO, C1, C2, C3 undefined. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#NM if both MP and TS in CRO are set. 

Real Address Mode Exceptions 

Interrupt 7 if both MP and TS in CRO are set. 

Virtual 8086 Mode Exceptions 

#NM if both MP and TS in CRO are set. 

Notes 

As its opcode shows, FW AIT is not actually an ESC instruction, but an alternate mne­
monic for WAIT. 

Coding FW AIT after an ESC instruction ensures that any unmasked floating-point 
exceptions the instruction may cause are handled before the processor has a chance to 
modify the instruction's results. 

Information about when to use FW AIT is given in Chapter 18, in the section on "Con-
current Processing." . 
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FXAM - Examine 

Opcode 

D9 E5 

Operation 

Instruction 

FXAM 

Clocks 

8 

C1 +- sign bit of ST; (* o for positive; 1 for negative *) 

CASE (type of object in Sn OF 
Unsupported: C3, C2, CO +- 000; 
NaN: C3, C2, CO +- 001 ; 
Normal: C3, C2, CO +- 010; 
Infinity: C3, C2, CO +- 011; 
Zero: C3, C2, CO +- 100; 
Empty: C3, C2, CO +- 101; 
Denormal: C3, C2, CO +- 110; 

FPU Flags 
, 

Co 
C1 

C2 

C3 

Description 

Description 

Report the type of object iri'the ST register. 

EFlags 

CF 
(none) 

PF 
ZF 

The examine instruction reports the type of object contained in the ST register by setting 
the FPU Flags. 

FPU Flags Affected 

CO, Cl, C2,. C3 as shown above. 

Numeric Exceptions 

None. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 
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Virtual 8086 Mode Exceptions 

#NM if either EM or TS in eRO is set. 
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FXCH - Exchange Register Contents 

Opcode 

09 C8+i 
09 C9 

Operation 

Instruction 

FXCH ST(i) 
FXCH 

TEMP +- ST; 
ST +- DEST; 
DEST +- TEMP; 

Description 

Clocks 

4 
4 

Description 

Exchange thecontents of ST and ST(i). 
Exchange the contents of ST and ST(I). 

FXCH swaps the contents of the destination and stack-top registers. If the destination is 
not coded explicitly, ST(I) is used. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

. Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 
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Notes 

Many numeric instructions operate only on the stack top; FXCH provides a simple 
means for using these instructions on lower stack elements. For example, the following 
sequence takes the square root of the third register form the top (assuming that ST is 
nonempty): 

FXCH ST(3) 
FSQRT 
FXCH ST(3) 
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FXTRACT - Extract Exponent and Significand 

Opcode 

D9 F4 

Operation 

Instruction 

FXTRACT 

Clocks 

19 (16-20) 

TEMP ~ significand of ST; 
ST ~ exponent of ST; 
Decrement FPU stack-top pOinter; 
ST~TEMP; 

Description 

Concurrent Execution 

4 (2-4). 

Description 

Separate ST into its exponent and signifi- .. 
, cand; replace ST with the exponent and 

then push the significand onto the FPU 
stack. 

FXTRACT splits the value in ST into its exponent and significand. The exponent 
replaces the original operand on the stack and the significand is pushed onto the stack. 
Following execution of FXTRACT, ST (the new stack top) contains the value of the 
original significand expressed as a real number: its sign is the same as the operand's, its 
exponent is 0 true (16,383 or 3FFFH biased), and its significand is identical to the 
original operand's. ST(1) contains the value of the original operand's true (unbiased) 
exponent expressed as a real number. 

To illustrate the operation of FXTRACT, assume that ST contains a number whose true 
exponent is + 4 (i.e., its exponent field contains 4003H). After executing FXTRACT, 
ST(1) will contain the real number + 4.0; its sign will be positive, its exponent field will 
contain 4001H ( + 2 true) and its significand field will contain 1~00 ... 00B. In other words, 
the value in ST(1) will be 1.0 x 22 = 4. If ST contains an operand whose true exponent 
is -7 (i.e., its exponent field contains 3FF8H), then FXTRACT will return an "expo­
nent" of -7.0; after the instruction executes, ST(1)'s sign and exponent fields will con­
tain C001H (negative sign, true exponent of 2), and its significand will be 1~1100 ... 00B. 
In other words, the value in ST(1) will be -1.75 x 22=-7.0. In both cases, following 
FXTRACT, ST's sign and significand fields will be the same as the original operand's, 
and its exponent field will contain 3FFFH (0 true). 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

Z, D, I, IS. 
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Protected Mode Exceptions 

#NM if either EM or TS in CRa is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRa is set. 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRa is set. 

Notes 

FXTRACT (extract exponent and significand) performs a superset of the IEEE­
recommended logb(x) function. 

If the original operand is zero, FXTRACT leaves -<Xl in ST(l) (the exponent) whileSr 
is assigned the value zero with a sign equal to that of the original operand. The zero­
divide exception is raised in this case, as well. 

ST(7) must be empty to avoid the invalid-operation exception. 

FXTRACT is useful for power and range scaling operations. Both FXTRACT and the 
base 2 exponential instruction F2XMl are needed to perform a general power opera­
tion. Converting numbers in extended-real format to decimal representations (e.g., for 
printing or displaying) requires not only FBSTP but also FXTRACT to allow scaling that 
does not overflow the range of the extended format. FXTRACT can also be useful for 
debugging, because it allows the exponent and significand parts of a real numbt::r to be 
examined separately. . .... 
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FYL2X - Compute y x I092X 

Opcode Instruction Clocks 

D9 F1 FYl2X 311 (196-329) 

Operation 

8T(1) ~ 8T(1) x 10928T; 
pop 8T; 

Description 

Concurrent Execution Description 

13 Replace ST(1) with ST(1) x I092ST and pop ST. 

FYL2X computes the base-2 logarithm of ST, multiplies the logarithm by ST(l), and 
returns the resulting value to ST(l). It then pops ST. The operand in STcannot be 
negative. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3undefined. 

Numeric Exceptions 

P, U, O,Z, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in eRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

If the operand in ST is negative, the invalid-operation exception is raised. 

The FYL2X instruction is designed with a built-in multiplication to optimize the calcu­
lation of logarithms with arbitrary positive base: 
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The instructions FLDL2T and FLDL2E load the constants 10g210 and 10g2e, 
respectively. 

The Inte1486 CPU periodically checks interrupts while executing this instruction. It will 
be aborted to service an interrupt. 
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FYL2XP1 - Compute y x I092(X + 1) 

Opcode Instruction Clocks Concurrent Execution Description 

D9 F9 FYL2XP1 313 (171-326) 13 Replace ST(1)with ST(1) x I092(ST+1.0) 
and pop ST. 

Operation 

ST(1) (- ST(1) x I092(ST+1.0); 
pop ST; 

Description 

FYL2XPI computes the base-2 logarithm of (ST+ 1.0), multiplies the logarithm by 
ST(1), and returns the resulting value to ST(l). It then pops ST. The operand in ST 
must be in the range. 

-(1-(y2 / 2)) :5 ST :5 y2 -1 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined. 

Numeric Exceptions 

P, U, D, I, IS. 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set. 

Notes 

If the operand in ST is outside the acceptable range, the result of FYL2XPI is 
undefined: 
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The FYL2XPl instruction provides improved accuracy over FYL2X when computing the 
logarithms of numbers very close to 1. When E is small, more significant digits can be 
retained by providing E as an argument to FYL2XPl than by providing 1 + E as an argue 
ment to FYL2X. 

The Intel486 CPU periodically checks for interrupts while executing this instruction. It 
will be aborted to service an interrupt. 
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HLT-Halt 

Opcode 

F4 

Operation 

Instruction 

HLT 

Enter Halt state; 

Description 

Clocks 

4 

Description 

Halt 

The HLT instruction stops instruction execution and places the processor in a HALT 
state. An enabled interrupt, NMI, or a reset will resume execution. If an interrupt 
(including NMI) is used to resume execution after a HLT instruction, the saved CS:IP 
(or CS:EIP) value points to the instruction following the HLT instruction. 

Flags Affected 

None. 

Protected Mode Exceptions 

The HLT instruction is a privileged instruction; #GP(O) if the current privilege level is 
not O. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O); the HLT instruction is a privileged instruction. 
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IDIV - Signed Divide 

Opcode 

F6/7 

F7/7 

F7/7 

Operation 

Instruction 

IDIV rlmB 

IDIV AX,rlm16 

IDIV EAX,rlm32 

temp ~ dividend / divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

quotient ~ temp; 

Clocks 

19/20 

27/28 

43/44 

remainder ~ dividend MOD (rim); 
FI; 

Description 

Signed divide AX (where AH must contain sign­
extension of AL) by rim byte. (Results: AL=Quo, 
AH = Rem) 
Signed divide DX:AX (where DX must contain sign­
extension of AX) by rim word. (Results: AX=Quo, 
DX=Rem) 
Signed divide EDX:EAX (where EDX must contain 
sign-extension of EAX) by rim dword. (Results: 
EAX = Quo, EDX = Rem) . 

Notes: Divisions are signed. The dividend must be sign-extended. The divisor is given by 
the rim operand. The dividend, quotient, and remainder use implicit registers. Refer to 
the table under "Description." 

Description 

The IDIV instruction performs a signed division. The dividend, quotient, and remainder 
are implicitly allocated to fixed registers. Only the divisor is given as an explicit rim 
operand. The type of the divisor determines which registers to use as follows: 

Size Divisor Quotient Remainder Dividend 

byte rlmB AL AH AX 
word rim 16 AX OX OX:AX 
dword rlm32 EAX EOX EDX:EAX 

If the resulting quotient is too large to fit in the destination, or if the divisor is 0, an 
Interrupt 0 is generated. Nonintegral quotients are truncated toward O. The remainder 
has the same sign as the dividend and the absolute value of the remainder is always less 
than the absolute value of the divisor. 

Flags Affected 

The OF, SF, ZF, AF, PF, CF flags are undefined. 
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Protected Mode Exceptions 

Interrupt 0 if the quotient is too large to fit in the designated register (ALor AX), or if 
the divisor is 0; #GP (0) for an illegal memory operand effective address in the CS, DS, 

. ES, FS, or GS segments; #SS(O) fot an illegal address in the SS segment; #PF(fault. 
code) for a page fault; #AC for unaligned memory reference if the qment privilege 
level is 3. 

Real Address Mode Exceptions 

Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if 
the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the effective 
address space from 0 to OFFFFH. . 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #ACfor 
unaligned memory reference if the current privilege level is 3. 
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IMUL-Signed Multiply 

Opcode Instruction Clocks 

F6/5 IMUL r/mB 13-18/13-18 
F7/5 IMUL r/m16 13-26/13-26 
F7/5 IMUL r/m32 12-42/13-42 
OF AF /r IMUL r16,r/m16 13-26/13-26 
OF AF /r IMUL r32,r/m32 13-42/13-42 
66 /r ib IMUL r16,r/m16,immB 13-26/13-26 

66 /r ib IMUL r32,r/m32,immB 13-42/13-42 

66 /r ib IMUL r16,immB 13-26 

66 /r ib IMUL r32,immB 13-42 

69 /r iw IMUL r16,r/ 13-26/13-26 
m16,imm16 

69 /r id 'IMUL r32,r/ 13-42/13-42 
m32,imm32 

69 /r iw IMUL r16,imm16 13-26/13-26 
69 /r id IMUL r32,imm32 13-42/13-42 

Description 

AX- AL * rim byte 
DX:AX <- AX * rim word 
EDX:EAX <- EAX * rim dword 
word register <- word register * rim word 
dword register <- dword register * rim dword 
word register <- r/m16 * Sign-extended immedi­
ate byte 
dword register - r/m32 * sign-extendeq immedi-, 
ate byte . : . 
. Word register <- word register * sign-exte'nded 
immediate byte 
dword register <- dword register * sign-extended 
immediate byte 
word register ~ r/m16 * immediate word 

dword register <- r/m32 * immediate dword . 

word register <- r/m16 * immediate word 
dword register ~ r/m32 * immediate dword 

NOTES: The Intel486 processor uses an early-out multiply algorithm. The actual number of clocks depends on the posi­
tion of the most significant bit in the optimizing multiplier. The optimization occurs for positive and negative 
values. 6ecause of the early-out algorithm, clock counts given are minimum to maximum. To calculate the actual 
clocks, use the following formula: ',,' ' 

Actual clock = if m <> 0 then max(ceiling(log2Im 13) '+ 6 clocks 
Actual clock = if m = 0 then 9 clocks· 
(where m is the multiplier) 

Add three clocks if the multiplier is a memory operand. 

Operation 

result ~ multiplicand * multiplier; 

Description 

The IMUL instruction performs signed multiplication_ Some forms of the instruction use 
implicit register operands. The operand combinations for all forms of the instruction are 
shown in the "Description" column above. 

The IMUL instruction clears the OF and CF flags under the following conditions (oth­
erwise the CF and OF flags are set): 

Instruction Form Condition for Clearing CF and OF 

rlmB AL = sign-extend of AL to 16 bits 
rlm16 AX = sign-extend of AX to 32 bits 
rlm32 EDX:EAX = sign-extend of EAX to 32 bits 
r16,rlm16 Result exactly fits within r16 
rl32,rlm32 Result exactly fits within r32 
r16,rlm16,imm16 Result exactly fits within r16 
r32,rlm32,imm32 Result exactly fits within r32 
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Flags Affected 

The OF and CF flags as described in the table in the "Description" section above; the 
SF, ZF, AF, and PF flags are undefined. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #ACfor unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. . 

Virtual 8086 Mode Exceptions 

Same exeptions as in Real Address Mode;#PF(fault-code) for a page f~ult; #AC for 
unaligned memory reference if the current privilege levelis 3. 

Notes 

When using the accumulator forms (IMUL rlmB, IMUL rim 16, or IMUL rlm32) , the 
result of the multiplication is available even if the overflow flag is set because the result 
is twice the size of the multiplicand and multiplier. This is large enough to handle any 
possible result. 
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IN -Input from Port 

Opcode Instruction 

E4 ib IN AL,immB 

E5 ib IN AX,imml6 

E5 ib IN EAX,imm32 

EC IN AL,DX 

ED IN AX,DX 

ED IN EAX,DX 

NOTES: *If CPL ,;;;Ie 10PL 
*"If CPL 2: 10PL 

Operation 

Clocks 

14,pm=S", 
2S"",vm=27 
14,pm=S"' 
2S*",vm=27 
14,pm=S"' 
2S**,vm=27 
14,pm=S*' 
2S**,vm=27 
14,pm=S*' 
2S**,vm=27 
14,pm=8*l 
28**,vm=27 

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL)) 

Description 

Input byte from immediate port into AL 

Input word from immediate port into AX 

Input dword from immediate port into EAX 

Input byte from port DX into AL 

Input word from port DX into AX 

Input dword from port DX into EAX 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-O-Permission (SRC, width(SRC)) 
THEN #GP(O); 
FI; 

FI; 
DEST ~ [SRC]; (* Reads from I/O address space *) 

Description 

The IN instruction transfers a data byte or data word from the port numbered by the 
second operand into the register (AL, AX, or EAX) specified by the first operand . 

. Access any port from 0 to 65535 by placing the port number in the DX register and using 
an IN instruction with the DX register as the second parameter. These I/O instructions 
can be shortened by using an 8-bit port I/O in the instruction. The upper eight bits of the 
port address will be 0 when 8-bit port I/O is used. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the current privilege level is larger (has less privilege) than the I/O pflvilege 
level and any of the corresponding I/O permission bits in TSS equals 1. 

Real Address Mode Exceptions 

None. 
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Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1. 
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INC -Increment by 1 

Opcode Instruction 

FE /0 INC rlmB 
FF /0 INC rlm16 
FF /0 INC rlm32 
40+ rw INC r16 
40+ rd INC r32 

Operation 

DEST - DEST + 1; 

Description 

Clocks 

1/3 
1/3 
1/3 
1 
1 

Description 

Increment rim byte by 1 
Increment rim word by 1 
Increment rim dword by 1 
Increment word register by 1 
Increment dword register by 1 

The INC instruction adds 1 to the operand. It does not change the CF flag. To affect the 
CF flag, use the ADD instruction with a second operand of 1. 

Flags Affected 

The OF, SF, ZF, AF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the operand is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions· 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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INS/INSB/INSW/INSD -Input from Port to String 

Opcode Instruction 

6C INS mB,DX" 

6D INS m16,DX 

6D INS 1T132,DX 

6C INSB 

6D INSW 

6D INSD 

NOTES: *If CPL :s; IOPL 
**If CPL > IOPL 

Operation, ' 

IF AddressSize = 16 
THEN use 01 for dest-index; 
ELSE (* AddressSize == 32 *) 

use EOI for dest-index; 
FI; 

, Clo~ki 

17,pm= 10*/ 
32**,VM=30 
1'7,pm ~ 10*/ 
32**VM=30 
j7,P~=10*/ 
32**,VM=30 
'17,pm=10*/ 
32**,VM=30 
17,pm=10*/ 
32**,VM=30 
17,pm=10*/ 
32**,VM=30 

IF (PE = 1) ANO ((VM = 1) OR (CPL > 10PL)) 

Description 

Input byte from port DX into ES:(E)DI 

Input word from port DX into ES:(E)DI 

Input dword from port DX into ES:(E)DI 

Input byte from port DX into ES:(E)DI 

Input word from port DX into ES:(E)DI 

Input dword from port DX into ES:(E)DI 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL*) • 
IF NOT I-a-Permission (SRC, width(SRC)) 
THEN #GP(O);' , , .,'~ , 

,- FI;' 
FI;, " 
IF byte type of instruction 
THEN 

ES:[dest-index] ~ [OX]; (* Reads byte at OX from I/O address space*) 
IF OF = a THEN IncOec ~ 1 ELSE IncOec ~ -1; FI; 

FI; , 
IF OperandSize = 16 
THEN 

ES:[dest-index] ~ [OX]; (* Reads word at OX from I/O address space *), 
IF OF = a THEN IncOec ~ 2 ELSE IncOec ~ -2; FI; 

FI; 
IF OperanelSize =:32 
THEN 

ES:[dest-index] ~ [OX]; (* Reads dword at OX from I/O address space *) 
IF OF = a THEN IncOec ~ 4 ELSE IncOec ~ -4; FI; 

FI; 
dest-index ~ dest-index + IncOec; 

Description 

The INS instruction transfers data from the input port numbered by the DX register to 
the memory byte or word at, ES:dest-index. The memory operand must be addressable 
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from the ES register; no segment override is possible. The destination register is the DI 
register if the address-size attribute of the instruction is 16 bits, or the EDI register if the 
address-size attribute is 32 bits. 

The INS instruction does not allow the specification of the port number as an immediate 
value. The port must be addressed through the DX register value. Load the correct value 
into the DX register before executing the INS instruction. . 

The destination address is determined by the contents of the destination index register. 
Load the correct index into the destination index register before executing the INS 
instruction. 

After the transfer is made, the DI or EDI register advances automatically. If the DF flag 
is 0 (a CLD instruction was executed), the DI or EDI register increments; if the DF flag 
is 1 (an STD instruction was executed), the DI or EDI register decrements. The DI 
register increments or decrements by 1 if a byte is input, by 2 if a word is input, or by 4 
if a doubleword is input. 

The INSB, INSW and INSD instructions are synonyms of the byte, word, and double­
word INS instructions. The INS instruction can be preceded by the REP prefix for block 
input of CX bytes or words. Refer to the REP instruction for details of this operation. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the current privilege level is numerically greater than the I/O privilege level 
and any of the corresponding I/O permission bits in TSS equals 1; #GP(O) if the desti­
nation is in a nonwritable segment; #GP(O) for an illegal memory operand effective 
address in the ES, segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault­
code) for a page fault; #AC for unaligned memory reference if the current privilege 
level is 3. 
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I NT/I NTO - Call to Interrupt Procedure 

Opcode Instruction Clocks Description 

CC INT3 26 Interrupt 3-trap to debugger 
CC INT 3 44 Interrupt 3-Protected Mode, same privilege 
CC INT3 71 Interrupt 3-Protected Mode, more privilege 
CC INT 3 82 Interrupt 3-from V86 mode to PL 0 
CC INT3 37+TS Interrupt 3-Protected Mode, via task gate 
CD ib INT immB 30 Interrupt numbered by immediate byte 
CD ib INT immB 44 Interrupt-Protected Mode, same privilege 
CD ib INT immB 71 Interrupt ~ Protected Mode, more privilege 
CD ib INT immB 86 Interrupt - from V86 mode to PL 0 
CD ib INT immB 37+TS Interrupt - Protected Mode, via task gate 
CE INTO Pass: 28, Fail: 3 Interrupt 4 - if overflow flag is 1 
CE INTO 46 Interrupt 4 - Protected Mode, same privilege 
CE INTO 73 Interrupt 4-Protected Mode, more privilege 
CE INTO 84 Interrupt 4 - from V86 mode to PL 0 
CE INTO 39+TS Interrupt 4-Protected Mode, via task gate 

NOTE: Approximate values of ts are given by the following table: 

New Task 
Old Task 

to InteI486'· CPU TSS to 80286 J"SS to VM TSS 

VM/lntel486 CPU/80286 TSS 199 180 177 

Operation 

NOTE: The following operational description applies not only to the above instructions 
but also to external interrupts and exceptions. 

IF PE = 0 . .. 
THEN GOTO REAL-ADDRESS-MODE; 
ELSE GOTO PROTECTED-MODE; 
FI; 

REAL-ADDRESS-MODE: 
Push (FLAGS); 
IF +- 0; (* Clear interrupt flag *) 
TF +- 0; (* Clear trap flag *) 
Push(CS); 
Push(IP); 
(* No error codes are pushed *) 
CS +- IDT[lnterrupt number * 4].selector; 
IP +- IDT[lnterrupt number * 4].offset; 

(* Start execution in real address mode *) 
PROTECTED-MODE: 

Interrupt vector must be within IDT table limits, 
else #GP(vector number * 8+2+EXT); 

Descriptor AR byte must indicate interrupt gate, trap gate, or task gate, 
else #GP(vector number * 8 + 2 + EXT); 
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IF software interrupt (* i.e. caused by INT n, INT 3, or INTO *) 
THEN 

IF gate descriptor DPL < CPL 
THEN #GP(vector number * 8 + 2 + EXT); 
FI; 

FI; 
Gate must be present, else #NP(vector number * 8+2+EXT); 
IF trap gate OR interrupt gate 
THEN GOTO TRAP-GATE-OR-INTERRUPT-GATE; 
ELSE GOTO TASK-GATE; 
FI; 

TRAP-GATE-OR-INTERRUPT-GATE: 
Examine CS selector and descriptor given in the gate descriptor; 
Selector must be non-nUll, else #GP (EXT); 
Selector must be within its descriptor table limits 

ELSE #GP(selector+ EXT); 
Descriptor AR byte must indicate code segment 

ELSE #GP(selector + EXT); 
Segment must be present, else #NP(selector+ EXT); 

IF code segment is non-conforming AND DPL < CPL 
THEN GOTO INTERRUPT-TO-INNER-PRIVILEGE; 
ELSE 

IF code segment is conforming OR code segment DPL = CPL 
THEN GOTO INTERRUPT-TO-SAME-PRIVILEGE-LEVEL; 
ELSE #GP(CS selector + EXT); 
FI; 

FI; 

INTERRUPT-TO-INNER-PRIVILEGE: 
Check selector and descriptor for new stack in current TSS; 

Selector must be non-nUll, else #TS(EXT); 
Selector index must be within its descriptor table limits 

ELSE #TS(SS selector+ EXT); 
Selector's RPL must equal DPL of code segment, else #TS(SS 

selector + EXT); 
Stack segment DPL must equal DPL of code segment, else #TS(SS 

selector + EXT); . 
Descriptor must indicate writable data segment, else #TS(SS 

selector + EXT); 
Segment must be present, else #SS(SS selector + EXT); 

IF 32-bit gate 
THEN New stack must have room for 20 bytes else #SS(O) 
ELSE New stack must have room for 10 bytes else #SS(O) 
FI; 
Instruction pointer must be within CS segment boundaries else #GP(O); 
If VM = 1 in EFLAGS 
Then Goto INTERRUPT from V-86-MODE; 
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Load new SS and eSP value from TSS; 
IF 32-bit gate 
THEN CS:EIP ~ selector:offset from gate; 
ELSE CS:IP ~ selector:offset from gate; 
FI; 
Load CS descriptor into invisible portion of CS register; 
Load SS descriptor into invisible portion of SS register; 
IF 32-bit gate 
THEN 

Push (long pOinter to old stack) (* 3 words padded to 4 *); 
Push (EFLAGS); 
Push (long pOinter to return location) (* 3 words padded to 4*); 

ELSE 
Push (long pointer to old stack) (* 2 words *); 
Push (FLAGS); 
Push (long pointer to return location) (* 2 words *); 

FI; 
Set CPL to new code segment DPL; 
Set RPL of CS to CPL; 
IF interrupt gate THEN IF ~ 0 (* interrupt flag to 0 (disabled) *); PI; 
TF~ 0; 
NT~O; 

INTERRUPT-FROM-V86-MODE: 
TempEFlags ~ EFLAGS; 
VM~O; . 
TF~O; 

IF service through Interrupt Gate THEN IF ~ 0; 
TempSS ~ SS; 
TempESP ~ ESP; 
SS ~ TSS.SSO; (* Change to level 0 stack segment *) 
ESP ~ TSS.ESPO; (* Change to level 0 stack pointer *) 
Push(GS); (* padded to two words *) 
Push(FS); (* padded to two words *) 
Push(DS); (* padded to two words *) 
Push(ES); (* padded to two words *) 
GS ;ID 0; 
FS ~ 0; 
DS~O; 

ES ~ 0; 
Push(TempSS); (* padded to two words *) 
Push(TempESP); 
Push(TempEFlags); 
Push(CS); (* padded to two words *) 
Push(EIP); 
CS:EIP ~ selector:offset from interrupt gate; 
(* Starts execution of new routine in Protected Mode *) 

INTERRUPT-TO-SAME-PRIVILEGE-LEVEL: 
IF 32-bit gate 
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THEN Current stack limits must allow pushing 10 bytes, else #SS(O); 
ELSE Current stack limits must allow pushing 6 bytes, else #SS(O); 
FI; . 

IF interrupt was caused by exception with error code 
THEN Stack limits must allow push of two more bytes; 
ELSE #SS(O); 
FI; 
Instruction pointer must be in CS limit, else #GP(O); 
IF 32-bit gate 
THEN 

Push (EFLAGS); 
Push (long pointer to return location); (* 3 words padded to 4 *) 
CS:EIP ~ selector:offset from gate; 

ELSE (* 16-bit gate *) 
Push (FLAGS); 
Push (long pointer to return location); (* 2 words *) 
CS:IP ~ selector:offset from gate; 

FI; 
Load CS descriptor into invisible portion of CS register; 
Set the RPL field of CS to CPL; 
Push (error code); (* if any *) 
IF interrupt gate THEN IF ~ 0; FI; 
TF~O; 

NT~O; 

TASK-GATE: 
Examine selector to TSS, given in task gate descriptor; 

Must specify global in the local/global bit, else #TS(TSS selector); 
Index must be within GDT limits, else #TS(TSS selector); 
AR byte must specify available TSS (bottom bits 00001), 

else #TS(TSS selector); 
TSS must be present, else #NP(TSS selector); 

SWITCH-TASKS with nesting to TSS; 
IF interrupt was caused by fault with error code 
THEN 

Stack limits must allow push of two more bytes, else #SS(O); 
Push error code onto stack; 

FI; 
Instruction pointer must be in CS limit, else #GP(O); 

Description 

The INT n instruction generates via software a call to an interrupt handler. The imme­
diate operand, from a to 255, gives the index number into the Interrupt Descriptor Table 
(IDT) of the interrupt routine to be called. In Protected Mode, the IDT consists of an 
array of eight-byte descriptors; the descriptor for the interrupt invoked must indicate an 
interrupt, trap, or task gate. In Real Address Mode, the IDT is an array of four byte­
long pointers. In Protected and Real Address Modes, the base linear address of the IDT 
is defined by the contents of the IDTR. 
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The INTO condition!!l software instruction is identical to the INT n interrupt instruction 
except that the interrupt number is implicitly 4, and the interrupt is made only if the 
Intel486 processor overflow flag is set. 

The first 32 interrupts are reserved by Intel for system use. Some of these interrupts are 
used for internally generated exceptions. 

The INT n instruction generally behaves like a far call except that the flags register is 
. pushed onto the stack before the return address. Interrupt procedures return via the 
IRET instruction, which pops the flags and return address from the stack. 

In Real Address Mode, the INT n instruction pushes the flags, the CS register,and the 
return IP onto the stack, in that order, then jumps to the long pointer indexed by the 
interrupt number. 

Flags Affected 

None. 

Protected Mode exceptions 

#GP, #NP, #SS, and #TS as indicated under "Operation" above. 

Real Address Mode Exceptions 

None; if the SP or ESP register is 1, 3,or 5 before executing the INT or INTO instruc­
tion, the Intel486 processor will shut down due to insufficient stack space. 

Virtual 8086 Mode Exceptions 

#GP(O) fault if IOPL is less than 3, for the INT ninstruction only, to permit emulation; 
Interrupt 3 (OCCH) generates a breakpoint exception; the· INTO instruction generates 
an overflow exception if the OF flag is set. . 
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I NVD -Invalidate Cache· 

Opcode 

OF 08 

Operation 

Instruction 

INVD 

FLUSH INTERNAL CACHE 

. Clocks 

4 

SIGNAL EXTERNAL CACHE TO FLUSH 

Description 

Description 

Invalidate Entire Cache 

The internal cache is flushed, and a special-function bus cycle is issued which indicates 
that external caches should also be flushed. Data held in write-back external caches is 
discarded. 

Flags Affected 

None. 

Protected Mode Exceptions 

The INVD instruction is a privileged instruction; #GP(O) if the current privilege·level is 
~Q . 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O); the INVD instruction is a privileged instruction. 

Notes 

This instruction is implementation-dependent; its function may be implemented differ­
ently on future Intel processors. 

It is the responsibility of hardware to respond to the external cache flush indication. 

This instruction is not supported on Intel386 processors. See Section 3.11 for detecting 
an Intel486 processor at runtime. See WBINVD description to write back dirty data to 
memory. 

See Section 12.2 on disabling the cache. 
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INVLPG -Invalidate TLB Entry 

Opcode 

OF 01/7 

Operatiqn 

Instruction 

INVLPG m 

INVALIDATE TLB ENTRY 

Description 

Clocks 

12 for hit 

Description 

Invalidate TLB Entry 

The INVLPG instruction is used to invalidate a single entry in the TLB, the cache used 
for page table entries. If the TLB contains a valid entry which maps the address of the 
memory operand, that TLB entry is marked invalid. 

Flags Affected 

None 

Protected Mode Exceptions 

The INVLPG instruction is a privileged instruction; #GP(O) if the current privilege level 
is not o. An invalid-opcode exception is generated when used with a register operapd. 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

An invalid-opcode exception is generated when used with a register operand. #GP(O); 
the INVLPG instruction is a privileged instruction. 

Notes 

This instruction is not supported on Inte1386 processors. See Section 3.11 for detecting 
an Intel386 processor at runtime. 

See Section 12.2 on disabling the cache. 
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IRET/IRETD -Interrupt Return 

Opcode 

CF 
CF 
CF 
CF 
CF 
CF 
CF 

Instruction 

IRET 
IRET 
IRET 
IRETD 
IRETD 
IRETD 
IRETD 

Clocks 

15 
36 
TS+32 
15 
36 
15 
TS+32 

NOTE: Values of ts are given by the following table: 

Old Task 

Description 

Interrupt return (far return and pop flags) 
Interrupt return to lesser privilege 
Interrupt return, .different task (NT =1) 
Interrupt return (far return and pop flags) 
Interrupt return to lesser privilege ' 
Interrupt return to Va6 mode 
Interrupt return, different task (NT = 1) 

New Task , 

to IntElI486'· CPU TSS to 80286 TSS to VM TSS 

VM/lntel486 CPU/80286 TSS 199 

Operation 

IF PE = 0 
THEN (* Real-address mode *) 

IF OperandSize = 32 (* Instruction = IRETD *) 
THEN EIP <-- Pop{); 
ELSE (* Instruction = IRET *) 

IP <-- Pop{); 
FI; 
CS <-- Pop{); 
IF OperandSize = 32 (* Instruction ~ IRETD *) 
THEN Pop{); EFLAGS <-- Pop(); 
ELSE (* Instruction = IRET *) 

FLAGS <-- Pop{); 
FI; 

ELSE (* Protected mode *) 
IF VM = 1 
THEN #GP(O); 
ELSE 

IF NT = 1 
THEN GOTO TASK-RETURN; 
ELSE 

IF VM = 1 in flags image on stack 
THEN GO TO STACK-RETURN-TO-V86; 
ELSE GOTO STACK-RETURN; 
FI; 

FI; 
FI; 

180 

FI;STACK-RETURN-TO-V86: (* Interrupted procedure was in V86 mode *) 
IF top 36 bytes of stack not within limits 
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THEN #SS(O); 
FI;' 

, IF instruction pointer not witIJincode segment limit THEN #GP(O); 
FI; 

EFLAGS ~ SS:[ESP-f 8]; (* Sets VM in interrupted routine *) 
EIP~ PopO; " . 
CS ~ PopO; (*CS behaves as in 8086, due to VM = 1 *) 
throwaway ~ PopO; (* pop away EFLAGS already read *) 
TempESP ~ PopO; . 
TempSS ~ PopO; 
ES ~ PopO; (* pop 2 words; throwaway high-order word *) 
OS ~ PopO; (* pop 2 words; throwaway high-order word *) 
FS ~.PopO; (* pop 2 words; throw away high-order word *) 
GS ~ PopO; (* pop 2 words; throwaway high-order word *) 

SS:ESP ~ TempSS:TempESP; . 

(* Resume execution in Virtual 8086 mode *) 

TASK-RETURN: 
Examine Back Link Selector in TSS addressed by the current task 

register: 
Must specify global in the local/global bit, else #TS(new TSS selector); 
Index must be within GOT limits, else #TS(new TSS selector);' 
AR byte must specify TSS, else #TS(new TSSselector); 
New TSS must be busy, else #TS(new TSS selector); 
TSS must be present, else #NP(new TSS selector); 

SWITCH-TASKS without nesting to TSS specified by back link selector; 
Mark the task just abandoned as NOT BUSY; 
Instruction pOinter must be within code segmel)t limit ELSE #GP(O); 

STACK-RETURN: 
IF OperandSize=32 
THEN Third word on stack must be within stack limits, else #SS(O); 
ELSE Second word on stack must be within stack limits, else #S~(O); 
FI; 
Return CS selector RPL must be ~ CPL, else #GP(Return selector); 
IF return selector RPL . = CPL 
THEN GOTO RETURN-SAME-LEVEL; 
ELSE GOTO RETURN-OUTER-LEVEL; 
FI; 

RETURN-SAME-LEVEL: 
IF OperandSize = 32 
THEN 

Top 12 bytes on stack must be within limits, else #SS(O); 
Return CS selector (at eSP+4) must be non-nUll, else #GP(O); 

ELSE '; . 
Top 6 bytes on stack must be within limits, else #SS(O);·, 
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Return CS selector (at eSP+2) must be non-null, else #GP(O); 
FI; 
Selector index must be within its descriptor table limits, else #GP 

(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be ::; CPL, else #GP(Return selector); 
Segment must be present, else #NP(Return selector); 
Instruction pOinter must be within code segment boundaries, else #GP(O); 
FI; 
IF OperandSize = 32 
THEN 

Load CS:EIP from stack; 
Load CS-register with new code segment descriptor; 
Load EFLAGS with third doubleword from stack; 
Increment eSP by 12; 

ELSE 
Load CS-register with new code segment descriptor; 
Load FLAGS with third word on stack; 
Increment eSP by 6; 

FI; 

RETURN-OUTER-LEVEL: 
IF OperandSize=32 
THEN Top 20 bytes on stack must be within limits, else #SS(O); 
ELSE Top 10 bytes on stack must be within limits, else #SS(O); 
FI; 
Examine return CS selector and associated descriptor: 

Selector must be non-null, else #GP(O); 
Selector index must be within its descriptor table limits; 

ELSE #GP(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CS selector RPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be > CPL; 
ELSE #GP(Return selector); 
FI; 
Segment must be present, else #NP(Return selector); 

Examine return SS selector and associated descriptor: 
Selector must be non-null, else #GP(O); 
Selector index must be within its descriptor table limits 
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ELSE #GP(SS selector);: : 
Selector RPL must equal the RPL of the return CS selector 

ELSE #GP(SS selector); 
AR byte must indicate a writable data segment, else #GP(SS selector); 
Stack segment DPL must,eql,Jal the. RPL of the. return C.Sselector 

ELSE #GP(SS selector); 
SS must be present, else #NP(SS selector); 

Instruction pOinter must be within code segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN ,"d· 

Load CS:EIP from stack; 
Load EFLAGS with\ialues at (eSP+8); ... 

ELSE 
Load CS:IP from stack; 
Load FLAGS with values at (eSP+4); 

FI; 
Load SS:eSP from stack; 
Set CPL to the RPL of the return CS selector; .. 
Load the CS register with the CS descriptor; 
Load the SS register with the SS descriptor; 
FOR each of ES, FS, GS, and DS ' 
DO; 

IF the current value of the register is not valid for the outer level; 
THEN zero the register and clear the valid flag; 
FI; 
To be valid, the register setting must satisfy the following properties:· 

Selector index must be within descriptor table limits; 
AR byte must indicate data or readablecode.segment; , 
IF segment is data or non7,conforming code, 
THEN DPL must be > CPL, or DPL must be < RPL; 

OD; 

Description 

In Real Address Mode, the IRET i~struction pops the instruction pointer; the CS reg­
ister, and the flags register from the stack and resumes the interrupted rotltine .. '. 

'f', '. ,,' 

In Protected Mode, the act.ion of the IRET instruction depends on thy-, setting of the 
nested task flag (NT) bit in the flag register. When the new flag image .is popp,edfrom 
the stack, the IOPL bits in the flag register are changed only whc;:n CPLeqqals O .. } 

If the NT flag is cleared, the IRET instruction returns ·from an interrupt procedure 
without a task switch. The code returned to must be equally or less privileged than the 
interrupt routine (as indicated by the RPL bits of the, CS ,selector popped .from the 
stack). If the destination code is less privileged, the IRET instruc;tion also:pops the,stack 
pointer and SS from the stack. 
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If the NT flag is set, the IRET instruction reverses the operation of a CALL or INT that 
caused a task switch. The updated state of the task executing the IRET instruction is 
saved in its task state segment. If the task is reentered later, the. code that follows the 
IRET instruction is executed. . 

Flags Affected 

All flags are affected; the flags register is popped from stack. 

Protected Mode Exceptions 

#GP, #NP, or #SS; as indicated under "Operation" above. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand being popped lies beyond address OFFFFH. 
~ \ ' 

Virtual 8086 Mode Exceptions 

#GP(O) fault if the I/O privilege level is less than 3; to permit emulation. 
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Jcc - Jump if Condition is Met 

Opcode Instruction Clocks Description 

77 cb JA relB 3,1 Jump short if above (CF = 0 and ZF = 0) 

73 cb JAE relB 3,1 Jump short if above or equal (CF=O) 

72 cb JB relB 3,1 Jump short if below (CF = 1) 

76 cb JBE relB 3,1 Jump short if below or equal (CF = 1 or ZF = 1) 

72 cb JC relB 3,1 Jump short if carry (CF =1) 

E3 cb JCXZ relB 8,5 Jump short if CX register is 0 

E3 cb JECXZ relB 8,5 Jump short if ECX register is 0 

74 cb JE relB 3,1 Jump short if equal (ZF = 1) 

74 cb JZ relB 3,1 Jump stlort if 0 (ZF = 1) 

7F cb JG relB 3,1 Jump short if greater (ZF = 0 and SF = OF) 

70 cb JGE relB 3;1 Jump short if greater or equal (SF = OF) 

7C cb JL relB 3,1 Jump short if less (SF < >OF) 

7E cb JLE relB 3,1 Jump short if less or equal (ZF = 1 or 
SF<>OF) 

76 cb JNA relB 3,1 Jump short if not above (CF = 1 or ZF = 1) 

72 cb JNAE relB 3,1 Jump short if not above or equal (CF = 1) 

73 cb JNB relB 3,1 Jump short if not below (CF = 0) 

77 cb JNBE relB 3,1 Jump short if not below or equal (CF = 0 and 
ZF=O) 

73 cb JNC relB 3,1 Jump short if not carry (CF = 0) 

75 cb JNE relB 3,1 Jump short if not equal (ZF = 0) 

7E cb JNG relB 3,1 Jump short if not greater (ZF = 1 or SF< >OF) 

7C cb JNGE relB 3,1 Jump short if not greater or equal (SF< >OF) 

70 cb JNL relB 3,1 Jump short if not less (SF = OF) 

7F cb JNLE relB 3,1 Jump short if not less or equal (ZF = 0 and 
SF=OF) 

71 cb JNO relB 3,1 Jump short if not overflow (OF = 0) 

7B cb JNP relB 3,1 Jump short if not parity (PF = 0) 

79 cb JNS relB 3,1 Jump short if not sign (SF = 0) 

75 cb JNZ relB 3,1 Jump short if not zero (ZF = 0) 

70 cb JO relB 3,1 Jump short if overflow (OF = 1) 

7A cb JP relB 3,1 Jump short if parity (PF = 1) 

7A cb JPE relB 3,1 Jump short if parity even (PF = 1) 

7B cb JPO relB 3,1 Jump short if parity odd (PF = 0) 

78 cb JS relB 3,1 Jump short if sign (SF = 1) 

74 cb JZ relB 3,1 Jump short if zero (ZF = 1) 

OF 87 cw/cd JA re116/32 3,1 Jump near if above (CF = 0 and ZF = 0) 

OF 83 cw/cd JAE re116/32 3,1 Jump near if <i;bove or equal (CF = 0) 

OF 82 cw/cd JB re116/32 3,1 Jump near if below (CF = 1) 

OF 86 cw/cd JBE re116/32 3,1 Jump near if below or equal (CF = 1 or ZF = 1) 

OF 82 cw/cd JC re116/32 3,1 Jump near if carry (CF = 1) 

OF 84 cw/cd JE re116/32 3,1 Jump near if equal (ZF = 1) 

OF 84 cw/cd JZ re116/32 3,1 Jump near if 0 (ZF = 1 ) 

OF 8F cw/cd . JG re116/32 3,1 Jump near if greater (ZF = 0 and SF = OF) 

OF 80 cw/cd JGE re116/32 3,1 Jump near if greater or equal (SF = OF) 

OF 8C cw/cd JL re116/32 3,1 Jump near if less (SF<>OF) 
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Opcode Instruction Clocks Description 

OF 8E cw/cd JLE ,e116/32 3,1 Jump near if less.or equal (ZF=l or SF<>OF) 

OF 86 cw/cd JNA ,e116/32 3,1 Jump near if not above (CF = 1 or ZF = 1) 

OF 82 cw/cd JNAE ,e116/32 3,1 Jump near if not above or equal (CF; 1) 

OF 83 cw/cd JN8 ,e116/32 3,1 Jump near if not below (CF = 0) 

OF 87 cw/cd JN8E ,e116/32 3,1 Jump near if not below or equal (CF = 0 and 
ZF=O) 

OF 83 cw/cd JNC ,e116/32 3,1 Jump near if not carry (CF = 0) 

OF 85 cw/cd JNE ,e116/32 3,1 Jump near if not equal (ZF = 0) 

OF 8E cw/cd JNG ,e116/32 3,1 Jump near if not greater (ZF= 1 or SF<>OF) 

OF 8C cw/cd JNGE ,e116/32 3,1 Jump near if not greater or equal (SF<>OF) 

OF 80 cw/cd JNL ,e116/32 3,1 Jump near if not less (SF; OF) 

OF 8F cw/cd JNLE ,e116/32 3,1 Jump near if not .Iess or equal (ZF = 0 and 
SF=OF) 

OF 81 cw/cd JNO ,e116/32 3,1 Jump near if not overflow (OF=O) 

OF 88 cw/cd JNP ,e116/32 3,1 Jump near if not parity (PF = 0) 

OF 89 cw/cd JNS ,e116/32 3,1 Jump near if not sign (SF = 0) 

OF 85 cw/cd JNZ ,e116/32 3,1 Jump near if notzero (ZF=O) 

OF 80 cw/cd JO ,eit6/32 3,1 Jump near if overflow (OF = 1) 

OF 8A cw/cd JP ,e116/32 3,1, Jump near if parity (PF = 1) 

OF 8A cw/cd JPE ,e116/32 3,1 Jump near if parity even (PF = 1) 

OF 88 cw/cd JPO ,e116/32 3,1 Jump near if parity odd (PF = 0) 

OF 88 cw/cd JS ,e116/32 3,1 Jump near if sign (SF = 1) 

OF 84 coN/cd JZ ,e116/32 3,1 Jump near if 0 (ZF=l) 

NOTES: The first clock count is for the true condition (branch taken); the second clock count is for the false condition 
(branch not taken). ,e116/32 indicates that these instructions map to two; one with a 16-bit relative displacement, 
the other with a 32-bit relative displacement, depending' on the operand-size attribute of the instruction. 

Operation 

IF condition 
THEN 

EIP ~ EIP + SignExtend(re/B/16/32); 
IF OperandSi;ze = 16 
THEN EIP ~ EIP AND OOOOFFFFH; 
R; . 

FI; 

Description 

Conditional jumps (except the JCXZ instruction) test the flags which have been set by a 
previous instruction_ The conditions for each mnemonic are given in parentheses after 
each description above_ The terms "less" and "greater" are used for comparisons of 
signed integers; "above" and "below" are used for unsigned integers_ 

If the given condition is true, a jump is made to the location provided as the operanq, 
Instruction coding is most efficient when the target for the conditional jump is in the 
current code segment and within -128 to +127 bytes of the next instruction's first byte_ 
The jump can also target -32768 thru + 32767 (segment size attribute 16) or _231 thru 
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+ 231 _1 (segment size attribute 3.2) relative to the next instruction's first byte. When the 
target for .the conditional jump i~ in a different segment, use the opposite case of the 
jump instruction (i.e., the JE and JNE instructions), and then access the target with an 
unconditionaUar jump to the other segment. For example, you cannot code-

JZ FAR LABEL; 

You must instead code-

JNZ BEYOND; 
JMP FARLABEL; 

BEYOND: 

Because there can be several ways to interpret a particular state of the flags, ASM386 
provides more than one mnemonic for most of the conditional jump opcodes. For exam­
ple, if you compared tWo characters in AX and want to jump if they are equal, use the JE 
instruction; or, if you ANDed the AX register with a bit field mask and only want to 
jump if the result is 0, use'the JZ instruction, a synonym for the JE instruction .. 

The JCXZ instruction differs from other conditional jumps because it tests the contents 
of the CX or ECX register for 0, not the flags. The JCXZ instruction is useful at the 
beginning of a conditional loop that terminates with a conditional loop instruction (such 
as LOOPNE. TARGET LABEL The JCXZ instruCtion prevents entering the loop with 
the CX or ECX register equal to zero, which. would cause the loop to execute 64K or 26 
times instead of zero times. 

Flags Affected 

None. 

Protected Mode Exceptions 

. #GP(O) if the offset jumped to is beyond the limits of the code segment. 

Real Address Mode Exceptions 

None .. 

Virtual' 8086 Mode Exceptions 

None. 
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Notes 

The JCXZ instruction takes longer to execute than a two-instruction sequence which 
compares the count register to zero and jumps if the count is zero. 

All branches are converted into 16-byte code fetches regardless of jump address or 
cache ability. 
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JMP-Jump 
Opcode .. 

EB cb 
E9 cw 

FF /4 
EAcd 
EA cd 
EA cd 
EA cd 
FF /5 
FF /5 
FF /5 
FF /5 
E9 cd 

FF /4 
EA cp 
EA cp 
EA cp 
EA cp 
FF /5 
FF /5 
FF /5 
FF /5 

Instruction 

JMP relB 
JMP rel16 

JMP rlm16 
JMP ptr16:16 
JMP ptr16:16 
JMP ptr16:16 
JMP ptr16:16 
JMP m16:16 
JMP m16:16 
JMP m16:16 
JMP m16:16 
JMP rel32 

JMP rlm32 
JMP ptr16:32 
JMP ptr16:32 
JMP ptr16:32 
JMP ptr16:32 
JMP m16:32 
JMP m16:32 
JMP m16:32 
JMP m16:32 

Clocks 

3 
3 

5/5 
17pm=19 
32 
42+TS 
43+TS 
13,pm=18 
31 
41+TS 
42+TS 
3 

5/5 
13,pm=18 
31 
42+TS 
43+TS 
13,pm=18 
31 
41+TS 
42+TS 

NOTE: Values of ts are given by the following table: 

Old Task 

Description 

Jump short 
Jump near, displacement relative to next instruc­
tion 
Jump near indirect 
Jump intersegment, 4-byte immediate address 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump rlm16:16 indirect and intersegment 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump near, displacement relative to next instruc­
tion 
Jump near, indirect 
Jump intersegment, 6-byte immediate address 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump intersegment, address at rim dword 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 

New Task 

to Inte1486'" CPU TSS to 80286 TSS toVM TSS 

VM/lntel486 CPU/80286 TSS 

Operation 

.IF instruction = relative JMP 
(* i.e. operand is re/B, re/16, or re/32 *) 

THEN 
EIP ~ EIP + re/B/16/32; 
IF OperandSize = 16 
THEN EIP ~ EIP AND OOOOFFFFH; 
FI; 

FI; 

IF instruction = near indirect JMP 
(* i.e. operand is r/m16 or r/m32 *) 

THEN 
IF OperandSize = 16 
THEN 

EIP ~ [r/m16j AND OOOOFFFFH; 

199 180 177 
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ELSE (* OperandSize = 32 *) 
EIP ~ [r!m32; 

FI; 
FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or V86 mode *) 
AND instruction = far JMP 
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *) 

THEN GOTO REAL-OR-V86-MODE; 
IF operand type = m16:16 or m16:32 
THEN (* indirect *) 

IF OperandSize = 16 
THEN 

CS:IP ~ [m16:16j; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP ~ [m16:32]; 

FI; 
FI; 
IF operand type = ptr16:16 or ptr16:32 
THEN 

IF OperandSize = 16 
THEN 

CS:IP ~ ptr16:16; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize· = 32 *) 
CS:EIP ~ ptr16:32; 

FI; 
FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far JMP . 

THEN 
IF operand type = m16:16 or m16:32 
THEN (* indirect *) 

check access of EAdword; 
#GP(O) or #SS(O) IF limit violation; 

FI; 
Destination selector is not null ELSE #GP(O) 
Destination selector index is within its descriptor table limits ELSE #GP(selector) 
Depending on AR byte of destination descriptor: 

GOTO CONFORMING-CODE-SEGMENT; 
GOTO NONCONFORMING-CODE-SEGMENT; 
GOTO CALL-GATE; 
GOTO TASK-GATE; 
GOTO TASK-STATE-SEGMENT; 

ELSE #GP(selector); (* illegal AR byte in descriptor *) 
FI; 
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CONFORMING-CODE-SEGMENT: 
Descriptor DPL must be :5 CPL ELSE #GP(selector); 
Segment must be present ELSE #NP(selector); 
Instruction pointer must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from destination pointer; 
ELSE Load CS:IP from destination pointer; 
FI; 
Load CS register with new segment descriptor; 

NONCONFORMING-CODE-SEGMENT: 
RPL of destination selector must be :5 CPL ELSE #GP(selector); 
Descriptor DPL must be = CPL ELSE #GP(selector); 
Segment must be present ELSE # NP(selector); 
Instruction pointer must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from destination pOinter; 
ELSE Load CS:IP from destination pointer; 
FI; 
Load CS register with new segment descriptor; 
Set RPL field of CS register to CPL; 

CALL-GATE: 
Descriptor DPL must be ;:::CPL ELSE #Gp(gate selector); 
Descriptor DPL must be ;::: gate selector RPL ELSE #GP(gate selector); 
Gate must be present ELSE #NP(gate selector); 
Examine selector to code segment given in call gate descriptor: 

Selector must not be null ELSE #GP(O); 
Selector must be within its descriptor table limits ELSE 

#GP(CS selector); 
Descriptor AR byte must indicate code segment 

ELSE #GP(CS selector); 
IF non-conforming 
THEN code-segment descriptor DPL must = CPL 
ELSE #GP(CS selector); 
FI; 
IF conforming 
THEN code-segment descriptor DPL must be :5 CPL; 
ELSE #GP(CS selector); 
Code segment must be present ELSE #NP(CS selector); 
Instruction pOinter must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from call gate; 
ELSE Load CS:IP from call gate; 
FI; 

Load CS register with new code-segment descriptor; 
Set RPL of CS to CPL 

TASK-GATE: 
Gate descriptor DPL must be ;::: CPL ELSE #GP(gate selector); 
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Gate descriptor DPLmust be ~ gate selector RPL ELSE #GP(gate selector); 
Task Gate must be present ELSE #NP(gate selector); 
Examine selector to TSS, given in Task Gate descriptor: . 

Must specify global in the local/global bit ELSE #GP(TSS selector); 
Index must be within GDT limits ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001); 

ELSE #GP(TSS selector); 
Task State Segment must be present ELSE #NP(TSS selector); 

SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP(O); 

TASK-STATE-SEGMENT: 
TSS DPL must be ~ CPL ELSE #GP(TSS selector); 
TSS DPL must be ~ TSS selector RPL ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001) 

ELSE #GP(TSS selector); 
Task State Segment must be pr~sent ELSE #NP(TSS selector); 
SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP(O); 

Description 

The, . JMP instruction transfers control to a differ~nt· point in the· instructiolJ. stream 
without recording return information. 

The action of the various forms of the instruction are shown below. 

Jumps with destinations of type r/m16,r/m32, re116, and rel32are near jumps and do not 
involve changing the segment register value. 

The JMP rel16 and JMP rel32 forms of the instruction add an offset to the address of the 
instruction following the JMP to determine the destination. The rel16 form is used when 
the instruction's operand-size attribute is 16 bits (segment size attribute 16 only); rel32 is 
used when the operand-size attribute is 32 bits (segment size attribute 32 only). The 
result is stored in the 32-bit EIP register. With re116, the upper 16 bits ofthe EIP register 
are cleared, which results in an offset whose value does not exceed 16 bits. 

TheJMP r/m16 and JMP r/m32 forms specify a i:egister or memory location from which 
the absolute offset from the procedure is fetched. The orfset fetched from rim is 32 bits 
for an operand-size attribute of 32 bits (r/m32), or 16 bits for an operand-size attribute of 
16 bits (r/m16). 

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or six-byte oper­
and as a long pointer to the destination. The JMP m16:16 al)d m16:32 forms fetch the 
long pointer from the memory location specified (indirection). In Real Address Mode or 
Virtual 8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits 
for the EIP register (depending on the operand-size attribute). In Protected Mode, both 
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long pointer forms consult the Access Rights (AR) byte in the descriptor indexed by the 
selector part of the long pointer. Depending on the value of the AR byte, the jump will 
perform one of the following types of control transfers: 

• A jump to a code segment at the same privilege level 

• A task switch 

For more information on protected mode control, transfers, refer to Chapter .6 and 
Chapter 7. 

Flags Affected 

All if a task ,switch takes place; none if no task switch occurs. 

Protected Mode Exceptions 

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the list above; 

Near direct jumps: #GP(O)if procedure location is beyorid the code segmen.t limits; 
#AC for unaligned memory reference if the current privilege level is 3. 

Near indirect jumps: #GP(O) for an illegal memory operand effective address in the CS, 
DS, ES, FS, or GS segments: #SS(O) for an illegal address in the SS segment; ,#GP if the 
indirect offset obtained is beyond the code segment limits; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. ' 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would be outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as under Real Address Mode;#PF(fault-code) fora page fault; #AC 
for unaligned memory reference if the current privilege level is 3. 

Notes 

All 'branches are converted into 16~byte code fetches regardless of jump address or 
c'acheability. 
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LAHF-Load Flags into AH Register 

Opcode 

SF 

Operation 

Instruction 

LAHF 

AH ~ SF:ZF:xx:AF:xx:PF:xx:CF; 

Description 

Clocks 

3 

Description 

Load: AH ~ flags SF ZF xx AF xx PF xx CF 

The LAHF instruction transfers the low byte of the flags word to the AH register. The 
bits, from MSB to LSB, are sign, zero, indeterminate, auxiliary, carry, indeterminate, 
parity, indeterminate, and carry. 

Flags Affected 

None. 

Protected Mode Exceptions 

None. 

Real Address M.ode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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LAR - Load Access Rights Byte 

Opcode 

OF 02/r 
OF 02/r 

Description 

Instruction 

LAR rI6,r/mI6 
LAR r32,r/m32 

Clocks 

11/11 
11/11 

Description 

r16 <- r/ml6 masked by FFOO 
r32 <- r/m32 masked by OOFxFFOO 

The LAR instruction stores a marked form of the second doubleword of the descriptor 
for the source selector if the selector is visible at the current privilege level (modified by 
the selector's RPL) and is a valid descriptor type within the descriptor limits. The des­
tination register is loaded with the high-order doubleword of the descriptor masked by 
OOFxFFOO, and the ZF flag is set. The x indicates that the four bits corresponding to the 
upper four bits of the limit are undefined in the value loaded by the LAR instruction. If 
the selector is invisible or of the wrong type, the ZF flag is cleared. 

If the 32-bit operand size is specified, the entire 32-bit value is loaded into the 32-bit 
destination register. If the 16-bit operand size is specified, the lower 16-bits of this value 
are stored in the 16-bit destination register. 

All code and data segment descriptors are valid for the LAR instruction. 

The valid special segment and gate descriptor types for the LAR instruction are given in 
the following table: 

Type Name Valid/Invalid 

0 Invalid Invalid 
1 Available 286 TSS Valid 
2 LDT Valid 
3 Busy 286 TSS Valid 
4 286 call gate Valid 
5 286/lnteI486'· task gate Valid 
6 286 trap gate Invalid 
7 286 interrupt gate Invalid 
8 Invalid Invalid 
9 Available Intel486 TSS Valid 
A Invalid Invalid 
B Busy Intel486 TSS Valid 
C Intel486 call gate Valid 
D Invalid Invalid 
E Inlel486 trap gate Invalid 
F Intel486 interrupt gate Invalid 

Flags Affected 

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the 
ZF flag is cleared. 
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Protected Mode Exceptions 

#OP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or OS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 6; the LAR instruction is unrecognized in Real Address Mode. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode. 
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LEA - Load Effective Address 

Opcode 

aD If 
aD If 
aD If 
aD If 

Operation 

Instruction 

LEA rl6,m 
LEA r32,m 
LEA rl6,m 
LEA r32,m 

Clocks· 

IF OperandSize = 16 AND AddressSize = 16 
THEN r16 ~ Addr(m); 
ELSE 

IF OperandSize = 16 AND AddressSize = 32 
THEN 

Description 

Store effective address for m in register f16 
Store effective address for m in register f32 
Store effective address for m in register f16 
Store effective address for m in register r32 

r16 ~ Truncate_to_16bits(Addr(m)); 
ELSE 

(* 32-bit address * 

IF OperandSize = 32 AND AddressSize = 16 
THEN 

r32 ~ Truncate_to_16bits(Addr(m)); 
ELSE 

IF OperandSize = 32 AND AddressSize = 32 
THEN· r32 ~ Addr(m); 
FI; 

FI; 
FI; 

FI; 

Description 

The LEA instruction calculates the effective address (offset part) and stores it in the 
specified register. The operand-size attribute of the instruction (represented by Oper­
andSize in the algorithm under "Operation" above) is determined by the chosen regis­
ter. The address-size attribute (represented by AddressSize) is determined by the USE 
attribute of the segment containing the second operand. The address-size and operand­
size attributes affect the action performed by the LEA instruction, as follows: 

Operand Size Address Size Action Performed 

16 16 16-bit effective address is calculated and stored in requested 
16-bit register destination. 

16 32 32-bit effective address is calculated. The lower 16 bits of the 
address are stored in the requested 16-bit register destination. 

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination. 

32 32 32-bit effective address is calculated and stored in the requested 
32-bit register destination. 
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Flags Affected 

None. 

Protected Mode Exceptions 

INSTRUCTION SET 

# UD if the second operand is a register. 

Real Address Mode Exceptions 

Interrupt 6 if the second operand is a register. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode. 
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LEAVE - High Level Procedure Exit 

Opcode 

C9 
C9 

Operation 

Instruction 

LEAVE 
LEAVE 

IF StackAddrSize = 16 
THEN 

SP ~ BP; 
ELSE (* StackAddrSize = 32 *) 

ESP ~ EBP; 
FI; 
IF OperandSize = 16 
THEN 

BP ~ PopO; 
ELSE (* Operand Size = 32 *) 

EBP ~ PopO; 
FI; 

Description 

Clocks 

5 
5 

Description 

Set SP to SP, then pop SP 
Set ESP to ESP, then pop ESP 

The LEAVE instruction reverses the actions of the ENTER instruction. By copying the 
frame pointer to the stack pointer, the LEAVE instruction releases the stack space used 
by a procedure for its local variables. The old frame pointer is popped into the BP or 
EBP register, restoring the caBer's frame. A subsequent RET nn instruction removes any 
arguments pushed onto the stack of the exiting procedure. 

Flags Affected 

None. 

Protected Mode Exceptions 

#SS(O) if the BP register does not point to a location within the limits of the current 
stack segment. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode. 
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lGDT/LiDT -Load Global/Interrupt Descriptor Table Register 

Opcode 

OF 01 /2 
OF 01 /3 

Operation 

Instruction 

LGDT m16&32 
LlDT m16&32 

IF instruction = LlDT 
THEN 

IF OperandSize = 16 

Clocks 

11 
11 

Description 

Load minto GDTR 
Load minto IDTR 

THEN IDTR.LimitBase ~ m16:24 (* 24 bits of base loaded*) 
ELSE IDTR.LimitBase ~ m16:32 
FI; 

ELSE (* instruction = LGDT *) 
IF Operand Size = 16 
THEN GDTR.LimitBase ~ m16:24 (* 24 bits of base loaded *) 
ELSE GDTR.LimitBase ~ m16:32; 
FI; 

FI; 

Description 

The LGDT and LIDT instructions load a linear base address and limit value from a 
six-byte data operand in memory into the GDTR or IDTR, respectively. If a 16-bit 
operand is used with the LGDT or LIDT instruction, the register is loaded with a 16-bit 
limit and a 24-bit base, and the high-order eight bits of the six-byte data operand are not 
used. If a 32-bit operand is used, a 16-bit limit and a 32-bit base is loaded; the high-order 
eight bits of the six-byte operand are used as high-order base address bits. 

The SGDT and SIDT instructions always store into all 48 bits of the six-byte data oper­
and. With the 80286 processor, the upper eight bits are undefined after the SGDT or 
SIDT instruction is executed. With the Intel386 DX or Intel486 processors, the upper 
eight bits are written with the high-order eight address bits, for both a 16-bit operand 
and a 32-bit operand. If the LGDT or LlDT instruction is used with a 16-bit operand to 
load the register stored by the SGDT or SIDT instruction, the upper eight bits are 
stored as zeros. 

The LGDT and LIDT instructions appear in operating system software; they are not 
used in application programs. They are the only instructions that directly load a linear 
address (i.e., not a segment relative address) in Protected Mode. 

Flags Affected 

None. 
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Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0; #UD if the source operand is a register; 
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH; Interrupt 6 if the source operand is a register. 

Note: These instructions are valid in Real Address Mode to allow power-up initialization 
for Protected Mode. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. 
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LGS/LSS/LDS/LES/LFS - Load Full Pointer 

Opcode Instruction Clocks 

C5 Ir LOS r16,m16:16 6/12 
C5/r LOS r32,m16:32 6/12 
OF B2/r LSS r16,m16:16 6/12 
OF B21r LSS r32,m16:32 6/12 
C4 Ir LES r16,m16:16 6/12 
C4 Ir LES r32,m16:32 6/12 
OF B41r LFS r16,m16:16 6/12 
OF B41r LFS r32,m16:32 6/12 
OF B5/r LGS r16,m16:16 6/12 
OF B5/r LGS r32,m16:32 6/12 

Operation 

CASE instruction OF 
LSS: Sreg is SS; (* Load SS register *) 
LOS: Sreg is OS; (* Load OS register *) 
LES: Sreg is ES; (* Load ES register *) 
LFS: Sreg is FS; (* Load FS register *) 
LGS: Sreg is OS; (* Load GS register *) 

ESAC; 
IF (OperandSize = 16) 
THEN 

r16 <c- [Effective Address]; (* 16"bit transfer *) 
Sreg <c- [Effective Address + 2]; (* 16-bit transfer *) 

Description 

Load OS:r16 with pointer from memory 
Load OS:r32 with pointer from memory 
Load SS: r16 with pointer from memory 
Load SS:r32 with pointer from memory 
Load ES:r16 with pointer from memory 
Load ES:r32 with pointer from memory 
Load FS: r16 with pointer from memory 
Load FS:r32 with pointer from memory 
Load GS:r16 with pointer from memory 
Load GS:r32 with pointer from memory 

(* In Protected Mode, load the descriptor into the segment register *) 
ELSE (* Operand Size = 32 *) 

r32 <c- [Effective Address]; (* 32-bit transfer *) 
Sreg <c- [Effective Address + 4]; (* 16-bit transfer *) 
(* In Protected Mode, load the descriptor into the segment register *) 

FI; 

Description 

The LGS, LSS, LDS, LES, and LFS instructions read a full pointer from memory and 
store it in the selected segment register:register pair. The full pointer loads 16 bits into 
the segment register SS, DS, ES, FS, or GS. The other register loads 32 bits if the 
operand-size attribute is 32 bits, or loads 16 bits if the operand-size attribute is 16 bits. 
The other 16- or 32-bit register to be loaded is determined by the r16 or r32 register 
operand specified. 

When an assignment is made to one of the segment registers, the descriptor is also 
loaded into the segment register. The data for the register is obtained fromthedescrip­
tor table entry for the selector given. 

26-195 



infel~ INSTRUCTION SET 

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS registers with­
out causing a protection exception. (Any subsequent reference to a segment whose cor­
responding segment register is loaded with a null selector to address memory causes a 
#GP(O) exception. No memory reference to the segment occurs.) 

The following is a listing of the Protected Mode checks and actions taken in the loading 
of a segment register: 

IF SS is loaded: 
IF selector is null THEN #GP(O); FI; 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
OPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS with selector; 
Load SS with descriptor; 

IF OS, ES, FS, or GS is loaded with non-null selector: 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); 
AR byte must indicate data or readable code segment ELSE 

#GP(selector) ; 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte; 
ELSE #GP(selector); 
Segment must be marked present ELSE #NP(selector); 

Load segment register with selector and RPL bits; 
Load segment register with descriptor; 

IF OS, ES, FS or GS is loaded with a null selector: 
Load segment register with selector; 
Clear descriptor valid bit; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; the second operand must be 
a memory operand, not a register-if a register then #UD Fault; #GP(O) if a null 
selector is loaded into SS; #PF(fault-code) for a page fault; #AC for unaligned memory 
reference if the current privilege level is 3. 
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Real Address Mode Exceptions 

The second operand must be a memory operand, not a register; Interrupt 13 if any part 
of the operand would lie outside of the effective address space from 0 to OFFFFH. . 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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LLDT - Load Local Descriptor Table Register 

Opcode 

OF 00/2 

Operation 

Instruction: 

LLDT r/m16 , 

LDTR ~ SRC; 

Description 

,Clocks' 

11/11' 

Description 

",Load selector r/ml6 into LDTR 

The LLDT instruction loads the Local Descriptor Table register (LDTR). The word 
operand (memory or register) to the LLDT instruction should contain a selector to the 
Global Descriptor Table (GDT). The GDT entry should be a Local Descriptor Table. If 
so, then the LDTR is loaded from the entry. The descriptor registers DS, ES, SS, FS, 
GS, and CS are not affected. The LDT field in the task state segment does not change. 

The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor refer­
ences (except by the LAR, VERR, VERW or LSL instructions) cause a #GP fault. 

The LLDT instruction is used in operating system software; it is not used in application 
programs. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0; #GP(seiector) if the selector operand does 
not point into the Global Descriptor Table, or if the entry in the GDT is not a Local 
Descriptor Table; #NP(selector) if the LDT descriptor is not present; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) 
for an illegal address in the SS segment; #PF(fault-code) for a page fault. 

Real Address Mode Exceptions 

Interrupt 6; the LLDT instruction is not recognized in Real Address Mode. 

Virtual 8086 Mode Exceptions' 

Same exceptions as in Real Address Mode (because the instruction is not recognized, it 
will not execute or perform a memory reference). 
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Note 

The operand-size attribute has no effect on this instruction. 
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LMSW - Load Machine Status Word 

Opcode 

OF 01 /7 

Operation 

Instruction 

LMSW r/m16 

Clocks, 

13/13 

, Description: 

Load r/m16 in machine status word 

MSW ~ r/m16; (* 16 bits is stored in the machine status word *) 

Description 

The LMSW instruction loads the machine status word (part of the CRO register) from 
the source operand. This instruction can be used to switch to Protected Mode; if so, it 
must be followed by an intra segment jump to flush the instruction queue. The LMSW 
instruction will not switch back to Real Address Mode. 

The LMSW instruction is used only in operating system software. It is not used in appli­
cation programs. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from a to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Protected Mode; #PF(fault-code) for a page fault. 

Notes 

The operand-size attribute has no effect on this instruction. This instruction is provided 
for compatibility with the 80286 processor; programs for the Intel486 processor should 
use the MOV CRO, ... instruction instead. The LMSW instruction does not affect the PG 
or ET bits, and it cannot be used to clear the PE bit. 
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LOCK - Assert LOCK# Signal Prefix 

Opcode 

FO 

Description 

Instruction 

LOCK 

Clocks Description 

Assert LOCK# signal for the next instruction 

The LOCK prefix causes the LOCK# signal of the Intel486 processor to be asserted 
during execution of the instruction that follows it. In a multiprocessor environment, this 
signal can be used to ensure that the Intel486 processor has exclusive use of any shared 
memory while LOCK# is asserted. The read-modify-write sequence typically used to 
implement test-and-set on the Intel486 processor is the BTS instruction. 

The LOCK prefix functions only with the following instructions: 

BTS, BTR, BTC 
XCHG 
XCHG 
ADD, OR, ADC, SBB, AND, SUB, XOR 
NOT, NEG, INC, DEC 
CMPXCHG, XADD 

mem, reglimm 
reg, mem 
mem, reg 
mem, reglimm 
mem 

An undefined apcode trap will be generated if a LOCK prefix is used with any instruc­
tion not listed above. 

The XCHG instruction always asserts LOCK# regardless of the presence or absence of 
the LOCK prefix. 

The integrity of the LOCK prefix is not affected by the alignment of the memory field. 
Memory locking is observed for arbitrarily misaligned fields. 

Flags Affected 

None. 

Protected Mode Exceptions 

#UD if the LOCK prefix is used with an instruction not listed in the "Description" 
section above; other exceptions can be generated by the subsequent (locked) instruction. 

Real Address Mode Exceptions 

Interrupt 6 if the LOCK prefix is used with an instruction not listed in the "Description" 
section above; exceptions can still be generated by the subsequent (locked) instruction. 
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Virtual 8086 Mode Exceptions 

#UD if the LOCK prefix is used with an instruction not listed in the "Description" 
section above; exceptions can still be generated by the subsequent (locked) instruction. 
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LODS/LODSB/LODSW/LODSD - Load String Operand 

Opcode Instruction 

AC LODS mB 
AD LODS m16 
AD LODS m32 
AC LODSB 
AD LODSW 
AD LODSD 

Operation 

AddressSize = 16 
THEN use SI for source-index 
ELSE (* AddressSize = 32 *) 

use ESI for source-index; 
FI; 
IF byte type of instruction 
THEN 

Clocks 

5 
5 
5 
5 
5 
5 

AL ~ [source-index]; (* byte load *) 

Description 

Load byte r (E) SI] into AL 
Load word [(E)SI] into P\)( 
Load dword [(E)SI] into EP\)( 
Load byte DS:[(E)SI] into AL· 
Load word DS:[(E)SI] into P\)( 
Load dword DS:[(E)SI] into EP\)( 

IF OF = 0 THEN IncOec ~ 1 ELSE IncOec ~ -1; FI; 
ELSE 

IF OperandSize = 16 
THEN 

FI; 

AX ~ [source-index]; (* word load *) 
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ -2; FI; 

ELSE (* OperandSize = 32 *) 
EAX ~ [source-index]; (* dword load *) 
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ -4; FI; 

FI; 

source-index ~ source-index + IncOec 

Description 

The LODS instruction loads the AL, AX, or EAX register with the memory byte, word, 
or doubleword at the location pointed to by the source-index register. After the transfer 
is made, the source-index register is automatically advanced. If the DF flag is 0 (the 
CLD instruction was executed), the source index increments; if the DF flag is 1 (the 
STD instruction was executed), it decrements. The increment or decrement is 1 if a byte 
is loaded, 2 if a word is loaded, or 4 if a doubleword is loaded. 

If the address-size attribute for this instruction is 16 bits, the SI register is used for the 
source-index register; otherwise the address-size attribute is 32 bits, and the ESI register 
is used. The address of the source data is determined solely by the contents of the ESI or 
SI register. Load the correct index value into the SI register before executing the LODS 
instruction. The LODSB, LODSW, and LODSD instructions are synonyms for the byte, 
word, and doubleword LODS instructions. 
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The LODS instruction can be preceded by the REP prefix; however, the LODS instruc­
tion is used more typically within a LOOP construct, because further processing of the 
data moved into the EAX, AX, or AL register is usually necessary. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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LOOP/LOOPcond - Loop Control with CX Counter 

Opcode 

E2 cb 
E1 cb 
E1 cb 
EO cb 
EO cb 

Operation 

Instruction 

LOOP ref8 
LOOPE ref8 
LOOPZ ref8 
LOOPNE ref8 
LOOPNZ ref8 

Clocks 

2,6 
9,6 
9,6 
9,6 
9,6· 

Description 

DEC count; jump short if count < > 0 
DEC count; jump short if count < > 0 and ZF = 1 
DEC count; jump short if count < > 0 and ZF = 1 
DEC count; jump short if count < > 0 and ZF = 0 
DEC count; jump short if count <> 0 and ZF=O 

IF AddressSize = 16 THEN CountReg is CX ELSE CountReg is ECX; FI; 
CountReg (- CountReg - 1; 

IF instruction < > LOOP 
THEN 

IF (instruction = LOOPE) OR (instruction = LOOPZ) 
THEN BranchCond (- (ZF = 1) AND (Count Reg <> 0); 
FI; 
IF (instruction = LOOPNE) OR (instruction = LOOPNZ) 
THEN BranchCond (- (ZF =0) AND (CountReg <> 0); 
FI; 

FI; 

IF BranchCond 
THEN 

IF OperandSize = 16 
THEN 

IP (- IP + SignExtend(re/8); 
ELSE (* Operand Size = 32 *) 

EIP (- EIP + SignExtend(re/8); 
FI; 

FI; 

Description 

The LOOP instruction decrements the count register without changing any of the flags. 
Conditions are then checked for the form of the LOOP instruction being used. If the 
conditions are met, a short jump is made to the label given by the operand to the LOOP 
instruction. If the address-size attribute is 16 bits, the CX register is used as the count 
register; otherwise the ECX register is used. The operand of the LOOP instruction must 
be in the range from 128 (decimal) bytes before the instruction to 127 bytes ahead of the 
instruction. 

The LOOP instructions provide iteration control and combine loop index management 
with conditional branching. Use the LOOP instruction by loading an unsigned iteration 
count into the count register, then code the LOOP instruction at the end of a series of 
instructions to be iterated. The destination of the LOOP instruction is a label that points 
to the beginning of the iteration. 
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Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the offset jumped to is beyond the limits of the current code segment. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 

Notes 

The unconditional LOOP instruction takes longer to execute th~n a two-instruction 
sequence which decrements the count register and jumps if the count does not equal 
zero. 

All branches are converted into 16-byte code fetches regardless of jump address or 
cacheability. 
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LSL - Load Segment Limit 

Opcode Instruction 

OF 03/r LSL rI6,r/mI6 

OF 03/r LSL r32,r/m32 

OF 03/r LSL rI6,r/mI6 

OF 03/r LSL r32,r/m32 

Description 

Clocks 

10/10 

10/10 

10/10 

10/10 

Description 

Load: r16 <- segment limit, selector r/ml6 (byte 
granular) 
Load: r32 <- segment limit, selector r/m32 (byte 
granular) 
Load: r16 <- segment limit, selector rim 16 (page 
granular) 
Load: r32 <- segment limit, selector r/m32 (page 
granular) 

The LSL instruction loads a register with an unscrambled segment limit, and sets the ZF 
flag, provided that the source selector is visible at the current privilege level and RPL, 
within the descriptor table, and that the descriptor is a type accepted by the LSL instruc­
tion. Otherwise, the ZF flag is cleared, and the destination register is unchanged. The 
segment limit is loaded as a byte granular value. If the descriptor has a page granular 
segment limit, the LSL instruction will translate it to a byte limit before loading it in the 
destination register (shift left 12 the 20-bit "raw" limit from descriptor, then OR with 
OOOOOFFFH). 

The 32-bit forms of the LSL instruction store the 32-bit byte granular limit in the 32-bit 
destination register. 

Code and data segment descriptors are valid for the LSL instruction. 

The valid special segment and gate descriptor types for the LSL instruction are given in 
the following table: 

. 
Type Name Valid/Invalid 

0 Invalid Invalid 
1 Available 80286 TSS Valid 
2 LDT Valid 
3 Busy 80286 TSS Valid 
4 80286 call gate Invalid 
5 80286/lnte1486 task gate Invalid 
6 80286 trap gate Invalid 
7 80286 interrupt gate Invalid 
8 Invalid Invalid 
9 Available Intel486 TSS Valid 
A Invalid Invalid 
B Busy Intel486 TSS Valid 
C Intel486 call gate Invalid 
D Invalid Invalid 
E Intel486 trap gate Invalid 
F Intel486 interrupt gate Invalid 

Flags Affected 

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the 
ZF flag is cleared. 
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Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, pS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 6; the LSL instruction is not recognized in Real Address Mode. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3. 
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l TR - Load Task Register 

Opcode 

OF 00/3 

Description 

InstructIon 

LTR r/m16 

Clocks 

20/20 

DescrIption 

Load EA word into task register 

The L TR instruction loads the task register from the source register or memory location 
specified by the operand. The loaded TSS is marked busy. A task switch does not occur. 

The LTR instruction is used only in operating system software; it is not used in applica­
tion programs. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #GP(O) if the current privi­
lege level is not 0; #GP(selector) if the object named by the source selector is not a TSS 
or is already busy; #NP(selector) if the TSS is marked "not present"; #PF(fault-code) 
for a page fault. 

Real Address Mode Exceptions 

Interrupt 6; the LTR instruction is not recognized in Real Address Mode. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode. 

Notes 

The operand-size attribute has no effect on this instruction. 
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MOV-Move Data 

Opcode 

88 Ir 
891r 
891r 
8A Ir 
8B Ir 
8B Ir 
8C Ir 
8E Ir 
AO 
A1 
A1 
A2 
A3 
A3 
BO+ rb 
B8+ IW 

B8+ rd 
C610 
C710 
C710 

Instruction 

MOV rlmB,rB 
MOV rlml6,rl6 
MOV rlm32,r32 
MOV rB,rlmB 
MOV rl6,rlml6 
MOV r32,rlm32 
MOV rlmI6,Srfig* 
MOV Sreg,rlml6 
MOV AL,moffsB 
MOV AX,moffsl6 
MOV EAX,moffs32 
MOV moffsB,AL 
MOV moffsl6,AX 
MOV moffs32,EAX 
MOV regB,immB 
MOV reg 16,imm 16 
MOV reg32,imm32 
MOV rlmB,immB 
MOV rlml6,imml6 
MOV rlm32,imm32 

Clocks 

1 
1 
1 
1 
1 
1 
3/3 
3/9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Description 

Move byte register to rim byte 
Move word register to rim word 
Move dword register to rim dword 
Move rim byte to byte register 
Move rim word to word register 
Move rim dword to dword register 
Move segment register to rim word 
Move rim word to segment register 
Move byte at (seg:offse~ to AL 
Move word at (seg:offse~ to AX 
Move dword at (seg:offse~ to EAX 
Move AL to (seg:offse~ 
Move AX to (seg:offse~ 
Move EAX to (seg:offse~ 
Move immediate byte to register 
Move immediate word to register 
Move immediate dword to register 
Move immediate byte to rim byte 
Move immediate word to rim word 
Move immediate dword to rim dword 

NOTES: moffs8, moffsl6, and moffs32 all consist of a simple offset relative to the segment base. The 8, 16, 
and 32 refer to the size of the data. The address-size attribute of the instruction determines the 
size of the offset, either 16 or 32 bits. 

*In protected mode, use 16-bit operand size prefix (a byte with the value 67H preceding the 
instruction.) 

Operation 

DEST <f- SRC; 

Description 

The MOV instruction copies the second operand to the first operand. 

If the destination operand is a segment register (DS, ES, SS, etc.), then data from a 
descriptor is also loaded into the register. The data for the register is obtained from the 
descriptor table entry for the selector given. A null selector (values 0000-0003) can be 
loaded into the DS and ES registers without causing an exception; however, use of the 
DS or ES register causes a #GP(O) exception, and no memory reference occurs. 

A MOV into SS instruction inhibits all interrupts until after the execution of the next 
instruction (which is presumably a MOV into ESP instruction). 

Loading a segment register under Protected Mode results in special checks and actions, 
as described in the following listing: 

IF SS is loaded; 
THEN 

IF selector is null THEN #GP(O); 
FI; 
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Selector index must be within its descriptor table limits else #GP(selector); 
Selector's RPL must equal CPL else #GP(selector); 

AR byte must indicate a writable data segment else #GP(selector); 
DPL in the AR byte must equal CPL else #GP(selector); 
Segment must be marked present else #SS(selector); 
Load SS with selector; 
Load SS with descriptor. 

FI; 
IF DS, ES, FS or GS is loaded with non-null selector; 
THEN 

Selector index must be within its descriptor table limits 
else #GP(selector); 

AR byte must indicate data or readable code segment else #GP(selector); 
IF data or nonconforming code segment 
THEN both the RPL and the CPL must be less than or equal to DPL in AR byte; 
ELSE #GP(selector); 
FI; 
Segment must be marked present else #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

FI; 
IF DS, ES, FS or GS is loaded with a null selector; 
THEN 

Load segment register with selector; 
Clear descriptor valid bit; 

FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP, #SS, and #NP if a segment register is being loaded; otherwise,#GP(O) if the 
destination is in a nonwritable segment; #GP(O) for an illegal memory operand effective 
address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS 
segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the 
current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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MOV - Move to/from Special Registers 

Opcode Instruction Clocks 

OF 22/r MOV CRO,r32 16 
OF 20lr MOV r32,CRO/CR2/CR3 4 
OF 22/r MOV CR2/CR3,r32 4 
OF 21 Ir MOV r32,DRO-DR3 10 
OF 21 Ir MOV r32,DR6/DR7 10 

.OF 231r MOV r32,DRO-DR3 11 
OF 231r MOV DRS/DR7,r32 11 
OF 241r MOV r32,TR4rrRSrrRSrrR7 4 
OF 2S/r MOV TR4rrRSrrRSrrR7,r32 4 
OF 24/r MOV r32, TR3 3 ' 
OF 261r MOVTR3,r32 S 

Operation 

DEST~ SRC; 

Description 

Descriptlori 

Move (register) to (control register) 
Move (control registerf to (register) 
Move (register) to (control register) 
Move (debug register) to (register) 
Move (debug register) to (register) 
Move (register) to (debug register) 
Move (register) to (debug register) 
Move (test register) to (register) 
Move (register) to (test register) 

. Move (test register3) to (register) 
Move (registers) to (test register3) 

The above forms of the MOV instruction store or load the following special registers in 
or from a general purpose register: . 

• Control registers CRO, CR2, and CR3 

• Debug Registers DRO, DRl, DR2, DR3, DR6, and DR7 

• Test Registers TR3, TR4, TRS, TR6 and TR7 

Thirty-two bit operands are always used with these instructions, regardless of the 
operand-size attribute. 

Flags Affected 

The OF, SF, ZF, AF; PF, arid CF, flags are undefined. ' 

Protected, Mode Exceptions· 

#GP(O) if the current privilege level is not O. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) if instruction execution is attempted. 
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Notes 

The instructions must be executed at privilege level 0 or in real-address mode; otherwise, 
a protection exception will be raised. 

The reg field within the ModR/M byte specifies which of the special registers in each 
category is involved. The two bits in the mod field are always 11. The rim field specifies 
the general register involved. 

Always set undefined or reserved bits to the value previously read. 
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MOVS/MOVSB/MOVSW /MOVSD - Move Data from String to 
String 

Opcode 

A4 
AS 
AS 
A4 
AS 
AS 

Operation 

Instruction 

MOVS mB,mB 
MOVS m16,m16 
MOVS m32,m32 
MOVSB 
MOVSW 
MOVSD 

Clocks 

7 
7 
7 
7 
7 
7 

Description 

Move byte [(E)SI] to ES:[(E)DI] 
Move word [(E)SI] to ES:[(E)DI] 
Move dword [(E)SI] to ES:[(E)DI] 
Move byte DS:[(E)SI] to ES:[(E)DI] 
Move word DS:[(E)SI] to ES:[(E)DI] 
Move dword DS:[(E)SI] to ES:[(E)DI] 

IF (instruction = MOVSD) OR (instruction has doubleword operands) 
THEN OperandSize ~ 32; 
ELSE OperandSize ~ 16; 
IF AddressSize = 16 
THEN use SI for source-index and DI for destination-index; 
ELSE (* AddressSize = 32 *) 

use ESI for source-index and EDI for destination-index; 
FI; 
IF byte type of instruction 
THEN 

[destination-index] ~ [source-index]; (* byte assignment *) 
IF DF = 0 THEN IncOec ~ 1 ELSE IncDec ~ -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[destination-index] ~ [source-index]; (* word assignment *) 
IF OF = 0 THEN IncDec ~ 2 ELSE IncDec ~ -2; FI; 

ELSE (* OperandSize = 32 *) 
[destination-index] ~ [source~index]; (* doubleword assignment *) 
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ -4; FI; 

FI; 
FI; 
source-index ~ source-index + IncDec; 
destination-index ~ destination-index + IncDec; 

Description 

The MOVS instruction copies the byte or word at [(E)SI] to the byte or word at 
ES:[(E)DI]. The destination operand must be addressable from the ES register; no seg­
ment override is possible for the destination. A segment override can be used for the 
source operand; the default is the DS register. 

The addresses of the source and destination are determined solely by the contents of the 
(E)SI and (E)DI registers. Load the correct index values into the (E)SI and (E)DI 
registers before executing the MOVS instruction. The MOVSB, MOVSW, and MOVSD 
instructions are synonyms for the byte, word, and doubleword MOVS instructions. 

26-214 



intel® INSTRUCTION SET 

After the data is moved, both the (E)SI and (E)DI registers are advanced automatically. 
If the DF flag is 0 (the CLD instruction was executed), the registers are incremented; if 
the DF flag is 1 (the STD instruction was executed), the registers are decremented. The 
registers are incremented or decremented by 1 if a byte was moved, 2 if a word was 
moved, or 4 if a doubleword was moved. 

The MOYS instruction can be preceded by the REP prefix for block movement of CX 
bytes or words. Refer to the REP instruction for details of this operation. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside· of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in RealAddress Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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MOVSX - Move with Sign-Extend 

Opcode 

OF BE /r 
OF BE /r 
OF BF /r 

Operation 

Instruction 

MOVSX r16,r/mB 
MOVSX r32,r/mB 
MOVSX r32,r/m16 

DEST - SignExtend(SRC); 

Description 

Clocks 

3/3 
3/3 
3/3 

Description 

Move byte to word with sign-extend 
Move byte to dword, sign-extend 
Move word to dword, sign-extend 

The MOVSX instruction reads the contents of the effective address or register as a .byte 
or a word, sign-extends the value to the operand-size attribute of the instruction (16 or 
32 bits), and stores the result in the destination register_ . 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is.3. . . 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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MOVZX - Move with Zero-Extend 

Opcode 

OF 86/r 
OF 86/r 
OF 87/r 

Operation 

Instruction 

MOVZX rI6,r/mB 
MOVZX r32,r/mB 
MOVZX r32,r/mI6 

DEST - ZeroExtend(SRC); 

Description 

Clocks 

3/3 
3/3 
3/3 

Description 

Move byte to word with zero-extend 
Move byte to dword, zero-extend 
Move word to dword, zero-extend 

The MOVZX instruction reads the contents of the effective address or register as a byte 
or a word, zero extends the value to the operand-size attribute of the instruction (16 or 
32 bits), and stores the result in the destination register_ 

Flags Affected 

None_ 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Addre$s Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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MUL- Unsigned Multiplication of AL or AX 

Opcode 

F6/4 
F7/4 
F7/4 

Instruction 

MULAL,rlm8 
MUL AX,rlml6 
MUL EAX,r/m32 

. Clocks 

13/18,13/18 
13/26,13/26 
13/42,13/42 

Description 

Unsigned multiply (AX <- AL * rim byte) 
Unsigned multiply (DX:AX <- AX * rim word) 
Unsigned multiply (EDX:EAX <- EAX * rim 
dword) 

NOTES: The Intel486 processor uses an early-out multiply algorithm. The actual number of clocks 
depends on the position of the most significant bit in the optimizing multiplier. The optimization 
occurs for positive and negative multiplier values. Because of the early-out algorithm, clock counts 
given are minimum to maximum. To calculate the actual Olocks, use the following formula: 

Actual clock = if m <). 0 then max(ceiling(log2 I m I ), 3) + 10 clocks; 
Actual clock = if m = 0 then 13 clocks 

where m is the multiplier. 

Operation 

IF byte-size operation 
THEN AX <- AL * rlmB 
ELSE (* word or doubleword operation *) 

IF OperandSize = 16 
THEN DX:AX <- AX * rlm16 
ELSE (* Operand Size = 32 *) 

EDX:EAX <- EAX * rlm32 
FI; 

FI; 

Description 

The MUL instruction performs unsigned multiplication. Its actions depend on the size of 
its operand, as follows: 

• A byte operand is multiplied by the AL value; the result is left in the AX register. 
The CF and OF flags are cleared if the AH value is 0; otherwise, they are set. 

• A word operand is multiplied by the AX value; the result is left in the DX:AX 
register pair. The DX register contains the high-order 16 bits of the product. The CF 
and OF flags are cleared if the DX value is 0; otherwise, they are set. 

• A doubleword operand is multiplied by the EAX value and the result is left in the 
EDX:EAX register. The EDX register contains the high-order 32 bits of the product. 
The CF and OF flags are cleared if the EDX value is 0; otherwise, they are set. 

Flags Affected 

The OF and CF flags are cleared if the upper half of the result is 0; otherwise they are 
set; the SF, ZF, AF, and PF flags are undefined. 
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Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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NEG - Two's Complement Negation 

Opcode 

F6/3 
F73 
F7/3 

Operation 

Instruction 

NEG rlmB 
NEG rlm16 
NEG rlm32 

Clocks 

1/3 
1/3 
1/3 

IF rim = 0 THEN CF ~ 0 ELSE CF ~ 1; FI; 
rim ~ - rim 

Description 

Description 

Two's complement negate rim byte 
Two's complement negate rim word 
Two's complement negate rim dword 

The NEG instruction replaces the value of a register or memory operand with its two's 
complement. The operand is subtracted from zero, and the result is placed in the 
operand. 

The CF flag is set, unless the operand is zero, in which case the CF flag is cleared. 

Flags Affected 

The CF flag is set unless the operand is zero, in which case the CF flag is cleared; the 
OF, SF, ZF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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NOP-No Operation 

Opcode 

90 

Instruction Clocks Description 

No operation NOP 

Description 

The Nap instruction performs no operation. The Nap instruction is a one-byte instruc­
tion that takes up space but affects none of the machine context except the (E)IP 
register. 

The Nap instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction. 

Flags Affected 

None. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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NOT - One's Complement Negation 

Opcode 

F6/2 
F7/2 
F7/2 

Operation 

Instruction 

NOT rlmB 
NOT rlm16 
NOT rlm32 

rim +--- NOT rim; 

Description 

Clocks 

1/3 
1/3 
1/3 

Description 

Reverse each bit of rim byte 
Reverse each bit of rim word 
Reverse each bit of rim dword 

The NOT instruction inverts the operand; every 1 becomes a 0, and vice versa. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. . 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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OR - Logical Inclusive OR 

Opcode 

OC ib 
OD iw 
OD id 
80/1 ib 
81 /1 iw 
81 /1 id 
83/1 ib 
83/1 ib 

08/r 
09/r 
09/r 
OA /r 
08/r 
08/r 

Operation 

Instruction 

ORAL,immB 
OR M,imm16 
OR EM,imm32 
OR rlmB,immB 
OR rlm16,imm16 
OR rlm32,imm32 
OR rlm16,immB 
OR rlm32,immB 

OR rlmB,rB 
OR rlm16,r16 
OR rlm32,r32 
OR rB,rlmB 
OR r16,rlm16 
OR r32,rlm32 

DEST ~ DEST OR SRC; 
CF~O; 

OF~O 

Description 

Clocks 

1. 
1 
1 
1/3 
1/3 
1/3 
1/3 
1/3 

1/3 
1/3 
1/3 
1/2 
1/2 
1/2 

Description 

OR immediate byte to AL 
OR immediate word to M 
OR immediate dword to EM 
OR immediate byte to rim byte 
OR immediate word to rim word 
OR immediate dword to rim dword 
OR sign-extended immediate byte with rim word 
OR sign-extended immediate byte with rim 
dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 

The OR instruction computes the inclusive OR of its two operands and places the result 
in the first operand. Each bit of the result is 0 if both corresponding bits of the operands 
are 0; otherwise, each bit is 1. 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result; the AF flag is undefined. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for anillegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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OUT - Output to Port 

Opcode Instruction 

E6 ib OUT immB,AL 

E7 ib OUT immB,AX 

E7 ib OUT immB,EAX 

EE OUT OX,AL 

EF OUT OX,AX 

EF OUT OX,EAX 

NOTES: *If CPL ~ IOPL 
"If CPL > IOPL 

Operation 

Clocks 

16,pm= 11*' 
31*',VM=29 
16,pm=11*' 
31",VM=29 
16,pm= 11*' 
31*',VM=29 
16,pm= 10*' 
30**,VM=29 
16,pm= 10*' 
30",VM=29 
16,pm= la', 
30",VM=29 

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL)) 

Description· 

Output byte AL to immediate port number 

Output word AL to immediate port number 

Output dword AL to immediate port number 

Output byte AL to port number in OX 

Output word AL to port number in OX 

Output dword AL to port number in OX 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-O-Permission (DEST, width(DESD) 
THEN #GP(O); 
FI; 

FI; 
[DEST] ~ SRC; (* I/O address space used *) 

Description 

The OUT instruction transfers a data byte or data word from the register (AL, AX, or 
EAX) given as the second operand to the output port numbered by the first operand. 
Output to any port from 0 to 65535 is performed by placing the port number in the DX 
register and then using an OUT instruction with the DX register as the first operand. If 
the instruction contains an eight-bit port ID, that value is zero-extended to 16 bits. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the current privilege level is higher (has less privilege) than the I/O privilege 
level and any of the corresponding I/O permission bits in the TSS equals 1. 

Real Address Mode Exceptions 

None. 
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Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in the TSS equals 1. 
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OUTS/OUTSB/OUTSW /OUTSD - Output String to Port 

O~code Instruction 

6E OUTS OX,r/m8 

6F OUTS OX;r/m16 

6F OUTS OX,r/m32 

6E OUTSB 

6F OUTSW 

6F OUTSO 

NOTES: *If CPL ::; IOPL 
**If CPL > IOPL 

Operation 

IF AddressSize = 16 
THEN use SI for source-index; 
ELSE (* AddressSize = 32 *) 

use ESI for source-index; 
FI; 

Clocks 

17,pm=10*' 
32**,VM=30 
17,pm=10*' 
32**,VM=30 
17,pm=10*' 
32**,VM=30 
17,pm=10*' 
32*',VM=30 
17,pm= 10*' 

.32**,VM=30 
17,pm=10*' 
32**,VM=30 

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL)) 

Description 

.. Output byte. [(E)Si] to port in OX 

Output word [(E)SI] to port in OX 

Output dword [(E)SI] to port in OX 

Output byte OS:[(E)SI] to port in DX 

Output word OS:[(E)SI] to port in DX 

Output dword OS:[(E)SI] to port in OX 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-a-Permission (DEST, width(DEST)) 
THEN #GP(O); 
FI; 

FI; 
IF byte type of instruction 
THEN 

[DX] +- [source-index]; (* Write byte at DX I/O address *) 
IF DF = a THEN IncDec +- 1 ELSE IncDec +- -1; FI; 

FI; 
IF OperandSize = 16 
THEN 

[DX] +- [source-index]; (* Write word at DX I/O address *) 
IF DF = a THEN IncDec :-2 ELSE IncDec.+- -2; FI; 

FI; 
IF OperandSize = 32 
THEN 

[DX] +- [source-index]; (* Write dword at DX I/O address *) 
IF DF = a THEN IncDec +- 4 ELSE IncDec +- -4; FI; 
FI; 

FI; 
source-index +- source-index + IncDec; 
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Description 

The OUTS instruction transfers data from the memory byte, word, or doubleword at the 
source-index register to the output port addressed by the DX register. If the address-size 
attribute for this instruction is 16 bits, the SI register is used for the source-index regis­
ter; otherwise, the address-size attribute is 32 bits, and the ESI register is used for the 
source-index register. 

The OUTS instruction does not allow specification of the port number as an immediate 
value. The port must be addressed through the DX register value. Load the correct value 
into the DX register before executing the OUTS instruction. 

The address of the source data is determined by the contents of source-index register. 
Load the correct index value into the SI or ESI register before executing the OUTS 
instruction. 

After the transfer, source-index register is advanced automatically. If the DF flag is 0 
(the CLD instruction was executed), the source-index register is incremented; if the DF 
flag is 1 (the STD instruction was executed), it is decremented. The amount of the 
increment or decrement is 1 if a byte is output, 2 if a word is output, or 4 if a doubleword 
is output. 

The OUTSB, OUTSW, and OUTSD instructions are synonyms for the byte, word, and 
doubleword OUTS instructions. The OUTS instruction can be preceded by the REP 
prefix for block output of CX bytes or words. Ref~r to the REP instruction for details on 
this operation. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater than the I/O privilege level and any of the 
corresponding I/O permission bits in TSS equals 1; #GP(O) for an illegal memory oper­
and effective address in the CS, DS, ES, FS, or GS segments;#SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 toOFFFFH. 
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Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault­
code) for a page fault; #AC for unaligned memory reference if the current privilege 
level is 3. 
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POP - Pop a Word from the Stack 

OpcOde, " 

8F /0 
8F /0 
58+ rw 
58+ rd 
1F 
07 
17 
OF A1 
OF AS 

Operation 

: Instruction',' ' 

POPm16 
pOP m32 
POP r16 
pOP r32 
POPDS 
POP ES 
pOP SS 
POP FS 
POPGS 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

, Clocks 

6 
6 
4 
4 
3 
3 
3 
3 
3 

DEST~ (SS:SP); (* copy a word *) 
SP ~ SP + 2; 

ELSE (* OperandSize = 32 *) 
DEST ~ (SS:SP); (* copy a dword *) 
SP ~ SP + 4; 

FI; 

ELSE (* StackAddrSize = 32 * ) 
IF OperandSize = 16 
THEN 

DEST ~ (SS:ESP); (* copy a word *) 
ESP ~ ESP + 2; 

ELSE (* Operand Size = 32 *) 

FI; 
FI; 

DEST ~ (SS:ESP); (* copy a dword *) 
ESP ~ ESP + 4; 

Description 

Description :' ", ,I 
"Pop top of stack into memory word 

Pop top of stack into memory dword 
Pop top of stack into word register 
Pop top of stack into dword register 
Pop top of stack into DS 
Pop top of stack into ES 
Pop top of stack into SS 
Pop top of stack into FS 
Pop top of stack into GS 

';",', 

The POP instruction replaces the previous contents of the memory, the register, or the 
segment register operand with the word on the top of the Intel486 processor stack, 
addressed by SS:SP (address-size attribute of 16 bits) or SS:ESP (address-size attribute 
of 32 bits). The stack pointer SP is incremented by 2 for an operand-size of 16 bits or by 
4 for an operand-size of 32 bits. It then points to the new top of stack. 

The POP CS instruction is not an Intel486 processor instruction. Popping from the stack 
into the CS register is accomplished with a RET instruction. 
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If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value 
popped must be a selector. In protected mode, loading the selector initiates automatic 
loading of the descriptor information associated with that selector into the hidden part 
of the segment register; loading also initiates validation of both the selector and the 
descriptor information. 

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without 
causing a protection exception. An attempt to reference a segment whose corresponding 
segment register is loaded with a null value causes a #GP(O) exception. No memory 
reference occurs. The saved value of the segment register is null. 

A POP SS instruction inhibits all interrupts, including NMI, until after execution of the 
next instruction. This allows sequential execution of POP SS and POP eSP instructions 
without danger of having an invalid stack during an interrupt. However, use of the LSS 
instruction is the preferred method of loading the SS and eSP registers. 

A POP-to-memory instruction, which uses the stack pointer (ESP) as a base register, 
references memory after the POP. The base used is the value of the ESP after the 
instruction executes. 

Loading a segment register while in protected mode results in special checks and actions, 
as described in the following listing: . 

IF SS is loaded: 
IF selector is null THEN #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
OPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS register with selector; 
Load SS register with descriptor; 

IF OS, ES, FS or GS is loaded with non-null selector: 
AR byte must indicate data or readable code segment ELSE 

#GP(selector) ; 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte 
ELSE #GP(selector); 
FI; 
Segment must be marked present ELSE #NP(selector); 
Load segment register with. selector; 
Load segment register with descriptor; 

IF OS, ES, FS, or GS is loaded with a null selector: 
Load segment register with selector 
Clear valid bit in invisible portion of register 
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Flags Affected 

None. 

Protected Mode Exceptions 

#GP, #SS, and #NP if a segment register is being loaded; #SS(O) if the current top of 
stack is not within the stack segment; #GP(O) if the result is in a nonwritable segment; 
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

Back-to-back PUSH/POP instruction sequences are allowed without incurring an addi­
tional clock. 

SSB bit will determine the size of Stack Addr Size 

. Pop ESP instructions increments the stack pointer (ESP) before data at the old top of 
stack is written into the destination. 
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POPA/POPAD - POp all General Registers 

Opcode 

61 
61 

Operation 

Instruction 

paPA 
POPAO 

Clocks 

9 
9 

IF OperandSize = 16 (* instruction = POPA *) 
THEN 

DI ~PopO; 
Sl ~ PopO; 
BP ~ PopO; 
increment SP by 2 (* skip next 2 bytes of stack *) 
BX ~ PopO; 
DX ~ PopO; 
CX ~ PopO; 
AX ~ PopO; 

ELSE (* OperandSize = 32, instruction = POPAD *) 
EDI ~ PopO; 
ESI ~ PopO; 
EBP ~ PopO; 
increment SP by 4 (* skip next 4 bytes of stack *) 
EBX ~ PopO; 
EDX ~ PopO; 
ECX ~ PopO; 
EAX ~ PopO; 

FI; 

Description 

Description 

Pop 01, SI, BP, BX, OX, CX, and AX 
Pop EOI, ESI, EBP, EOX, ECX, and EAX 

The POPA instruction pops the eight 16-bit general registers. However, the SP value is 
discarded instead of loaded into the SP register. The POPA instruction reverses a pre­
vious PUSHA instruction, restoring the general registers to their values before the 
PUSHA instruction was executed. The first register popped is the DI register. 

The POPAD instruction pops the eight 32-bit general registers. The ESP value is dis­
carded instead of loaded into the ESP register. The POPAD instruction reverses the 
previous PUSHAD instruction, restoring the general registers to their values before the 
PUSHAD instruction was executed. The first register popped is the EDI register. 

Flags Affected 

None. 
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Protected Mode Exceptions 

#SS(O) if the starting or ending stack address is not within the stack segment; 
#PF(fault-code) for a page fault. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault. 

26-234 



int:eL INSTRUCTION SET 

POPF/POPFD - POp Stack into FLAGS orEFLAGS Register 

Opcode 

9D 
9D 

Operation 

Instruction 

POPF 
POPFD 

Flags ~ PopO; 

Description 

. Clocks 

9,pm=6 
9,pm=6 

Description 

Pop top of stack FLAGS 
Pop top of stack into EFLAGS 

The POPF and POPFD instructions pop the word or doublewordon the top of the stack 
and store the value in the flags register. If the operand-size attribute of the instruction is 
16 bits, then a word is popped and the value is stored in the FLAGS register. If the 
operand-size attribute is 32 bits, then a doubleword is popped and the value is stored in 
the EFLAGS register. 

Refer to Chapter 2 and Chapter 4 for information about the FLAGS. and EFLAGS 
registers. Note that bits16 and 17 of the EFLAGS register, called the VM and RF flags, 
respectively, are not affected by the POPF or POPFD instruction. 

The I/O privilege level is altered only when executing at privilege levelO. The interrupt 
flag is altered only when executing at a level at least as privileged as the I/O privilege 
level. (Real-address mode is equivalent to privilege level 0.) If a POPF instruction is 
executed with insufficient privilege, an exception does not occur, but theprivileged.bits 
do not change. 

Flags Affected 

All flags except the VM and RF flags. 

Protected Mode Exceptions 

#SS(O) if the top of stack is not within the stack segment. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation. 
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PUSH - Push Operand onto the Stack 

Opcode 

FF /6 
FF /6 
50+ /r 
50+ /r 
6A 
68 
68 
DE 
16 
1E 
06 
OF AD 
OF A8 

Operation 

Instruction 

PUSH r/m16 
PUSH r/m32 
PUSH r16 
PUSH r32 
PUSH immB 
PUSH imm16 
PUSH imm32 
PUSH CS 
PUSH SS 
PUSH DS 
PUSH ES 
PUSH FS 
PUSH GS 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 THEN 
SP ~ SP - 2; 

Clocks 

4 
4 
1 
1 
1 
1 
1 
3 
3 
3 
3 
3 
3 

(SS:SP) ~ (SOURCE); (* word assignment *) 
ELSE 

SP ~ SP - 4; 
(SS:SP) ~(SOURCE); (* dword assignment *) 

FI; 
ELSE (* StackAddrSize = 32 *) 

IF OperandSize = 16 
THEN 

ESP ~ ESP - 2; 
(SS:ESP) ~ (SOURCE); (* word assignment *) 

ELSE 
ESP ~ ESP - 4; 
(SS:ESP) ~ (SOURCE); (* dword assignment *) 

FI; 
FI; 

Description 

Description 

Push memory word 
Push memory dword 
Push register word 
Push register dword 
Push immediate byte 
Push immediate word 
Push immediate dword 
Push CS 
Push SS 
Push DS 
Push ES 
Push FS 
Push GS 

The PUSH instruction decrements the stack·pointer by 2 if the operand-size attribute of 
the instruction is 16 bits; otherwise, it decrements the stack pointer by 4. The PUSH 
instruction then places the operand on the new top of stack, which is pointed to by the 
stack pointer. 

The PUSH ESP instruction pushes the value of the ESP register as it existed before the 
instruction. This differs from the 8086, where the PUSH SP instruction pushes the new 
value (decremented by 2). 
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Likewise, a PUSH-from-memory instruction, which uses the stack pointer (ESP) as a 
base register, references memory before the PUSH. The base used is the value of the 
ESP before the instruction executes. 

Flags Affected 

None. 

Protected Mode Exceptions 

#SS(O) if the new value of the SP or ESP register is outside the stack segment limit; 
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

None; if the SP or ESP register is 1, the processor shuts down due to a lack of stack 
space. 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

When used with an operand in memory, the PUSH instruction takes longer to execute 
than a two-instruction sequence which moves the operand through a register. 

Back-to-back PUSH/POP instruction sequences are allowed without incurring an addi­
tional clock. 

Selective pushes write only the top of the stack. 
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PUSHA/PUSHAD - Push all General Registers 

Opcode 

60 
60 

Operation 

Instruction 

PUSHA 
PUSHAO 

Clocks 

11 
11 

IF OperandSize = 16 (* PUSHA instruction *) 
THEN 

Temp ~ (SP); 
Push(AX);' . 
Push(CX); 
Push(DX); 
Push(BX); 
Push(Temp); 
Push(BP); . 
Push(SI); 
Push(DI); 

ELSE (* OperandSize = 32, PUSHAD instruction *) 
Temp ~ (ESP); 

'. Push(EAX); 
Push(ECX); 
Push(EDX); 
Push(EBX); 
Push(Temp); 
Push(EBP); 

. Push(ESI); 
Push(EDI); 

FI; 

Description 

Description 

Push AX, CX, OX, BX, original SP, BP, SI, and 01 
Push EAX, ECX, EOX, EBX, original ESP, EBP, 
ESI, and EOI 

The PUSHA and PUSHAD instructions save the 16-bit or 32-bit general registers, 
respectively, on the Intel486 processor stack. The PUSHA instruction decrements the 
stack pointer (SP) by 16 to hold the eight word values. The PUSHAD instruction decre­
ments the stack pointer (ESP) by 32 to hold the eight doubleword values. Because the 
registers are pushed onto the stack in the order in which they were given, they appear in 
the 16 or 32 new stack bytes in reverse order. The last register pushed is the DI or EDI 
register. 

Flags Affected 

None. 
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Protected Mode Exceptions 

#SS(O) if the starting or ending stack address is outside the stack segment limit; 
#PF(fault-code) for a page fault. 

Real Address Mode Exceptions 

Before executing the PUSHA or PUSHAD instruction, the Intel486 DX processor shuts 
down if the SP or ESP register equals 1, 3, or 5; if the SP or ESP register equals 7, 9, 11, 
13, or 15, exception 13 occurs. 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault. 
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PUSHF/PUSHFD - Push Flags Register onto the Stack 

Opcode 

9C 
9C 

Operation 

Instruction 

PUSHF 
PUSHFD 

IF OperandSize = 32 
THEN push(EFLAGS); 
ELSE push(FLAGS); 
FI; 

Description 

;';.'Clocks 

4,pm=3 
4,pm=3 

Description 

Push FLAGS 
Push EFLAGS 

The PUSHF instruction decrements the stack pointer by 2 and copies the FLAGS reg­
ister to the new top of stack; the PUSHFD instruction decrements the stack pointer by 4, 
and the EFLAGS register is copied to the new top of stack which is pointed to by 
SS:ESP. Refer to Chapter 2 and to Chapter 4 for information on the EFLAGS register. 

Flags Affected 

None. 

Protected Mode Exceptions 

#SS(O) if the new value of the ESP register is outside the stack segment boundaries. 

Real Address Mode Exceptions 

None; the Intel486 processor shuts down due to a lack of stack space. 

Virtual 8086 Mode Exceptions 

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation. 
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RCLjRCRjROLjROR - Rotate 

Opcode 

00/2 
02/2 
CO /2 ib 
01 /2 
03 /2 
C1 /2 ib 
01 /2 
03/2 
C1 /2 ib 
00/3 
02 /3 
CO /3 ib 
01 /3 
03/3 
C1 /3 ib 
01 /3 
03/3 
C1 /3 ib 
00 /0 
02/0 
CO /0 ib 
01 /0 
03/0 
C1 /0 ib 
01 /0 
03/0 
C1 /0 ib 
00 /1 
02/1 
CO /1 ib 
01 /1 
03 /1 
C1 /1 ib 
01 /1 
03/1 
C1 /1 ib 

Operation 

Instruction 

RCL r/mB,1 
RCL r/mB,CL 
RCL r/mB,immB 
RCL r/mI6,1 
RCL r/mI6,CL 
RCL r/mI6,immB 
RCL r/m32,1 
RCL r/m32,CL 
RCL r/m32,immB 
RCR r/mB,1 
RCR r/mB,CL 
RCR r/mB,immB 
RCR r/mI6,1 
RCR r/mI6,CL 
RCR r/mI6,immB 
RCR r/m32,1 
RCR r/m32,CL 
RCR r/m32,immB 
ROL r/mB,1 
ROL r/mB,CL 
ROL r/mB,immB 
ROL r/mI6,1 
ROL r/mI6,CL 
ROL r/mI6,immB 
ROL r/m32,1 
ROL r/m32,CL 
ROL r/m32,immB 
ROR r/mB,1 
ROR r/mB,CL 
ROR r/mB,immB 
ROR r/mI6,1 
ROR r/mI6,CL 
ROR r/mI6,immB 
ROR r/m32,1 
ROR r/m32,CL 
ROR r/m32,immB 

(* ROL - Rotate Left *) 
temp ~ COUNT; 
WHILE (temp < > 0) 
DO 

Clocks 

3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 

tmpcf ~ high-order bit of (rim); 
rim ~ rim * 2 + (tmpcf); 
temp ~ temp. - 1; 

aD; 
IF COUNT = 1 
THEN 

IF high-order bit of rim < > CF 
THEN OF ~ 1; 
ELSE OF ~ 0; 
FI; 

ELSE OF ~ undefined; 
FI; 
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Description 

Rotate 9 bits (CF,r/m byte) left once 
Rotate 9 bits (CF,r/m byte) left CL times 
Rotate 9 bits (CF,r/m byte) left immB times 
Rotate 17 bits (CF,r/m word) left once 
Rotate 17 bits (CF,r/m word) left CL times 
Rotate 17 bits (CF,r/m word) left immB times 
Rotate 33 bits (CF,r/m dword) left once 
Rotate 33 bits (CF,r/m dword) left CL times 
Rotate 33 bits (CF,r/m dword) left immB times 
Rotate 9 bits (CF,r/m byte) right once 
Rotate 9 bits (CF,r/m byte) right CL times 
Rotate 9 bits (CF,r/m byte) right immB times 
Rotate 17 bits (CF,r/m word) right once 
Rotate 17 bits (CF,r/m word) right CL times 
Rotate 17 bits (CF,r/m word) right immB times 
Rotate 33 bits (CF,r/m dword) right once 
Rotate 33 bits (CF,r/m dword) right CL times 
Rotate 33 bits (CF,r/m dword) right immB times 
Rotate 8 bits rim byte left once 
Rotate 8 bits rim byte left CL times 
Rotate 8 bits rim byte left immB times 
Rotate 16 bits rim word left once 
Rotate 16 bits rim word left CL times 
Rotate 16 bits rim word left immB times 
Rotate 32 bits rim dword left once 
Rotate 32 bits rim dword left CL times 
Rotate 32 bits rim dword left immB times 
Rotate 8 bits rim byte right once 
Rotate 8 bits rim byte right CL times 
Rotate 8 bits rim word right immB times 
Rotate 16 bits rim word right once 
Rotate .16 bits rim word right CLtimes 
Rotate 16 bits rim word right immB times 
Rotate 32 bits rim dword right once 
Rotate 32 bits rim dword right CL times 
Rotate 32 bits rim dword right immB times 



(* ROR - Rotate Right *) 
temp ~ COUNT; 
WHILE (temp <> 0) 
DO 

tmpcf ~ low-order bit of (rim); 

INSTRUCTION SET 

rim ~ rim /2 + (tmpcf * 2width(r/m»); 
temp ~ temp - 1; 

DO; 
IF COUNT = 1 
THEN 

IF (high-order bit of rim) < > (bit next to high-order bit of rim) 
THEN OF ~ 1; 
ELSE OF ~ 0; 
FI; 

ELSE OF ~ undefined; 
FI; 

Description 

Each rotate instruction shifts the bits of the register or memory operand given. The left 
rotate instructions shift all the· bits upward, except for the top bit, which is returned to 
the bottom. The right rotate instructions do the reverse: the bits shift downward until the 
bottom bit arrives at the top. 

For the RCL and RCR instructions, the CF flag is part of the rotated quantity. The RCL 
instruction shifts the CF flag into the bottom bit and shifts the top bit into the CF flag; 
the RCR instruction shifts the CF flag into the top bit and shifts the bottom bit into the 
CF flag. For the ROL and ROR instructions, the original value of the CF .flag is not a 
part of the result,but the CFflag receives a copy of the bit that was shifted from one end 
to the other. 

The rotate is repeated the number of times indicated by the second operand, which is 
either an immediate number or the contents of the CL register. To reduce the maximum 
instruction execution time, the Intel486 processor does not allow rotation counts greater 
than 31. If a rotation count greater than 31 is attempted, only the bottom five bits of the 
rotation are used. The 8086 does not mask rotation counts. The Intel486 processor in 
Virtual 8086 Mode does mask rotation counts. 

The OF flag is defined only for the single-rotate forms of the instructions (second oper­
and is a 1). It is undefined in all other cases. For left shifts/rotates, the CF bit after the 
shift is XORed with the high-order result bit. For right shifts/rotates, the high-order two 
bits of the result are XORed to get the OF flag. 

Flags Affected 

The OF flag is affected only for single-bit rotates; the OF flag is undefined for multi-bit 
rotates;.' the CF flag contains the value of the bit shifted into it; the SF, ZF, AF, and PF 
flags are not affected. 
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Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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REP/REPE/REPZ/REPNE/REPNZ- Repeat Following String 
Operation 

Opcode Instruction Clocks Description 

F36C FiEP INSr/mB, OX 16+8(E)CX, Input (E)CX bytes from port OX into ES:[(E)OI) 
pm=10+8(E)CX*1/ 
30 + 8(E)CX* , 
VM = 29 + 8(E)CX 

F360 REP INS r/m16,OX 16+8(E)CX, Input (E)CX words from port OX into ES:[(E)OI) 
pm=10+8(E)CX*1/ 
30 + 8(E)CX* , 
VM=29+8(E)CX 

F360 REP INS r/m32,OX 16+8(E)CX, Input (E)CX dWords from pot OX into ES:[(E)OI) 
pm= 10+8(E)CX*1/ 
30 + 8(E)CX* , 
VM=29+8(E)CX 

F3 A4 REP MOVS mB,mB 5*3,13*4,12 +3(E)CX*5 Move (E)CX bytes from [(E)SI) to. ES:[(E)OI) 
F3 A5 REP MOVS m16,m16 5*3,13*4,12 + 3(E)CX*5 Move (E)CX words from [(E)SI) to ES:[(E)OI) 
F3 A5 REP MOVS m32,m32 5*3,13*4,12 +3(E)CX*5 Move (E)CX dwords from [(E)SI) to ES:[(E)OI) 
F36E REP OUTS OX,r/mB 17+5(E)CX, Output(E)CX bytes from [(E)SI) to port DX 

pm= 11 +5(E)CX*'/ 
31 +5(E)CX* 
vm=30+5(E)CX 

F36F REP OUTS OX,r/m16 17+5(E)CX, Output (E)CX words from [(E)SI) to port OX 
pm=11 +5(E)CX*'/ 
31 +5(E)CX* 
vm=30+5(E)CX 

F36F REP OUTS OX,r/m32 17+5(E)CX, Output (E)CX dwords from [(E)SI) to port OX 
pm= 11 +5(E)CX*1/ 
31 +5(E)CX* 
vm=30+5(E)CX 

F3 AC REP LOOS AL 5*3,7 +4(E)CX*6 Load (E)CX bytes from [(E)SI) to AL 
F3 AO REP LOOS AX 5*3,7 + 4(E)CX*6 Load (E)CX words from [(E)SI) to AX 
F3 AO REP LOOS EAX 5*3,7 + 4(E)CX*6 Load (E)CX dwords from [(E)SI) to EAX 
F3 AA REP STOS mB 5*3,7+4(E)CX*6 Fill (E)CX bytes at ES:[(E)OI) with AL 
F3 AS REP STOS m16 5*3,7 + 4(E)CX*6 Fill (E)CX words at ES:[(E)OI) with AX 
F3 AS REP STOS m32 5*3,7 + 4(E)CX*6 Fill (E)CX dwords at ES:[(E)OI) with EAX 
F3 A6 REPE CMPS mB,mB 5*3,7 + 7(E)CX*6 Find nonmatching bytes in ES:[(E)OI) and [(E)SI) 
F3 A7 REPE CMPS m16,m16 5*3,7+7(E)CX*6 Find non matching words in ES:[(E)OI) and [(E)SI) 
F3 A7 REPE CMPS m32,m32 5*3,7 + 7(E)CX*6 Find nonmatching dwords in ES:[(E)OI) and [(E)SI) 
F3 AE REPE SCAS mB 5*3,7 + 5(E)CX*6 Find non-AL byte starting at ES:[(E)OI) 
F3 AF REPE SCAS m16 5*3,7+5(E)CX*6 Find non-AX word starting at ES:[(E)OI) 
F3 AF REPE SCAS m32 5*3,7+5(E)CX*6 Find non-EAX dword starting at ES:[(E)OI) 
F2 A6' REPNE CMPS mB,mB 5*3,7 + 7(E)CX*6 Find matching bytes in ES:[(E)OI) and [(E)SI) 
F2 A7 REPNE CMPS m16,m16 5*3,7 + 7(E)CX*6 Find matching words in ES:[(E)OI) and [(E)SI) 
F2 A7 REPNE CMPS m32,m32 5*3,7 + 7(E)CX*6 Find matching dwords in ES:[(E)OI) and [(E)SI) 
F2 AE REPNE SCAS mB 5*3,7 + 5(E)Cx*6 Find AL, starting at ES:[(E)OI) 
F2 AF REPNE SCAS m16 5*3,7 + 5(E)CX*6 Find AX, starting at ES:[(E)OI) 
F2 AF REPNE SCAS m32 5*3,7+5(E)CX*6 Find EAX, starting at ES:[(E)OI) 

NOTES: *1 If CPL :5 IOPL 
*2 If CPL > IOPL 
*3 (E) CX=O 
*4 (E) CX = 1 
*5 (E) CX > 1 
*6 (E) CX > 0 

Operation 

IF AddressSize = 16 
THEN use CX for CountReg; 
ELSE (* AddressSize = 32 *) use ECX for CountReg; 
FI; 
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WHILE CountReg < > .0 
DO 

service pending interrupts (if any); 
perform primitive string instruction; 
CountReg <- CountReg - 1; 

INSTRUCTION SET 

IF primitive operation is CMPSB, CMPSW, SCASB, or SCASW 
THEN 

IF (instruction is REP/REPE/REPZ) AND (ZF = 0) 
THEN exit WHILE loop 
ELSE 

IF (instruction is REPNZ or REPNE) AND (ZF= 1) 
THEN exit WHILE loop; 
FI; 

FI; 
FI; 

00; 

Description 

The REP, REPE (repeat while equal), and REPNE (repeat while not equal) prefixes 
are applied to string operation. Each prefix causes the string instruction that follows to 
be repeated the number of times indicated in the count register or (for the REPE and 
REPNE prefixes) until the indicated condition in the ZF flag is no longer met. 

Synonymous forms of the REPE and REPNE prefixes are the REPZ and REPNZ pre­
fixes, respectively. 

The REP prefixes apply only to one string instruction at a time. To repeat a block of 
instructions, use the LOOP instruction or another looping construct. 

The precise action for each iteration is as follows: 

1. If the address-size attribute is 16 bits, use the CX register for the count register; if 
the address-size attribute is 32 bits, use the ECX register for the count register. 

2. Check the count register. If it is zero, exit the iteration, and move to the next 
instruction. 

3. Acknowledge any pending interrupts. 

4. Perform the string operation once. 

5. Decrement the CX or count register by one; no flags are modified. 

6. Check the ZF flag if the string operation is a SCAS or CMPS instruction. If the 
repeat condition does not hold, exit the iteration and move to the next instruction. 
Exit the iteration if the prefix is REPE and the ZF flag is 0 (the last comparison was 
not equal), or if the prefix is REPNE and the ZF flag is one (the last comparison 
was equal). 

7. Return to step 2 for the next iteration. 
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Repeated CMPS and SCAS instructions can be exited if the count is exhausted or if the 
ZF flag fails the repeat condition. These two cases can be distinguished by using either 
the JCXZ instruction, or by using the conditional jumps that test the ZF flag (the JZ, 
JNZ, and JNE instructions). 

Flags Affected 

The ZF flag is affected by the REP CMPS and REP SCAS as described above. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 

Notes 

Not all I/O ports can handle the rate at which the REP INS and REP OUTS instructions 
execute. 

Do not use the repeat prefix with the LOOP instruction. Proper Loop operation is not 
guaranteed in this case. 

The repeat prefix is ignored when it is used with all other non-string -instructions. 
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RET - Return from Procedure 

Opcode 

C3 
CB 
CB 
C2 iw 
CA iw 
CA iw 

Operation 

Instruction 

RET 
RET 
RET 
RET imm16 
RET imm16 
RET imm16 

IF instruction = near RET 
THEN; 

IF OperandSize = 16 
THEN 

IP ~ PopO; 
EIP ~ EIP AND OOOOFFFFH; 

ELSE (* OperandSize = 32 *) 
EIP ~ POpO; 

FI; 

Clocks 

5 
13,pm=18 
13,pm=33 
5 
14,pm=17 
14,pm=33 

Description 

Return (near) to caller 
Return (far) to caller, same privilege 
Return (far), lesser privilege, switch stacks 
Return (near). pop imm16 bytes of parameters 
Return (far), same privilege, pop imm16 bytes 
Return (far), lesser privilege, pop imm16 bytes 

IF instruction has immediate operand THEN eSP ~ eSP + imm16; FI; 
FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) 
(* real mode or virtual 8086 mode *) 
AND instruction = far RET 

THEN; 
IF OperandSize = 16 
THEN 

IP ~ PopO; 
EIP ~ EIP AND OOOOFFFFH; 
CS ~ PopO; (* 16-bit pop *) 

ELSE (* Operand Size = 32 *) 
EIP ~ PopO; 
CS ~ PopO; (* 32-bit pop, high-order 16-bits discarded *) 

FI; 
IF instruction has immediate operand THEN eSP ~ eSP + imm16; FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far RET 

THEN 
IF OperandSize=32 
THEN Third word on stack must be within stack limits else #88(0); 
ELSE Second word on stack must be within stack limits else #88(0); 
FI; 
Return selector RPL must be ;:: CPL EL8E #GP(return selector) 
IF return selector RPL = CPL 
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THEN GOTO SAME-LEVEL; 
ELSE GOTO OUTER-PRIVILEGE-LEVEL; 
FI; 

FI; 

SAME-LEVEL: 
Return selector must be non-null ELSE #GP(O) 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector) 
IF non-conforming 
THEN code segment DPL must equal CPL; 
ELSE #GP(selector); 
FI; 
IF conforming 
THEN code segment DPL must be :s; CPL; 
ELSE #GP(selector); 
FI; 
Code segment must be present ELSE #NP(selector); 
Top word on stack must be within stack limits ELSE #SS(O); 
IP must be in code segment limit ELSE #GP(O); 
IF OperandSize=32 
THEN 

Load CS:EIP from stack 
Load CS register with descriptor 
Increment eSP by 8 plus the immediate offset if it exists 

ELSE (* Operand Size = 16 *) 
Load CS:IP from stack 
Load CS register with descriptor 
Increment eSP by 4 piUS the immediate offset if it exists 

FI; 

OUTER-PRIVILEGE-LEVEL: 
IF OperandSize = 32 
THEN Top (16 + immediate) bytes on stack must be within stack limits 

ELSE #SS(O); 
ELSE Top (8 + immediate) bytes on stack must be within stack limits ELSE 

#SS(O); . 
FI; 
Examine return CS selector and associated descriptor: 

Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector); 
IF non-conforming 
THEN code segment DPL must equal return selector RPL 
ELSE #GP(selector); 
FI; 
IF conforming 
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THEN code segment DPL must be :5 return selector RPL; 
ELSE #GP(selector); 
FI; 
Segment must be present ELSE #NP(selector) 

Examine return SS selector and associated descriptor: 
Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits 

ELSE #GP(selector); 
Selector RPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Descriptor AR byte must indicate a writable data segment ELSE 

#GP(selector); 
Descriptor DPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Segment must be present ELSE #NP(selector); 

IP must be in code segment limit ELSE #GP(O); 
Set CPL to the RPL of the return CS selector; 
IF OperandSize = 32 
THEN 

Load CS:EIP from stack; 
Set CS RPL to CPL; 
Increment eSP by 8 plus the immediate offset if it exists; 
Load SS:eSP from stack; 

ELSE (* OperandSize = 16 *) 
Load CS:IP from stack; 
Set CS RPL to CPL; 
Increment eSP by 4 plus the immediate offset if it exists; 
Load SS:eSP from stack; 

FI; 
Load the CS register with the return CS descriptor; 
Load the SS register with the return SS descriptor; 
For each of ES, FS, GS, and DS 
DO 

IF the current register setting is not valid for the outer level, 
set the register to null (selector <- AR <- 0); 

To be valid, the register setting must satisfy the following properties: 

aD; 

Selector index must be within descriptor table limits; 
Descriptor AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, 'THEN 

DPL must be ;::: CPL, or DPL must be ;::: RPL; 
FI; 

Description 

The RET instruction transfers control to a return address located on the stack. The 
address is usually placed on the stack by a CALL instruction, and the return is made to 
the instruction that follows the CALL instruction. . 
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The optional numeric parameter to the RET instruction gives the number of stack bytes 
(OperandMode = 16) or words (OperandMode = 32) to be released after the return 
address is popped. These items are typically used as input parameters to the procedure 
called. 

For the intrasegment (near) return, the address on the stack is a segment offset, which is 
popped into the instruction pointer. The CS register is unchanged. For the intersegment 
(far) return, the address on the stack is a long pointer. The offset is popped first, fol­
lowed by the selector. 

In real mode, the CS and IP registers are loaded directly. In Protected Mode, an inter­
segment return causes the processor to check the descriptor addressed by the return 
selector. The AR byte of the descriptor must indicate a code segment of equal or lesser 
privilege (or greater or equal numeric value) than the current privilege level. Returns to 
a lesser privilege level cause the stack to be reloaded from the value saved beyond the 
parameter block. 

The DS, ES, FS, and GS segment registers can be cleared by the RET instruction during 
an interlevel transfer. If these registers refer to segments that cannot be used by the new 
privilege level, they are cleared to prevent unauthorized access from the new privilege 
level. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP, #NP, or #SS, as described under "Operation" above; #PF(fault-code) for a page 
fault. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would be outside the effective address space from 
o to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. 
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SAHF-Store AH into Flags 

Opcode 

9E 

Operation 

Instruction 

SAHF 

SF:ZF:xx:AF:xx:PF:xx:CF ~ AH; 

Description 

Clocks 

2 

Description 

Store AH into flags SF ZF xx AF xx PF xx CF 

The SAHF instruction loads the SF, ZF, AF, PF, and CF flags with values from the AH 
register, from bits 7, 6, 4, 2, and 0, respectively. 

Flags Affected 

The SF, ZF, AF, PF, and CF flags are loaded with values form the AH register. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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SAL/SAR/SHL/SHR - Shift Instructions 

Opcode Instruction Clocks Description 

DO /4 SAL rlmB,1 3/4 Multiply rim by1e by 2, once 
D2/4 SAL rlmB,CL 3/4 Multiply rim by1e by 2, CL times 
CO /4 ib SAL rlmB,immB 2/4 Multiply rim by1e by 2, immB times 
D1 /4 SAL rlm16,1 3/4 Multiply rim word by 2, once 
D3/4 SAL rlm16,CL 3/4 Multiply rim word by 2, CL times 
C1 /4 ib SAL rlm16,immB 2/4 Multiply rim word by 2, immB times 
D1 /4 SAL rlm32,1 3/4 Multiply rim dword by 2, once 
D3/4 SAL rlm32,CL 3/4 Multiply rim dword by 2, CL times 
C1 /4 ib SAL rlm32,immB 2/4 Multiply rim dword by 2, immB times 
DO /7 SAR rlmB,1 3/4 Signed divide' rim by1e by 2, once 
D2/7 SAR rlmB,CL 3/4 Signed divide' rim by1e by 2, CL times 
CO /7 ib SAR rlmB,immB 2/4 Signed divide' rim by1e by 2, immBtimes 
D1 /7 SAR rlm16,1 3/4 Signed divide' rim word by 2, once 
D3/7 SAR rlm16,CL 3/4 Signed divide' rim word by 2, CL times 
C1 /7 ib SAR rlm16,immB 2/4 Signed divide' rim word by 2, immB times 
D1 /7 SAR rlm32,1 3/4 Signed divide' rim dword by 2, once 
D3/7 SAR rlm32,CL 3/4 Signed divide' rim dword by 2, CL times 
C1 /7 ib SAR rlm32,immB 2/4 Signed divide' rim dword by 2, immB times 
DO /4 SHL rlmB,1 3/4 Multiply rim by1e by 2, once 
D2/4 SHL rlmB,CL 3/4 Multiply rim by1e by 2, CL times 
CO /4 ib SHL rlmB,immB 2/4 Multiply rim by1e by 2, immB times 
D1 /4 SHL rlm16,1 3/4 Multiply rim word by 2, once 
D3/4 SHL rlm16,CL 3/4 Multiply rim word by 2, CL times 
C1 /4 ib SHL rlm16,immB 2/4 Multiply rim word by 2, immB times 
D1 /4 SHL rlm32,1 3/4 Multiply rim dword by 2, once 
D3/4 SHL rlm32,CL 3/4 Multiply rim dword by 2, CL times 
C1 /4 ib SHL rlm32,immB 2/4 Multiply rim dword by 2, immB times 
DO /5 SHR rlmB,1 3/4 Unsigned divide rim by1e by 2, once 
D2/5 SHR rlmB,CL 3/4 Unsigned divide rim by1e by 2, CL times 
CO /5 ib SHR rlmB,immB 2/4 Unsigned divide. rim by1e by 2, immB times 
D1 /5 SHR rlm16,1 3/4 Unsigned divide rim word by 2, once 
D3 /5 SHR rlm16,CL 3/4 Unsigned divide rim word by 2, CL times 
C1 /5 ib SHR rlm16,immB 2/4 Unsigned divide rim word by 2, immB times 
D1 /5 SHR rlm32,1 3/4 Unsigned divide rim dword by 2, once 
D3/5 SHR rlm32,CL 3/4 Unsigned divide rim dword by 2, CL times 
C1 /5 ib SHR rlm32,immB 2/4 Unsigned divide rim dword by 2, immB times 

Not the same division as IDIV; rounding is toward negative infinity. 

Operation 

(* COUNT is the second parameter *) 
(temp) ~ COUNT; 
WHILE (temp < > 0) 
DO 

IF instruction is SAL or SHL 
THEN CF ~ high-order bit of rim; 
FI; 
IF instruction is SAR or SHR 
THEN CF ~ low-order bit of rim; 
FI; 
IF instruction = SAL or SHL 
THEN rim ~ rim * 2; 
FI; 
IF instruction = SAR 
THEN rim ~ rim /2 (*Signed divide, rounding toward negative infinity*); 
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FI; 
IF instruction = SHR 
THEN rim ~ rim /2; (* Unsigned divide *); 
FI; 
temp ~ temp - 1; 

00; 
(* Determine overflow for the various instructions *) 
IF COUNT = 1 
THEN 

IF instruction is SAL or SHL 
THEN OF ~ high-order bit of rim < > (CF); 
FI; 
IF instruction is SAR 
THEN OF ~ 0; 
FI; 
IF instruction is SHR 
THEN OF ~ high-order bit of operand; 
FI; 

ELSE OF ~ undefined; 
FI; 

Description 

The SAL instruction (or its synonym, SHL) shifts the bits of the operand upward. The 
high-order bit is shifted into the CF flag, and the low-order bit is cleared. 

The SAR and SHR instructions shift the bits of the operand downward. The low-order 
bit is shifted into the CF flag. The effect is to divide the operand by two. The SAR 
instruction performs a signed divide with rounding toward negative infinity (not the 
same as the IDIV instruction); the high-order bit remains the same. The SHR instruc­
tion performs an unsigned divide; the high-order bit is cleared. 

The shift is repeated the number of times indicated by the second operand, which is 
either an immediate number or the contents of the CL register. To reduce the maximum 
execution time, the Intel486 processor does not allow shift counts greater than 31. If a 
shift count greater than 31 is attempted, only the bottom five bits of the shift count are 
used. (The 8086 uses all eight bits of the shift count.) 

The OF flag is affected only if the single-shift forms of the instructions are used. For left 
shifts, the OF flag is cleared if the high bit of the answer is the same as the result of the 
CF flag (i.e., the top two bits of the original operand were the same); the OF flag is set 
if they are different. For the SAR instruction, the OF flag is cleared for all single shifts. 
For the SHR instruction, the OF flag is set to the high-order bit of the original operand. 

Flags Affected 

If count = 0, the flags are not affected. 
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The CF flag is undefined for SHL and SHR instructions in which the shift lengths are 
greater than the size of the operand to be shifted. 

The OF flag is affected for single shifts; the OF flag is undefined for multiple shifts; 'the 
CF, ZF, PF, and SF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #ACfor unaligned memory reference 
if the current privilege level is 3. . 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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SBB -Integer Subtraction with Borrow 

Opcode 

lC ib 
10 iw 
10 id 
80 13 ib 
81/3iw 
81 13 id 
8313 ib 
83 13 ib 
18 /r 
19 /r 
19 Ir 
lA Ir 
lB /r 
lB Ir 

Operation 

Instruction Clocks 

SBB AL,immB 1 
SBB AX,imm16 1 
SBB EAX,imm32 1 
SBB rlmB,immB 1/3 
SBB rlm16,imm16 1/3 
SBB rlm32,imm32 1/3 
SBe rlm16,immB 1/3 
SBB rlm32,immB 1/3 
SBB rlmB,rB 1/3 
SBB rlm16,r16 1/3 
SBB rlm32,r32 1/3 
SBB rB,rlmB 1/2 
SBB r16,rlm16 1/2 
SBB r32,rlm32 1/2 

Description 

Subtract with borrow immediate byte from AL 
Subtract with borrow immediate word from AX 
Subtract with borrow immediate dword from EAX 
Subtract with borrow immediate byte from rim byte 
Subtract with borrow immediate word from rim word 
Subtract with borrow immediate dword from rim dword 
Subtract with borrow sign-extended immediate byte from rim word 
Subtract with borrow sign-extended immediate byte from rim dword 
Subtract with borrow byte register from rim byte 
Subtract with borrow word register from rim word 
Subtract with borrow dword register from rim dword 
Subtract with borrow rim byte from byte register 
Subtract with borrow rim word from word register 
Subtract with borrow rim dword from dword register 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - (SignExtend(SRC) + CF) 
ELSE DEST ~ DEST - (SRC + CF); 

Description 

The SBB instruction adds the second operand (SRC) to the CF flag and subtracts the 
result from the first operand (DEST). The result of the subtraction is assigned to the 
first operand (DEST), and the flags are set accordingly. 

When an immediate byte value is subtracted from a word operand, the immediate value 
is first sign-extended. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH .. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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SCAS/SCASB/SCASW /SCASD - Compare String Data 

Opcode Instruction Clocks 

AE SCAS mB 6 
AF SCAS m16 6 
AF SCAS m32 6 
AE SCASB 6 
AF SCASW 6 
AF SCASO 6 

Operation 

IF AddressSize = 16 
THEN use DI for dest-index; 
ELSE (* AddressSize = 32 *) use EDI for dest-index; 
FI; 
IF byte type of instruction 
THEN 

Description 

Compare bytes AL-ES:[OIJ, update (E)OI 
Compare words AX-ES:[OIJ, update (E)OI 
Compare dwords EAX-ES:[OIJ, update (E)OI 
Compare bytes AL-ES:[OIJ, update (E)OI 
Compare words AX-ES:[OIJ, update (E)OI 
Compare dwords EAX-ES:[OIJ, update (E)OI 

AL - [dest-index]; (* Compare byte in AL and dest *) 
IF DF = 0 THEN IndDec ~ 1 ELSE IncDec ~ -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

FI; 

AX - [dest-index]; (* compare word in AL and dest *) 
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec ~ -2; FI; 

ELSE (* OperandSize = 32 *) 
EAX - [dest-index];(* compare dword in EAX & dest *) 
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ -4; FI; 

FI; 

dest-index = dest-index + IncDec 

Description 

The SeAS instruction subtracts the memory byte or word at the destination register 
from the AL, AX or EAX register. The result is discarded; only the flags are set. The 
operand must be addressable from the ES segment; no segment override is possible. 

If the address-size attribute for this instruction is 16 bits, the OI register is used as the 
destination register; otherwise, the address-size attribute is 32 bits and the EOI register 
is used. 

The address of the memory data being compared is determined solely by the contents of 
the destination register, not by the operand to the SeAS instruction. The operand vali­
dates ES segment addressability and determines the data type. Load the correct index 
value into the OI or EOI register before executing the SeAS instruction. 
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After the comparison is made, the destination register is automatically updated. If the 
direction flag is 0 (the CLD instruction was executed), the destination register is incre­
mented; if the direction flag is 1 (the STn instruction was executed), it is decremented. 
The increments or decrements are by 1 if bytes are compared, by 2 if words are com­
pared, or by 4 if doublewords are compared. 

The SCASB, SCASW, and SCASD instructions are synonyms for the byte, word and 
doubleword SCAS instructions that don't require operands. They are simpler to code, 
but provide no type or segment checking. 

The SCAS instruction can be preceded by the REPE or REPNE prefix for a block 
search of CX or ECX bytes or words. Refer to the REP instruction for further details. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the ES segment;#PF(fault­
code) for a page fault; #AC for unaligned memory reference if the current privilege 
level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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SETcc - Byte Set on Condition 

Opcode Instruction Clocks 

OF 97 SETA rlmB 4/3 
OF 93 SETAE rlmB 4/3 
OF 92 SETB rlmB 4/3 
OF 96 SETBE rlmB 4/3 
OF 92 SETC rlmB 4/3 
OF 94 SETE rlmB 4/3 
OF 9F SETG rlmB . 4/3 
OF 9D SETGE rlmB 4/3 
OF 9C SETL rlmB 4/3 
OF 9E SETLE rlmB 4/3 
OF 96 SETNA rlmB 4/3 
OF 92 SETNAE rlmB 4/3 
OF 93 SETNB rlmB 4/3 
OF 97 SETNBE rlmB 4/3 

OF 93 SETNC rlmB 4/3 
OF 95 SETNE rlmB 4/3 
OF 9E SETNG rlmB 4/3 
OF 9C SETNGE rlmB 4/3 
OF 9D SETNL rlmB 4/3 
OF 9F SETNLE rlmB 4/3 
OF 91 SETNO rlmB 4/3 
OF 9B SETNP rlmB 4/3 
OF 99 SETNS rlmB 4/3 
OF 95 SETNZ rlmB 4/3 
OF 90 SETO rlmB 4/3 
OF 9A SETP rlmB 4/3 
OF 9A SETPE rlmB 4/3 
OF 98 SETPO rlmB 4/3 
OF 98 SETS rlmB 4/3 
OF 94 SETZ rlmB 4/3 

Operation 

IF condition THEN rlmB ~ 1 ELSE rlmB ~ 0; FI; 

Description 

Description 

Set byte if above (CF = 0 and ZF = 0) 
Set byte if above or equal (CF = 0) 
Set byte if below (CF = 1) 
Set byte if below or equal (CF = 1 or (ZF = 1) 
Set if carry (CF = 1) 
Set byte if equal (ZF = 1) 
Set byte if greater (ZF = 0 and SF = OF) 
Set byte if greater or equal (SF = OF) 
Set byte if less (SF< >OF) 
Set byte if less or equal (ZF = 1 or SF < > OF) 
Set byte if not above (CF = 1 or ZF = 1) 
Set byte if not above or equal (CF = 1) 
Set byte if not below (CF = 0) 
Set byte if not below or equal (CF = 0 and 
ZF=O) 
Set byte if not carry (CF = 0) 
Set byte if not equal (ZF = 0) 
Set byte if not greater (ZF = 1 or SF < > OF) 
Set if not greater or equal (SF< >OF) 
Set byte if not less (SF = OF) 
Set byte if not less or equal (ZF = 0 and SF = OF) 
Set byte if not overflow (OF = 0) 
Set byte if not parity (PF = 0) 
Set byte if not sign (SF = 0) 
Set byte if not zero (ZF = 0) 
Set byte if overflow (OF = 1) 
Set byte if parity (PF = 1) 
Set byte if parity even (PF = 1) 
Set byte if parity odd (PF = 0) 
Set byte if sign (SF = 1) 
Set byte if zero (ZF = 1 ) 

The SETcc instruction stores a byte at the destination specified by the effective address 
or register if the condition is met, or a 0 byte if the condition is not met. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the result is in a non-writable segment; #GP(O) for an illegal memory oper­
and effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3. 
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Real Address Mode Exceptions 

Interrupt 13 if ::my part of the. operand would lie outside of the effective adoress space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. 
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SGDT/SIDT -Store Global/Interrupt Descriptor Table Register 

Opcode 

OF 01 /0 
OF 01 /1 

Operation 

Instruction 

SGDT m 
SIDTm 

Clocks 

10 
10 

DEST ~ 48-bit BASE/LIMIT register contents; 

Description 

Description 

Store GDTR to m 
Store IDTR to m 

The SGOT and SlOT instructions copy the contents of the descriptor table register to 
the six bytes of memory indicated by the operand. The LIMIT field of the register is 
assigned to the first word at the effective address. If the operand-size attribute is 16 bits, 
the next three bytes are assigned the BASE field of the register, and the fourth byte is 
undefined. Otherwise, if the operand-size attribute is 32 bits, the next four bytes are 
assigned the 32-bit BASE field of the register. 

The SGOT and SlOT instructions are used only in operating system software; they are 
not used in application programs. 

Flags Affected 

None. 

Protected Mode Exceptions 

Interrupt 6 if the destination operand is a register; #GP(O) if the destination is in a 
nonwritable segment; #GP(O) for an illegal memory operand effective address in the CS, 
OS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault; # AC for unaligned memory reference if the current privilege 
level is 3. 

Real Address Mode Exceptions 

Interrupt 6 if the destination operand is a register; Interrupt 13 if any part of the oper­
and would lie outside of the effective address space from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Compatibility Note 

The 16-bit forms of the SGDT and. SIDT instructions are compatible with the 286 pro­
cessor, if the value in the upper eight bits is not referenced. The 286 processor stores 1's 
in these upper bits, whereas the Intel386 DX and Intel486 processors store O's if the 
operand-size attribute is 16 bits. These bits were specified as undefined by the SGDT 
and SIDT instructions in the iAPX 286 Programmer's Reference Manual. 
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SHLD - Double Precision Shift Left 

Opcode 

OF A4 
OF A4 
OF A5 
OF A5 

Operation 

Instruction 

SHLD r/mI6,rI6,immB 
SHLD r/m32.r32,immB 
SHLD r/mI6,rI6,CL 
SHLD r/m32,r32,CL 

Clocks 

2/3 
2/3 
3/4 
3/4 

Description 

r/m16 gets SHL of r/m16 concatenated with r16 
r/m32 gets SHL of r/m32 concatenated with r32 
r/m16 gets SHL of r/m16 concatenated with r16 
r/m32 gets SHL of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the instruction, either an 
immediate byte or the byte in register CL *) 
ShiftAmt ~ count MOD 32; 
inBits ~ register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

FI; 

IF ShiftAmt :::: OperandSize 
THEN (* Bad parameters *) 

rim ~ UNDEFINED; 
CF, OF, SF, ZF, AF, PF ~ UNDEFINED; 

ELSE (* Perform the shift *) 
CF ~ BIT[Base, OperandSize - ShiftAmt); 

(* Last bit shifted out on exit *) 
FOR i ~ OperandSize - 1 DOWNTO ShiftAmt 
DO 

BIT[Base, i) ~ BIT[Base, i - ShiftAmt); 
OF; 
FOR i ~ ShiftAmt - 1 DOWNTO 0 
DO 

BIT [Base, i) ~ BIT[inBits, i - ShiftAmt + OperandSize); 
00; 
Set SF, ZF, PF (rim); 

(* SF, ZF, PF are set according to the value of the result *) 
AF ~ UNDEFINED; 

FI; 

Description 

The SHLD instruction shifts the first operand provided by the rim field to the left as 
many bits as specified by the count operand. The second operand (r16 or r32) provides 
the bits to shift in from the right (starting with bit 0). The result is stored back into the 
rim operand. The register remains unaltered. 

The count operand is provided by either an immediate byte or the contents of the CL 
register. These operands are taken MODULO 32 to provide a number between 0 and 31 
by which to shift. Because the bits to shift are provided by the specified registers, the 
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operation is useful for multiprecision shifts (64 bits or more). The SF, ZF and PF flags 
are set according to the value of the result. The CF flag is set to the value of the last bit 
shifted out. The OF and AF flags are left undefined. 

Flags Affected 

If count = 0, the flags are not affected. 

The SF, ZF, and PF, flags are set according to the result; the CF flag is set to the value 
of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign 
change occurred, otherwise it is cleared; after a shift of more than one bit position, the 
OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which 
does not affect any flags. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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SHRD - Double Precision Shift Right 

Opcode Instruction Clocks 

OF AC SHRD r/m16,r16,immB 2/3 
OF AC SHRD r/m32,r32,immB 2/3 
OF AD SHRD r/m16,r16,CL 3/4 
OF AD SHRD r/m32,r32,CL 3/4 

Operation 

Description 

r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 
r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the instruction, either an 
immediate byte or the byte in register CL *) 

ShiftAmt - count MOD 32; 
inBits - register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt ~ OperandSize 
THEN (* Bad parameters *) 

rim - UNDEFINED; 
CF, OF, SF, ZF, AF, PF - UNDEFINED; 

ELSE (* Perform the shift *) 
CF - BIT[rlm, ShiftAmt - 1]; (* last bit shifted out on exit *) 
FOR i - 0 TO OperandSize - 1 - ShiftAmt 
DO 

BIT [rim, i]- BIT[rlm, i - ShiftAmt]; 
OD; 
FOR i - OperandSize - ShiftAmt TO OperandSize-1 
DO 

BIT[rlm,i] - BIT[inBits,i+ ShiftAmt - OperandSize]; 
OD; 

(* SF, ZF, PF are set according to the value of the result *) 
Set SF, ZF, PF (rim); 
AF -UNDEFINED; 

FI; 
FI; 

Description 

The SHRD instruction shifts the first operand provided by the rim field to the right as 
many bits as specified by the count operand. The second operand (r16 or r32) provides 
the bits to shift in from the left (starting with bit 31). The result is stored back into the 
rim operand. The register remains unaltered. 

The count operand is provided by either an immediate byte or the contents of the CL 
register. These operands are taken MODULO 32 to provide a number between 0 and 31 
by which to shift. Because the bits to shift are provided by the specified register, the 

26-265 



intel® INSTRUCTION SET 

operation is useful for multi-precision shifts· (64 bits or more). The SF, ZF and PF flags 
are set according to the value of the result. The CF flag is set to the value of the last bit 
shifted out. The OF and AF flags are left undefined. 

Flags Affected 

If count = 0, the flags are not affected. 

The SF, ZF, and PF flags are set according to the result; the CF flag is set to the value 
of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign 
change occurred, otherwise it is cleared; after a shift of more than one bit position, the 
OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which 
does not affect any flags. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; # AC for unaligned memory reference if the 
current privilege level is 3. 
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SLOT - Store Local Descriptor Table Register 

Opcode 

OF 00/0 

Operation 

Instruction 

SLOT r/m16 

r/m16 ~ LDTR; 

Description 

Clocks 

2/3 

Description 

Store LDTR to EA word 

The SLDT instruction stores the Local Descriptor Table Register (LDTR) in the two­
byte register or memory location indicated by the effective address operand. This regis­
ter is a selector that points into the Global Descriptor Table. 

The SLDT instruction is used only in operating system software. It is not used in appli­
cation programs. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 6; the SLDT instruction is not recognized in Real Address Mode. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

The operand-size attribute has no effect on the operation of the instruction. 
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SMSW - Store Machine Status Word 

Opcode 

OF 01 /4 

Operation 

Instruction 

SMSW r/m16 

r/m16 <c- MSW; 

Description 

Clocks 

2/3 . 

Description 

Store machine status word to EA word 

The SMSW instruction stores' the machine status word (part of the CROregister}in the 
two-byte register or memory location indicated by the effective address operand. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 .. 

Notes 

This instruction is provided for compatibility with the 80286 processor; programs for the 
Intel486 processor should use the MOV ... , CRO instruction. 
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STC - Set Carry Flag 

Opcode 

F9 

Operation 

CF~ 1; 

Description 

Instruction 

STC 

. Clocks 

2 

The STC instruction sets the CF fla~. 

Flags Affected 

The CF flag is set. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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sro - Set Direction Flag 

Opcode 

FD 

Operation 

DF~ 1; 

Description 

Instruction 

STD 

Clocks 

2 

Description 

Set direction flag so (E)SI and/or (E)DI decre­
ment , 

The STD instruction sets the direction flag, causing all subs~quent string operations to 
decrement the index registers, (E)SI and/or (E)DI, on which they operate. 

Flags Affected 

The DF flag is set. 

Protected Mode Exceptions 

None. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 
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STI- Set Interrupt Flag 

Opcode 

FB 

Operation 

IF ~ 1 

Description 

Instruction 

STI 

Clocks 

5 

Description 

Set interrupt flag; interrupts enabled at the end 
of the next instruction 

The STI instruction sets the IF flag. The processor then responds to external interrupts 
after executing the next instruction if the next instruction allows the IF flag to remain 
enabled. If external interrupts are disabled and you code the STI instruction followed by 
the RET instruction (such as at the end of a subroutine), the RET instruction is allowed 
to execute before external interrupts are recognized. Also, if external interrupts are 
disabled and you code the STI instruction followed by the CLI instruction, then external 
interrupts are not recognized because the CLI instruction clears the IF flag during its 
execution. 

Flags Affected 

The IF flag is set. 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater (has less privilege) than the I/O privilege 
level. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

Same as Protected Mode. 

Note 

In case of an NM1, trap, or fault following STl the interrupt will be taken before exe­
cuting the next sequential instruction in the code. 
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STOS/STOSB/STOSW /STOSD - Store String Data 

Opcode Instruction Clocks Description 

AA STOS mB 5 Store AL in byte ES:[(E)DI). update (E)DI 
AB STOS m16 5 Store AX in word ES:[(E)DI). update (E)DI 
AB STOS m32 5 Store EAX in dword ES:[(E)DI).update (E)DI 
AA STOSB 5 Store AL in byte ES:[(E)DI). update (E)DI 
AB STOSW 5 Store AX in word ES:[(E)DI], update (E)DI 
AB STOSD 5 Store EAX in dword ES:[(E)DI). update (E)DI 

Operation 

IF AddressSize = 16 
THEN use ES:DI for DestReg 
ELSE (* AddressSize = 32 *) use ES:EDI for DestReg; 
FI; 
IF byte type of instruction 
THEN 

(ES:DestReg) ~ AL; 
IF DF = 0 
THEN DestReg ~ DestReg + 1; 
ELSE DestReg ~ DestReg - 1; 
FI; 

ELSE IF OperandSize = 16 
THEN 

(ES:DestReg) ~ AX; 
IF DF = 0 
THEN DestReg ~ DestReg + 2; 
ELSE DestReg ~ DestReg - 2; 
FI; 

ELSE (* Operand Size = 32 *) 
(ES:DestReg) ~ EAX; 
IF DF = 0 
.THEN DestReg ~ DestReg + 4; 
ELSE DestReg ~ DestReg - 4; 
FI; 

FI; 
FI; 

Description 

The STOS instruction transfers the contents of the AL, AX, or EAX register to the 
memory byte or word given by the destination register relative to the ES segment. The 
destination register is tbe DI register for an address-size attribute of 16 bits or the EDI 
register for an address-size attribute of 32 bits. 

The destination operand must be addressable from the ES register. A segment override 
is not possible. 
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The address of the destination is determined by the contents of the destination register, 
not by the explicit operand of the STOS instruction. This operand is used only to vali­
date ES segment addressability and to determine the data type. Load the correct index 
value into the destination register before executing the STOS instruction. 

After the transfer is made, the DI register is automatically updated. If the DF flag is 0 
(the CLD instruction was executed), the DI register is incremented; if the DF flag is 1 
(the STD instruction was executed), the DI register is decremented. The DI register is 
incremented or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a 
doubleword is stored. 

The STOSB, STOSW, and STOSD instructions are synonyms for the byte, word, and 
doubleword STOS instructions, that do not require an operand. They are simpler to use, 
but provide no type or segment checking. 

The STOS instruction can be preceded by the REP prefix for a block fill of CX or ECX 
bytes, words, or doublewords. Refer to the REP instruction for further details. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the ES segment; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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STR - Store Task Register 

Opcode 

OF 00/1 

Operation 

Instruction 

STR r/ml6 

rim <,- task register; 

Description 

Clocks 

2/3 

Description 

Store task register to EA word 

The contents of the task register are copied to the two-byte register or memory location 
indicated by the effective address operand. 

The STR instruction is used only in operating system software. It is not used in applica­
tion programs. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code)for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 6; the STR instruction is not recognized in Real Address Mode. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode. 

Notes 

The operand-size attribute has no effect on this instruction. 
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SUB -Integer Subtraction 

Opcod~ 

2C ib 
20 iw 
2D id 
80 /5 ib 
81 /5 iw 
81 /5 id 
83 /5 ib 
83 /5 ib 
28/r 
29/r 
29/r 
2A /r 
2B /r 
2B /r 

Operation 

Instruction Clocks 

SUB AL,immB 1 
SUB AX,imm16 1 
SUB EAX,imm32 1 
SUB rlmB,immB 1/3 
SUB rlm16,imm16 1/3 
SUB rlm32,imm32 1/3 
SUB rlm16,immB 1/3 
SUB rlm32,immB 1/3 
SUB rlmB,rB 1/3 
SUB rlm16,r16 1/3 
SUB rlm32,r32 1/3 
SUB rB,rlmB 1/2 
SUB r16,rlm16 1/2 
SUB r32,rlm32 1/2 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - SignExtend(SRC); 
ELSE DEST ~ DEST - SRC; 
FI; 

Description 

Description 

Subtract immediate byte from AL 
Subtract immediate word from AX 
Subtract immediate dword from EAX 
Subtract immediate byte from rim byte 
Subtract immediate word from rim word 
Subtract immediate dword from rim dword 
Subtract sign-extended immediate byte from rim word 
Subtract sign-extended immediate byte from rim dword 
Subtract byte register from rim byte 
Subtract word register from rim word 
Subtract dword register from rim dword 
Subtract rim byte from byte register 
Subtract rim word from word register 
Subtract rim dword from dword register 

The SUB instruction subtracts the second operand (SRC) from the first operand 
(DEST). The first operand is assigned the result of the subtraction, and the flags are set 
accordingly. 

When an immediate byte value is subtracted from a word operand, the immediate value 
is first sign-extended to the size of the destination operand. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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TEST - Logical Compare 

Opcode Instruction Clocks Description 

A8 ib TEST AL,immB 1 
A9 iw TEST AX,imml6 1 
A9 id TEST EAX,imm32 1 
F6 10 ib TEST rlmB,immB 1/2 
F7 10 iw TEST rim 16,imm16 1/2 
F7 10 id TEST rlm32,imm32 1/2 
841r TEST rlmB,rB 1/2 
85 Ir TEST rlml6,rl6 1/2 
85 Ir TEST rlm32,r32 1/2 

Operation 

DEST : = LeftSRC AND RightSRC; 
CF~ 0; 
OF~O; 

Description 

AND immediate byte with AL 
AND immediate word with AX 
AND immediate dword with EAX 
AND immediate byte with rim byte . 
AND immediate word with rim word 
AND immediate dword with rim dword 
AND byte register with rim byte 
AND word register with rim word 
AND dword register with rim dword 

The TEST instruction computes the bit-wise logical AND of its two operands. Each bit 
of the result is 1 if both of the corresponding bits of the operands are 1; otherwise, each 
bit is O. The result of the operation is discarded and only the flags are modified. 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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VERR, VERW - Verify a Segment for Reading or Writing 

Opcode 

OF 00/4 
OF 00/5 

Operation 

Instruction 

VERR r/m16 
VERW r/m16. 

Clocks 

11/11 
11/11 

IF segment with selector at (rim) is accessible 
with current protection level 
AND ((segment is readable for VERR) OR 

(segment is writable for VERW)) 
THEN ZF ~ 1; 
ELSE ZF ~ 0; 
FI; 

Description 

Description 

Set ZF = 1 if segment can be read, selector in r/m16 
Set ZF= 1 if segment can be written, selector in r/m16 

The two-byte register or memory operand of the VERR and VERW instructions con­
tains the value·of a selector. The VERR and VERW instructions determine whether the 
segment denoted by the selector is reachable from the current privilege level and 
whether the segment is readable (VERR) or writable (VERW). If the segment is acces­
sible, the ZF flag is set; if the segment is not accessible, the ZF flag is cleared. To set the 
ZF flag, the following conditions must be met: 

• The selector must denote a descriptor within the bounds of the table (GDT or LDT); 
the selector must be "defined." 

• The selector must denote the descriptor of a code or data segment (not that of a task 
state segment, LDT, or a gate). 

• For the VERR instruction, the segment must be readable. For the VERW instruc­
tion, the segment must be a writable data segment. 

• If the code segment is readable and conforming, the descriptor privilege level (DPL) 
can be any value for the VERR instruction. Otherwise, the DPL must be greater than 
or equal to (have less or the same privilege as) both the current privilege level and the 
selector's RPL. 

The validation performed is the same as if the segment were loaded into the DS, ES, FS, 
or GS register, and the indicated access (read or write) were performed. The ZF flag 
receives the result of the validation. The selector's value cannot result in a protection 
exception, enabling the software to anticipate possible segment access problems. 

Flags Affected 

The ZF flag is set if the segment is accessible, cleared if it is not. 
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Protected Mode Exceptions 

Faults generated by illegal addressing of the memory operand that contains the selector; 
the selector is not loaded into any segment register, and no faults attributable to the 
selector operand are generated. 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 6; the VERR and VERW instructions are not recognized in Real Address 
Mode. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; # AC for unaligned memory reference if the 
current privilege level is 3. 
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WAIT..;.. Wait 

Opcode 

98 

Description 

Instruction 

WAIT 

Clocks 

1-3 

Description 

Causes processor to check for iiumeric 
exceptions. 

WAIT causes the processor to check for pending unmasked numeric exceptions:before 
proceding. 

Flags Affected 

None. 

Protected Mode Exceptions 

#NM if both MPimd TS in eRO are set. 

Real Address Mode Exceptions 

Interrupt 7 if both MP and TS in CRO are set. 

Virtual 8086 Mode Exceptions 

# NM if both MP and TS in CRO are set. 

Notes 

Coding WAIT after an ESC instruction ensures that any unmasked floating-point excep­
tions the instruction may cause are handled before the processor has a chance to modify 
the instruction's results. 

FW AIT is an alternate mnemonic for WAIT . 

. Information about when to use WAIT (FW AIT) is given in Chapter 18, in the section on 
"Concurrent Processing." 
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WBINVD.-Write-Back and Invalidate Cache 

Opcode 

OF 09 

Operation 

Instruction 

WBINVD 

FLUSH INTERNAL CACHE 

Clocks 

5 

SIGNAL EXTERNAL CACHE TO WRITE-BACK 
SIGNAL EXTERNAL CACHE TO FLUSH 

Description 

DescrIptIon 

Write-Back and Invalidate Entire Cache 

The internal cache is flushed, and a special-function bus cycle is issued which indicates 
that external cache should write-back its contents to main memory. Another special­
function bus cycle follows, directing the external cache to flush itself. 

Flags Affected 

None. 

Protected Mode Exceptions 

The WBINVD instruction is a privileged instruction; #GP(O) if the current privilege 
level is not O. 

Real Address Mode Exceptions 

None.' 

Virtual 8086 Mode Exceptions 

#GP(O); the WBINVD instruction is a privileged instruction. 

Notes 

This instruction is implementation-dependent; its function may be implemented differ­
ently on future Intel processors. 

It is the responsibility of hardware to respond to the external cache write-back and flush 
indications. 

This instruction is not supported on Inte1386 processors. See Section 3.11 for detecting 
an Intel486 processor at runtime. See Section 12.2 on disabling the cache. 
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XADD - Exchange and Add 

Opcode Instruction 

OF COlr XADD rlmB,rB 

OF C1/r XADD rlm16,r16 

OF C1/r XADD rlm32,r32 

Operation 

TEMP ~ SRC + DEST 
SRC ~ DEST 
DEST ~ TEMP 

Description 

Clocks 

3/4 

3/4 

3/4 

Description 

Exchange byte register and rIm byte; load sum 
into rIm byte. 
Exchange word register and rIm word; load sum 
into rIm word. 
Exchange dword register and rIm dword; load 
sum into rIm dword. 

The XADD instruction loads DEST into SRC, and then loads the sum of DEST and the 
original value of SRC into DEST. 

Flags Affected 

The CF, PF, AF, SF, ZF, and OF flags are affected as if an ADD instruction had been 
executed. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault~code) fora page fault; #NM if either EM or TS in CRO is 
set; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH .. 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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Notes 

This instruction can be used with a LOCK prefix. The Intel386 DX microprocessor does 
not implement this instruction. If this instruction is used, you should provide an equiva­
lent code that runs on an Inte1386 DX processor as well. See Section 3.11 for detecting 
an Intel486 processor at runtime. 
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XCHG - Exchange Register/Memory with Register 

Opcode 

90+ r 
90+ r 
90+ r 
90+ r 
861r 
861r 
871r 
871r 
871r 
871r 

Instruction 

XCHGAX,r16 
XCHG r16,AX 
XCHG EAX,r32 
XCHG r32,EAX 
XCHG rlmB,rB 
XCHG rB,rlmB 
XCHG rlm16,r16 
XCHG r16,rlm16 
XCHG rlm32,r32 
XCHG r32,rlm32 

Operation 

temp ~ DEST 
DEST ~ SRC 
SRC ~temp 

Description 

Clocks 

3 
3 
3 
3 
3/5 
3/5 
3/5 
3/5 
3/5 
3/5 

Description 

Exchange word register wiih AX 
Exchange word register with AX 
Exchange dword register with EAX . 
Exchange dword register with EAX 
Exchange byte register with EA byte 
Exchange byte register with EA byte 
Exchange word register with EA word 
Exchange word register with EA word 
Exchange dword register with EA dword 
Exchange dword register with EA dword 

The XCHG instruction exchanges two operands. The operands can be in either order. If 
a memory operand is involved, the LOCK# signal is asserted for the duration of the 
exchange, regardless of the presence or absence of the LOCK prefix or of the value of 
the IOPL. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) if either operand is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Note 

XCHG can be used for BSWAP for 16-bit data. 
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XLA T /XLA TB - Table Look-up Translation 

Opcode 

07 
07 

Operation 

Instruction 

XLAT mB 
XLATB 

IF AddressSize = 16 
THEN 

AL ~ (BX + ZeroExtend(AL)) 
ELSE (* AddressSize = 32 *) 

Clocks 

4 
4 

AL ~ (EBX + ZeroExtend(AL)); 
FI; 

Description 

Description 

Set AL to memory byte OS:I(E)BX + unsigned ALl 
Set AL to memory byte OS:I(E)BX + unsigned ALl 

The XLAT instruction changes the AL register from the table index to the table entry. 
The AL register should be the unsigned index into a table addressed by the OS:BX 
register pair (for an address-size attribute of 16 bits) or the OS:EBX register pair (for an 
address-size attribute of 32 bits). 

The operand to the XLAT instruction allows for the possibility of a segment override. 
The XLAT instruction uses the contents of the BX register even if they differ from the 
offset of the operand. The offset of the operand should have been moved into the BX or 
EBX register with a previous instruction. 

The no-operand form, the XLATB instruction, can be used if the BX or EBX table will 
always reside in the OS segment. 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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XOR - Logical Exclusive OR 

Opcode 

34 ib 
35 iw 
35 id 
80 /6 ib 
81 /6 iw 
81 /6 id 
83 /6 ib 
83 /6 ib 
30 /r 
31 /r 
31 /r 
32/r 
33/r 
33/r 

Operation 

Instruction Clocks 

XOR AL,imm8 1 
XOR AX,imm16 1 
XOR EAX,imm32 1 
XOR rlm8,imm8 1/3 
XOR rlm16,imm16 1/3 
XOR rlm32,imm32 1/3 
XOR rlm16,imm8 1/3 
XOR rlm32,imm8 1/3 
XOR rlm8,r8 1/3 
XOR rlm16,r16 1/3 
XOR rlm32,r32 1/3 
XOR r8,rlm8 1/2 
XOR r16,rlm16 1/2 
XOR r32,rlm32 1/2 

DEST ..- LeftSRC XOR RightSRC 
CF..- 0 
OF..- 0 

Description 

Description 

Exclusive-OR immediate byte to AL 
Exclusive-OR immediate word to AX 
Exclusive-OR immediate dword to EAX 
Exclusive-OR immediate byte to rim byte 
Exclusive-OR immediate word to rim word 
Exclusive-OR immediate dword to rim dword 
XOR sign-extended immediate byte with rim word 
XOR sign-extended immediate byte with rim dword 
Exclusive-OR byte register to rim byte 
Exclusive-OR word register to rim word 
Exclusive-OR dword register to rim dword 
Exclusive-OR byte register to rim byte 
Exclusive-OR word register to rim word 
Exclusive-OR dword register to rim dword 

The XOR instruction computes the exclusive OR of the two operands. Each bit of the 
result is 1 if the corresponding bits of the operands are different; each bit is 0 if the 
corresponding bits are· the same. The answer replaces the first operand. 

Flags Affected 

The CF and OF flags are cleared; the SF, ZF, and PF flags are set according to the 
result; the AF flag is undefined. 

Protected Mode Exceptions 

#OP(O) if the result is in a nonwritable segment; #OP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or OS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 
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APPENDIX A 
OPCODE MAP 

The opcode tables that follow aid in interpreting Intel486 processor object code. Use 
the high-order four bits of the opcodeas an index to a row of the opcode table; use the 
low-order four bits as an index to a column of the table. If the opcode is OFH, refer to 
the two-byte opcode table and use the second byte of the opcode to index the rows and 
columns of that table. 

A.1 KEY TO ABBREVIATIONS 

Operands are identified by a two-character code of the form Zz. The first character, an 
uppercase letter, specifies the addressing method; the second character, a lowercase 
letter, specifies the type of operand. 

A.2 CODES FOR ADDRESSING METHOD 

A Direct address; the instruction has no modR/M byte; the address of the operand is 
encoded in the instruction; no base register, index register, or scaling factor can be 
applied; e.g., far JMP (EA). 

C The reg field of the modR/M byte selects a control register; e.g., MOY (OF20, 
OF22). 

D The reg field of the modRIM byte selects a debug register; e.g., MOY (OF21,OF23). 

E A modR/M byte follows the opcode and specifies the operand. The operand is 
either a general register or a memory address. If it is a memory address, the 
address is computed from a segment register and any of the following values: a 
base register, an index register, a scaling factor, a displacement. 

F Flags Register. 

G The reg field of the modR/M byte selects a general register; e.g., ADD (00). 

I Immediate data. The value of the operand is encoded in subsequent bytes of the 
instruction. 

J The instruction contains a relative offset to be added to the instruction pointer 
register; e.g., JMP short, LOOP. . 

M The modR/M byte may refer only to memory; e.g., BOUND, LES, LDS, LSS, LFS, 
LGS. 

o The instruction has no modRIM byte; the offset of the operand is coded as a word 
or double word (depending on address size attribute) in the instruction. No base 
register, index register, or scaling factor can be applied; e.g., MOY (AO-A3). 
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R The mod field of the modRIM byte,may refer only to a general register; e.g., MOY 
(OF20-0F24, OF26). . 

S The reg field of the modRiM byte selects a segment register; e.g., MOY (8C,8E). 

T The reg field of the modRiM byte selects a test register; e.g.,MOY (OF24,OF26). 

X '. Memory addressed by the DS:SI register pair; e.g., MOYS, COMPS,OUTS, 
LODS. 

Y Memory addressed by the ES:DI register pair; e.g., MOYS, CMPS, INS, STOS, 
SCAS. 

A.3 CODES FOR OPERAND, TYPE 

a Two one-word operands in memory or two double-word operands in memory, 
depending on operand size attribute (used only by BOUND). 

b Byte (regardless of operand size attribute) 
. ,.,> 

c ' Byte or word, depending on operand site attribute: 

d Double, word (regardless of operand size attribute) . 

p Thirty-two bit or 48-bit pointer, depending on operand size attribute. 

s Six-bYte pseudo-descriptor 

v Word or double word,. depending on operand size attribute. 
. i . . 

w Word (regardless of operand size attribute) 

A.4 REGISTER CODES 

Whenarioperand isa specific register encoded in the opcode, the' register is identified 
by its name; e.g., AX, CL, or ESI. The name of the register indicates whether the 
register is 32-, 16-, or 8-bits wide. A register identifier of the form eXX is used when the 
width of the register depends on the operand size attribute; for example, eAX indicates 
that the AX register is used when the operand size attribute is 16 and the EAX register 
is used when theoperan:d size attribute is 32. 
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One-Byte Opcode Map 

o 2 3 4 5 6 7 

o 
ADD PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv ES ES 

ADC PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv SS SS 

AND SEG DAA 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =ES 2 

XOR SEG 
=SS AM 

Eb,Gb EV,Gv Gb,Eb Gb,Ev AL,lb eAX,lv 
3 

4 
INC general register 

eAX eCX eDX eBX eSP eBP eSI eDI 

5 
PUSH general register 

eAX eCX eDX eBX eSP eBP eSI eDI 

PUSHA POPA BOUND ARPL SEG SEG Operand Address 
GV,Ma EW,Gw =FS =GS Size Size 6 

7 
Short-displacement jump on condition (Jb) 

JO JNO JB JNB JZ JNZ JBE JNBE 

Immediate Grpl Grpl TEST XCHG 

Eb,lb EV,lv Eb,lb Eb,Gb EV,Gv Eb,Gb EV,Gv 
8 

9 NOP 
XCHG word or double-word register with eAX 

eCX eDX eBX eSP eBP eSI eDI 

MOV MOVSB MOVSW/D CMPSB CMPSW/D 

AL,Ob eAX,Ov Ob,AL OV,eAX Xb,Yb XV,Yv Xb,Yb XV,Yv A 

B 
MOV immediate byte into byte register 

AL CL DL BL AH CH DH BH 

Shift Grp2 RET near LES LOS MOV 

Eb,lb EV,lb Iw GV,Mp GV,Mp Eb,lb EV,lv 
C 

o 
Shift Grp2 

AAM AAD SALC XLAT 
Eb,1 EV,1 Eb,CL EV,CL 

LOOPNE LOOPE LOOP JCXZ IN OUT 

Jb Jb Jb Jb AI,lb eAX,lb Ib,AL Ib,eAX 
E 

LOCK REPNE REP HLT CMC 
Unary Grp3 

REPE Eb Ev 
F 
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One-Byte Opcode Map 

8 9 A B C D E F 

o 
OR PUSH 2-byte 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv CS escape 

SBB PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv DS DS 

SUB SEG 
=CS DAS 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv 
2 

CMP SEG AAS 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =DS 3 

DEC general register 
4 

eAX eCX eDX eBX eSP eBP eSI eDI 

5 
POP into general register 

eAX eCX eDX eBX eSP eBP eSI eDI 

PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D 
Iv GvEvlv Ib GvEvlb Yb,DX YV,DX DX,Xb DX,Xv 6 

7 
Short-displacement jump on condition (Jb) 

JS JNS JP JNP JL JNL JLE JNLE 

MOV MOV LEA MOV POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev Ew,Sw GV,M SW,Ew Ev 8 

CBW CWD CALL WAIT PUSHF POPF SAHF LAHF Ap Fv Fv 9 

TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D 

AL,lb eAX,lv Yb,AL YV,eAX AL,Xb eAX,Xv AL,Yb eAX,Yv A 

B 
MOV immediate word or double into word or double register 

eAX eCX eDX eBX eSP eBP eSI eDI 

ENTER RET far INT INT 
IW,iB LEAVE 3 Ib INTO IRET 

Iw 
C 

D ESC (Escape to coprocessor instruction set) 

CALL JMP IN OUT 

Jv JV AP Jb AL,DX eAX,DX DX,AL DX,eAX 
E 

CLC STC CLI STI CLD sm INC/DEC INC/DEC 
Grp4 Grp5 F 
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Two-Byte Opcode Map (first byte is OFH) 

o 2 3 4 5 6 7 

o Grp6 Grp7 LAR LSL LOADALL CLTS LOADALLD "Gv,Ew Gv,Ew 

MOV MOV MOV MOV 
Eb,Gb Gv,Ev Gb,Eb Ev,Gv 

MOV MOV MOV MOV MOV MOV 
Rd,Cd Rd,Dd Cd,Rd Dd,Rd Rd,Td Td,Rd 2 

3 

4 

5 

6 

7 

8 
Long-displacement jump on condition (Jv) 

JO JNO JB JNB JZ JNZ JBE JNBE 

9 
Byte Set on condition (Eb) 

SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE 

PUSH POP BT SHLD SHLD A step A step 

FS FS Ev,Gv EvGvlb EvGvCL CMPXCHG CMPXCHG 
XBTS IBTS 

A 

CMPXCHG CMPXCHG LSS BTR LFS LGS MOVZX 

Eb,Gb Ev,Gv Mp Ev,Gv Mp Mp Gv,Eb Gv,Ew 
B 

XADD XADD 
Eb,Gb Ev,Gv C 

o 

E 

F 
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Two-Byte Opcode Map (first byte is OFH) 

8 9 A B C D E F 

o INVD WBINVD 

2 

3 

4 

5 

6 

7 

Long-displacement jump on condition (Jv) 

JS JNS JP JNP JL JNL JLE JNLE 
8 

Byte set on condition (Eb) 

Eb Eb Eb Eb Eb Eb Eb Eb 

9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE 

PUSH POP BTS SHRD SHRD IMUL 
GS GS EV,Gv EvGvlb EvGvCL GV,Ev A 

Grp-8 BTC BSF BSR MOVSX 

EV,lb EV,Gv GV,Ev GV,Ev GV,Eb GV,Ew 
B 

BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP 
EAX ECX EDX EBX ESP EBP ESI EDI C 

D 

E 

F 
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Opcodes determined by bits 5,4,3 of modR/M byte: 

mod nnn RIM 

000 001 010 011 100 101 110 111 

1 ADD OR ADC SBB AND SUB XOR CMP 

2 ROL ROR RCL RCR SHL SHR SHL SAR 

3 TEST TEST NOT NEG MUL IMUL DIV IDIV 
Ib/lv Ib/lv ALleAX ALleAX ALleAX ALleAX 

4 INC DEC 
Eb Eb 

5 INC DEC CALL CALL JMP JMP PUSH 
Ev Ev Ev Ep Ev Ep Ev 

Opcodes determined by bits 5,4,3 of modR/M byte: 

mod nnn RIM 

000 001 010 011 100 101 110 111 

6 SLDT STR LLDT LTR VERR VERW 
Ew Ew Ew Ew Ew Ew 

7 SGDT SIDT LGDT LlDT SMSW LMSW INVLPG Ms Ms Ms Ms Ew Ew 

a BT BTS BTR BTC 
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APPENDIX B 
FLAG CROSS-REFERENCE 

B.1 KEY TO CODES 

T instruction tests flag 
M instruction modifies flag (either sets or resets depending on operands) 
o instruction resets flag 
1 instruction sets flag 

instruction's effect on flag is undefined 
R instruction restores prior value of flag 
blank instruction does not affect flag 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

AM - - - TM - M 
AAD - M M - M -
AAM - M M - M -
AAS - - - TM - M 
ADC M M M M M TM 
ADD M M M M M M 
AND 0 M M - M 0 
ARPL M 
BOUND 
BSF/BSR - - M - - -
BSWAP 
BT /BTS/BTR/BTC - - - - - M 
CALL 
CBW 
CLC 0 
CLD 0 
CLI 0 
CLTS 
CMC M 
CMP M M M M M M 
CMPS M M M M M M T 
CMPXCHG M M M M M M 
CWD 
DAA - M M TM M TM 
DAS - M M TM M TM 
DEC M M M M M 
DIV - - - - - -
ENTER 
ESC 
HLT 
IDIV - - - - - -
IMUL M - - - - M 
IN 
INC M M M M M 
INS T 
INT 0 0 
INTO T 0 0 
INVD 
INVLPG 
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Instruction OF SF ZF AF PF CF TF IF OF NT RF 

IRET R' R R R R R R R R T 
Jcond T T T T T 
JCXZ 
JMP 
LAHF 
LAR M 
LDS/LES/LSS/LFS/LGS 
LEA 
LEAVE ' . 
LGDT/LiDT/LLDT/LMSW 
LOCK 
LODS T 
LOOP 
LOOPE/LOOPNE T 
LSL M 
LTR 
MOV 
MOV control, debug - - - - - -
MOVS' 
MOVSX/MOVZX 

I T 

MUL M - - - - M 
NEG M M M M M M 
NOP 
NOT 
OR 0 M M - M 0 
OUT 
OUTS T 
POP/POPA 
POPF R R R R R R R R R R 
PUSH/PUSHA/PUSHF 
RCL/RCR 1 M TM 
RCL/RCR c9unt - TM 
REP/REPE/REPNE 
RET '. 

ROL/ROR 1 M M 
ROL/ROR count - M 
SAHF R R R R R 
SAL/SAR/SHL/SHR 1 M M M - M M 
SAL/SAR/SHL/SHR count - M M - M M 
SBB M M " M M M TM 

I···· 

SCAS M M M M M M T 
SET cond ' T T T T T 
SGDT /SI DT iSLDT /SMSW I· 
SHLD/SHRD - M M - M M 
STC 1 
STD 1 
STI 1 
STOS T 
STR 
SUB M M M M 'M M 
TEST 0 ,M M - M 0 
VERRNERRW I M 
WAIT 

, 

WBINVD 
XADD M M M M M M 
XCHG 
XLAT 
XOR 0 M M - M 0 

.. 
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APPENDIX C 
STATUS FLAG SUMMARY 

C.1 STATUS FLAGS' FUNCTIONS 

Bit Name Function 

0 CF Carry Flag-Set on high-order bit carry or borrow; cleared otherwise. 

2 PF Parity Flag-Set if low-order eight bits of result contain an even number 
of 1 bits; cleared otherwise. 

4 AF Adjust Flag-Set on carry from or borrow to the low order four bits of 
AL; cleared otherwise. Used for decimal arithmetic. 

6 ZF Zero Flag - Set if result is zero; cleared otherwise. 

7 SF Sign Flag - Set equal to high-order bit of result (0 is positive, 1 if 
negative). 

11 OF Overflow Flag-Set if result is too large a positive number or too. small a 
negative number (excluding sign-bit) to fit in destination operand; 
cleared otherwise. 

C.2 KEY TO CODES 

T instruction tests flag 

M instruction modifies flag 
(either sets or resets depending on operands) 

o instruction resets flag 

instruction's effect on flag is undefined 

blank instruction does not affect flag 

Instruction OF SF ZF AF PF CF 

AAA - - - TM - M 
AAS - - - TM - M 

AAD - M M - M -
AAM - M M - M -

DAA - M M TM M TM 
DAS - M M TM M TM 

ADC M M M M M TM 
ADD M M M M M M 
XADD M M M M M M 
SBB M M M M M TM 
SUB M M M M M M 
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Instruction OF. SF ZF AF PF CF 
'. 

CMP M M M M M M 
CMPS M M M M M M 
CMPXCHG M M M M M M 
SCAS M M M M M M 
NEG M M M M M M 

DEC M M M M M 
INC M M M M M 

IMUL M ~ - - - M 
MUL M - .:.. - - M 

RCL)RCR 1 M TM 
RCL)RCR count - TM 
ROL)ROR 1 M M 

, ROL)ROR count - M 
SAL)SAR/SHL)SHR 1 M M M - M M 
SAL)SAR/SHL)SHR count - M M - M M 

SHLD/SHRD - M M - M M 
BSF/BSR - - M - - -
. BT /BTS/BTR/BTC - - - - - M 

AND 0 M M - M 0 
OR 0 M M - M 0 
TEST 0 M M - M 0 
XOR 0 M M - M 0 
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APPENDIX D 
CONDITION CODES 

Note: The terms "above" and "below" refer to the relation between two unsigned values 
(neither the SF flag nor the OF flag is tested). The terms "greater" and "less" refer to 
the relation between two signed values (the SF and OF flags are tested). 

0.1 DEFINITION OF CONDITIONS 

(For conditional instructions Jcond, and SETcond) 

Mnemonic Meaning 
Instruction 

Condition Tested 
Subcode 

0 Overflow 0000 OF = 1 

NO No overflow 0001 OF = 0 

B Below 
0010 CF = 1 

NAE Neither above nor equal 

NB Not below 
0011 CF = 0 

AE Above or equal 

E Equal 
0100 ZF = 1 Z Zero 

NE Not equal 
0101 ZF = 0 

NZ Not zero 

BE Below or equal 
0110 (CF or ZF) = 1 

NA Not above 

NBE Neither below nor equal 
0111 (CF or ZF) = 0 

A Above 

S Sign 1000 SF = 1 

NS No sign 1001 SF = 0 

P Parity 
1010 PF = 1 

PE Parity even 

NP No parity 
1011 PF = 0 

PO Parity odd 

L Less 
1100 (SF xor OF) = 1 

NGE Neither greater nor equal 

NL Not less 
1101 (SF xor OF) = 0 

GE Greater or equal 

LE Less or equal 
1110 ((SF xor OF) or ZF) = 1 

NG Not greater 

NLE Neither less nor equal 
1111 ((SF xor OF) or ZF) = 0 

G Greater 

0-1 
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APPENDIX E 
INSTRUCTION FORMAT AND TIMING 

This appendix is an excerpt from the Intel486 '" Processor Data Sheet. 
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in1'el@ INSTRUCTION FORMAT AND TIMING 

10.0 INSTRUCTION SET SUMMARY 

This section describes the Intel486 microprocessor 
instruction set. Tables 10.1 through 10.3 list all in­
structions along with instruction encoding diagrams 
and clock counts. Further details of the instruction 
encoding are then provided in Section 10.2, which 
completely describes the encoding structure and the 
definition of all fields occurring within the Intel486 
microprocessor instructions. 

10.1 Intel486™ Microprocessor 
Instruction Encoding and Clock 
Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Tables 1 0.1 
through 10.3 by the processor clock period (e.g., 
40 ns for a 25 MHz Intel486 microprocessor). 

For more detailed information on the encodings of 
instructions, refer to Section 10.2 Instruction Encod­
ings. Section 10.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction. 

INSTRUCTION CLOCK COUNT ASSUMPTIONS 

The Intel486 microprocessor instruction clock count 
tables give clock counts assuming data and instruc­
tion accesses hit in the cache. A separate penalty 
column defines clocks to add if a data access miss­
es in the cache. The combined instruction and data 
cache hit rate is over 90%. 

A cache miss will force the Intel486 microprocessor 
to run an external bus cycle. The Intel486 microproc­
essor 32-bit burst bus is defined as r-b-w. 

Where: 

r = The number of plocks in the first cycle of a 
burst read or the number of clocks per data 
cycle in a non-burst read. 

b = The number of clocks for the second and sub­
sequent cycles in a burst read. 

w = The number of clocks for a write. 

The fastest bus the Intel486 microprocessor can 
support is 2 -1 - 2 assuming 0 wait states. The 
clock counts in the cache miss penalty column as­
sume a 2-1-2 bus. For slower busses add r-2 
clocks to the cache miss penalty for the first dword 
accessed. Other factors also affect instruction clock 
counts. 

Instruction Clock Count Assumptions 
1. The external bus is available for reads or writes 

at all times. Else add clocks to reads until the 
bus is available. 
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2. Accesses are aligned. Add three clocks to each 
misaligned access. 

3 .. Cache fills complete before subsequent access­
es to the same line. If a read misses the cache 
during a cache fill due to a previous read or pre­
fetch, the read must wait for the cache fill to 
complete. If a read or write accesses a cache 
line still being filled, it must wait for the fill to 
complete. 

4. If an effective address is calculated, the base 
register is not the destination register of the pre­
ceding instruction. If the base register is the 
destination register of the preceding instruction 
add 1 to the clock counts shown. Back-to-back 
PUSH and POP instructions are not affected by 
this rule. 

5. An effective address calculation uses one base 
register and does not use an index register. 
However, if the effective address calculation 
uses an index register, 1 clock may be added to 
the clock count shown. 

6. The target of a jump is in the cache. If not, add r 
clocks for accessing the destination instruction 
of a jump. If the destination instruction is not 
completely contained in the first dword read, 
add a maximum of 3b clocks. If the destination 
instruction is not completely contained in the 
first 16 byte burst, add a maximum of another 
r+3b clocks. 

7. If no write buffer delay, w clocks are added only 
in the case in which all write buffers are full. 
Typically, this case rarely occurs. 

8. Displacement and immediate not used together. 
If displacement and immediate used together, 1 
clock may be added to the clock count shown. 

9. No invalidate cycles. Add a delay of 1 clock for 
each invalidate cycle if the invalidate cycle con­
tends for the internal cache/external bus when 
the Intel486 CPU needs to use it. 

10. Page translation hits in TLB. A TLB miss will add 
13, 21 or 28 clocks to the instruction depending 
on whether the Accessed and/or Dirty bit in nei­
ther, one or both of the page entries needs to 
be set in memory. This assumes that neither 
page entry is in the data cache and a page fault 
does not occur on the address translation. 

11. No exceptions are detected during instruction 
execution. Refer to Interrupt Clock Counts Ta­
ble for extra clocks if an interrupt is detected. 

12. Instructions that read multiple consecutive data 
items (I.e. task switch, POPA, etc.) and miss the 
cache are assumed to start the first access on a 
16-byte boundary. If not, an extra cache line fill 
may be necessary which may add up to (r+3b) 
clocks to the cache miss penalty. 



intel® INSTRUCTION FORMAT AND TIMING 

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary 

INSTRUCTION FORMAT CacheHl1 Penally If 
Notes CacheMI ... 

INTEGER OPERATIONS 

MOV ~ Move: 

r091 to rog2 1000100W 11 rogl rog21 1 

rog2 to mgl 1000101w 11 rS 91 rog21 1 

memory to reg 1000101w mod rog rim 1 1 2 

reg to memory 1000100w mod reg r/ml 1 

Immediate to reg 1100011 w 11000 reg I immediate data 1 

or 1011w rog immediate data 1 

Immediate to Memory 1100011 w 
d I I displacement 

mo 0 0 0 r m Immediate 1 

Memory to Accumulator 1010000w full displacement 1 2 

Accumulator to Memory 1010001w I full displacement 1 

MOVSX/MOVZX ~ Move wllh Slgn/Zero Exlenslon 

r092 to reg1 I 00001111 1 1011 zll w 111 reg1 rog21 3 

memory to rsg I 00001111 1 1011 zll w 1 mod rog rim 1 3 2 

z Inslrucllon 

0 MOVZX 
1 MOVSX 

PUSH ~ Push 

rog I 11111111 111 110 rogl 4 

or 101010 rogl 1 

memory 1 11111111 I mod 110 r/ml 4 1 1 

immediate I 01101050 I immediate data 1 

PUSHA ~ Push All I 01100000 1 11 

POP ~ Pop 

rog I 10001111 111 000 reg 1 4 1 

or 101011 rog 1 1 2 

memory I 10001111 1 mod 000 r/ml 5 2 1 

POPA ~ PopAII I 01100001 1 9 7/15 16/32 

XCHG ~ Exchange 

r091 with rog2 1000011w 111 rog1 rog21 3 2 

Accumulator with reg 10010 reg 1 3 2 

Memory with reg 1000011w I mod reg r/ml 5 2 

NOP ~ No Opsrallon 10010000 1 1 

LEA ~ Load EA 10 Reglsler 10001101 1 mod reg r/ml 
no index register 1 
with index register 2 
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Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty If 

Notes CacheMI.B 

INTEGER OPERA nONS (Ccntinued) 

Instruct10n TTT 

ADD = Add 000 
ADC = Add with Carry 010 
AND = Logical AND 190 
OR = Logical OR 001 
SUB = Sublract 101 
sae = Subtract with Borrow 011 
XOR = Logical Exclusive OR 110 

re91 tor8g2 OOTTTOOw 11 re91 reg2! 1 

reg2to reg1 OOTTTOlw 11 reg1 reg2! 1 

memory to register OOTTTOlw mod reg rim! 2 2 

register to memory OOTTTOOw mod reg rim! 3 6/2 U/L 

immediate to register 100000sw 11 TTT reg I immediate register 1 

immediate to accumulator 00TTT10w immediate data 1 

immediate to memory I 100000sw mod TTT rIm I immediate data 3 6/2 U/L 

Instruction TTT 

INC = Increment 000 
DEC = Decrement 001 

reg I l111111w 111 TTT reg I 1 

or 101TTT reg I 1 

memory I lllllllw I mod TTT r/ml 3 6/2 U/L 

Instruction TTT 

NOT = Logical Ccmplement 010 
NEG = Negate 011 

reg I 1111011w 111 TTT reg ! 1 

memory I 1111011w 1 mod TTT rim I 3 6/2 U/L 

CMP = Compare 

reg1 with reg2 0011100w 11 reg1 reg21 1 

reg2 with reg1 0011101 w 11 regl reg21 1 

memory with register 0011100w mod reg rim I 2 2 

register with memory 0011101 w mod reg rim I 2 2 

immediate with register 100000sw 11 111 rag I immediate data 1 

immediate with acc. 0011110w immediate data 1 

immediate with memory 100000sw mod 111 rIm I immediate data 2 2 

TEST = Logical Compare 

rog1 and reg2 I 1000010w 11 rog1 reg21 1 

memory and register I 1000010w mod reg rim I 2 2 

immediate and register I 1111011w 11 000 reg I immediate data 1 

immediate and acc. I 1010100w immediate data 1 

immediate and memory I 1111011 w mod 000 rIm I immediate data 2 2 
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INSTRUCTION FORMAT AND TIMING 

Table 10 1 Intel486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty II 

Notes 
CachoMlsa 

INTEGER OPERATIONS (ContInued) 

MUL ~ Multiply (unnlgnod) 

acc. with register I 1111011 w 1.11 100 reg I 
Multiplier·Syte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dward 13/42 MN/MX,3 

acc. with memory I 1111011 w I mod 100 rlml 

Multiplier-Byte 13/18 1 MN/MX,3 

Word 13/26 1 MN/MX,3 

Dward 13/42 1 MN/MX,3 

IMUL ~ Intoger Multiply (nlgnod) 

acc. with register I 1111011 w 111 101 reg I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dward 13/42 MN/MX,3 

ace. with memory I 1111011 w I mod 101 r/mi 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

reg1 with reg2 I 00001111 I 10101111 111 reg1 reg21 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dward 13/42 MN/MX,3 

register with memory I 00001111 I 10101 11 1 I mod reg r/mi 
Multiplier-Byte 13/18 1 MN/MX,3 

Word 13/26 1 MN/MX,3 

Dward 13142 1 MN/MX,3 

reg1 with imm. to reg2 I 0110105 1 111 reg1 r892 1 immediate data 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

OWard 13/42 MN/MX,3 

memo with imm. to reg. I 01101051 I mod reg rim I immediate data 

Multiplier-Byte 13/18 2 MN/MX,3 

Word 13/26 2 MN/MX,3 

Dword 13/42 2 MN/MX,3 

DIY ~ Divide (unnlgnod) 

acc. by register I 1111011 w 111 110 reg I 
Divisor-Byte 16 

Word 24 

Dword 40 

acc. by memory I 1111011 w I mod 110 rlml 

Divisor-Byte 16 

Word 24 

Dword 40 

IDIV ~ Inleger Divide (algned) 

ace. by register I 1111011 w 111 111 reg I 
Divisor-Byte 19 

Word 27 

Dword 43 
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Table 10.1.lnteI486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT CacheHl1 
Penally If 

Not •• 
CacheMlse 

INTEGER OPERATIONS (Continued) 

acc. by memory 1111 1011 w I mod 111 rim I 
Divisor-Byte 20 

Word 28 

Dword 44 

CBW/CWDE ~ ConYert Byte 10 Word/ 
Convert Word to Dword 1,00,10001 3 

CWD/CDQ ~ Conyert Word 10 Dword/ 
1,001,0011 Convert Dword to 3 

Quadword 

Instruction TTT 

ROL ~ Rotate Left 000 
ROR ~ Rotate Right 001 
RCL ~ Rotate through Carry Left 010 
RCR ~ Rotate through Carry Right 011 
SHL/SAL ~ Shift Logical/Arithmetic Left 100 
SHR ~ Shift Logical Right 101 
SAR ~ Shift Arithmetic Right 111 

Nol Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

regbyl 1101000w It TTT reg I 3 

memory by 1 1101000w mod TTT rim I 4 6 

reg byCL 1101001 w 11 TTT reg I 3 

memory by CL 1101001 w mod TTT r/ml 4 6 

reg by immediate count 1100000w 11 TTT reg I immediate B-bit data 2 

mam by immediate count 1100000w mod TTT rIm I immediate 8-bit data 4 6 

Through Canry (RCL and RCR) 

reg by 1 1101000w 111 TTT reg I 3 

memory by 1 1101000w mod TTT r/ml 4 6 

reg by CL 1101001 w 11 TTT reg I 8/30 MN/MX,4 

memorybyCL 1101001 w mod TTT rim I 9/31 MN/MX,5 

reg by immediate count 1100000w 11 TTT reg I immediate B-bit data 8/30 MN/MX,4 

mam by immediate count 1100000w mod TTT rIm I immediate B-bit data 9/31 MN/MX,5 

Instruction TTT 

SHLD ~ Shift Left Double 100 
SHRD ~ Shift Right Double 101 

register with immediate 00001111 10TTT100 111 rog2 re91 I imm 8-bit data 2 

memory by immediate 00001111 10TTT100 I mod reg rIm I imm B-bit data 3 6 

register by CL 00001111 10TTT101 111 rog2 reg11 3 

memorybyCL 00001111 10TTT10l I mod reg rim I 4 5 

BSWAP ~ Byte Swap 00001111 11001 reg I 1 

XADD ~ Exchange and Add 

regl, reg2 I 00001111 1'100000W 111 rog2 reg11 3 

memory,feg I 00001111 1'100000W I mod reg r/ml 4 6/2 U/L 

CMPXCHG ~ Compar. and Exchange 

rog1. rog2 I 00001111 1'0"000W 111 rog2 regll 6 

memory, reg I 00001111 1'011000W I mod reg rim I 7/10 2 6 
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Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty II Notos Cacho Mls8 

CONTROL TRANSFER (within segmont) 

NOTE: Times are jump taken/not taken 

Jece = Jump on eec 

a·bit displacement I 0111 tttn I 8-bitdisp. I 3/1 T/NT,23 

full displacemont I 00001111 I 1000t11n I full displacement 3/1 T/NT,23 

NOTE: Times are jump taken/not taken 

SETcccc = Set Byto on ecce (Tlmou aro ecce true/fnluo) 

reg I 00001111 I 1001t11n 111 000 reg I 4/3 

memory I 00001111 I 1001t11n I mod 000 rim I 3/4 

Mnemonic 
Condition IItn 

ccce 

0 OVerflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 

NB/AE Not Below! Above or Equal 0011 

E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 

NBE/A Not Below or Equall Above 0111 

S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 

. NP/PO Not ParitylParity Odd 1011 
LlNGE Less Than/Not Greater or Equal 1100 
NLiGE Not less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less Than or Equal/Greater Than 1111 

LOOP ~ LOOP CX Tlmos I 11100010 8·bit disp. 7/6 L/NL,23 

LOOPZ/LOOPE ~ Loop with I 11100001 a-bit disp. 9/6 LINL,23 

Zoro/Equal 

LOOPNZ/LOOPNE ~ Loop while I 11100000 e-bitdisp. 9/6 LlNL,23 

NotZoro 

JCXZ ~ Jump on CX Zoro I 11100011 B-bit disp. 8/5 TINT. 23 

JECXZ ~ Jump on ECX Zero I 11100011 8-bit disp. 8/5 TINT. 23 

(Address Size Prefix Differentiates JCXZ for JECXZ) 

JMP = Unconditional Jump (within 80 mont) 

Short 11101011 I B-bitdisp. I 3 7,23 

Direct 11101001 I full displacement 3 7,23 

Register Indirect 11111111 111 100 reg I 5 7,23 

Memory Indirect 11111111 I mod 100 r/ml 5 5 7 

CALL ~ Call (within segmont) 

Direct 11101000 I full displacement 3 7.23 

Register I~direct 11111111 111 010 reg I 5 7,23 

Memory Indirect 11111111 I mod 010 r/ml 5 5 7 

RET = Return from CALL (within 8ogment) 

I 11000011 I 5 5 

Adding Immediate to SP I 11000010 I 16·bit disp. I 5 5 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty" 

Notes 
C.cheMI ... 

CONTROL TRANSFER (within .egment) (Continued) 

ENTER = Enter Proceduro I 11001000 lIS-bit disp .. a·bit level 

level = 0 14 
level = 1 17 
level (l) > 1 lH3l 8 

LEAVE == Leave Procedure I 1100 1 001 I 5 1 

MUL TlPLE·SEGMENT INSTRUCTIONS 

MOV ~ Move 

reg. to segment reg. I 1000 111 a 111 srag3 reg I 3/9 0/3 RV/P,9 

memory to segment reg. I 1000 1110 I mod srag3 rim I 3/9 2/5 RV/P, 9 

segment reg. to reg. 1 10001100 111 srag3 re91 3 

segment reg. to memory I 10001100 I mod srag3 r/ml 3 

PUSH ~ Push 

segment reg. 1000sre921101 3 
(ES, CS, 55, or OS) 

segment reg. (FS or GS) 1 00001111 1,0 5r8930001 3 

POP ~ Pop 

segment reg. 1000SrOg2111 3/9 2/5 RV/P,9 
(ES, 55, or OS) 

segmonl reg. (FS or GS) 1 0000 1111 10 SrOg30011 3/9 2/5 RV/P,9 

LOS = Load Pointer to DS 1 11000101 mod rog rim I 6/12 7/10 RV/P, 9 

LES ~ Load Pointer to ES I 11000100 mod reg r/ml 6/12 7/10 RV/P, 9 

LFS ~ Load Pointer to FS I 0000 1111 10 110 100 I mod reg r/ml· 6/12 7/10 RV/P, 9 

LGS ~ Load Pointer to GS 1 a a a a 1111 10 110101 I mod reg rim I 6/12 7/10 RV/P, 9 

LSS ~ Load Polntor to SS I 0000 1111 10 1100 1 a I mod rog rim I 6/12 7/10 RV/P, 9 

CALL ~ Can 

Direct intersegment I 100 110 10 I unsigned full offset, selector 18 2 R, 7, 22 

to same level 20 3 P,9 
thru Gate to same level 35 6 P,9 
to inner level, no parameters 69 17 P,9 
to inner level, x parameter (d) words 77+4X 17+" P,I',9 
10TSS 37+TS 3 P, 10, 9 
thru Task Gate 38+TS 3 P, 10, 9 

Indirect intersegment I 11111111 I mod 01t r/ml 17 8 R,7 

to same level 20 10 P,9 
thru Gate to same level 35 13 P,9 
to inner level, no parameters 69 24 P,9 
to inner level, x parameter (d) words 77+4X 24+n P,I',9 
toTSS 37+TS 10 P,10,9 
thru Task Gate 38+TS 10 P, 10, 9 

RET ~ Return from CALL 

intersegment I 11001011 I 13 8 R,7 

to same level 17 9 P,9 
to outer level 35 12 P,9 

intersegment adding I 1100 1010 I 16-bit disp. I 
imm.toSP 14 8 R,7 

to same level 18 9 P,9 
to outer level 36 12 P,9 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1.lnteI486™ Microprocessor Integer Clocle Count Summary (Continued) 

INSTRUCTION FORMAT CDcho Hit 
Ponalty If 

NotOl) 
CDchoMloG 

MULTIPLE·SEGMENT INSTRUCTIONS (Continued) 

JMP ~ Unconditional Jump 

Direct intersogment 1 11101010 I unsigned full offset, selector 17 2 R, 7, 22 

to same level 19 3 P,9 
thru Call Gate to same level 32 6 P,9 

thruTSS 42+TS 3 P, 10,9 
thru Task Gate 43+TS 3 P, 10,9 

Indirect intersegment 1 11111111 1 mod 101 rim I 13 9 R, 7, 9 

to same level 18 10 P,9 
thru Call Gate to same level 31 13 P,9 

thru TSS 41+TS 10 P, 10, 9 

thru Task Gate 42+TS 10 P, 10, 9 

BIT MANIPULATION 

BT ~ Teat bit 

register, immediate 1 00001111 1 10111010 111 100 reg I imrn. a-bit data 3 

memory, immediate 1 00001111 1 10111010 1 mod 100 rim I imm. a-bit data 3 1 

re91. rog2 1 00001111 110100011 111 reg2 rog1 I 3 

memory, reg 1 00001111 1 10100011 1 mod reg r/ml B 2 

Inatruction TIT 

BTS ~ Test Bit and Set 101 

BTA = Test Bit and Reset 110 

BTC = Test Bit and Compliment 111 

register, immediate 1 00001111 1 10111010 111 TTT reg I imm. a-bit data 6 

memory, immediate 1 00001111 1 10111010 1 mod TTT rIm I imm. 8-bit data 8 2/0 U/L 

r8g1, r092 100001111 1 10TTT011 111 rog2 rog11 6 

memory, reg 1 00001111 1 10TTT011 1 mod reg r/ml 13 3/1 U/L 

BSF = Scan BIt Forward 

r091, r692 1 00001111 1 10111100 111 rog2 rog1 ) 6/42 MN/MX,12 

memory, reg 1 00001 111 1 10111100 1 mod reg rim I 7/43 2 MN/MX,13 

BSR = Scan Bit ReverBe 

reg1, reg2 1 00001111 1 10111101 111 reg2 reg1 ) 6/103 MN/MX,14 

memory, reg I 00001111 1 1011 1 101 I mod reg r/ml 7/104 1 MN/MX,15 

STRtNG INSTRUCTIONS 

CMPS = Compare Byte Word 1 1010011 w I B 6 16 

LODS ~ Load Byte/Word 1 1010110w I 5 2 

to ALI AX/EAX 

MOVS ~ Move Byte/Word 1 1010010w I 7 2 16 

SCAS ~ Scan Byte/Word I 1010111 w I 6 2 

STOS ~ Store Byte/Word 1 1010 t 01 w I 5 

from ALiAX/EX 

XLAT = Translato String 1 11010111 I 4 2 
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Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penally II Note. cacheM ... 

REPEATED STRING INSTRUCTIONS 

Repeated by Count in CX or ECX (C ~ Count in CX or ECX) 

REPE CMPS ~ Compare String I 11110011 I 1010011 w I 
(Find Non-Match) 
C~O 

5 
C>O 7+7c 16,17 

REPNE CMPS ~ Compare String I 11110010 I 1010011 w I 
(Find Match) 
C~O 5 
C>O 7+7c 16,17 

REP LODS ~ Load Siring I 11110011 I 1010110w I 
C~O 5 
C>O 7+40 16,18 

REP MOYS ~ Moye SIring I 11110011 I 1010010w I 
C~O 5 
C~1 13 1 16 
C>1 12+3c 16,19 

REPE SCAS ~ Scan SIring I 11110011 I 1010111 w I 
(Find Non-ALI AX/EAX) 
C~O 5 
C>O 7+5c 20 

REPNE SCAS ~ Scan String I 11110010 I 1010111 w I 
(Find AL/AX/EAX) 
C~O 5 
C>O 7+5c 20 

REP STOS ~ Store String I 11110011 I 1010101w I 
C~O 5 
C>O 7+4c 

FLAG CONTROL 

CLC ~ Clear Carry Rag 11111000 2 

STC ~ set carry Flag 11111001 2 

CMC ~ Complement carry Flag 11110101 2 

CLD ~ Cioar Direction Rag 11111100 2 

STD ~ set Direction Rag 11111101 2 

CLI ~ Clear Intorrupt 11111010 5 
Enable Flag 

STI ~ setlnterrupl 11111011 5 
Enable Flag 

LAHF ~ Load AH Into Rag 10011111 3 

SAHF ~ Store AH Into Flags 10011110 2 

PUSHF ~ Push Flags 10011100 4/3 RV/P 

POPF ~ Pop Flogs 10011101 9/6 RV/P 

DECIMAL ARITHMETIC 

AAA ~ ASCII Adjust lor Add I 00110111 I 3 

AAS ~ ASCII AdjuBtlor I 00111111 I 3 
SUbtract 

AAM ~ ASCII AdjuBllor I 11010100 I 00001010 I 15 
Multiply 
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Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT cache Hit Penalty II Notes cacheM.s 

DECIMAL ARITHMETIC (Continued) 

AAD ~ ASCII Adjust lor I 11010101 I 00001010 I 14 
Dlvldo 

DAA ~ Doclmal Adjust lor Add I 00100111 I 2 

DAS ~ Doclmal Adjust lor Subtrect I 00101111 I 2 

PROCESSOR CONTROL INSTRUCTIONS 

HLT ~ Halt 111110100 I 4 

MOY ~ Movo To and From ControllDebuglTest Roglsto .. 

CRO from register I 00001111 00100010 11 000 reg I 17 2 

CR2/CR3 from regisler I 00001111 00100010 11 eee reg I 4 

Reg from CRO-3 I 00001111 00100000 11 eee reg I 4 

DRO-3 from register 00001111 00100011 11 eee reg I 10 

DR6-7 from register 00001111 00100011 11 eee reg I 10 

Register from DR6-7 00001111 I 00100001 11 eee reg I 9 

Register from DRO-3 00001111 I 00100001 11 eee reg I 9 

TR3 from register 00001111 00100110 11 011 reg I 4 

TR4-7 from register 00001111 00100110 11 eee reg I 4 

Register from TR3 00001111 00100100 11 011 reg I 3 

Register from TR4-7 00001111 00100100 11 eee reg I 4 

CL TS ~ Clear Task Switched Flag 00001111 00000110 7 2 

INYD ~ Invalldato Data Cache 00001111 00001000 4 

WBINVD - Wrlto·Back and Invalldale I 00001111 00001001 5 
Dataeacha 

INVLPG ~ Invalidate TLB Entry 

INVLPG memory I 00001111 I 00000001 I mod 111 rIm I 12111 H/NH 

PREFIX BYTES 

Addre .. Size Prallx I 01100111 I 1 

LOCK ~ Bus Lock Prefix I 11110000 I 1 

Operand Slzo Proflx I 01100110 I 1 

Sogment Ovorrlde Proflx 

CS: I 00101110 I 1 

os: I 00111110 I 1 

ES: I 00100110 I 1 

FS: I 01100100 I 1 

GS: I 01100101 I 1 

SS: I 00110110 I 1 
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Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penally " Notes 
CacheMIaa 

PROTECTION CONTROL 

ARPL ~, AdJuot Requested Privilege Level 

From register I 01100011 111 regl reg21 9 

From memory I 01100011 I mod reg rIm I 9 ' 

LAR ~ Load Accea Righta 

From register I 00001111 I 00000010 111 regl reg21 11 3 

From memory I 00001111 I 00000010 I mod reg rIm I 11 5 

LGDT ~ Load Global Descriptor 

Table register I 00001111 I 00000001 I mod 010 rIm I 12 5 

UDT ~ Load Interrupt Descriptor 

Table register I 00001111 I 00000001 I mod 011 rIm I 12 5 

LLDT ~ Load Local Deacrlptor 

Table register from reg, I 00001111 I 00000000 111 010 reg I 11 3 

Table register from memo I 00001111 I 00000000 I mod 010 r/ml 11 6 

LMSW ~ Load Machine Statua Word 

From regiSter I 00001111 I 00,000001 111 110, reg I 13 

From memory I 00001111 I 00000001 I mod 110 rIm I 13 1 

LSL ~ Load Segment Urnll 

From register I 00001111 I 00000011 111 regl reg21 10 3 

From memory I 00001111 I 00000011 I mod reg rIm I 10 6 

L TR ~ Load Talk Register 

From Register I 00001111 I 00000000 11;1 OIl' reg I 20 

From Memory I 00001111 I 00000000 I mod 011 rIm I' 20 

SGDT ~ Store Global Deacrlptor Table 

I 00001111 I 00000001 I mod 000 rIm I 10 

SIDT ~ Store Interrupt Deacrlptor Table 

I 00001111 I 00000001 I mod 001 rIm I 10 

SLDT ~ Store Local Descriptor Table 

To register I 00001111 I 00000000 111 000 reg I 2 

To memory I 00001111 I 00000000 I mod 000 rIm I 3 

SMSW ~ Store Machine Stotul Word 

To register I 00001111 I 00000001 111 100 reg I 2 

To memory I 00001111 I 00000001 I mod 100 rIm I 3 

STR ~ Store Talk Register 

To register, I 00001111 I 00000000 111 001 reg I 2 

To memory I 00001111 I 00000000 I mod 001 rIm I 3 

VERR - Veitly Read Acceas 

Register I 00001111 I 00000000 111 100 rIm I 11 3 

Memory I 00001111 I 00000000 I mod 100 rIm I 11 7 

VERW ~ Verily Write Accell 

Toreglsler I 00001111 I 00000000 111 101 reg I 11 3 

To memory I 00001111 I 00000000 I mod 101 rIm I 11 7 
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in1:el® INSTRUCTION FORMAT AND TIMING 

Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION fORMAT Cache Hit Penalty I! Notes 
CachaMlaa 

INTERRUPT INSTRUCTIONS 

INT n ~ Intorrupt Type n I 11001101 I type I INT+4/0 RV/P,'21 

INT 3 ~ Intorrupt Type 3 I 11001100 I INT+O 21 

INTO ~ Intorrupl4l! I 11001110 I 
Overflow Rag SOt 
Taken INT+2 21 
Not Taken 3 21 

BOUND - Intorrupt 51! Dotect I 01100010 I mod reg rim I 
Value Out Range 

If In range 7 7 21 
If out of range INT+24 7 21 

IRET ~ Intorrupt Rotum I 11001111 I 
Real ModelVirtual Mode 15 B 
Protected Mode 

To same level 20 11 9 
To outer level 36 19 9 
To nested task (EFLAGS.NT ~ 1) TS+32 4 9,10 

Extemallnterrupt INT+l1 21 

NUl ~ Non-Ua.kablolntorrupt INT+3 21 

Pagofault INT+24 21 

YUB6 Excaptlono 
eLI INT+8 21 
STI INT+8 21 
INTn INT+9 
PUSHF INT+9 21 
POPF INT+B 21 
IRET INT+'9 
IN 

Fixed Port INT+50 21 
Variable Port INT+51 21 

OUT 
Fixed Port INT+50 21 
Variable Port INT+51 21 

INS INT+50 21 
OUTS INT+50 21 
REP INS INT+51 21 
REP OUTS INT+51 21 

Task Switch Clock Counts Table 

Method 
Value forTS 

Cache Hit Miss Penalty 

VM/intel486 CPU/286 TSS To Intel486 CPU TSS 162 55 
VM/intel486 CPU/286 TSS To 286 TSS 143 31 
VMlIntel486 CPUl286 TSS To VM TSS 140 37 
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Interrupt Clock Counts Table 

Method 

Real Mode 

Protected Mode 
Interrupt/Trap gate, same level 
Interrupt/Trap gate, different level 
Task Gate 

Virtual Mode 
Interrupt/Trap gate, different level 
Task gate 

Abbreviations 
16/32 
U/L 
MN/MX 
LlNL 
RV/P 
R 
P 
T/NT 
H/NH 

NOTES: 

Definition 
16/32 bit modes 
unlocked/locked 
minimum/maximum 
loop/no loop 
real and virtual mode/protected mode 
real mode 
protected mode 
taken/not taken 
hitlno hit 

Cache Hit 

26 

44 
71 

37 + TS 

82 
37 + TS 

Value for INT 

Miss Penalty 

2 

6 
17 
3 

17 
3 

1. Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case. 
3. Clocks = 10 + max(log2(lml),n) 

m = multiplier value (min clocks for m = 0) 
n = 3/5 for ±m 

4. Clocks = (quotient(countloperand length) 1-7 + 9 
= 8 if count s; operand length (8/16/32) 

5. Clocks = {quotient(countloperand length)I-7+9 
= 9 if count s; operand length (8/16/32) 

6. Equal/not equal cases (penalty is the same regardless of lock). 

Notes 

9 
9 

9, 10 

10 

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets. 
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame. 
9. Add 11 clocks for each unaccessed descriptor load. 

10. Refer to task switch clock counts table for value of TS. 
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes. 
For notes 12-13: (b = 0-3, non-zero byte number); 

(i = 0-1, non-zero nibble number); 
(n = 0-3, non bit number in nibble); 

12. Clocks = 8+4 (b+ 1) + 3(i+ 1) + 3(n+ 1) 
= 6 if second operand = 0 

13. Clocks = 9+4(b+ 1) + 3(i+ 1) + 3(n+ 1) 
= 7 if second operand = 0 

For notes 14-15: (n = bit position 0-31) 
14. Clocks = 7 + 3(32-n) 

6 if second operand = 0 
15. Clocks = 8 + 3(32-n) 

7 if second operand = 0 
16. Assuming that the two string addresses fall in different cache sets. 
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare. 
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load. 
19. Cache miss penalty: add 4 clocks for every 16 bytes moved. 

(1 clock for the first operation and 3 for the second) 
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned. 

(2 clocks each for first and second operations) 
21. Refer to interrupt clock counts table for value of INT 
22. Clock count includes one clock for using both displacement and immediate. 
23. Refer to assumption 6 in the case of a cache miss. 
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Table 10.2. Intel486TM Microprocessor I/O Instructions Clock Count Summary 

Roal 
Prolecled Protoctod 

Virtual 86 INSTRUCTION FORMAT Mode Modo Notos Moda (CPL"IOPL) (CPL>IOPL) Mode 

1/0 INSTRUCTIONS 

IN = Input from: 

Fixed Port 1",00, Ow I port number I 14 9 29 27 

Variable Port 1",0" Ow I 14 8 28 27 

OUT = Oulput 10: 

Fixed Port 1",00" w port number I 16 11 31 29 

Variable Port 1110111 w 16 10 30 29 

INS = Inpul BytelWord 0110110w 17 10 32 30 
from DX Port 

OUTS = Output BytelWord 0110111w 17 10 32 30 1 
to'DXPort 

REP INS = Inpul String 11110011 011011 Ow I 16+8e 10+8e 30+8e 29+8e 2 

REP OUTS = Oulpul String 11110011 0110111 wi 17+5e 11+5e 31+5e 30+5e 3 

NOTES: 
1. Two clock cache miss penalty in all cases. 
2. c = count in CX or ECX. 
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation. 
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Table 10.3 Intel486TM Microprocessor Floating Point Clock Count Summary 

CacheHl1 Concurrent 

Penally II Execution 
INSTRUCTION FORMAT Avg(Lower CacheMlaa Avg(Lower Notes 

Range ... Range ••• 
Uppe' Range} Uppe, Range} 

DATA TRANSFER 

FLO ~ Real Load 10 ST(O} 

32-bit memory 111011 oOllmod 000 '1m I s-i-b/disp. I 3 2 

54-bit memory 111011 1011 mod 000 ,1m I s-i-b/disp. I 3 3 

BO-bit memory 111011 0111 mod 101 ,1m I s-I-b/disp. I 6 4 

ST(i} 111011 001111000 ST(i} I 4 

FILD ~ Inlege, Load 10 ST(O} 

16-bit memory 111011 llllmod 000 ,1m I s-l-b/disp. I 14.5(13-16} 2 4 

32-bit memory 111011 0111 mod 000 ,1m I s-i-b/disp. I 11.5(9-12} 2 4(2-4) 

64-bit memory 111011 1111 mod 101 ,1m I s-i-b/disp. I 16.8(10-18) 3 7.8(2-8) 

FBLD ~ BCD Load 10 ST(O} 111011 1111 mod 100 rlml s-i-b/disp. I 75(70-103) 4 7.7(2-8) 

FST ~ Slo,e Reall,om ST(O} 

32-bit memory 111011 oo,jmod 010 r/ml s-i-b/disp. I 7 1 

64-bit memory 111011 1011 mod 010 'Iml s·i·b/disp. I 8 2 

ST(i) 111011 101111010 ST(i) I 3 

FSTP ~ Sto'e Reall,om ST(O} and Pop 

32-bit memory 111011 oOllmod 011 rim I s-I-b/disp. I 7 1 

54-bit memory 111011 1011 mod 011 rlml s-I-b/disp. I 8 2 

BO-bit memory 111011 0111 mod 111 rlml S-i-b/disp. I 6 

ST(i) 111011 101111001 ST(i) I 3 

FIST ~ Slo,e Inlege, I,om ST(O) 

16-bit memory 111011 1111 mod 010 '/ml s-I-b/disp. I 33.4(29-34) 

32-bit memory 111011 0111 mod 010 rim I s-i-b/disp. I 32.4(28-34) 

FISTP ~ Slo,olnlege, I,om ST(O) and Pop 

16-bit memory 11011 1111 mod 011 rim I s·l·b/disp. I 33.4(29-34) 

32-bit memory 11011 olllmodOll rim I s-i-b/disp. I . 33.4(29-34) 

54-bit memory 11011 1111 mod 111 rlml s-I-b/disp. I 33.4(29-34) 

FBSTP ~ Sto,e BCD I,om 11011 1111 mod 110 rlml s-l-b/d/sp. I 175(172-176) 
ST(O) and Pop 

FXCH ~ Exchange ST(O) and ST(I) 11011 001111001 ST(i) I 4 

COMPARISON INSTRUCTIONS 

FCOM ~ Compa,e ST(O) wllh Real 

32-bit memory 111011 0001 mod 010 rim I s-i-b/disp. I 4 2 1 

64-bit memory 111011 100lmod 010 '/ml s·i·b/disp. I 4 3 1 

ST(i) 111011 000111010 ST(i) I 4 1 

FCOMP ~ Compa,e ST(O) with Real and Pop 

32-bit memory 111011 oooimod 011 rlml s-i-b/disp. I 4 2 1 

64-bit memory 111011 100lmod 011 r/ml s-i-b/disp. I 4 3 1 

ST(i) 111011 000111011 ST(i) I 4 1 



intel® INSTRUCTION FORMAT AND TIMING 

Table 10.3. Intel486TM Microprocessor Floating Point Clock Count Summary (Continued) 

CacheHl1 
Concurrent 
Execution 

Penally If 
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 

Range. _. Range •.. 
Upp~r Range) Upper Range) 

COMPARISON INSTRUCTIONS (Continued) 

FCOMPP ~ Compare ST(O) wllh 1"0,, "01,, 0 1 1 00 11 5 1 

ST(l) and Pop Twice 

FICOM ~ Compare ST(O) wllh Inleger 

16-bit memory 1"0,, 1101 mod 010 rlml s-i-b/disp. I 18(16-20) 2 1 

32-bit memory 1"0,, ololmod 010 rlml s-i-bfdisp. I 16.5(15-17) 2 1 

FICOMP ~ Compare ST(O) wllh Inleger 

16-bit memory 11011 1101 mod 011 rlml s-i-bfdisp. I 18(16-20) 2 1 

32·bit memory 11011 010 mod all rlml s-j-b/disp. I 16.5(15-17) 2 1 

FTST ~ Compare ST(O) wllh 0.0 11011 001 1110 01001 4 1 

FUCOM = Unordered compare 11011 101 11100 ST(i) I 4 1 

ST(O) wllh STm 

FUCOMP ~ Unordered compare 11011 101 11101 ST(i>i 4 1 

ST(O) with ST(I) and Pop 

FUCOMPP =' Unordered compare 1" 011 0,01", a 1 00 11 5 1 

ST(O) wllh ST(I) and Pop Twice 

FXAM ~ Examine ST(O) 1,1011 00 ,1",0 a 1 all 8 

CONSTANTS 

FLDZ ~ Load + 0.0 Inlo ST(O) 1" a 11 001 1110 11101 4 

FL01 ~ Load + 1.0 Inlo ST(O) 11011 001 1110 10001 4 

FLDPI ~ Load" Inlo ST(O) 11011 001 1110 10111 8 2 

FLDL2T ~ Load 1092(10) Inlo ST(O) 11011 001 1110 10011 8 2 

FLDL2E ~ Load log:z{e) Inlo ST(O) 11011 001 1110 10101 8 2 

FLDLG2 ~ Load log,o(2) Inlo ST(O) 11 011 001 1110 11 001 8 2 

FLOLN2 ~ Load 109.(2) Inlo ST(O) 11011 001 1110 11 011 8 2 

ARITHMETIC 

FADD ~ Add Real wllh ST(O) 

ST(O) +- ST(O) + 32·bil memory 111011 0001 mod 000 rlml s-i-b/disp. I .10(8-20) 2 7(5-17) 

ST(O) +- ST(O) + 64·bit memory 111011 1001 mod 000 rlml s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) +- ST(O) + ST(i) 111 011 dool11000 ST(i>i 10(8-20) 7(5-17) 

FADDP ~ Add real wllh ST(O) and 111011 110111000 ST(i>i 10(8-20) 7(5-17) 

Pop (ST(I) +- ST(O) + ST(I» 

FSUB ~ Sublracl real from ST(O) 

ST(O) +- ST(O) - 32·bit memory 111011 oooimod 100 rim I s~i-b/disp. I 10(8-20) 2 7(5-17) 

ST(O) +- ST(O) - 64·bit memory 111011 1001 mod 100 rlml s-i-b/disp. I 10(8·20) 3 7(5-17) 

ST(d) +- ST(O) - ST(i) 111011 dool1110d ST(i>i 10(8-20) 7(5-17) 

FSUBP ~ Sublracl real from ST(O) 111011 11011110, ST(i) I 10(8-20) 7(5-17) 

and Pop (ST(I) +- ST(O) - ST(I» 
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Table 10.3.lnteI486TM Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit 
Concurrent 

Penally II 
Execution 

INSTRUCTION FORMAT Avg(Lower Cache Mis. Avg(Lower Notes 
Range ... Range •. . 

Upper Range) Upper Range) 

ARITHMETIC (Continued) 

FSUBR ~ Subtract real reveraed (Subtract ST(O) Irom real) 

sT(O) - 32-blt memory - sT(O) 111011 000 I mod 101 rIm I s-I-b/dlsp_ I 10(8-20) 2 7(5-17) 

sT(O) _ 64-blt memory - ST(O) It 1011 100lmod 101 rIm I s-i-b/disp. I 10(8-20) 3 7(5-17) 

sT(d) - ST(I) - sT(O) 111011 doolll10d sT(I) 1 10(8-20) 7(5-17) 

FSUBRP ~ Subtract real reveraed 111011 110111100 ST(I) 1 10(8-20) 7(5-17) 

and Pop (ST(I) - ST(ij - ST(O)) 

FMUL ~ Multiply real with ST(O) 

sT(O) _ sT(O) x 32-blt memory 111011 0001 mod 001 rlml s.i-b/disp. 1 11 2 8 

sT(O) - sT(O) x 64-blt memory 11 (011 100lmod 001 rIm I s-i-b/disp. 1 14 3 11 

ST(d) - sT(O) X sT(I) 111011 doolll001 ST(I) 1 16 13 

FMULP ~ Multiply ST(O) with ST(I) 111011 110111001 sT(I) 1 16 13 
and Pop (ST(I) _ ST(O) x ST(I)) 

FDIV ~ Divide ST(O) by Real 

sT(O) _ sT(0)/32-blt memory 111011 0001 mod 110 rIm I s-I-b/dlsp. 1 73 2 70 3 

sT(O) _ sT(O)/64-blt memory 111011 100lmod 110 rIm I s-I-b/dlsp. 1 73 3 70 3 

ST(d) _ ST(O)/ST(I) 111011 dooll111 d ST(I) 1 73 70 3 

FDIVP ~ Divide ST(O) by ST(I) and 111011 110111111 sT(I) 1 73 70 3 

Pop (ST(I) - ST(O)/ST(I)) 

FDIVR ~ Divide real revereed (ReaI/ST(O)) 

sT(O) _ 32-blt memoryIST(O) 111011 0001 mod 111 rlml s-i-b/diSp. 1 73 2 70 3 

ST(O) _ 64-blt memorylsT(O) 111011 100lmod 111 rIm I s-I-b/dlsp. 1 73 3 70 3 

ST(d) <- ST(I)/ST(O) 111011 dOO 11111 d ST(I) 1 73 70 3 

FDIVRP ~ Divide real reversed and 111011 110111110 sT(I) 1 73 70 3 

Pop (ST(I) - ST(I)/ST(O)) 

FIADD ~ Add Integer to ST(O) 

sT(O) _ ST(O) + 16'blt memory 111011 1101 mod 000 rIm I s-i-b/disp. 1 24(20-35) 2 7(5~17) 

sT(O) _ sT(O) + 32-blt memory 111011 ololmod 000 rlml s-I-b/dlsp. 1 22.5(19-32) 2 7(5-17) 

FISUB ~ Subtract Integer from ST(O) 

sT(O) - sT(O) - 16-blt memory 111011 1101 mod 100 r/ml s-i-b/dlsp. 1 24(20-35) 2 7(5-17) 

ST(O) - sT(O) - 32-blt memory 111011 010lmod 100 rlml s-i-b/dlsp. 1 22.5(19-32) 2 7(5-17) 

FISUBR ~ Integer Subtract Reveraed 

ST(O) -l6-blt memory - ST(O) 111011 1101 mod 101 rIm 1 s-I-b/dlsp. I 24(20-35) 2 7(5-17) 

sT(O) - 32-blt memory - ST(O) 111011 ololmod 101 rIm I s-i-b/disp. 1 22.5(19-32) 2 7(5-17) 

FIMUL ~ Multiply Integer with ST(O) 

ST(O) _ ST(O) X 16-blt memory 111011 1101 mod 001 rIm I s-i-b/disp, 1 25(23-27) 2 8 

ST(O) - ST(O) X 32-blt memory 111011 ololmod 001 rlml s-I-b/dlsp. 1 23.5(22-24) 2 8 

FIDIV ~ Integer Divide 

sT(O) _ ST(0)/16-blt memory 111011 1101 mod 110 rIm I s-i-b/disp, 1 87(85-89) 2 70 3 

ST(O) _ sT(0)/32-M memory 111011 ololmod 110 rIm I s-i-b/disp. 1 85.5(84-86) 2 70 3 
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Table 10.3.lnteI4BSTM Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Concurrent 

Penally II 
Execution 

INSTRUCTION FORMAT AvO (Lowor Cache Miss Avg(Lowor Notes 
Range ••• Rango ••• 

Upper Rnngo) Upper Rango} 

ARITHMETIC (Continued) 

FIDIVR ~ Inloger Dlvldo Rovoroed 

ST(O) .... l6-bit memoryIST(O) 111011 1101 mod 111 rim I s·i-b/disp. I 87(85-89) 2 70 3 

ST(O) .... 32-bil memoryIST(O) 111011 0101 mod 111 rlml s-i-b/disp. I 85.5(84-86) 2 70 3 

F5QRT ~ Square Rool 111011 00 111111 10101 85.5(83-87) 70 

F5CALE ~ SOnlo 5T(0) by 5T(1) 111011 00 111111 11011 31(30-32) 2 

FXTRACT = Extract componontn 111011 00 d 1111 010 a I 19(16-20) 4(2-4) 
oIST(O) 

FPREM ~ Partlnl Romlndor 111011 001 1111 10 a a I 84(70-138) 2(2-8) 

FPREMl ~ Partlnl Romlndor (IEEE) 111011 001 1111 01011 94.5(72-167) 5.5(2-18) 

FRNDINT ~ Round ST(O) 10 Inleger 111011 001 1111 1100 I 29.1 (21-30) 7.4(2-8) 

FAB5 ~ Absolulo valuo 01 5T(0) 111011 001 1110 000 1 I 3 

FCH5 ~ Chango olgn 01 5T(0) 111011 a 01111 10 000 a I 6 

TRANSCENDENTAL 

FC05 ~ Cooln. 01 5T(0) 111011 001 1111 11111 241 (193-279) 2 6,7 

FPT AN ~ Partlallnngenl 01 5T(0) 111011 001 1111 00101 244(200-273) 70 6,7 

FPATAN ~ Partlalarclangenl 111011 001 1111 0011 I 289(218-303) 5(2-17) 6 

F51N ~ Sino 01 5T(0) 111011 001 1111 11101 241(193-279) 2 6,7 

F51NC05 ~ Sino and coolno 01 5T(0) 111011 001 1111 10111 291 (243-329) 2 6,7 

F2XMl ~ 25T(0) - 1 111011 001 1111 00 00 I 242(140-279) 2 6 

FYL2X ~ 5T(1) x 1092(5T(0)) 111011 001 1111 000 11 311(196-329) 13 6 

FYL2XPl ~ ST(l) x log2(5T(0) + 1.0) I 1 1 a 1 1 001 1111 '1001 I 313(171 -326) 13 6 

PROCESSOR CONTROL 

FINIT ~ Inltlnllzo FPU 111011 0111111 0 0011 I 17 4 

FSTSW AX = Store nrotun word 111011 11 1111 10 00001 3 5 
InloAX 

FSTSW = Storo status word 111011 1011 mod 111 rlml s-i-b/disp. 1 3. 5 
Into memory 

FLDCW = Load control Yiord 111011 oOllmod i 01 r/ml s-j-b/diSp. I 4 2 

FSTCW = Store control word 111011 oOllmod tll r/ml s-i-b/disp. 1 3 5 

FCLEX = Cloar excoptlons 111011 01111110 00101 7 4 

FSTENV = Store envlronmont 111011 oOllmod 110 r/ml s-i-b/disp. 1 
Real and Vjrtual modes 16-bit Address 67 4 
Real and Virtual modes 32-bit Address 67 4 
Protected mode 16-bit Address 56 4 
Protected mode 32-bit Address 56 4 

FLDENV = Load environment 111011 o011mod 100 r/ml s-i-b/disp. I 
Real and Virtual modes 16-bit Address 44 2 
Real and Virtual modes 32-bit Address 44 2 
Protected mode 16-bit Address 34 2 
Protected mode 32-bit Address 34 2 
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Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit 
Concurrent 

Penalty If Execution 
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 

Range ... Range ... 
Upper Range) Upper Range) 

PROCESSOR CONTROL (Continued) 

FSAVE = Save olate 111011 1011 mod 110 rlml s-i-b/disp. I 
Real and Virtual modes 16-bit Address 154 4 
Real and Virtual modes 32-bit Address 154 4 
Protected modo 16-bit Addross 143 4 
Protected mode 32-bit Address 143 4 

FRSTOR = Rontorc olDte 111011 1011 mod 100 rlml s-i-bl I 
Real and Virtual modes 16-bit Address 131 23 
Real and Virtual modes 32·bit Address 131 27 
Protected mode 16-bit Address 120 23 
Protected mode 32·bit Address 120 27 

FINCSTP = Incremcnt Stock Pointer 111011 001 1111 01111 3 

FDECSTP = Decrement Stnck Pointer 11 1 0 1 1 001 1111 01101 3 

FFREE ~ Free ST(I) 111011 101 11000 ST(id 3 

FNOP = No opcrotlonn 111011 001 1101 00001 3 

WAtT ~ Walt unlll FPU raady I 10011011 
(Minimum/Maximum) 1/3 

NOTES: 
1. If operand is 0 clock counts = 27. 
2. If operand is 0 clock counts = 26. 
3. If CW.PC indicates 24 bit precision then subtract 36 clocks. 

If CW.PC indicates 53 bit precision then subtract 11 clocks. 
4. If there is a numeric error pending from a previous instruction add 17 clocks. 
5. If there is a numeric error pending from a previous instruction add 16 clocks. 
6. The INT pin is polled several times while this instruction is executing to assure short interrupt latency. 
7. If ABS(operand) is greater than rr/4 then add n clocks. Where n = (operand/(rr/4». 
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10.2 Instruction Encoding 

10.2.1 OVERVIEW 

All instruction encodings are subsets of the general 
instruction format shown in Figure 10.1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rIm" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rIm 
byte, specifies the address mode to be used. Certain 
encodings of the mod rIm byte indicate a second 

addressing byte, the scale-index-base byte, follows 
the mod rIm byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rIm byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 10.1 illustrates several of the fields that can 
appear in an instruction, such as the mod field arid 
the rIm field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 10.4 is a complete list of all fields ap­
pearing in the Intel486 Microprocessor instruction 
set. Further ahead, following Table 10.4, are de­
tailed tables for each field. 

ITTTTTTTT 1 TTTTTTTT 1 modTTT rIm 1 ss index base Id321161 8 I nonedata32 1 161 8 I none 

l'-____ o~7----~0) I..? 6 5 3 2 0 J\ 7 6 5 3 2 0 J\ ) I..'--__ ""'f"' __ ....;) 
- 'T '----v----~-

opcode "mod rIm" "s_i_blt 

(one or two bytes) 
(T represents an 

opcode bit.) 

, byte byte J 
~~.--------~--------~ 

address 
displacement 
(4, 2, 1 bytes 

or none) 

immediate 
data 

(4, 2, 1 bytes 
or none) 

Field Name 

w 
d 
s 
reg 
mod rIm 

ss 
index 
base 
sreg2 
sreg3 
ttln 

NOTE: 

register and address 
mode specifier 

Figure 10.1. General Instruction Format 

Table 10.4. Fields within Intel486TM Microprocessor Instructions 

Description 

Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
Specifies Direction of Data Operation 
Specifies if an Immediate Data Field Must be Sign-Extended 
General Register Specifier 
Address Mode Specifier (Effective Address 'can be a General Register) 

Scale Factor for Scaled Index Address Mode 
General Register to be used as Index Register 
General Register to be used as Base Register 
Segment Register Specifier for CS, SS, OS, ES 
Segment Register Specifier for CS, SS, OS, ES, FS, GS 
For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

Tables 10.1-10.3 show encoding of individual instructions. 
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Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rIm 

2 
3 
3 
2 
3 

4 
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10.2.2 32-BIT EXTENSIONS OF THE 
INSTRUCTION SET 

With the Intel486 Microprocessor, the 8086/801861 
80286 instruction set is extended in two orthogonal 
directions: 32-bit forms of all 16-bit instructions are 
added to support the 32-bit data types, and 32-bit 
addressing modes are made available for all instruc­
tions referencing memory. This orthogonal instruc­
tion set extension is accomplished having a Default 
(D) bit in the code segment descriptor, and by hav­
ing 2 prefixes .to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of 0 is assumed internally by the 
intel486 Microprocessor when operating in those 
modes (for 16-bit default sizes compatible with the 
8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in all Intel486 
Microprocessor modes, including the Real Address 
Mode or the Virtual 8086 Mode. In these modes the 
default is always 16 bits, so prefixes are needed to 
specify 32-bit operands or addresses. For instruc­
tions with more than one prefix, the order of prefixes 
is unimportant. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 
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10.2.3 ENCODING OF INTEGER 
INSTRUCTION FIELDS 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

10.2.3.1 Encoding of Operand Length (w) Field 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16-Bit During 32-Blt 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

10.2.3.2 Encoding of the General 
Register (reg) Field 

The .general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
is not Present In Instruction 

Register Selected Register Selected 
reg Field During 16-Blt During 32-Blt 

Data Operations Data Operations 

000 AX EAX 
001 CX ECX 
010 OX E'DX 
011 BX EBX 
100 SP ESP 
101 BP EBP 
110 SI ESI 
111 01 EDI 
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reg 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Encoding of reg Field When w Field 
Is Present In Instruction 

Register Specified by reg Field 
During 16-Blt Data Operations: 

Function of w Field 

(whenw = 0) (when w = 1) 

AL AX 
CL CX 
OL OX 
BL BX 
AH SP 
CH BP 
OH SI 
BH 01 

Register Specified by reg Field 
During 32-Blt Data Operations 

Function of w Field 

(whenw = 0) (when w = 1) 

AL EAX 
CL ECX 
OL EOX 
BL EBX 
AH ESP 
CH EBP 
OH ESI 
BH EOI 

10.2.3.3 Encoding of the Segment 
Register (sreg) Field 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3·bit field, allowing the Intel486 Microprocessor FS 
and GS segment registers to be specified. 

2-Blt sreg2 Field 

2-Blt 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 OS 
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3-Blt sreg3 Field 

3-Blt 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 OS 
100 FS 
101 GS 
110 do not use 
111 do not use 

10.2.3.4 . Encoding of Address Mode 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre·determined,' 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rIm" byte, and a second byte of addressing informa· 
tion, the "s-i·b" (scale-index-base) byte, can be 
specified. . 

The s-i-b byte (scale-index-base byte) is specified' 
when using 32-bit addressing mode and the "mod 
rIm" byte has rIm = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rIm" byte, 
also contains three bits (shown as TTT in Figure 
10.1) sometimes used as an extension of the pri­
mary opcode. The three bits, however, may also be 
used as a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu· 
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rIm" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rIm" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en· 
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 
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Encoding of 16-bit Address Mode with "mod rIm" Byte 

mod rIm Eff.ective Address mod rIm Effective Address 

00000 DS:[BX+SI] 10000 DS: [BX + SI + d16] 
00001 DS:[BX+DI] 10001 DS:[BX+DI+d16] 
00010 SS:[BP+SI] 10010 SS:[BP+SI+d16] 
00011 SS:[BP+DI] 10011 SS:[BP+DI+d16] 
00100 DS:[SI] 10100 DS: [SI + d16] 
00101 DS:[DI] 10101 DS:[DI+d16] 
00110 DS:d16 10110 SS:[BP+d16] 
00111 DS:[BX] 10 111 DS: [BX + d16] 

01000 DS: [BX + SI + dS] 11000 register-see below 
01001 DS:[BX + DI + dS] 11001 register-see below 
01010 SS: [BP + SI + dS] 11 010 register-see below 
01011 SS:[BP+ DI + dS] 11 011 register-see below 
01100 DS:[SI+dS] 11100 register-see below 
01 101 DS:[DI+dS] 11 101 register-see below 
01 110 SS:[BP+dS] 11 110 register-see below 
01 111 DS:[BX+dS] 11 111 register-see below 

Register Specified by rIm Register Specified by rIm 
During 16-Blt Data Operations During 32·Bit Data Operations 

mod rIm 
Function of w Field 

mod rIm 
Function of w Field 

(whenw=O) (when w = 1) (whenw=O) (when w = 1) 

11000 AL AX . 11 000 AL EAX 
11001 CL CX 11 001 CL ECX 
11 010 DL DX 11 010 DL EDX 
11 011 BL BX 11 011 BL EBX 
11 100 AH SP 11 100 AH ESP 
11 101 CH BP 11 101 CH EBP 
11 110 DH SI 11 110 DH ESI 
11 111 BH DI 11 111 BH EDI 
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Encoding of 32-blt Address Mode with "mod rIm" byte (no "s-I-b" byte present): 

mod rIm Effective Address mod rIm Effective Address 

00000 DS:[EAX] 10000 DS: [EAX + d32] 
00001 DS:[ECX] 10001 DS: [ECX + d32] 
00010 DS:[EDXl. 10010 DS: [EDX + d32] 
00011 DS:[EBX] 10011 DS: [EBX + d32] 
00100 s-i-b is present 10100 s-i-b is present 
00101 DS:d32 10101 SS: [EBP + d32] 
00110 DS:[ESi] 10110 DS: [ESI + d32] 
00111 DS:[EDI] 10 111 DS: [EDI + d32] 

01000 DS:[EAX+dB] 11000 register-see below 
01001 DS: [ECX + dB] 11 001 register-see below 
01010 DS:[EDX+dB] 11 010 register-see below 
01 011 DS:[EBX+dB] 11 011 register-see below 
01100 s-i-b is present 11 100 register-see below 
01 101 SS:[EBP+dB] 11 101 register-see below 
01 110 DS: [ESI + dB] 11 110 register-see below 
01 111 DS:[EDI+dB] 11 111 register-see below 

Register Specified by reg or rIm Register Specified by reg or rIm 
during 16-Bit Data Operations: during 32-Blt Data Operations: 

mod rIm Function of w field 
mod rIm Function of w field 

._--- _. -

(when w=O) (when w= 1) (when w=O) (when w 1 ) 
-----

11000 AL AX 11000 AL EAX 
11 001 CL CX 11 001 CL ECX 
11 010 DL DX 11 010 DL EDX 
11 011 BL BX 11 011 BL EBX 
11 100 AH SP 11100 AH ESP 
11 101 CH BP 11 101 CH EBP 
11 110 DH SI 11110 DH ESI 
11 111 BH DI 11 111 BH EDI 
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Encoding of 32-bit Address Mode ("mod rIm" byte and "s_l_b" byte present): 

mod base Effective Address 

00000 OS: [EAX + (sc;aled index)] 
00001 OS: [ECX + (scaled index)] 
00010 OS: [EOX + (scaled index)] 
00011 OS: [EBX + (scaled index)] 
00100 S8: [ESP + (scaled index)] 
00101 OS: [d32 + (scaled index)] 
00110 OS:[ESI + (scaled index)] 
00111 OS: [EDI + (scaled index)] 

01000 OS: [EAX + (scaled index) + d8] 
01001 DS: [ECX + (scaled index) + d8] 
01010 OS: [EOX + (scaled index) + d8] 
01011 OS:[EBX+(scaled index)+d8] 
01100 SS: [ESP + (scaled index) + d8] 
01101 SS: [EBP + (scaled index) + d8] 
01110 OS: [ESI + (scaled index) + d8] 
01 111 DS: [EOI + (scaled index) + d8] 

10000 OS: [EAX + (scaled index) + d32] 
10001 OS: [ECX + (scaled index) + d32] 
10010 OS: [EOX + (scaled index) + d32] 
10011 OS: I!:BX + (sca!ed ind(3x) + d32] 
10100 SS: [ESP + (scaled index) + d32] 
10101 SS: [EBP + (scaled index) + d32] 
10110 OS: [ESI + (scaled index) + d32] 
10111 OS: [EOI + (scaled index) + d32] 

NOTE: . 
Mod field in "mod rIm" byte; ss, index, base··fields in . 
"s-i-b" byte. 
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·ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 x8 

Index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 EBX 
100 

. rio index reg 0 0 

101 EBP 
110 ESI 
111 EOI 

""IMPORTANT NOTE: 
Whim index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal ~O, the effective address is undefined. 



intel® INSTRUCTION FORMAT AND TIMING 

10.2.3.5 Encoding of Operation 
Direction (d) Field 

In many two-operand instructions the d field is pres­
ent to indicate which operand is. considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

10.2.3.6 Encoding of Sign-Extend (s) Field 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is B bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on • 
s Immediate Immediate 

DataS Data 16132 

0 None None 

1 Sign-Extend DataB to Fill None 
16-8it or 32-8it Destination 

10.2.3.7 Encoding of Conditional 
Test (tttn) Field 

For the conditional instructions (conditional jumps 
and set on condition), tltn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1), 
and tit giving the condition to test. 
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Mnemonic Condition 

0 Overflow 
NO No Overflow 
B/NAE Below/Not Above or Equal 
NB/AE Not Below/Above or Equal 
E/Z Equal/Zero· 
NEINZ Not Equal/Not Zero 
BE/NA Below or EquallNot Above 
NBE/A Not Below or Equal/Above 
S Sign 
NS Not Sign 
PIPE Parity/Parity Even 
NP/PO Not Parity/Parity Odd 
LlNGE Less ThanlNot Greater or Equal 
NL/GE Not Less Than/Greater or Equal 
LE/NG Less Than or Equal/Greater Than 
NLE/G Not Less or Equal/Greater Than 

10.2.3.S Encoding of Control or Debug 
or Test Register.(eee) Field 

tttn 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 ORO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

011 TR3 
100 TR4 
101 TR5 
110 TR6 
111 TR7 

Do not use any other encoding 
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Instruction 

First Byte Second Byte 

OPA ~ mod 1 lOps. rim 
MF OPA mod OPS 

, 
, rIm 

d P OPA 1 1 OPS 'ST(i) 

0 0 
. 

, 1 1 1 1 I OP 

0 1 1 1 1 1 I .' 
OP 

15-11 10 9 8 7 6 . '5 43210 

10.2.4 ENCODING OF FLOATING POINT 
INSTRUCTION FIELDS 

Instructions for the FPU assume one of the five 
forms shown in the following table. In. all cases, in, 
structions are at least two bytes long and begin w,ith 
the bit pattern 11011 S. ' 

OP = Instruction opcode, possible split into two 
fields OPA and OPS 

MF = Memory Format 
00-32-bit real 
01-32-bit integer 
10-64-bitreal 
11-16-bit inte'ger 

P = Pop 
O-Do not pop stack 
1-Pop stack after operation 

d = Destination 
O-Destination is ST(O) 
1-Destinationis ST(i) 

R XOR d = O-Destination (op) Source 
R XOR d = 1""'-source (op) Destination 

ST(i) = Register stack element i 
000 = Stack top 
001 = Second stack element 

• 
• 
• 

1.11 =, Eighth stack element 

mod (Mode field) and rIm (Register/Memory specifi­
er) have the same interpretation as the correspond­
ing fields of the integer instructions. 

s-i-b (Scale Index Sase) byte and disp (displace­
ment) are optionally present in instructions that have 
mod and rIm fields. Their presence depends on the 
values of mod and rIm, as for integer instructions. 
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Optional 
Fields 

s-i-b I disp 

s-i-b I disp' 

, 



Numeric Exception Summary F 





APPENDIX F 
NUMERIC EXCEPTION SUMMARY 

The following table lists the instruction mnemonics in alphabetical order. For each mne­
monic, it summarizes the exceptions that the instruction may cause. When writing 
numeric programs that may be used in an environment that employs numerics exception 
handlers, assembly-language programmers should be aware of the possible exceptions 
for each instruction in order to determine the need for exception synchronization. 
Chapter 18 explains the need for exception synchronization. 

Mnemonic Instruction IS I D Z 0 U P 

F2XM1 2X-1 Y Y Y Y Y 
FABS Absolute value Y 
FADD(P) Add real Y Y Y Y Y Y 
FBLD BCD load Y 
FBSTP BCD store and pop Y Y Y 
FCHS Change sign Y 
FCLEX Clear exceptions 
FCOM(P)(P) Compare real Y Y Y 
FCOS Cosine Y Y Y Y Y 
FDECSTP Decrement stack pointer 
FDIV(R)(P) Divide real Y Y Y Y Y Y Y 
FFREE Free register 
FIADD Integer add Y Y Y Y Y Y 
FICOM(P) Integer compare Y Y Y 
FIDIV Integer divide Y Y Y Y Y Y 
FIDIVR Integer divide reversed Y Y Y Y Y Y Y 
FILD Integer load Y 
FIMUL Integer multiply Y Y Y Y Y Y 
FINCSTP Increment stack pointer 
FINIT Initialize processor 
FIST(P) Integer store Y Y Y 
FISUB(R) Integer subtract Y Y Y Y Y Y 
FLO extended or stack Load real Y 
FLO single or double Load real Y Y Y 
FLD1 Load + 1.0 Y 
FLDCW Load Control word Y Y Y Y Y Y Y 
FLDENV Load environment Y Y Y Y Y Y Y 
FLDL2E Load log2e Y 
FLDL2T . Load log21 0 Y 
FLDLG2 Load log102 Y 
FLDLN2 Load 10g.,2 Y 
FLDPI Load 'IT Y 
FLDZ Load + 0.0 y 
FMUL(P) Multiply real Y Y Y Y Y Y 
FNOP No operation 
FPATAN Partial arctangent Y Y Y Y Y 
FPREM Partial remainder y Y Y Y 
FPREM1 IEEE partial (emainder Y Y Y Y 
FPTAN Partial tangent Y Y Y Y Y 
FRNDINT Round to integer Y Y Y Y 
FRSTOR Restore state Y Y Y Y Y y Y 
FSAVE Save state 
FSCALE Scale y Y y Y Y Y 
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Mnemonic Instruction IS I D Z 0 U P 

FSIN Sine Y Y Y Y Y 
FSINCOS Sine and cosine Y Y Y Y Y 
FSQRT Square root Y Y Y Y 
FST(P) stack or Store real Y 
extended 
FST(P) single or double Store real Y Y Y Y Y Y 
FSTCW Store control word 
FSTENV Store environment 
FSTSW (AX) Store status word 
FSU8(R)(P) Subtract real Y Y Y Y Y Y 
FTST Test Y Y Y 
FUCOM(P)(P) Unordered compare real Y Y Y 
FWAIT CPU Wait 
FXAM Examine 
FXCH Exchange registers Y 
FXTRACT Extract Y Y Y Y 
FYL2X Y·log2X Y Y Y Y Y Y Y 
FYL2XP1 y. log2(X + 1) Y Y Y Y Y 

IS - Invalid operand due to stack overflow/underflow 
I - Invalid operand due to other cause 
o - Denormal operand 
Z - Zero-divide 
o - Overflow 
U - Underflow 
P - Inexact result (precision) 
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APPENDIX G 
CODE OPTIMIZATION 

The Intel486 processor is binary-compatible with the Intel386 DX and SX processors. 
Only three new application-level instructions have been added, which are useful in spe­
cial situations. Any existing 8086/8088, 80286 and Intel386 processor applications will be 
able to execute on the Intel486 processor immediately without any modification or 
recompilation. Any compiler that currently generates code for the Intel386 processor 
family will also generate code that will run on the Intel486 processor without any modi­
fications. 

However, there are certain code-optimization techniques which will make applications 
execute faster on the Intel486 processor with only minor or no change to their perfor­
mance on the Intel386 DX or SX processor, except possibly for code size differences. 
These techniques have to do with instruction sequence selection and instruction sched­
uling to take advantage of the internal pipelined execution units of the Intel486 proces­
sor and the large on-chip cache. 

G.1 ADDRESSING MODES 

Like the Intel386 processors, the Intel486 processor needs an additional clock cycle to 
generate an effective address when an index register is used. Therefore, if only one 
indexing component is used (i.e., not both a base register and an index register), and 
scaling is not necessary, then it is faster to use the register as a base rather than an index. 
For example: 

mov eax, [esil 
mov eax, [esi*l 

use esi as base 
use esi as index, 1 clock penalty 

If both base and index are used, or if scale indexing is necessary, then it is faster to use 
the combined addressing mode, even though it will take an additional clock cycle to 
execute. 

When a register is used as the base component, an additional clock cycle is used if that 
register is the destination of the immediately preceding instruction (assuming all instruc­
tions are already in the prefetch queue). So to get the best performance, the two instruc­
tions should be separated by at least one other instruction. For example: 

add esi, eax 
mov eax, [esil 

esi is destination register 
esi is base, 1 clock penalty 

There are other hidden or implicit usages of destination and base registers, primarily the 
stack pointer register ESP. The ESP register is the implicit base of all PUSH/POP/RET 
instructions and it is the implicit destination for the CALL/ENTER/LEA VE/RET/ 
PUSH/POP instruction. Therefore a LEAVE instruction followed immediately by a 
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RET instruction will use one additional clock. But if the LEAVE and RET are rear­
ranged so that they are separated by another instruction, then no such penalty is 
entailed. (See other recommendations regarding the LEAVE instruction.) 

It is not necessary to separate back-to-back PUSH/POP instructions .. The Intel486 pro­
cessor will allow this sequence without incurring an additional clock. 

All such instruction rearrangements of the instructions will not affect the performance of 
Intel386 processors. 

The Intel486 processor will also take an additional clock to execute an instruction that 
has both an immediate data field and a memory offset field. For example: 

mov dword ptr foo, 1234h ; both immediate and memory offset 
mov dword ptr baz, 1234h 
mov [ebp-21ilIill, 1234h 

When it is necessary to use constants, it would still be more efficient to use immediate 
data instead of loading the constant into a register first. But if the same immediate data 
is used more than once, then it would be faster to load the constant in a register and 
then use the register multiple times. This optimization will not affect the performance of 
Intel386 processors. The following sequence is faster than the one above, if all instruc­
tions are in the prefetch queue, and because the instructions are shorter, it will actually 
make it easier to prefetch: 

mov eax, 1234h 
mov dword ptr foo, eax 
mov dword ptr baz, eax 
mov [ebp-21ilIill, eax 

G.2 PREFETCH UNIT 

The Intel486 processor prefetch unit will access the on-chip cache to fill the prefetch 
queue whenever the cache is idle, and there is enough room in the queue for another 
cache line (16 bytes). If the prefetch queue becomes empty, it can take up to three 
additional clocks to start the next instrJlction. The pre fetch queue is 32 bytes in size (2 
cache lines). 

Because data accesses always have priority over prefetch requests, keeping the cache 
busy with data access can lock out the prefetch unit. 

Therefore it is important to arrange the instructions so that the memory bus is not used 
continuously by a series of memory reference instructions. The instructions should be 
rearranged so that there is a non-memory referencing instruction (such as a register/ 

G-2 



intel® CODE OPTIMIZATION 

register instruction) at least two clocks before the prefetch queue becomes exhausted. 
This will allow the prefetch unit to transfer a cache line into the queue. For example: 

Instruction Length 

mov mem, 1234567h 10 bytes 

mov mem, 1234567h 10 bytes 

mov mem, 1234567h 10 bytes 

mov mem, 1234567h 10 bytes 

mov mem, 1234567h 10 bytes 

add reg, reg 2 bytes 

If the prefetch queue started out full, then by the third MOY instruction, there is 
enough room for another cache line in the queue, but because the memory bus is con­
tinuously being used, there is no time for the transfer from the cache to the prefetch 
queue. If a non-memory instruction is not inserted before or after the third MOY 
instruction, the queue will be exhausted by the fourth MOY instruction. In this case, the 
instructions should be rearranged so the ADD instruction is before or after the third 
MOY instruction, to allow the cache to transfer another instruction line to the prefetch 
unit. 

No such rearrangements of the instructions will affect the performance of the Intel386 
DX processor. 

G.3 CACHE AND CODE ALIGNMENT 

On the Intel386 DX processor, the destination of any JUMP/CALL/RET instructions 
should be aligned on a O-mod-4 address, this helps the instruction prefetch unit in filling 
the prefetch queue as quickly as possible, since fetches are done 4-bytesat a time on 
aligned boundaries. On the InteI486 processor, because of the on-chip cache, any 
instruction fetch will fetch 16 bytes to fill a cache line. Therefore better performance can 
be obtained by aligning JUMP/CALL/RET destinations at O-mod-16 addresses. 

However, aligning at O-mod-16 will cause the code to grow bigger, and the tradeoff 
between execution speed and code size is important. 

Therefore, it is recommended that only the function entry address (i.e., destination of 
CALL instructions) be aligned on a O-mod-16 address; while all labels (i.e., destination 
of JUMP instructions) will continue to be aligned on O-mod-4 addresses. 

On the Intel486 processor, it takes up to five additional clocks to start execution of an 
instruction if it is split across two 16-byte cache lines. For example, if a CALL instruction 
ends at address OxOOOOOOOE and the next instruction is a multiple-byte instruction, then 
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upon return from the CALL, the processor must take five additional clocks to fill the 
pre fetch queue if the target instruction is not already in the cache. Even if the target 
instruction is already in the cache, it will take an additional 2 clocks to transfer it into 
the prefetch unit. 

So if the compiler knows the alignment of the destination, then it will be faster to insert 
a filler instruction so that the multiple-byte instruction starts on an aligned address. This 
can be done either by rearranging the instructions or actually inserting a Nap 
instruction. 

Such instruction· alignments will also improve the performance on the Intel386 
processors. 

G.4 NOP INSTRUCTIONS 

Sometimes programs need filler between instructions to align them. On the Intel386 and 
Intel486 processors, there is a one-byte Nap instruction which is really an exchange 
EAX with EAX. 

Other lengths can be executed in a single clock. The table below lists some. 

i-byte inc reg will modify register ~nd flags 
2-bytes mov reg, reg true NOP 
3-bytes lea reg, 0[regl true NOP, use 8-bit displacement 
5-bytes mov eax, 0 will modify eax register 
5-bytes add eax, 0 will modify flags 
b-bytes lea reg, 0[eaxl true NOP, use 32-bit displacement 

Additionally, many of the Inte1386/InteI486 processor instructions have several forms 
and lengths, using different-sized immediate data or different-sized memory offsets. Also 
some instructions have shorter forms if the destination register is EAX/AX/AL. 

Not all instructions with different forms will execute in the same clocks. An example 
where different forms will execute in. different clocks is the PUSH/POP REG. instruc­
tions, if they are coded in theone-byte form, they will execute in one clock, but if coded 
in the 2-byte form, they will execute in 4 clocks. 

The Nap replacement instructions will also execute faster than the XCHG instruction 
on Intel386 processors. Using different forms of the same instruction will not affect 
performance on the Intel386 processor. 
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G.5 INTEGER INSTRUCTIONS 

The Intel486 processor can execute most of the frequently-used instructions (such as 
register load/store, register ALU operations, etc.) in one clock. However, unlike the 
Intel386 processor, some of the memory operations now take more clocks than the cor­
responding register instructions. For example, the PUSH MEM instruction: 

Instruction InteI386'" ox CPU Clocks Inte1486" CPU Clocks 

mav reg, mem 4 1 

push reg 2 . 1 

push mem 5 4 

So for the Intel486 processor, loading a value from memory into a register first and then 
pushing that register will result in a net saving of 2 clocks; but for the Intel386 DX 
processor, the same instruction sequence will result in a net loss of one clock. However, 
in order to load the value into a register on the Intel486 processor, an empty register 
must be found; if the action of loading the value will destroy a value in a register that 
may be re-used later, then the saving may be negated by the loss of the re-usable value. 

Another example is the LEAVE instruction: 

Instruction Inte1386" OX CPU Clocks InteI486'" CPU Clocks 

mav esp, ebp 2 1 

papebp 4 1 + 1 (esp. penalty) 

leave 4 5 

Again, for the Intel486 processor, doing the MOV/POP sequence will result in a net 
saving of 2 clocks over the LEAVE instruction; while on the Intel386 DX processor, the 
LEAVE instruction is both faster and shorter. However, because the first MOV instruc­
tion uses ESP as the destination register, and the POP instruction also implicitly uses the 
ESP register as a base (as mentioned above), this sequence will result in a one clock 
penalty unless the two instructions are separated by another instruction. If it is possible 
to rearrange the instructions so the MOV/POP instructions are separated by a useful 
instruction, then the net savings over a LEAVE instruction is 3 clocks on the Intel486 
processor. 

Because the Intel486 processor can operate with operands in registers faster than out of 
memory Gust like most other architectures), it is important to have good register alloca­
tion and value tracking optimizations in any compiler. On the other harid, there is no 
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savings in loading up every value before using it, as in a RISe architecture. The Intel486 
processor can perform reg, mem type ALU operations as fast as load/op/store sequences. 
For example, for the assignment 

meml = meml + mem2 

the following instruction sequences could be used, with varying total clock counts on the 
Intel386 DX and SX processor, but identical clock counts on the Intel486 processor: 

Instruction InteI386'" OX CPU Clocks InteI486'" CPU Clocks 

maveax, mem1 4 1 

mav ebx, mem2 4 1 

add eax, ebx 2 1 

mav mem1, eax 2 1 

maveax, mem1 4 1 

add eax, mem2 6 2 

mav mem1, .eax 2 1 

mav eax, mem1 4 1 

add mem2, eax 7 3 

The MOVZX is another example where the Intel486 processor can execute faster using 
simple instructions, if the destination is a register that is also byte addressable. For 
example, loading a -byte value: 

Instruction InteI386'" OX CPU Clocks InteI486'" CPU Clocks 

mavzx eax, mem1 6 3 + 1 (OFh prefix) 

xar eax, eax 2 1 

mavb ai, mem1 4 1 

So for the Intel486 processor, clearing the register first and then loading the byte value 
may result in a net saving of two clocks (depending on whether the prefixdecode clock 
can be overlapped with the previous instruction, see Section G.8 on Prefix opcodes), 
while there is no difference in performance on the Inte1386 DX processor. 

G.6 CONDITION COD.ES 

In some high level languages, it is sometimes necessary to convert the result of a boolean 
condition (e.g., equality, greater-than or less-than, etc.) into a true or false (i.e., 0/1) 
value. The Intel386 and Intel486 pro~essors normally maintain the results of. compari­
sons in the flags register, so in order to convert the result of a comparison .into a true! 
false value, it is necessary to convert the flags settings into an integer value. 
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The Intel386 and Intel486 processors have a set of SETcc instructions which will do such 
conversions, however, the SETcc instructions take 3 or 4 clocks to execute on the 
Intel486 processor depending on whether the condition being tested for is true or false. 
Specifically while comparing unsigned values for greater-than or less-than, there is an 
optional sequence to use. For example, if "x" and "y" are both unsigned values, and "x" 
is loaded into register eax and "y" is loaded in register ecx, then the code for "(x < y)" 
could be generated in several ways: 

Instruction InteI386'" OX CPU Clocks InteI486'" CPU Clocks 

cmp eax, ecx 2 1 
mov eax, 0 2 1 
jnb L 1 ?+m/3 3/1 
mov eax,1 2 1 
L1: 
cmp eax, ecx 2 1 
setb al 4/5 4/3 
movsx eax, al 3 3 
cmp eax, ecx 2 1 
sbb eax, eax 2 1 
neg eax 2 1 

So using the SEE instruction to capture the flags setting of an unsigned compare gives 
the fastest performance, without breaking the prefetch pipeline because there are no 
jumps involved. Note that although this is specific for the "(x < y)" condition, it is 
possible to transform other tests to this form by either negating the condition or by 
exchanging the operands. 

Such condition code instruction replacements will also improve the performance on the 
Intel386 CPUs. 

G.7 STRING INSTRUCTIONS 

Like the Intel386 DX processor, the Intel486 processor executes string instructions 
slower than the load/store instructions. For example, the LaDS instruction: 

Instruction InteI386'" OX CPU Clocks Inte1486'" CPU Clocks 

mov eax, [esi] 4 1 

add esi, 4 2 1 

lods 5 4 

The LaDS instruction does more than the individual May instruction, it also updates 
the ESI register. However, if it is not necessary to have the register updated, then the 
May instruction will result in a net saving of 3 clocks on both the Intel386 DX and the 
Intel486 processors. The minor tradeoff is that the LaDS instruction is shorter than the 
May instruction. 
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Also in a non-REPeated usage, individual MOY instructions will always be faster than 
the string MOYS instruction. And even in a REPeated loop, if the loop is small enough, 
it will be faster to use individual load/store instructions than to set up for a REPeated 
MOYS. The tradeoff again is speed vs. code space, with the REP MOYS loop being 
shorter but slower. However, as discussed above, a long sequence of load/store instruc­
tions will prevent the prefetch unit from filling the prefetch queue and slow the· proces­
sor, so the recommendation is not to move more than 16 bytes with load/store 
instructions before a non-memory instruction to allow the prefetch unit to access the 
cache. 

Similar optimizations can also be made for the STOS and other string instructions. Such 
string instruction replacements will also improve the performance on the Intel386 
processor. 

G.B FLOATING-POINT INSTRUCTIONS 

As with the Intel386 processor!Intel387 math coprocessor combination, the floating 
point unit of the processor is a separate execution unit and it operates in parallel with 
the integer unit, even though they are physically, on the same chip. Therefore any 
instruction sequence that allows the two independent units to execute in parallel will be 
faster. 

Floating point instructions should not be placed one immediately after another. The 
instructions should be rearranged so that two floating point instructions are separated by 
other non-floating point instructions so the two units can execute in parallel. Pay partic­
ular attention to the clock counts of the floating point instruction, so sufficient number 
of integer instructions could be executed without causing the floating point unit to wait 
before the next floating point instruction is issued. Such rearrangements of the instruc­
tions will also improve the performance on the Intel386 processor/lntel387 math copro­
cessor, however, the clock counts used by the processor is much lower than the clock 
counts used by the Intel387 math coprocessor for the same floating point instructions. 

As a reminder, any simple arrangements or movement of floating point values should not 
be done via the floating point unit, but rather through the integer unit with integer 
instructions. Also FW AlT's are never required around simple floating point instructions. 

G.g PREFIX OPCODES 

On either processor, all prefix opcodes, including OFh, segment override, operand size! 
addressing, bus-lock, repeat, etc. require an additional clock to decode. This clock can be 
overlapped with the execution of the previous instruction if it takes more than one clock 
to execute. 

Therefore it will be faster to expand 16-bit operands to a full 32-bits and then operate on 
the 32-bit value instead of using the 66h prefix to operate on 16-bit operands. 

If prefix opcodes must be used, try to rearrange the instructions so that the instruction 
with the prefix is after an instruction that takes multiple clocks to execute. 
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An additional reason for not using 16-bit operands is that if the destination of one 
instruction is a 16-bit register, and the immediately following instruction uses that regis­
ter as a 32-bit operand, then there is a one clock penalty. Again, the two instructions 
should be separated by another instruction to avoid the penalty. 

G.10 OVERLAPPED CLOCKS 

As mentioned above, there are several situations where an instruction will take an extra 
clock to execute, but some of these extra clock penalties can overlap with one another. 
So an instruction that uses multiple features mentioned above will not necessarily have a 
total penalty that is the sum of the individual penalties. 

In particular, the following combinations will overlap: 

• Having an index register and an immediate field with a memory offset field will only 
cost a one clock penalty. 

• Having a prefix opcode and using the result register of the previous instruction as a 
base will only cost a one clock penalty. 

• Having a prefix opcode after a multicclock instruction will not cost any additional 
clock penalty. 

G.11 MISCELLANEOUS USAGE GUIDELINES 

The instruction set of the Intel386 processors was designed with certain programming 
practices in mind. Many of these practices remain relevant in assembly-language pro­
gramming for the Intel486 processor, and may be of interest in compiler design as well. 

• Use the EAX register when possible. Many instructions are one byte shorter when 
the EAX register is used, such as loads and stores to memory when absolute 
addresses are used, transfers to other registers using the XCHG instruction, and 
operations using immediate operands. 

• Use the D-data segment when possible. Instructions which deal with the D-space are 
one byte shorter than instructions which use the other data segments, because of the . 
lack of a segment-override prefix. 

• Emphasize short one-, two-, and three-byte instructions. Because instructions for the 
Intel486 processor begin and end on byte boundaries, it has been possible to provide 
many instruction encodings which are more compact than those for processors with 
word-aligned instruction sets. An instruction in a word-aligned instruction set must be 
either two or four bytes long (or longer). Byte alignment reduces code size and 
increases execution speed. 

• Access 16-bit data with the MOVSX and MOVZX instructions. These instructions 
sign-extend and zero-extend word operands to doubleword length. This eliminates the 
need for an extra instruction to initialize the high word. 

• For faster interrupt response, use the NMI interrupt when possible. 
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• In,place of using an ENTER instruction at lexical level 0, use a code sequence like: 

PUSH EBP 
MOV EBP, ESP 
SUB ESP, BYTE_COUNT 

This executes in seven clock cycles, rather than ten. 

The following techniques may be applied as optimizations to enhance the speed of a 
system after its basic functions have been implemented: 

• The'jump instnictibl1S cdme ill two fcirms:on.e' form has an eight-bit immediate for 
relative jumps in the range from 128 bytes back to 127 bytes forward, the other forIIJ. 
has a full 32-bit displacement. Many assemblers use the lorig form in situations where 
the short form can be used. When it is clear that the short form may be used, explic­
itly specify the destination operand as being byte length. This tells the asseinbler to 
use the. short, form. If ,~heassembler does not support this function, it will generate an 
error. Note that some assemblers perform this optimization automatically. 

• Use: the ESP register ;to reference the stack in the deepest level of subroutines. Don't 
bother setting up the EBP register and stack frame .. 

• For fastest task switching, perform task switching in softw~re. This allows a smaller 
processor state to be saved and restored. See Chapter 7 for a' discussion of 
multitasking. 

• Use the LEA instruction for adding registers together. When a base register and 
index register are used with the 'LEA instruction, the destination 'is loaded with their 

" SUIp. The contents of the index register may be scaledby 2, 4,or 8. 

e Use the LEA: instruction for adding a constant t<fa: register. Whena base registerand 
a displacerrient are used with the LEA instruction, the destination is loaded with their 
sum~ The LEA instruction can be used with ,a base, register, ingex register, scale 
factor,at;lQ ,displacem,.ent. ' ..' , " . 

• Use integer move instructkins'to tr'ansfer floating~poirit data. 

• Use the form ot ~he RET iJ;lstruction which takes an immediate value for byte-cpunt, 
rath'er than 'an AI)D ESP Instruction. It ,saves one Clock cycle an<i three bytes on 
every subroutine calL '., . " .' . . 

•. ,Whe.nseveral,references are made to. a variable addressed with a displacement, load 
the displacement, into a register. 

• The PUSH arid POP instructions, when u~ed~ith an operand in'memoiy,take two 
,,more Clock cyc~es. to execute than' an equivalent. two-instruction sequence which 
moves the operand through a general register before pushirig it on the stack. '.' 

\ ., 

• Tpe L.OOP instruction takes two more clocj{ cyc,;les to exe~ute than the equivalent 
decrement. and conditional jump. instructions., , ' , 

• The JECXZ instruction takes one more' clock cycle to execute than the equivalent 
compare and conditional jump. instructions. 
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Use ADD reg, reg instead of SHL reg, 1. The opcode length is the same, but the add will 
execute in one clock instead of three for the shift instruction. The flags are affected in 
the same way by both instructions, except that the add instruction sets the auxilliary 
carry flag (AF), while the shift instruction leaves it undefined. 

Also, use ADC reg, reg instead of RCL reg, 1. As with in the previous case, the opcodes 
have identical lengths, but the add executes in the one clock versus three clocks for the 
rotate. However, note that RCL reg, 1 only affects OF and CF, while the add will 
additionally change SF, ZF, AF, and P. 

The above also applies to the Intel386 CPU. Due to the different clock counts on the 
Intel386 CPU, the achievable speed improvement will be much less. Note that the sub­
stitutions given above do not negatively affect performance on the 286, since clock 
counts for replaced and replacing instruction is identical on that CPU. 
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APPENDIX H 
REVISION HISTORY 

Revision of the InteI486T" Microprocessor Family Programmer's Reference Manual contains 
many updates and improvements to the original version. A revision summary of major 
changes is listed below. 

The sections significantly revised since version -001 are: 

Section 3.11 

Section 4.1.1 

Section 5.3.4 

Section 6.2.2 

Section 6.5 

Figure 6-9 

Table 6-4 

Table 7-1 

Table 7-2 

Table 9-2 

Section 9.9.14 

Table 9-7 

Figure 10-2 

Section 10.2 

Figure 11-1 

The instructions INVD and WBINVD were included for clarification 
and the CPU detection code was updated in Figure 3-23. 

Clarified that the POPF and POPFD instructions have no affect on 
the RF and VM flags. 

Stated the absenc.e of the Dirty bit in the· page directory. 

Included B-bit clarification in the description of expand-down data 
segment ranges. 

Clarified that only a CALL instruction can use' gates to transfer to 
more privileged levels. 

Corrected by adding EFLAGS as part of the new stack. 

Corrected Combined Effect columns for page directory 'and page 
table protection. 

Corrected Exceptions and Error Code' References made during a 
Task Switch. 

Clarified the NT flag as not changed due to JUMP. 

Changed description to show Faults from prefetching have a higher 
priority than NMI's. 

Clarified the state of the page table and page directory access bits 
following a page level fault. 

Corrected note 2 by stating the restartibility of an invalid-TSS excep­
tion is conditional. 

Clarified that the most significant bits are used to disable modes. 

Added Inte1486' SX microprocessor initialization. 

. Added GD bit, changed breakpoint addresses to linear and Glarified 
hardwired bits must remain undefined. 
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Section 11.2.2 Description of the GD bit has been added. 

Section 11.3.1.2 Clarified explimation that breakpoint reporting is independent of the 
GE/LE bit settings. 

Section 12.3;1 Specification change for PCD and PWT bits. 

Section 15.1.2 Corrected the Top of STack bits of the Status word. 

Section 15.1.3 Described the rounding-control bits of the FPU Control Word as 
also affecting non-arithmetic instructions .. ' 

Figure 15-5 Clarified the presence of an Opcode for the CS selector. 

Added Figure 15-5 describing opcode field;' 

Table 16-9 Added pseudodenormals to table.· 

Table 16-10 Deleted pseudodenormals as being part of the unsupported formats. 

Table 16-11 Corrected final state of C2 for Remainder instructions and Trigono-
metric instructions.' . . 

Section 16.2.3 Added description of the masked response returned by an FYL2X 
instruction as a result of division by zero. 

Section 19~2.3.2 Added Intel486 SX CPU software emulation. 

Table 22·1 Defined more completely the description of Exceptions and 
Interrupts. 

Table 22·2 Corrected vector 6 description. 

Section 24.1 Clarified the B-bit as also controlling the upper ADD range for 
expanded down. 

Section 24.4.2 Described the ESP register to be unreliable when switching from 
32-bit to 16-bitcode then back to 32 bit. 

Section 25.1 Clarified the ET-bit as being hardwired to 1 upon reset. 

Section 26.1.3 Replaced B bit with D bit. 

Table 26·2 . CorreCted effective address column. 

Tl;lble 26·3 Corrected effective address column~ 

Section 26.2.2.2 Clarified m as a memory operand, and clarified the use of extended 
registers for m8 and m16. 
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Instruction Set 

REVISION HISTORY 

Clarified the AF flag as undefined for the AND instruction. 

Flags clarified for BSF and BSR instructions. 

For BT, BTC, BTR and BTS instructions the affect of the high-order 
bits in the immediate bit offset are clarified. 

Added explanation for a CALL indirect-thru-memory In CALL 
instruction description. 

Opcode for CMPXCHG instruction has been changed. 

The OF flag has been clarified as undefined for the DAA instruction. 

Corrected table describing the DIVinstructions use of registers. 

Clarified C1 flag to. be zero for FCOM/FCOMP/FCOMPP 
instructions. 

The CF and OF flags have been clarified for the IMUL instruction. 

Corrected one of the INC opcodes. 

Changed rim to m for INS instruction. 

Corrected interrupt-to-inner-privilege description of INT/INTO 
instructions. 

Clarified Intel486 microprocessor detection for INVD and INVLPG 
instructions. 

Gate descriptor types 6, 7, E and F have been redefined for the LAR 
instruction. 

For LGS/LSS/LDS/LES/LFS instructions, a #UD fault has been 
described in protected mode; 

Opcode has been corrected forLMSW instruction. 

Added CMPXCHG and XADD instructions to list of LOCK usable 
instructions. 

Clarified use of MOV r/m16, Sreg instruction for use in protected 
mode. 

Corrected the clocks for the MUL instruction. 

Clarified a POP-to-memory instruction and a POP eSP instruction. 
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Appendix A 

Appendix E 

Table 10.1 

Table 10.2 

Table 10.3 

Appendix G 

Section G.ll 

REVISION HISTORY 

Clarified a POP-to-memory instruction and a POP eSP instruction. 

Clarified a PUSH-from-memory instruction. 

The opcode for REP LODS has been corrected along with the des­
tinations. Added note to NOT use the repeat prefix with the loop 
instruction. 

The CF flag has been clarified for SHL and. SHR instructions. 

The description of the SBB and SUB instructions has been clarified. 

The description of SETcc has been corrected for opcode OF96H and 
OF9FH. . 

Opcode for STI instruction has been corrected and Virtual Mode 
Exceptions have been defined. 

Operation of XADD instruction has been fixed. 

Added note that XCHG may be used in place of BSWAP for 16-bit 
data and fixed clock count. 

Duplicate opcodes for TEST Ib/lr and SHL have been deleted. 

Position 82 (MOVB) on one-byte opcode map has been deleted. 

Opcodes for MOV Td, Rd and MOV Rd, Td have been corrected. 

Added CWDE and CDQ instructions to CBW and CWD. 

Corrected instruction format of REP LODS, REP MOVS and REP 
STOS instructions. 

Corrected instruction format of LTR instruction. 

Corrected instruction format of REP INS and REP OUTS 
instructions. 

Corrected instruction format of FSTP 32-bit instruction. 

Corrected instruction format of FUCOMPP, FSUBR ST(d), FDIV 
64-bit, FDIV ST(d), andFDIVR ST(d) instructions. 

Designation of ADD instead of SHL instruction and ADC instead of 
RCL instruction has been added. 
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Abort: An exception which is completely unrecoverable, such as stack exception during 
an attempt to invoke an exception handler. 

Address: See Logical Address,. Linear Address, and Physical Address. 

Address Space: The range of memory locations which may be accessed by an address. 

Address-Size Prefix: An instruction prefix which selects the size of address offsets. Off­
sets may be 16- or 32-bit. The default address size is specified by the D bit in the code 
segment for the instruction. Use of the address-size prefix selects the non-default size. 

Address Translation: The process of mapping addresses from one address space to 
another. Segmentation and paging both perform address translation. 

Base Address: The address of the beginning of a data structure, such. as a segment, 
descriptor table, page, or page table. . 

Base Register: A register used for addressing an operand relative to an address held in 
the register. 

Base: (1) A term used in logarithms and exponentials. In both contexts, it is a number 
that is being raised to a power. The two equations (y = log base b of x) and (by=x) are 
the same. (2) A number that defines the representation being used for a string of digits. 
Base 2 is the binary representation; base 10 is the decimal representation; base 16 is the 
hexadecimal representation. In each case, the base is the factor of increased significance 
for each succeeding digit (working up from the bottom). (3) See BaseAddress. 

BCD: Binary Coded Decimal; a format for representing numbers in base 10. One byte is 
used for each digit of the number, with bit positions 0 to 3 specifying the value for the 
digit. The auxiliary carry flag isused to perform BCD arithmetic. The FPU supports a 
packed form of BCD, in which 18 digits and.a sign bit are contained in an 80-bit 
operand. 

Bias: A constant that is added to the true exponent of a real number to obtain the 
exponent field of that number's floating-point representation in the FPU. To obtain the 
true exponent, you must subtract the bias from the given exponent. For example, the 
single real format has a bias of 127 whenever the given exponent is nonzero, If the 8-bit 
exponent field contains 10000011 (binary), which is 131 (decimal), the true exponent is 
131-127, or + 4. Also known as an excess representation, in this case excess -127. 

Biased Exponent: The exponent as it appears in a floating-point representation of a 
number. The biased exponent is interpreted as an unsigned, positive number. In the 
above example, 131 is the biased exponent. 
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Binary Coded Decimal: A method of storing numbers that retains a base 10 representa­
tion. Each decimal digit occupies 4 full bits (one hexdecimal digit). The hexadecimal 
values A through F (1010 to 1111) are not used. The Intel486 processor supports a 
packed decimal format that consists of 9 bytes of binary coded decimal (18 decimal 
digits) and one sign byte. 

Binary Point: An entity just like a decimal point, except that it exists in floating-point 
binary numbers. Each binary digit to the right of the binary point is multiplied by an 
increasing negative power of two. 

Bit Field: A sequence of up to 32 bits which may start at any bit position of any byte 
address. The Intel486 processor has instructions for efficient operations on bit fields. 

Bit String: A sequence of up to 232-1 bits which may start at any bit position of any byte 
address. The Inte1486 processor has instructions for efficient operations on bit strings. 

Breakpoint: An aid to program debugging in which the programmer specifies forms of 
memory access which generate exceptions. The exceptions invoke debugging software. 
The Intel486 processor supports software and hardware breakpoints. A software break­
point is an instruction inserted into the program being debugged. When the INT 3 
instruction is executed, a breakpoint occurs. A hardware breakpoint is set up by pro­
gramming the debugging registers. The contents of the debugging registers specify the 
address, size, and type of reference for as many as four breakpoints. Unlike. software 
breakpoints, hardware breakpoints can be applied to data. 

Byte: An 8-bit quantity of memory; the smallest unit of memory referenced by an 
address. 

C3-CO: The four "condition code" bits of the FPU status word. These bits are set to 
certain values by the compare, test, examine, and remainder functions ofthe FPU. 

Cache: A small, fast memory which holds the active parts of a larger, slower memory. 

Cache Flush: An operation which marks all cache lines as invalid. The Intel486 proces­
sorhas instructions for flushing internal and external caches. 

Cache Line: The smallest unit of storage which can be allocated in a cache. The internal 
cache of the Intel486 processor has a line size of 128 bits. 

Cache Line Fill: An operation which loads an entire cache line using multiple read cycles 
to main memory. 

Cache Miss: A request for access to memory which requires actually reading main 
memory. 

Call Gate: A gate descriptor for invoking a procedure with a CALL or JUMP 
instruction. 
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Characteristic: A term used for some non-Intel computers, meaning the exponent field 
ofa floating-point number. 

Chop: In the FPU, to set one or more low-order bits of a real number to zero, yielding 
the nearest representable number in the direction of zero. 

Code Segment: An address space which contains instructions; an executable segment. An 
instruction-fetch cycle must address a code segment. The type of information held in a 
segment is specified in its segment descriptor. 

Condition Code: The four bits of the FPU status word that indicates the results of the 
compare, test, examine, and remainder functions of the FPo. 

Conforming Segment: A code segment which executes with the RPL of the segment 
selector or the CPL of the calling program, whichever is less privileged. 

Context Switch: See Task Switch. 

Control Word: A 16-bit FPU register that the user can set, to determine the modes of 
computation the FPU will use and the exception interrupts that will be enabled. 

Coprocessor: An extension to the base architecture and instruction set of a processor. 
The Intel387 numerics coprocessor is used to add floating-point arithmetic instructions 
and registers to the Intel386 processor. Coprocessors allow present-day systems to enjoy 
the architectural enhancements which will be available in future processor chips. 

CPL: See Current Privilege Level. 

CPU: Central Processor Unit. See Processor. 

Current Privilege Level (CPL): The privilege level of the program which is executing. 
Normally, the privilege level is loaded from a code segment descriptor. It is loaded into 
the CS segment register, where it is visible to software as the two lowest bits of the 
register. When execution is transferred to a conforming code segment, the privilege level 
does not change. In this case, the CPL may be different from the privilege level specified 
in the descriptor (DPL). 

Data Segment: An address space. which contains data. As many as four data segments 
may be in use without reloading the segment registers. The type of information held in a 
segment is specified in its segment descriptor. 

Data Structure: An area of memory defined for a particular use by hardware or soft­
ware, such as a page table or taskstate segment (TSS). 

Debug Registers: A set of registers used to specify as many as four hardware break­
points. Unlike breakpoint instructions, which only can be used for code breakpoints, the 
debug registers can specify breakpoints in either code or data. 
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Denormal: A special form of floating-point number. On the FPU, a denormal is defined 
as a number that has a biased exponent of zero. By providing a significand with leading 
zeros, the range of possible negative exponents can be extended by the number of bits in 
the significand. Each leading zero is a bit of lost accuracy, so the extended exponent 
range is obtained by reducing significance. 

Descriptor Privilege Level (DPL): The privilege level applied to a segment. The DPL is a 
field in the segment descriptor. 

Descriptor Table: An array of segment descriptors. There are two kinds of descriptor 
tables: the Global Descriptor Table (GDT) and an arbitrary number of Local Descriptor 
Tables (LDTs). 

Device Driver: A procedure or task used to manage a peripheral device, such as a disk 
drive. . . 

Displacement: A constant used in calculating effective addresses. A displacement modi­
fies the address independently of any scaled indexing. A displacement often is used to 
access operands which have a fixed relation to some other address, such as a field of a 
record in an array. 

Double Extended: IEEE Std 754 term for the FPU's extended format, with more expo­
nent and significand bits than the double format and an explicit integer bit in the 
significand. 

Double Format: A floating-point format supported by the FPU that consists of a sign, an 
ll-bit biased exponent, an implicit integer bit, and a 52-bit significand, a total of 64 
explicit bits. 

Doubleword: A 32-bit quantity of memory. The Intel486 processor allows 32-bit double­
words to begin at any byte address, but a performance penalty is taken when a double­
word crosses the boundary between two doublewords in physical memory. 

DPL: See Descriptor Privilege Level. 

Effective Address: The address produced from addressing-mode calculations. A base 
register, scaled index, and displacement may be used in the calculations. 

Environment: The 14 or 28 (depending on addressing mode) bytes of FPU registers 
affected by the FSTENV and FLDENV instructions. It encompasses the entire state of 
the FPU, except for the 8 registers of the FPU stack. Included are the control word, 
status word, tag word, and the instruction, opcode, and operand information provided by 
interrupts. 

ESC Instruction: An instruction encoding used for coprocessor instructions. 
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Exception: A forced call to a procedure or a task which is generated when the processor 
fails to interpret an instruction or when an INT n instruction is executed. Causes of 
exceptions include division by zero, stack overflow, undefined opcodes, and memory­
protection violations. Exceptions are faults, traps, aborts, and software-initiated 
interrupts. 

Exception Pointers: In the FPU, the indication used by exception handlers to identify the 
cause of an exception. This data consists of a pointer to the most recently executed ESC 
instruction and a pointer to the memory operand of this instruction, if it had a memory 
operand of this instruction, if it had a memory operand. An exception handler can use 
the FSTENV and FSA VE instructions to access these pointers. 

Expand-Down Segment: A type of data segment in which the meaning of the segment 
limit is reversed. All other segments accept legal offsets from the base address to the 
base address plus the segment limit. An expand-down segment accepts legal addresses in 
two ranges: from 0 to one byte below the base address, and from one byte past the 
segment limit to the top of the address space. 

Exponent: (1) Any number that indicates the power to which another number is raised. 
(2) The field of a floating-point number that indicates the magnitude of the number. 
This would fall under the above more general definition (I), except that a bias some­
times needs to be subtracted to obtain the correct power. 

Extended Format: The FPO's implementation of the double extended format of IEEE 
Std 754. Extended format is the main floating-point format used by the FPU. It consists 
of a sign, a IS-bit biased exponent, and a significand with an explicit integer bit and 63 
fractional-part bits. 

External Cache: A cache memory provided outside of the processor chip. External 
caches can be added to any kind of processor which has external main memory. The 
Intel486 processor has instructions and page-table entry bits which are used to control 
external caches from software. 

Far Pointer: A reference to memory which includes both a segment selector and an 
offset. Used to access memory when the segment selector has not been loaded into the 
processor, for example when making a procedure call from one segment to another. 

Fault: An exception which is reported at the instruction boundary immediately before 
the instruction which generated the exception. When a fault is generated, enough of the 
state of the processor is restored to permit another attempt to execute the instruction 
which generated the fault. The fault handler is called with a return address which points 

. to the faulting instruction, rather than the instruction which follows the faulting instruc­
tion. After the handler fixes the source of the exception, such as a segment or page 
which is not present in memory, the program is restarted, 

Flat Model: A memory organization in which all segments are mapped to the same range 
of linear addresses. This organization removes segmentation from the environment of 
application programs to the greatest degree possible. 
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Floating-Point Operand: A representation for a number expressed as a base, a sign, a 
significand, and a signed exponent. The value of the number is the signed product of its 
significand and the base raised to the power of the exponent. Floating-point representa­
tions are more versatile than integer representations in two ways. First, they include 
fractions. Second, their exponent parts allow a much wider range of magnitude than 
possible with fixed-length integer representations. 

Floating-Point Unit (FPU): The part of the Intel486 processor which contains the 
floating-point registers and performs the operations required by floating-point 
instructions .. 

FPU: See Floating-Point Unit. 

Flush: See Cache Flush. 

Gate Descriptor: A segment descriptor which can be the destination of a call or jump. A 
gate descriptor can be used to invoke a procedure or task in another privilege level. 
There are four types of gate descriptors: call gates, trap gates, interrupt gates, and task 
gates. 

GDT: See Global Descriptor Table. 

Global Descriptor Table (GDT): An array of segment descriptors for all programs in a 
system: There is only one GDT in a system. 

Gradual Underflow: A method of handling the floating-point underflow error condition 
that minimizes the loss of accuracy in the result. If there is a denormal number that 
represents the correct result, the denormal is returned. Thus, digits are lost only to the 
extent of denormalization. Most computers return zero when underflow occurs, losing all 
signficant digits. . 

Handler: A procedure or task which is called as a result of an exception or interrupt. 

Hit: See Cache Hit. 

IDT: See Interrupt Descriptor Table. 

IEEE Standard 754: A set of formats and operations which apply to floating-point num­
bers. The formats cover 32-, 64-, and 80-bitoperand sizes. The standard was developed 
by the Institute for Electrical and Electronics Engineeers (IEEE). The FPU supports all 
operand sizes covered by the standard. 

Immediate Operand: Data encoded in an instruction. 

Implicit Integer Bit: A part of the significand in the single real and double real floating­
point formats that is not explicitly given. In these formats, the entire given significand is 
considered to be the right of the binary point. A single implicit integer bit to the left of 
the binary point is always one, except in one case. When the exponent is the minimum 
(biased exponent is zero), the implicit integer bit is zero. 
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Indefinite: A special value that is returned by floating-point functions when the inputs 
are such that no other sensible answer is possible. For each floating-point format these 
exits one quiet NaN that is designated as the indefinite value. For binary integer formats, 
the negative number furthest from zero is often considered the indefinite value. For the 
FPU packed decimal format, the indefinite value contains all 1's in the sign byte and the 
uppermost digits byte. 

Index: A number used to access a table. An index is scaled (multiplied by shifting left) to 
account for the size of the operand. The scaled index is added to the base address of the 
table to get the address of the table entry. 

Inexact: IEEE Std 754 term for the FPU's precision exception. 

Infinity: A floating-point result that has greater magnitude than any integer or any real 
number. It is often useful to consider infinity as another number, subject to special rules 
of arithmetic. All three Intel floating-point formats provide representations for + infinity 
and -infinity. 

Initialization: The process of setting up the programming environment following reset. 
The processor begins execution in real-address mode. A few processor registers have 
defined states following reset, which permit execution to begin. Initial states of the seg­
ment registers allow memory to be accessed, even though no segment selectors have 
been loaded. The DR7 register (debug control register) is clear, so no breakpoint will 
occur during initialization. The real mode program can set up data structures such as 
descriptor tables and page tables, then transfer execution to a program running in pro­
tected mode. 

Instruction Prefetch: Reading instructions into the processor from sequentially higher 
addresses in advance of execution; a technique for overlapping the execution of 
instructions. 

Instruction Restart: An ability to make a second attempt to execute an instruction which 
generates an exception. Instruction restart is necessary for supporting virtual memory. 
When an application makes reference to a segment or page which is not present in 
memory, the application must be suspended in a way which allows restarting after the 
operating system has brought the segment or page into physical memory. Instruction 
restart restores enough of the processor state to allow the exception handler to be called 
with a. return address pointing to the instruction which generated· the exception, rather 
than the instruction following it. 

Integer: A number (positive, negative, or zero) that is finite and has no fractional part. 
Integer can also mean the computer representation for such a number: a sequence of 
data bytes interpreted in a standard way. It is perfectly reasonable for integers to be 
represented in a floating-point format; this is what the FPU does whenever an integer is 
pushed onto the FPU stack. 
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Integer Bit: A part of the significand in floating-point formats. In these formats, the 
integer bit is the only part of the significand considered to be to the left of the binary 
point. The integer bit is always one, except in one case: when the exponent is the mini­
mum (biased exponent is zero), the integer bit is zero. In the extended format the 
integer bit is explicit; in the single format and double format the integer bit is implicit; 
i.e., is not actually stored in memory. 

Internal Cache: A cache memory on the processor chip. The Intel486 processor has 8K 
bytes of internal cache memory. 

Interrupt: A forced transfer of program control caused by a hardware signal or execution 
of the INT n instruction. Interrupt handlers called by software are processed like 
exceptions. 

Interrupt Descriptor Table (IDT): An array of gate descriptors for invoking the handlers 
associated with exceptions and interrupts. A handler may be invoked by a task gate, 
interrupt gate, or trap gate. 

Interrupt Gate: A gate descriptor used to invoke an interrupt handler. An interrupt gate 
is different from a trap gate only in its effect on the IF flag. An interrupt gate clears the 
flag (disables interrupts) for the duration of the handler. 

Invalid: Unallocated. Invalid cache lines do not cause cache hits. Valid cache lines have 
been loaded with data and may cause cache hits. 

Invalid Operation: The exception condition for the FPU that covers all cases not covered 
by other exceptions. Included are FPU stack overflow and underflow, NaN inputs, illegal 
infinite inputs, out-of-range inputs, and inputs in unsupported formats. 

Label: An identifier used to name places in the source code of a program, so that 
statements can refer to those places. Places named by labels include procedure entry 
points, beginning of blocks of data, and base addresses for descriptor tables; 

LDT: See Local Descriptor Table. 

Linear Address: A 32-bit address into a large, unsegmented address space. If paging is 
enabled, it translates the linear address into a physical address. If paging is not enabled, 
the linear address is used as the physical address. 

Local Descriptor Table (LDT): An array of segment descriptors for one program. Each 
program may have its own LDT, a program may share its LDT with another program,or 
a program may have no LDT, in which case, it uses the global descriptor table (GDT). 

Locked Instructions: Instructions which read and write a destination in memory without 
allowing other devices to become bus masters between the read cycle and the write cycle. 
This. mechanism is necessary for supporting reliable communications among multiproces­
sors. The mechanism is invoked using the LOCK instruction prefix. Only certain instruc­
tions may be locked, and only when they have destination operands in memory (other 
uses of the LOCK prefix generate an invalid-opcode exception). 

Glossary-8 



intel® GLOSSARY 

Logical Address: The number used by application programs to reference virtual memory. 
This number consists of two parts: a segment selector (16 bits) and an offset (32 bits). 
The segment selector is used to specify an independent, protected address space (seg­
ment). The offset is used as an address within that segment. Segmentation translates the 
logical address into a linear address. 

Long Integer: An integer format supported by the FPU that consists of a 64-bit two's 
complement quantity. 

Long Real: An oldertetm for the FPU's 64-bit double format. 

Main Memory: The large memory, external to the processor, used for holding most 
instruction code and data. Generally built from cost-effective DRAM memory chips. 
May be used with the internal cache of the processor and an optional external cache. 

Mantissa: A term used with some non-Intel computers for the significand of a floating­
point number. 

Masked: A term that can apply to each of the six FPU exceptions I, D, A, 0 U, P. An 
exception is masked if a corresponding bit in the FPU control word is set to one. If an 
exception is masked, the FPU will not generate an interrupt when the exception comli­
tion occurs; it will instead provide its own exception recovery. 

Memory Management: Support for simplified models of memory; a process consisting of 
address translation and protection checks. There are two forms of memory management, 
segmentation and paging. Segmentation provides protected, independent address spaces 
(segments). Paging .provides access to data structures larger than the available memory 
space by keeping them partly in memory and partly on disk. 

Microprocessor: See Processor. 

Miss: See Cache Miss. 

Mode: (1) One of the FPU status word fields "rounding control" and "precision control" 
which programs can set, sense, save, and restore to control the execution of subsequent 
arithmetic operations. (2) See Real-Address Mode, Protected Mode, . Virtual-8086 Mode, 
Supervisor Mode, User Mode. . 

ModR/M Byte: A byte following an instruction opcode which is used to specify instruc­
tion operands. 

MPU: Micro-Processor .Unit. See Processor. 

Multiprocessing: Using more than one processor in a system. The Intel486 processor 
supports two kinds of multiprocessing: coprocessors, which are special-purpose 
performance-enhancing extensions to the architecture and instruction set, and multiple 
general-purpose processors, such as additional Intel486 processors. 
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Multisegmented Model: A memory organization in which different segments are mapped 
to, different ranges of linear addresses . .This organization uses segmentation to protect 
data structures from damage caused by program errors. For example, the stack can be 
kept from growing into memory occupied by instruction code. 

Multitasking: Timesharing a processor among several programs, executing some number 
of instructions from each. The Intel486 processor has instructions and data structures 
whiCh support multitasking. 

NaN: An abbreviation for "Nota Number"; a floating-point quantity that does not rep­
resent any numeric or infinite quantity. NaN's should be returned by functions that 
encounter serious errors. If created during a sequence of calculations, they are transmit­
ted to the final answer and can contain information about where the error occurred. 

Near Pointer: A reference to memory without a segment selector; an offset. Used to 
access memory when the segment selector has already been loaded into the processor, 
for example when one procedure calls another within the same segment. 

Normal: The representation of a number in a floating-point format in which the signifi­
cand has an integer bit one (either explicit or implicit). 

Normalize: Convert a denormal floating-point representation of a number to a normal 
representation. 

Offset: A 16- or 32-bit number which specifies a memory location relative to the base 
address of a segment. A program's code segment descriptor specifies whether 16- or 
32-bit offsets are the default. An address-size prefix specifies use of the non-default size: 

Operand: Data in a register or in memory which an instruction reads or writes (or both). 

Operand-Size Prefix: An instruction prefix which selects the sizes of integer operands. 
Operands may be 8- and 16-bit, or they may be 8- and 32-bit. The default operand size is 
specified by the D bit in the descriptor for the code segment which contains the instruc­
tion. Use of the operand-size prefix selects the non-default size. 

Overflow: A floating-point exception condition in which the correct answer is finite, but 
has magnitUde too great to be represented in the destination format. This kind of over­
flow (also called numeric overflow) is not to be confused with stack overflow. 

Packed BCD: Packed Binary Coded Decimal; a format for representing numbers in base 
10. One byte is used for each two digits of the number, with bit positions 0 to 3 specifying 
the value for the less significant digit and bit positions 4 to 7 specifying the value for the 
more significant digit. Packed BCD is one of the data types supported by the FPU. 

Packed Decimal: An integer format supported,by the FPU. A packed decimal number is 
alO-byte quantity, with nine bytes of 18 binary coded decimal digits and one byte for the 
sign. 
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Page Directory: The first-level page table. The paging hardware of the Intel486 proces­
sor uses two levels of page tables, where the physical address produced by the first-level 
page table is the base address of the second-level page table. The use of two levels allows 
the second-level tables to be paged to disk. 

Page Directory Base Register (PDBR): A processor register which holds the base address 
of the page directory; same as the CR3 register. Because the contents of the PDBR 
register are loaded from the task state segment (TSS) during a task switch, each task can 
have its own page directory, so each can have a different mapping of virtual pages to 
physical pages. 

Page: A 4K-byte block of neighboring memory locations; the unit of memory used by 
paging hardware. 

Page Table: A table which maps part of a linear address to a physical address. The 
paging hardware of the Intel486 processor uses two levels of page tables, where the 
physical address produced by the first-level page table is the base address of the second­
level page table. The use of two levels allows the second-level tables to be paged to disk. 

Page Table Entry: A 32-bit data structure in memory used for paging. It includes the 
physical address for a page and the page's protection information. It is set up by oper­
ating system software and accessed by paging hardware. 

Paging: A form of memory management used to simulate a large, unsegmented address 
space using a small, fragmented address space and some disk storage. Paging provides 
access to data structures larger than the available memory space by keeping them partly 
in memory and partly on disk. 

PDBR: See Page Directory Base Register. 

Physical Address: The address which appears on the local bus. The Intel486 processor 
has a 32-bit physical address, which may be used to address as much as 4 gigabytes of 
memory. 

Physical Memory: The address space on the local bus; the hardware implementation of 
memory. Memory is addressed as 8-bit bytes, but it is implemented as 32-bit double­
words which start at addresses which are multiples of four (addresses which are clear in 
their two least significant bits). The Intel486 processor may have up to 4 gigabytes of 
physical memory. 

Precision: The effective number of bits in the significand of the floating-point represen­
tation of a number. 

Precision Control: An option, programmed through the FPU control word, that allows 
all FPU arithmetic to be performed with reduced precision. Because no speed advantage 
results from this option, its only use is for strict compatibility with IEEE Std 754 and 
with other computer systems. 
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Precision Exception: An FPU exception condition that results when a calculation does 
not return an exact answer. This exception is usually masked and ignored; it is used only 
in extremely critical applications, when the user must know if the results are exact. The 
precision exceptions is called inexact in IEEE Std 754. 

Privilege Level: A protection parameter applied to segments and segment selectors. 
There are four privilege levels, ranging from 0 (most privileged) to 3 (least privileged). 
Level 0 is used for critical system software, such as the operating system. Level 3 is used 
for application programs. Some system software, such as device drivers, may be put in 
intermediate levels 1 and 2. 

Processor: The part of a computer system which executes instructions; also called micro­
processor, CPU, or MPU. 

Protected Mode: An execution mode in which the full 32-bit architecture of the proces­
sor is available. 

Protection: A mechanism which can be used to protect the operating system and appli­
cations from programming errors in applications. Protection can be used to define the 
address spaces accessible to a program, the kind of memory references which may be 
made to those address spaces, and the privilege level required for access. Any violation 
of these protections generates a general-protection exception. Protection can be applied 
to segments or pages. 

Pseudo-Descriptor: A 48-bit memory operand accessed when a descriptor table base 
register is loaded or stored. 

Pseudozero: One of a set of special values of the extended real format. The set consists 
of numbers with a zero significand and an exponent that is neither all zeros nor all ones. 
Pseudozeros are not created by the FPU but are handled correctly when encountered as 
operands. 

Quadword: A 64-bit operand. The COQ instruction can be used to convert a doubleword 
to a quadword. A quadword held in the EOX and EAX registers may be the dividend 
used with a doubleword divisor. 

Quiet NaN: A floating-point NaN in which the most significant bit of the fractional part 
of the significand is one. By convention, these NaN's can undergo certain operations 
without causing an exception. 

Re-entrant: Allowing a program to call itself; recursive. For certain kinds of problems, 
such as operations performed on hierarchical data structures, procedures which call 
themselves are simple and efficient solutions. On the Intel486 processor, procedures may 
be re-entrant, however tasks are not. A task may not call itself because it has only one 
task state segment (TSS) for storing the processor state. Procedures store the processor 
state on the stack, so they may be re-entrant to an arbitrary number of levels. 
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Real-Address Mode: An execution mode which provides an emulation of the architecture 
of an 8086 processor; also called "real mode." In this mode the Intel486 processor 
appears as a fast 8086 processor. The architectural extensions for protection and multi­
tasking are not available in this mode. Following reset initialization, the Intel486 proces­
sor begins execution in real mode. 

Real: Any finite value (negative, positive, or zero) that can be represented by a(possibly 
infinite) decimal expansion. Reals can be represented as the points of a line marked off 
like a ruler. The term can also refer to a floating-point number that represents a real 
value. 

Requested Privilege Level (RPL): The privilege level applied to a segment selector. If the 
RPL is less privileged than the current privilege level (CPL), access to a segment takes 
place at the RPL level. This keeps privileged software from being used by an application 
to interfere with the operating system or other applications. For example, a privileged 
program which loads memory from disk should not be permitted to overwrite the oper­
ating system as a result of a call from an application. With RPL, the attempt to access 
the memory space of the operating system takes place with the privleges of the 
application. 

Reset: See Initialization. 

RPL: See Requested Privilege Level. 

Segment: An independent, protected address space. A program may have as many as 
16,383 segments, each of which can be up to 4 gigabytes in size. 

Segment Descriptor: A 64-bit data structure in memory used for segmentation. It 
includes the base address for a segment, its size (limit), its type, and protection informa­
tion. It is set up by operating system software and accessed by segmentation hardware. 

Segment-Override Prefix: An instruction prefix which overrides the default segment 
selection. There are six segmenFoverride prefixes, one each for the CS, SS, DS, ES, FS, 
and GS segments. 

Segment Selector: A 16-bit number used to specify an address space (segment). Bit 
position 3 to 15 are used as an index into a descriptor table. Bit position 2 specifies 
whether the global descriptor table (GDT) or local descriptor table (LDT) is used. Bit 
positions 0 and 1 are the requested privilege level (RPL), which may lower the priority of 
access, as an additional protection check. 

Segmentation: A form of memory management used to provide multiple independent, 
protected address spaces. Segmentation aids program debugging by reporting program­
ming errors when they first occur, rather than when their effects become apparent. 
Segmentation makes programs provided to the end-user more reliable by limiting the 
damage which can be caused by undetected errors. Segmentation increases the address 
space available .to a program by providing up to 16,383 segments, each of which can be 
up to 4 gigabytes in size. 
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Set-Associative: A form of cache organization in which the location of a data block in 
main memory constrains, but does not completely determine, its location in the cache. 
Set-associative organization is a compromise between direct-mapped organization, in 
which· data from a given address in main memory has only one possible cache location, 
and fully-associative organization, in which data from anywhere in main memory can be 
put anywhere in the cache. An "n-way set-associative" caphe allows data from a given 
address in main memory to be cached in any of n locations. Both the Translation Looka­
side Buffer (TLB) and the integral cache of the Intel486 processor have a four-way 
set-associative organization. 

Short Integer: An integer format supported by the FPU that consists of a 32-bit two's 
complement quantity. Short integer is not the shortest FPU integer format-the 16-bit 
word integer is. 

Short Real: An older term for the FPU's 32-bit single format. 

SIB Byte: A byte following an instruction opcode and modR/M bytes which is used to 
specify a scale factor, index, and base register. 

Sign Extension: Conversion of data to a larger format, where empty bit positions are 
filled with the value of the sign. This form of conversion preserves the value of signed 
integers. See Zero Extension. 

Signaling NaN: A floating-point NaN that causes an invalid-operation exception when­
ever it enters into a calculation or comparison, even an unordered comparison. 

Significand: The part of a floating-point number that consists of the most significant 
nonzero bits of the number, if the number were written out in an unlimited binary 
format. The significand is composed of an integer bit and a fraction. The integer bit is 
implicit in the single format and double format. The significand is considered to have a 
binary point after the integer bit; the binary point is then moved according to the value 
of the exponent. 

Single Extended: A floating-point format, required by the IEEE Std 754, that provides 
greater precision than single; it also provides an explicit integer bit in the significand. 
The FPU's extended format meets the single extended requirement as well as the double 
extended requirement. . 

Single Format: A floating-point format supported by the FPU, which consists of a sign, 
an 8-bitbiased exponent, an implicit integer bit, and a 23-bit significand-a total of 32 
explicit bits. 

Stack Fault: A special case of the invalid-operation exception which is indicated by a one 
in the SF bit of the status word. This condition usually results from stack underflow or 
overflow in the FPU. 

Stack Frame: The space used on the stack by a procedure. The stack frame includes 
parameters, return addresses, saved registers, temporary storage, and any other stack 
space the procedure uses. 
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Stack Segment: A data segment which is used to hold a stack. A stack segment may be 
expand-down, which allows the segment to be resized toward lower address. The type of 
information held in a segment is specified in its segment descriptor. 

Status Word: A 16-bit FPU register that can be manually set, but which is usually con­
trolled by side effects to FPU instructions. It contains condition codes, the FPU stack 
pointer, busy and interrupt bits, and exception flags. 

String: A sequence of bytes, word, or doublewords which may start at any byte address in 
memory. The Intel486 processor has instructions for efficient operations on strings. 

Supervisor Mode: The privilege level applied to operating system pages. Paging only 
recognizes two privilege levels: supervisor mode and user mode. A program executing 
from a segment at privilege level 0, 1, 2 is in supervisor mode. 

Table: An array of records in memory having equal size. 

Tag Word: A 16-bit FPU register that it automatically maintained by theFPU. For each 
space in the FPU stack, it tells if the space is occupied by a number; if so, it gives 
information about what kind of number. 

Tag Word: A 16-bit FPU register that it automatically maintained by the FPU. For cach 
space in the FPU stack, it tells if the space is occupied by a number; if so, it gives 
information about what kind of number. 

Tag: The part of a cache line which holds the address information used to determine if a 
memory operation is a hit or a miss on that cache line. 

TaskRegister: A register which holds a segment selector for the current task. The selec­
tor references a task state segment (TSS). Like the segment registers, the TR register 
has a visible part and an invisible part. The visible part holds the segment selector, and 
the invisible part holds information cached from the segment descriptor for the TSS. 

Task State Segment (TSS): A segment used to store the processor state during a task 
switch. If a separate I/O address space is used, the TSS holds permission bits which 
control access to the I/O space. Operating systems may define additional structures 
which exist in the TSS. . 

Task Switch: A transfer of execution between tasks; a context switch. Unlike the proce­
dure calls, which save only the contents of the general registers, a task switch saves most 
of the processor state. For example, the registers used for address translation are 
reloaded, so that each task can have a different logical-to-physical address mapping. 

Task: A program running, or waiting to run, in a multitasking system. 

Temporary Real: An older term for the FPU's 80-bit extended format. 

Tiny: Of or pertaining to a floating-point number that is so close to zero that its expo­
nent is smaller than smallest exponent that can be represented in the destination format. 
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TLB: See Translation Lookaside Buffer. 

Top: The three-bit field of the status word that indicates which FPU register is the 
current top of stack. 

Trimscendental: One of a class of functions for which polynomial fo~mulas are always 
appropriate, never exact for more than isolated values. The FPU supports trigonometric, 
exponential, and logarithmic functions; all are transcendental. 

Translation Lookaside Buffer (TLB): The on-chip cache for page table entries. In typical 
systems, about 99% of the references to page table entries can be satisfied by informa­
tion in the TLB. 

Trap: An exception which is reported at the instruction boundary immediately following 
the instruction which generated the exception. 

Trap Gate: A gate descriptor used to invoke an exception handler. A trap gate is differ­
ent from an interrupt gate only in its effect on the IF flag. Unlike an interrupt gate, 
which clears the flag (disables interrupts) for the duration of the handler, a trap gate 
leaves the flag unchanged. 

TS8: See Task State Segment. 

Two's Complement: A method of representing integers. If the uppermost bit is zero, the 
number is considered positive, with the value given by the rest of the bits. If the .upper­
most bit is one, the number is negative, with the value obtained by subtracting (2M count) 

from all the given bits. For example, the 8-bit number 11111100 is -4, obtained by 
subtracting 28 from 252. 

Unbiased Exponent: The true value that tells how far and in which direction to move the 
binary point of the significand of a floating-point number. For example, if a single­
format exponent is 131, we subtract the Bias 127 to .obtain the unbiased exponent + 4. 
Thus, the real number being represented is the significand with the binary point shifted 
4 bits to the right. 

Underflow: An exception condition in which the correct answer is nonzero, but has a 
magnitude too small to be represented as a normal number in the destination floating­
point format. IEEE Std 754.specifies that an attempt be made to represent the number 
asa denormal. This. denormalization may result in a loss of significant bits from the 
significand., This kind of underflow (also called numeric overflow) is not be confused 
with stack overflow. 

Unmasked: A term that can apply to each of the six FPU exceptions: I, D, Z, 0, U, P. 
An exception is unmasked if a corresponding bit in the FPU control word is set to zero. 
If an exception is unmasked, the FPU will generate an interrupt whent he exception 
condition occurs. You can provide an interrupt routine that customizes your exception 
recovery. 
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Unnormal: An extended real representation in which the explicit integer bit of the sig­
nificand is zero and the exponent is nonzero. Unnormal values are not supported by the 
FPU. This includes several formats that are recognized by the 8087 and 287 coproces­
sors; they cause the invalid-operation exception when enc·ountered as operands. 

Unsupported Format: Any number representation that is not recognized by the FPU. 
This includes several formats that are recognized by the 8087 and 287 coprocessors; 
namely: pseudo-NaN, pseudoinfinity, and unnormal. 

USE16: An assembly language directive for specifying 16-bit code and data segments. 

USE32: An assembly language directive for specifying 32-bitcode and data segments. 

User Mode: The privilege level applied to application pages. Paging only recognizes two 
privilege levels: supervisor mode and user mode. A program executing from a segment at 
privilege level 3 is in user mode. 

V86 Mode: See Virtual-8086 Mode. 

Valid: Allocated. Valid cache lines have been loaded with data and may cause cache hits. 
Invalid cache lines do not cause cache hits. 

Vector: A number used to identify the source of an exception or interrupt. A vector i~ 
used to index into the IDT table for a gate descriptor. The gate descriptor is used to call 
the handler for the exception or interrupt. 

Virtual Memory: The memory model for application programs; a simplified organization 
for memory supported by memory management hardware and operating system soft­
ware. On the Intel486 processor, virtual memory is supported by segmentation and pag­
ing. Segmentation is a mechanism for providing multiple independent, protected address 
spaces. Paging is a mechanism for providing access to data structures larger them physical 
memory by keeping them partly in memory and partly on disk. 

Virtual-8086 Mode: An execution mode which provides an emulation of the architecture 
of an 8086 processor. Unlike real-address mode, virtual-8086 mode is compatible with 
multitasking; a protected mode operating system may be used to run a mix of protected 
mode and virtual-8086 mode tasks. 

Word: A 16-bit quantity of memory. The Intel486 processor allows 16-bit words to begin 
at any byte address, but a performance penalty is taken when a word crosses the bound­
ary between two doublewords in physical memory. 

Word Integer: An integer format supported by the Intel486 processor that consists of a 
16-bit two's complement quantity. 

Write-Back: A form of caching in which memory writes load only the cache memory. 
Data propagates to main memory when a write-back operation is invoked. 
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Write-Through: A form of caching in which memory writes load both the cache memory 
and main memory. 

Zero Divide: An exception condition in which floating-point inputs are finite, but the 
correct answer, even with an unlimited exponent, has infinite magnitude. 

Zero Extension: Conversion of data to.a larger format, where empty bit positions are 
filled with zero. This form of conversion preserves the value of unsigned integers. See 
Sign Extension. 
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AAA (ASCII adjust AL after addition), flag 
cross-reference, B-1 
instruction description, 3-10 
instruction format and timing, E-lO 
instruction specification, 26-18 
one-byte opcode map, A-4 
status flag summary, C-l 

AAD (ASCII adjust AX before division), 
flag cross-reference, B-1 
instruction description, 3-11 
instruction format and timing, E-ll 
instruction specification, 26-19 
one-byte opcode map, A-4 
status flag summary, C-l 

AAM (ASCII adjust AX after multiplication), 
flag cross-reference, B-1 
instruction description, 3-11 
instruction format and timing, E-10 
instruction specification, 26-20 
one-byte opcode map, A-4 
status flag summary, C-l 

AAS (ASCII adjust AL after. subtraction), 
flag cross-reference, B-1 
instruction description, 3-11 
instruction format and timing, E-I0 
instruction specification, 26-21 
one-byte opcode map, A-4, A-5 
status flag summary, C-l 

aborts, 
exception conditions, 9-13 
exception description, 9-2 
exception processor-detected, 9-1 

absolute address, and JMP instruction, 3-24 
AC flag (alignment check mode - bit 18), 

system flag description, 4-2 
accessed bit, 

page table entries, 5-21 
segment register loading, 3-39 

ADC (add integers with carry), 
flag cross-reference, B-1 
instruction description, 3-7 
instruction specification, 26-22 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4 
status flag summary, C-1 

ADD (add integers), 
flag cross-reference, B-1 
instruction description, 3-7 
instruction specification, 26-24 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4 
status flag summary, C-l 

address-size prefix, instruction format, 2-16 
addressable domain, restrictions to, 6-23 
addressing-mode, 

FPU architecture, 19-1 
instruction specifier, 2-16 

AF (auxiliary carry flag), status flag, 2-14 
AH (8-bit general register), 

and AAA instruction, 3-10 
and AAD instruction, 3-11 
and AAM instruction, 3-11 
and AAS instruction, 3-11 
register description, 2-8 

AHOLD input, and self test, 10-1 
AL (8-bit general register), 

and AAA instruction, 3-10 
and AAD instruction, 3-11 
and AAM instruction, 3-11 
and AAS instruction, 3-11 
and binary arithmetic instructions, 3-6 
and CBW instruction, 3-6 
and CMPXCHG instruction, 3-43 
and DAA instruction, 3-10 
and DIY instruction, 3-9 
and immediate operands, 2-18 
and LODS instruction, 3-30 
and MOY instruction, 3-2 
and MUL instruction, 3-8 
and SCAS instruction, 3-29 
and STOS instruction, 3-30 
and XLATB instruction, 3-42 
register description, 2-8 

alignment, 
and LOCK prefix, 13-2 
and pseudo-locking, 13-3 
of data type addresses, 2-4 

alignment-check exception, 
and AC flag, 4-2 
and Intel486 processor, 2-24 

alignment-check fault, Interrupt 17 (alignment 
check), 9-23 

AM bit (alignment mask-bit 18), system 
control flag, 4-7 

ANaN indefinite, and stack exception, 16-20 
AND (logical and), 

flag cross-reference, B-1 
instruction description, 3-12 
instruction specification, 26-26 
mod RIM byte opcodes, A-8 
one-byte opcode map, A-4 
status flag summary, C-2 

architecture, Intel486 Floating Point Unit 
(FPU),15-1 

arithmetic instructions, 
and EFLAGS register, 2-13 
and immediate operands, 2-18 
and nonarithmentic instructions, 16-2 
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ARPL (adjust RPL field of selector), 
flag cross-reference, B-1 
instruction format and timing, E-12 
instruction specification, 26-27 
one-byte .opcode map, A-4 
pointer integrity, 6-22 

ASM386/486 assembler, 
and FPU numeric applications, 18-4 
and FPU register addressing modes, 15-1 
and Intel486 Floating Point Unit(FPU), 

14-6 
automatic exception handling, numeric 

exceptions, 16-18 
automatic locking, and LOCK#; 13-3 
A VL field, I/O addressing, 8-1 
AX (16-bit general register), 

and CMPXCHG instruction, 3-43 
and CWD instruction, 3-4 
and CWDE instruction, 3-6 
and DIV instruction, 3-9 
and MUL instruction, 3-8 
and SCAS instruction, 3-29 
andSTOS instruction, 3-30 
register description, 2-8 

B bit, and Intel 8087 compatibility, 15-2 
base, 

effective-address computation, 2-22 
segment descriptors, 5-10 

base address, 
and effective address, 2-21 
and segment descriptor, 2~2 
and segment descriptors, 5-10 
and segmented address space, 2-3 

BCD (binary coded decimal), data type, 2-6 
benign exceptions, and Interrupt 8 (double 

fault), 9-16 
BH (8-bit general register), register 

description, 2-8 
bidirectional port, and input/output, 8-1 
binary arithmetic instructions, and application 

programming, 3-6 
binary integers, FPUdata type, 15-11 
bit block transfer, and double-shift 

instructiorts,3-19 
bit field, data type, 2-6 
bit string, data. type, 2-6 
BL (8-bit general register), r~gister 

description, 2-8 
block I/O instructions, 

INS (input string from port), 8-5 
OUTS (output string from port), 8-6 

block-structured language, 
instructions, 3-30 
lexical level, 3-32 

Boolean expressions, and byte-set~on-condition 
instructions, 3-22 

BOUND (check array index against bounds), 
flag cross-reference, B-1 
general description, 3-27 

instruction format and timing, E-13 
instruction specification, 26-29 
one-byte opcode map, A-4 

bounds-check exception, and Intel486 
. processor, 2-23 

bounds-check fault, Interrupt 5 (bounds 
check), 9-15 

BP (16-bit general register), register 
description, 2-8 

breakpoint exception, 
debugging support, 11-1 
and Intel486 processor, 2-23 

breakpoint instruction, debugging support, 
11-1 . 

breakpoint trap, Interrupt 3 (breakpoint 
instruction), 9~14, 11-9 

breakpoints, and debug registers, 4-8, 11-5 
BSF (bit scan forward), 

flag cross-reference, B-1 
instruction description, 3-12 
instruction format and timing,Ec9 
instruction specification, 26-31 
status flag summary, C-2 
two-byte opcode map, A-7 BSR (bit scan 

reverse), 
flag cross-reference, B-1 
instruction description, 3-12 
instruction forinat and timing, E-9 
instruction specification, 26-33 
status flag summary, C-2 
two-byte opcode map, A-7 

BSWAP (byte swap), 
flag cross-reference, B-1 
instruction description, 3-46 
instruction format and timing, E-6 
instruction specification, 26-35 
two-byte opcode map, A-7 

BT (bit test), 
flag cross-reference, B-1 
instruction description, 3-12 
instruction format and timing, E-9 
instruction specification, 26-36 
modR/M byte opcodes, A-8 
status flag summary, C-3 
two-byte opcode map, A-6 

BTC (bit test and complement), 
flag cross-reference, B-1 
instruction description, 3-12 
instruction specification, 26-38 
status flag summary, C-3 
two-byte opcode map, A-7 

BTR (bit test and reset), 
flag cross-reference, B-1 
instruction description, 3-12 
instruction. specification, 26-40 

. modR/M byte opcodes, A-8 
status flag summary, C-3 
two-byte opcode map, A-6 
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BTS (bit test and set), 

flag cross-reference, B-1 
instruction description, 3-12 
instruction specification, 26-42 
modR/M byte opcodes, A-8 
status flag summary, C-3 
two-byte opcode map, A-7 

bus masters, 
and LOCK prefix, 13-2 
and processor communication, 13-1 

busy bit, 
and re-entrant task switching, 7-12 
and TSS descriptor, 7-3 

BX (16-bit general register), register 
description, 2-8 

byte, data type, 2-3 

C programs, and FPU numeric applications, 
18-1 

C-386/486, and FPU numeric applications, 
18-1 

cache, 
associative memories and tag, 12-1 
consistency and mUltiprocessing systems, 

13-1 
consistency and· multiprocessor systems, 

12-1 
control bits and page table entries, 5-22 
disabling bits and internal cache, 12-2 
external cache, 12-1 
hit and associative memory tag, 12-1 
initialization testing, 10-10 
internal cache, 12-1 
line fill and cache lines, 12-2 
lines and internal cache, 12-1 
miss and associative memory tag, 12-1 
structure, 10-10 
test operations, 10-13 
test registers, 10-12 

cache management, 
instructions (system programming), 4-9 
INVD (invalidate cache), 12-3 
PCD bits (page-level cache disable), 12-4 
WBINVD (write-back and invalidate 

cache), 12-3 
caching, 

and I/O data, 8-4 
and page-level management, 12-3 
and write-back, 12-2 
and write-through, 12-2 
enable and initialize, 10-4 

CALL ( call procedure), 
flag cross-refe.rence, B-1 
general description, 3-24 
instruction format and timing, E-7, E-8 
instruction specification, 26-44 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
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call gates, and control transfers, 6-11 
carry flag instructions, and CF flag, 3-37 
CBW (convert byte to word), 

flag cross-reference, B-1 
instruction description, 3-6 
instruction format and timing, E-6 
instruction specification, 26-51 
one-byte opcode map, A-4, A-5 

CD bit (cache disable - bit 30), system control 
flag, 4-6 . 

CDQ (convert doubleword to quadword), 
instruction description, 3-4 
instruction specification, 26-64 

CF (carry flag), status flag, 2-14 
CF flag, 

and binary arithmetic instructions, 3-6 
and carry flag instructions, 3-37 
and DEC instruction, 3-6 
and INC instruction, 3-6 

CH (8-bit general register), register 
description, 2-8 

CL (8-bit general register), 
and shift instructions, 3-13 
register description, 2-8 

CLC (clear carry flag), 
flag cross-reference, B-1 
instruction format and timing, E-10 
instruction specification, 26-52 
one-byte opcode map, A-5 

CLD (clear direction flag), 
flag cross-reference, B-1 
instruction format and timing, E-10 
instruction specification, 26-53 
one-byte opcode map, A-5 

CLI (clear interrupt-enable flag), 
and INTR interrupts, 9-3 
flag cross-reference, B-1 
instruction format and timing, E-lO 
instruction specification, 26-54 
one-byte opcode map, A-5 
sensitive instructions, 8-6 

CLTS (clear task-switched flag in CRO), . 
flag cross-reference, B-1 
instruction format and timing, E-11 
instruction specification, 26-55 
privileged instruction, 6-19 
two-byte opcode map, A-6 

CMC (complement carry flag), 
flag cross-reference, B-1 
instruction format and timing, E-lO 
instruction specification, 26-56 
one-byte opcode map, A-4 

CMP (compare two operands), 
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instruction specification, 26-57 
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one-byte opcode map, A-4, A-5 
status flag summary, C-2 
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CMPS (compare strings), 
flag cross-reference, B-1 
instruction description, 3-29 
instruction format and timing, E-9 
instruction specification, 26-59 
status flag summary, C-2 

CMPSB (compare bytes), 
instruction specification, 26-59 
one-byte opcode map, A-4 

CMPSD (compare doublewords), 
instruction specification, 26-59 . 
one-byte opcode map, A-4 

CMPSW (compare words), 
instruction specification, 26-59 
one-byteopcode map, A-4 

CMPXCHG (compare and exchange), 
flag cross-reference, B-1 
instruction description, 3-48 
instruction format and timing, E-6 
instruction specification, 26-62 
status flag summary, C-2 
two-byte opcode map, A-6 

code segments, 
and CS register, 2-11 
and data access, 6-8 
and segment descriptors, 5-13 

comparison instructions, floating-point 
instructions, 17-4 

compatibility, 
Intel486 Floating Point Unit (FPU), 14-1 
initialization, 10-1 
Inte1386/InteI387 DX processor differences, 

25-1 
Intel 286/Inte1287 processor differences, 

25-2 
Intel 8086/8087 processor differences, 25-10 

concurrent processing, IU and FPU, 18-12 
condition codes, and EFLAGS register, 2-13 
conditional branching example, numeric 

programming, 20-1 
conforming segment, and control transfer 

restrictions, 6-9 
constant instructions, floating-point 

instructions, 17-6 
contributory exceptions, and Interrupt 8 

(double fault), 9-16 . 
control instructions, floating-point instructions, 

17-6 
control registers, of Intel486 processor, 2-8 
control transfers, 

and call gates, 6c 11 
and gate descriptors, 6-11 
instructions and application programming, 

3-23 
restrictions to, 6-9 

coprocessor-not-available exception, and EM 
con trol flag, 4-7 

coprocessor-segment overrun abort, Interrupt 
9 (Intel reserved), 9-17 

copy-on-write strategy, and user-mode write 
protect, 6-24 

CPL (current privilege level), 
and control transfer restrictions, 6-9 
and CS segment register, 6-6 
and data access restrictions, 6-7 

CRO (system control register), 
and AC flag, 4-2 
and paging, 2-2, 5-2 
and PG bit, 5-.18 . 
register description, 4-5 

CR1 (system control register), register 
description, 4-5 

CR2 (system control register), register 
description, 4-5 

CR3 (system control register), 
and page frame address, 5-18 
and page-directory register (PDBR), 4-6 
register description, 4-5 

CS (segment register), 
and code segment, 2-11 
and CPL (current privilege level), 6-6 
and far control transfer instructions, 3-40 
register description, 2-10 

CWD( convert word· to doubleword), 
flag cross-reference, B-1 
instruction description, 3-4 
instruction format and timing, E-6 
instruction specification, 26-64 
one-byte opcode map, A-4, A-5 

CWDE (convert word to doubleword 
extended), 

instruction descriptiori, 3-6 
instruction specification, 26-51 

CX (16-bit general register), register 
description, 2-8 

D bit, segment descriptors, 5-12 
DAA (decimal adjust AL after addition), 

flag cross-reference, B-1 
instruction description, 3-10 
instruction format and timing, E-11 
instruction specification, 26-65 
one-byte opcode map, A-4 
status flag summary, C-1 

DAS (decimal adjust AL after subtraction), 
flag cross-reference, B-1 . 
instruction description, 3-10 
instruction format and timing, E-11 
instruction specification, 26-66 
one-byte opcode map, A-4, A-5 
status flag summary, C-1 

data access, 
code segments shared data, 6-8 
restrictions to, 6-7 
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data bus, and doubleword transfers, 2-6 
data movement instructions, 

and application programming, 3-1 
and LOCK prefIx, 13-2 . 

data segment, 
and DS register, 2-11 
and ES register, 2-11 
and FS register, 2-11 
and OS register, 2-11 
and segment descriptor, 5-13 
descriptor and writable bit, 6-3 

data transfer instructions, floating-point 
instructions, 17-2 

data type,. 
BCD,2-6 
bit field, 2-6 
bit string, 2-6 
byte, 2-3 
doubleword, 2-4 
far pointer, 2-6 
floating-point, 2-6 
integer, 2-6 
near pointer, .2-6 
ordinal, 2-6 
packed BCD, 2-6 
string, 2-6 
word,2-3 

data type encoding, and unsupported formats, 
16-13 

data types and formats, Intel486 Floating 
Point Processor (FPU), 15-9 

data-breakpoint trap, Interrupt 1 (debug 
exceptions), 9-14, 11-6 

debug address registers (DRO-DR3), 
debugging support, 11-1 
for breakpoint linear address, 11-2 

debug control register (DR7), 
debugging support, 11-1 
for breakpoint memory access, 11-2 

debug exception, 
and Intel486 processor, 2-23 
and RF flag, 4-3, 9-4 
and TF flag, 4-3 

debug interrupt vector, debugging support, 
11-1 . 

debug status register (DR6), 
conditions sampled, 11-4 
debugging support, 11-1 

debugging, 
Intel486 processor facilities, 11-1 
instructions for system programming, 4-9 

DEC (decrement by one), 
and CF flag, 3-6 
flag cross-reference, B-1 
instruction description, 3-8 
instruction specification, 26-67 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-2 

decimal arithmetic instructions, and 
application programming, 3-10 

decimal integers, FPU data type, 15-12 
default segment, assignment of, 2-19 
defining data, ASM386/486, 18-4 
demand-paged virtual memory, and paging, 5-2 
denormal real numbers, FPU data formats, 

16-1 
denormal-operand exception, 

denormal operand, 16-22 
numeric exceptions, 16~ 17. 
pseudodenormal numbers, 16-13 

descriptor table addressing, instructions 
(system programming), 4c9 

descriptor table base registers, 
ODTR register, 5-16 
IDTR register, 5-16 
segment descriptors, 5-16 

descriptor validation, 
VERR (verify for read), 6-21 
VERW (verify for write), 6-21 

destination operand, 
for binary arithmentic instructions, 3-6 
for floating-point instructions, 17-1 
for two-operand instructions, 2-17 

device drivers, and privilege levels, 6-6 
device-not-available fault, 

and Intel486 processor, 2-23 
Interrupt 7 (device not available), 9-15 

DF (direction flag), 
direction flag control instructions, 3-37 
EFLAOS register, 2-13 

DH (8-bit general register), register 
description, 2-8 

DI (16-bit general register), register 
description, 2-8 

direct load instructions, and segment registers, 
5-7 

directed rounding,· FPU rounding control, 
15-16 

direction flag control instructions, and DF 
flag, 3-37 

dirty bits, and page table entries, 5-21 
displacement, 

effective address, 2-21 
instruction format, 2-16 

display, stack frame pointer set, 3-30 
DIV (unsigned divide), 

flag cross-reference, B-1 
general description and flags, 3-9 
instruction format and. timing, E-5 
instruction specification, 26-68 
modRiM byte opcodes, A-8 
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divide-by-zero, numeric exceptions, 16-17 
divide-error .exception, and Intel486 processor, 

2-23. 
divide-error fault, Interrupt 0 ( divide error), 

9-14' . '. .. 
division by zero, and zero-divide exception, 

16-21 
DL (8-bit general register), register 
description, 2-8 
double real, numeric data type; 14-6 
double-shift instructions, 

and bit block transfer, 3-19 
and string insertion/extraction, 3-19 

doubleword; . 
data type, 2"4 
data bus transfers,. 2-6 

DPL (descriptor privilege level), 
and control transfer restrictions, 6-9 
and data access restrictions, 6-7 
and segment descriptors, 6-6 
and segment privilege level,.5-14 

DS (segment register), 
and application program, 2-12 
and data segment, 2" 11 
register description, 2-10 

DX (16-bit general register), 
and CWD instruction, 3-4 
regist~rdescription, 2-8. . 

dynamic storage, and ENTER instruction, 3-30 

E bit (expansion direction bit), and segment 
descriptor, 6-4 

EAX (32-bit general register), . 
and binary arithmetic instructions, 3-6 
and CDQ instruction, 3-4 
and CMPXCHG instruction, 3-43 
and CWDE instruction, 3~6 
and DIV,instruction, 3-9 
and immediate operands, 2-18 
and IMUL instruction, 3-8 
and LODS instruction, 3-30 
and MOV instruction, 3-2 
and MUL instruction,' 3-8 
and PUSHA instruction, 3-3 
and SCAS instruction, 3-29 
and STOS instruction, 3-30 
register description, 2-8 

EBP (32-bit general register), 
and ENTER instructiori; 3-31 

. and LEAVE instruction, 3-35 
and PUSHA instruction, 3-3 
register description, 2-8 

EBX (32-bit general register), 
and LEA instruction, 3-41 
and PUSHA instruction, 3-3 
and XLATB instruction, 3-42 
register description, 2-8 . 

ECX (32-bit general register); . 
and JECXZ instruction; 3-26 . 
and loop instructions, 3-25 

and LOOPE instruction, 3-26 
and LOOPNE instruction, 3-26 
and .LOOPNZ instruction, 3-26 
and LOOPZ instruction, 3-26 
and MOVS instruction, 3-29 
and PUSHA instruction, 3-3 
and three-operand instructions, 2-18 
register description, 2-8 

EDI (32-bit general register), 
and LEA instruction, 3-41 
and MOVS instruction, 3-29 
and PUSHA instruction, 3-3 
and STOS instruction, 3-30 
for string destination operand, 3-29 
registe~ description, 2-8 

EDX (32-bit general register), 
and CDQ instruction, 3-4 
and IMUL instruction, 3-8 
and PUSHA instruction, 3-3 
register description, 2-8 

effective address, components of, 2~21 
EFLAGS register, 

AC flag (alignment check mode-bit 18), 
4"2 

and arithmetic instructions; 2-13· 
and condition codes, 2-13 
and conditional transfer instructions, 3-24 
and DF (direction flag), 2-13 
and flag control instructions, 3-35 
and I/O protection, 8-6 
and IRET instruction, 3-24 
and mode bits, 2-13 
and string instructions, 2-13 
and system programming, 4~2 
as register operand, 2-19 
IF flag (interrupt-enable flag- bit 9), 4-3 
10PL flag (I/O privilege level- bits 12 and 

13),4-3 . 
NT flag (nested task-bit 14),4-3 
RF flag (resume flag- bit 16), 4-3 
TF flag (trap flag-bit 8), 4-3' . 
VM flag (virtual-8086 mode- bit 17), 4-3 

EIP register, 
and CALL instruction, 3-24 
and conditional jump instructions, 3-25 
and current code segment, 2-14 
and instruction prefetching, 2-15 
and RET instruction, 3-24 . 

EM bit (emulate coprocessor), numerics. 
environment configuration, 19-.2 

EM (emulation - bit ~), syst~m, control flag, 
4-7 

ENTER (make stack frame·for procedure), 
flag cross-reference" B-1 
general description, 3-30 
instruction format and timing, £-8' 
instruction specification, 26-70 
one-byte opcode map, A"5 
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ERROR#, and NE control flag, 4-7 
error codes, 

and exception handler, 9-13 
summary of, 9-24 

ES register, 
and application program, 2-12 
and data segment, 2-11 
segment register, 2-10 

ESCAPE instructions, and Intel486 Floating 
Point Unit (FPU), 14-5 

ESI (32-bit general register), 
and LEA instruction, 3-41 
and LaDS instruction, 3-30 
and MaYS instruction, 3-29 
and PUSHA instruction, 3-3 
for string source operand, 3-29 
register description, 2-8 

ESP (32-bit general register), 
and ENTER instruction, 3-31 
and LEAVE instruction, 3-35 
and POP instruction, 3-3 
and paPA instruction, 3-4 
and PUSH instruction, 3-2 
and PUSHA instruction, 3-3 
and RET instruction, 3-24 
register description, 2-8 

ET (extension type-bit 4), system control 
flag, 4-7 

exact arithmetic, and Intel486 Floating Point 
Unit (FPU), 14-4 

exception handling example, numeric 
programming, 20-1 

exception vector, identifying number, 9-1 
exceptions, 

alignment-check exception, 2-24 
and instruction prefetching, 2-15 
and instruction restart, 9-2 
and page mapping, 2-2 
and task switching, 7-1 
and trap gates, 6-11 
bounds-check exception, 2-23 
breakpoint exception, 2-23 
conditions causing, 9-13 
debug exception, 2-23 
description of, 2-23 
device-not-available exception, 2-23 
divide-error exception, 2-23 
for basic programming model, 2-23 
FPU simultaneous response, 19-4 
in real-address mode, 22-2, 22-5 
overflow exception, 2-23 
processing priority, 9-5, 16-26 
processor-detected, 9-1 
programmed software interrupts, 9-1 
summary of, 9-24 
synchronization, 18-13,18-14 

INDEX 

executable-segment descriptor, readable bit, 
6-3 

explicit operand, 
description of, 2-17 
in memory, 2-19 

extended format, and Intel486 Floating Point 
Unit (FPU), 14-6 

extended real, numeric data type, 3-38, 14-6 
external bus, and I/O instruction execution, 

8-1 
external cache, 

Intel486 processor, 12-1 
and write-back cache, 12-2 
and write-through cache, 12-2 

F2XMl (computer 2x-l), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-72 
numeric exception .summary, F-l 

FABS (absolute value), 
condition code interpretation; 15-4 
instruction format and timing, E-19 
instruction specification, 26-74 
numeric exception summary,F-l 

FADD (add), 
condition code interpretation, 15c4 
instruction format and timing, E-17 
instruction specification, 26-75· 
numeric exception summary, F-l 

FADDP (add), 
instruction format and timing, E-17 
instruction specification, 26-75 
numeric exception summary, F-l 

Far CALL, general description., 3-40 
far form, RET (return from procedure), 6-17 
far pointer, data type, 2-6 
Far RET, general description, 3-40 
far transfer, and unconditional trqnsfer 

instructions, 3-23 
faults, 

exception conditions, 9-13 
exception description, 9-2 
processor-detected exception, 9-1 

FBLD (load binary coded decimal), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-77 
numeric exception summary, F-l 

FBSTP (store binary coded decimal and pop), 
condition code interpretation, 15-4 
instruction. format and timing, E-16 
instruction specification, 26-79 
numeric exccption summary, F-l 

FCHS (change sign), 
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condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-80 
numeric exception summary, F-l 



FCLEX (clear exceptions), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-81 
numeric exception summary, F-1 

FCOM (compare real), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction speCification, 26-82 
numeric exception summary, F-1 

FCOMP (compare real), ' 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-82 
numeric exception summary, F-1 

FCOMPP (compare real), 
condition code interpretation, 15-4 
instruction format and timing; E-17 
instruction specification, 26"82 
numeric exception summary,F-l 

FCOS (cosine), 
condition code interpretation; 15-4 
instruction format and timing, E-19 
instruction specification, 26-84 
numeric exception summary, F-l 

FDECSTP (decrement stack-top pointer), 
instruction format and timing, E-20 
instruCtion specification, 26"86 
numeric exception summary; F-1 

FDIV (divide), 
condition code interpretation, 15-4 
instruction format and timing, E-18' 
instruction specification, 26-87 
numeric exception summary, F-1 

FDIVP (divide), 
instruction format and timing, E-18 
instruction speCification, 26-87 
numeric exception summary, F-l 

FDIVPR (reverse divide), 
instruction format and timing, E~ 18 
instruction specification, 26-89 
numeric exception summary, F-l 

FDIVR (reverse divide), , 
condition code interpretation, 15-4 
instruction format and timing, E-18 
instruction speCification, 26c89 
numeric exception summary, F-l 

FERR#, 
and NE control flag, 4-7 
and software exception handling, 16-19 

FFREE (free floating-point register), 
instruction format and timing, E-20 
instruction speCification, 26-91 
numeric exception summary, F-l 

FIADD (add), 
instruction format and, timing" E-18 
instruction speCification, 26-75 
numeric exception summary, F-l 

INDEX 

FICOM (compare integer), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-92 
numeric exception summary, F-1 

FICOMP (compare integer), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction, speCification, 26-92 
numeric exception summary, F-1 

FIDIV (divide), 
instruction format and timing, E-18 
instruction specification, 26-87 
numeric exception summary, F-1 

FIDIVR (reverse divide), 
instruction,format and timing, E-19 
instruction speCification, 26-89 
numeric exception summary,F-1 

FILD (load integer), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction speCification, 26-94 
numeric exception summary, ,F-1 

FIMUL (multiply), 
instruction format and timing, E-18 
instruction specification, 26-109 
numeric exception summary, F-1 

FINCSTP (increment stack-top pointer), 
condition code interpretation, 15-4 
instruction format and timing, E-20 
instruction specification, 26-96 
numeric exception summary, F-1 

FINIT (initialize floating-point unit), 
condition code interpretation, 15-4 
instruction format and timing,E-19 ' 
instruction specification, 26-97 
numeric exception summary, F-l' 

FIST (store integer), 
condition code interpretation, 15-4 
instruction format and timing, E-16 , 
instruction specification, 26-99 ' 
numeric exception summary, F-l 

FISTP (store integer), 
instruction format and timing,E-16 
instruction speCification, 26-99 
numeric exception summary, F-l 

FISUB (subtract), 
instruction format and timing, E-18 
instruction specification, 26-138 
numeric exception summary,F-l 

FISUBR (reverse subtract), 
instruction format and timing, E-18 
instruction specification, 26-140 
numeric exception summary, F-l 

flag control instructions, and application 
programming, 3-35 
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flat address space, memory organization 
model, 2-2, 2-3 

flat model, 
and segmentation, 5-3 
segment/page translation, 5-23 

flat model initialization, segmentation, 10-5 
FLD1 (load constant), 

instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-l 

FLD (local real), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-101 
numeric exception summary, F-1 

FLDCW (load control word), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-105 
numeric exception summary, F-1 

FLDENV (load FPU environment), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-107 
numeric exception summary, F-1 

FLDL2E (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

FLDL2T (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

FLDLG2 (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

FLDLN2 (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

FLDPI (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

FLDZ (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

floating-point, data type, 2-6 
floating-point detection code, 3-42 
floating-point instructions, 

comparison instructions, 17-4 
constant instructions, 17-6 
control instructions, 17-6 
data transfer instructions, 17-2 
destination operands, 17-1 
nontranscendental instructions, 17-2 
source operands, 17-1 
transcendental instructions, 17-4 

INDEX 

floating-point numerics configuration, 19-2 
floating-point numerics, instructions (system 

programming), 4-9 
floating-point to ASCII conversion example, 

numeric programming, 20-7 
floating-poi nt-error fault, Interrupt 16 

(floating-point error), 9-23 
FMUL (multiply), 

condition code interpretation, 15-4 
instruction format and timing, E-18 
instruction specification, 26-109 
numeric exception summary, F-l 

FMULP (multiply), 
instruction format and timing, E-18 
instruction specification, 26-109 
numeric exception summary, F-l 

FNCLEX (clear exceptions), instruction 
specification, 26-81 

FNINIT (initialize floating point unit), and 
FPU initialization, 19-2 

FNINIT (initialize floating-point unit), 
instruction specification, 26-97 

FNOP (no operation), 
instruction format and timing, E-20 
instruction specification, 26-111 
numeric exception summary, F-1 

FNSAVE (store FPU state), instruction 
specification, 26-123 

FNSTCW (store control word), instruction 
specification, 26-133 

FNSTENV (store FPU environment), 
instruction specification, 26-134 

FNSTSW (store status word), instruction 
specification, 26-136 

forking, See copy-an-write strategy 
FPATAN (partial arctangent), 

condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-112 
numeric exception summary, F-1 

FPREM1 (partial remainder), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-116 
numeric exception summary, F-1 

FPREM (partial remainder), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-114 
numeric exception summary, F-1 

FPTAN (partial tangent), 
condition code interpretation, 15-4 
instruction format and timing; E-19 
instruction specification, 26-118 
numeric exception summary, F-1 

FPU control word, and numerical exception 
masking, 15-5 

FPU data formats, 
and other entities, 16-1 
and special numeric values, 16-1 

Index-9 
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FPU data type, 

binary integers, 15-11 
decimal integers, 15-12 
real numbers, 15-12 

FPU register addressing modes, and 
ASM386/486 assembler, 15-1 

INDEX 

instruction specification, 26-134 
numeric exception summary, F-2 

FSTP (store real), 

FPU register stack, and numeric registers, 15-1 
FPU status word, and Integer Unit, 15-2 

condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-131 
numeric exception summary, F-2 

FSTSW (store status word), 
FPU tag word, and numeric registers, 15-6 
FRNDINT (round to integer), 

condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-120 
numeric exception summary, F-1 

FRS TOR (restore FPU state), 
condition code interpretation, 15-4 
instruction format and timing, E-20 
instruction specification, 26-121 
numeric exception summary, F-1 

FS register, 
and application program, 2-12 
and data segment, 2-11 
segment register, 2-10 

FSAVE (store FPUstate), 
condition code interpretation, 15-4 
instruction format and timing, E-20 
instruction specification, 26-123 

FSCALE (scale), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-125 
numeric exception summary, F-1 

FSIN (sine), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-126 
numeric exception summary, F-2 

FSINCOS (sine and cosine), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-128 
numeric exception summary, F-2 

FSQRT (square root), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-130 
numeric exception summary, F-2 

FST (store real), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-131 
numeric exception summary, F-2 

FSTCW (store control word), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-133 
numeric exception summary, F-2 

FSTENV (store FPU environment), 
condition code interpretation, 15-4 
instruction format and timing, E-19 

condition code interpretation, 15"4 
instruction format and timing, E-19 
instruction specification, 26-136 
numeric exception summary, F-2 

FSUB (subtract), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-138 
numeric exception summary, F-2 

FSUBP (subtract), 
instruction format and timing, E-17 
instruction specification, 26-138 
numeric exception summary, F-2 

FSUBPR (reverse subtract), 
instruction format and timing, E-18 
instruction specification, 26-140 
numeric exception summary, F-2 

FSUBR (reverse subtract), 
condition code interpretation, 15-4 
instruction format and timing, E-18 
instruction specification, 26-140 
numeric exception summary, F-2 

FTST (test), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-142 
numeric exception summary, F-2 

FUCOM (unordered compare real), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-144 
numeric exception summary, F-2 

FUCOMP (unordered compare real), 
condition code interpretation, 15-4 
instruction format and timing, E~ 17 
instruction specification, 26-144 
numeric exception summary, F-2 

FUCOMPP (unordered compare real), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-144 
numeric exception summary, F-2 

FWAIT (wait), 
instruction specification, 26-146 
numeric exception summary, F-2 

FXAM (examine real), 
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instruction specification, 26-147 
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FXCH (exchange register contents), 
condition code interpretation, 15-4 
instruction specification, 26-149 
numeric exception summary, F-2 

FXTRACT (extract exponent and significand), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-151 
numeric exception summary, F-2 

FYL2X (computey x log2x), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instructioJ,1 specification, 26-153 
numeric exception summary, F-2 

FYL2XPI (compute y x log2 (x + 1», 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-155 
numeric exception summary, F-2 

G bit (granularity bit), and segment descriptor, 
6-4 

gate descriptors, and control transfers 
protection, 6-11 

GD (global debug), 11-4 
GDTR (global descriptor table register), 

descriptor table base registers, 5-16 
register description, 4-4 

general registers, 
and IMUL instruction, 3-8 
and POP A instruction, 3-4 
and PUSHA instruction, 3-3 
as register operand, 2-19 
of Intel486 processor, 2-8 

general-detect fault, Interrupt 1 (debug 
exceptions), 9-14, 11-8 

general-protection exception, 
and multi-segment model, 5-5 
and privilege levels, 6-5 
and protected flat model, 5-4 

global descriptor table (GDT), 
segment descriptor tables, 5-15 
segment translation, 5-5 

gradual underflow, and denormal values, 16-4 
granularity bit, 

and TSS descriptor, 7-4 
segment descriptors, 5-10 

GS register, 
and application program, 2-12 
and data segment, 2-11 
segment register, 2-10 

handler, for exceptions and interrupts, 9-1 
high word, for doubleword data type, 2-4 
high-level languages, and FPU numeric 

applications, 18-1 
HLT (halt), 

flag cross-reference, B-1 
instruction format and timing, E-ll 
instruction specification, 26-157 

instructions (system programming), 4-11 
one-byte opcode map, A-4 
privileged instruction, 6-19 

Intel486 DX2 CPU, 1-1, 1-6 
Intel486 Floating Point Processor (FPU), 

applications, 14-4 
architecture, 15-1 
concurrent processing, 18-12 
data types and formats, 15-9 
history of, 14-1 
Intel486 processor, 14-1 
infinity operands, 16-8 
initialization, 19-2 
Intel387 DX emulation, 19-3 
NaN (not-a-number) operands, 16-8 
number system, 15-9 
numerics environment configuration, 19-2 
performance, 14-1 
precision control, 15-16 
programming interface, 14-5 
rounding control, 15-15 
system programming, 19-1 
zero operands, 16-6 

Intel486 Integer Unit (IU), 
concurrent processing, 18-12 
operation with FPU, 14-2 

Intel486 processor, 
control registers, 2-8, 4-5 
CPUjd code, 3-42 
debug registers, 4-8 
debugging facilities, 11-1 
external cache, 12-1 
features, 1-1 gate descriptors, 6-11 
general registers, 2-8 
initialization, 10-3 
Intel486 Floating Point Processor (FPU), 

14-1 
I/O instructions, 8-4 
initialization, 10-1 
input/output, 8-1 
internal cache, 12-1 
memory-management registers, 4-4 
mixing 16-bit and 32 bit code, 24-1 
multitasking mechanism, 7-1 
operating modes, 1-2 
operating status, 2-13 
real-address mode, 22-1 
segment registers, 2-8 
software emulation, 19-3 
status registers, 2-8 
system flags, 4-2 
system instructions, 4-9 
system registers, 4-1 
task linking, 7-11 
task switching, 7-7 
test registers, 4-8 
virtual-8086 mode, 23-1 
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Intel487SX CPU,' , 
CPUjd code, 3-42 
initialization, 10-3 , 
software emulation, 19-3 

I/O address space, 
and IOPL flag, 4-3, 
and physical memory, 8-2 
Intel486 processor, 8-1 

I/O instructions, , 
and Intel486 processor, 8-4 
and I/O privilege level, 8-6, 

I/O operations, and s~nsitive instructions, 6-19 
I/O permission bit map, and TSS (task state 

segment),8-7 
I/O port for operand selection, 2-17 
I/O privilege level, , ,: 

and I/O instruction 'access, 8-6 
and 10PL flag, 4-3 

IDEC (decrement by one),modR/M byte 
opcodes, A-8 

IDIV (signed divide); 
flag cross-reference, B-1 
instruction description, 3-10 
instruction format and timing, E-5 
instruction specification, 26-158 
modRIM byte opcodes, A-8 

IDT (interrupt descriptor table), 
exception/interrupt vectors, 9-5 
interrur.t gates, 9-7 
LIDT (load IDT register), ,9-7 
task gates, 9-7 
trap gates, 9-7 
types of, 9-7 , 

IDTR (interrupt descriptor table register)" 
descriptor table hase registers, 5-16 
register description, 4-5 

IEEE Standard 754, and unsupported formats, 
16-13., ", 

IEEE Standard 854, " 
and Intel486 Floating Point Processor 

(FPU), 14-1, " 
and invalid arithmetic operation, 16-21,' 
and standard underflow/overflow exception 

handler, 16-27 
IF flag (interrupt~eriableflag- bit 9), 

mask INTRinterrupts, 9-3 ' 
system flag descriptIOn, 4-3 IGNNE#, 
and NE control flag, 4c 7 
and software exception handling" 16-20 

immediate operand, instruction format, 2-16 
implicit operand, description of, 2-17 
implied load instructions, and segment 

registers, 5-7 
IMUL (signed multiply), 

flag cross-reference, B-1' 
general description and flags, 3-8 ' 
instruction format and timing, E~5, 
instruction specification; 26-160, 
modR/M byte opcodes, A-8 
one-byte opcode map; A-5. 

status flag summary,C-2 
two-byteopcode map, A-7 

IN (input from port), 
flag cross-reference, B-1 
instruction format and timing, E-15 
instruction specification, 26-162 
one-byte opcode map, A-4, A-5 
register I/O instructions, 8-5 
sensitive instructions, 8-6 

INC (increment by one), 
and CF flag, 3-6 
flag cross-reference, B-1 
instruction description, 3-7 
instruction specification, 26-164 
modRIM byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C~2 

inconsistent stack pointer, and page fault, 9"23 
indefinite value, and numeric data type, 16-12 
index component, 

and segment selectors; 5-9 
for effective address, 2-21 

inexact exception, 
and inexact (precision), 16-26 
and underflow exception, 16-26 

inexact result (precision), 
and inexact exception; 16-26 
numeric exceptions, 16-18 

infinity operands, and Intel486 Floating Point 
Processor (FPU), 16-8 

initialization, ' 
and Intel486 processor, 10-1 ' , 
Intel486 Floating Point Processor (FPU);' 

19-2 
inner protection rings, and stack switching, 

6-15 
input port, and input/output. 8-1 
input/output, 

and Intel486 process,or, 8"1 
instructions (system programming), 4-9 

INS (input from port to string), 
block I/O instructions, 8-5 
flag cross-reference, B-1 
instruction format and timing, E-15 
instruction specification, 26-165 
sensitive instructions, 8~6 

INSB (input from port to string), 
instruction specification, 26-165 
one-byte opc;ode map, A-4, A-5 

INSD (input from port to string), 
instruction specification, 26-165 
one-byte opcode map, A-4, A-5 

instruction, 
and default segment selection,.2-19 
and ope,rand selection, 2-17 
first initialization execution, 10-4 
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instruction address breakpoint fault, Interrupt· 
1 (debug exceptions), 9-14 

instruction format, 
addressing-modc specifier, 2-16 
and opcode, 2-16 
and prefix, 2-16 
and register specifier, 2-16 
displacement, 2-16 
for basic programming model, 2"15 
immediate operand, 2-16 
SIB (scale, index, base) byte, 2-16 

instruction prefetching, 
and EIP register, 2-15 
and exception generation, 2-15 
and parity checking,2-1~ 
and PLOCK#, 13-1 
and pseudo-locking, 13-4 

instruction restart, 
and exceptions, 9-2 
and interrupts, 9-2 

. and paging, 5-2 .. 
instruction7breakpoint fault, Interrupt 1 

(debug exceptions), .11-6 , 
instructions, in real-address mode, 22-2 
instructions (application programming), 

binary arithmetic instructions, .3-6 
block-structured language instructions, 3-30 
control transfer instructions, 3-23. 
data movement instructions, 3-1 
data registers, 2-12 
decimal arithmetic instructions, 3-10 
flag control instructions, 3-35 
logical instructions, 3-11 
miscellaneous instructions, 3-41 
numeric instructions, 3-38 
segment register instructions, 3-39 
string operations, 3-27 .,. 

instructions (operating system), 
privileged instructions, 6-19 
sensitive instructions, 6-19 

instructions (system programming), 
cache management, 4-9 
debugging, 4-9 ' 
descriptor table addressing, 4-10 
floating-pont numerics, 4-9 
HLT instruction, 4-11 
input and output, 4-9 
interrupt control, 4-9 
LOCK instruction, 4cll 
multitasking, 4-10 
pointer parameter verification, 4-9 
system control, 4-9 

INSW (input from port to string), 
instruction specification, 26-165 
one-byte opcode map, A-4, A-5 

INT (call to interrupt procedure ), 
flag cross-reference,. B-1 
for interrupt generation, 2-24 
general description, 3-26 
instruction format and timing, E-13 

instruction specification, 26-167 
one-byte opcade map, A-5 

integer, data type description, 2-6 
integer instructions, overview of, 3-1 
Integer Unit, and FPU status word, 15-2 
Intel386 DX processor, 

and data breakpoint matching, 11-4 
and Interrupt 9 (Intel reserved), 9-17 
and MP control flag, 4~ 7 
processor differences, 21-4 
real-address mode, 22-1 

Intel386 DX processor programs, and Intel486 
processor, 21-1 

Intel387 DX coprocessor, 
and ET control flag, 4-7 
emulation and Intel486 Floating Point 

Processor (FPU), 19-3 
Intel 80186 processor,. real-address mode, 22-1 
Intel 80188 processor, real-address mode, 22-1 
Intel 286 processor, 

LMSWinstruction; + 11 
MP control 'flag, 4-7 
processor differences,. 21-2 
programs·,andlnteI486 processor, 21-1 
protected mode, 21-1 . 
real-address mode, 22-1 
running tasks, 21-2 
segment descriptors, 21-1 
SMSW instruction, 4-11 
TSS compatibility, 7-2 

Intel 8086 processor, 
real-address mode, 22-1 
virtual-8086 mode, 4-3 

Intel 8087 processor, compatibility and B bit, 
15-2 . 

Intel 8088 processor, real-address mode, 22-1 
Intel 8259A Programmable Interrupt· 

Controller;·and interrupt vector, 9-1 
Intel 860 processor, alignment-check 

exception, 4-2 
internal cache, 

and cache lines, 12-2 , 
and write-through cache, 12-2 
Intel486 processor, 12c1 
operation of, 12-2 
self-modifying code, 12-3 

Interrupt 0 (divide error), divide-error fault, 
9-14 . 

Interrupt 10 (iilValid TSS),invalis-TSS fault, 
9-17 

Interrupt 11 (segment not present), segment­
not-present fault, 9-18 . 

Interrupt 12 (stack exception), stack fault, 9-19 
Interrupt 13 (general protection), protection 

violations, 9-20 
Interrupt 14 (page fault), page Jault, 9-21 
Interrupt 16 (floating-point error), floating- . 

point-error fault, 9-23 
Interrupt 17 (alignment check), alignment-· 

check fault, 9-23 
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Interrupt 1 (debug exceptions), 
data address breakpoint trap, 9-14 
data-breakpoint trap, 11-6 
general detect .iault,9-14 
general-detect fault, 11-8 
instruction address breakpoint fault, 9-14 
instruction-breakpoint fault, 11-6 
single-step trap, 9-14, 11-8 
task-switch breakpoint trap, 9-14 
task-switch trap, 11-8 

Interrupt 3 (breakpoint), breakpoint trap, 
9-14, 11-9 

Interrupt 4 (overflow), overflow trap, 9-15 
Interrupt 5 (bounds check), bounds-check 

fault, 9-15 
Interrupt 6 (invaJidopcode), invalidcopcode 

fault, 9-15 
Interrupt 7 ( device not available), device-not­

available fault, 9"15 
Interrupt 8 (double fault), multiple faults, 9-16 
Interurpt 9 (Intel reserved), coprocessor­

segment overrun abort, 9-17 
interrupt acknowledge, automatic locking, 13-3 
interrupt control, instructions (system program 

ming),4-9 
interrupt gates, 

and interrupts, 6-11 
IDT descriptors, 9-7 

interrupt procedures, 
and interrupt tasks, 9-7 
and stack, 9-9 
flag usage, 9-11 
protection, 9-11 
returning from; 9-9 . 

interrupt requests (INTR interrupts), and IF 
flag, 4-3 

interrupt tasks, 
and interrupt procedures, 9-7 
and task gate, 9-11 

interrupt vector, 
identifying number, 9-1 
software initialization, 10-3 

interrupts, 
and instruction restart, 9-2 
and interrupt gates, 6-11 
and task switching, 7-1 
description, 2-23 
enable/disable, 9-3 
for basic programming model, 2-23 
in real-address mode, 22-2 
maskable source, 9-1 
processing priorities, 9-5 
unmaskable source, 9-1 
with INTinstruction, 2-24 

INTO (interrupt on overflow), 
flag cross-reference, B-1 
general description, 3-26 
instruction format and timing, E-13 
instruction specification, 26-167 
one-byte opcode map, A-5 

INTR interrupts, and IF flag, 9-3 invalid 
arithmetic operation, and IEEE 
Standard, 16-21, 854 

invalid operation, 
and numeric exceptions, 16-20 
numeric exceptions, 16-17 

invalid-opcode fault, Interrupt 6 (invalid 
opcode), 9-15 

invalid-operation exception, 
and NaN (not-a-number) operands, 16-10 
and QNaN real indefinite, 16-11 

invalid-TSS fault, Interrupt 10 (invalid TSS), 
9-17 

INVD (invalidate cache), 
cache management instructions, 12-3 
flag cross-reference, B-1 
instruction format and timing, E-11 
instruction specification, 26-172 
two-byte opcode map, A-7 

INVLPG (invalidate TLB entry), 
flag cross-reference, B-1 
instruction format and timing, E-11 
instruction specification, 26-173 

IOPL flag (I/O privilege level- bits 12 and 
13), 

description, 4-3 
system flag 

IRET (interrupt return), 
flag cross-reference, B-2 
general description, 3-24 
instruction format and timing, E-13 
instruction specification, 26-174 
one-byte opcode map, A-5 

IRETD (interrupt return), instruction 
specification, 26"174 

JB, two-byte opcode map, A-6 
Jb (short-displacement jump on condition), 

one-byte opcode map, A-4, A-5 
JBE, 

one-byte opcode map, A-4 
two-byte opcode map, A-6 

Jcc (jump if condition is met), 
flag cross-reference; B-2 
instruction format and timing, E-7 
instruction specification, 26-179 
status flags, 3-7 

JCXZ, 
flag cross-reference, B-2 
instruction format and timing, E-7 
one-byte opcode map, A-4 

JECXZ (jump if ECX zero), 
general description, 3-26 
instruction format and timing, E~7 

JL, 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 

JLE, 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 
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JLNE, one-byte opcode map, A-4 
JMP (jump), 

flag cross-reference, B-2 
instruction description, 3-23 
instruction format and timing, E-7, E-9 
instruction specification, 26-183 
modR/M byte opcodes, A-8 
one-byte opcode map, A-5 

JNB, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

JNBE, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

JNL, 
one-byte opcode map, A-5 
two-byte opcode map, A-7 

JNLE, 
one-byte opcode map, A-5 
two-byte opcode map, A-7 

JND, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

JNP, 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 

INS 
o~e-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 

JNZ, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

10, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

JP, 

JS, 

one-byte opcode map, A-4, A-5· 
two-byte opcode map, A-7 

one-byte opcode map, A-4, A-5 
two-byte opcode .map, A-7 

JV, 
one-byte opcode map, A-5 
two-byte opcode map, A-6, A-7 

JZ, 
one-byte opcode·map, A-4 
two-byte opcode map, A-6 

KEN#, and peD bit (page-level cache 
disable), 12-4 

LAHF (load flags into AH), 
flag cross-reference, B-2 
instruction description, 3-37 
instruction format and timing, E-lO 
instruction specification, 26-188 
one-byte opcode map, A-5 

LAR (load access rights byte),. 
flag cross-reference, B-2 
instruction format and timing, E-12 

INDEX 

instruction specification, 26-189 
pointer validation instructions, 6-20 
two-byte opcode map, A-6 

LDS (load pointer using DS), 
flag cross-reference; B-2 
general description, 3-40 
instruction format and timing, E-8 
instruction specification, 26-196 
one-byte opcode map, A-4 

LDT switching, and task switching, 7-1 
LDTR (local descriptor table register), . 

register description, 4-4 
LEA (load effective address), 

flag cross-reference, B-2 
general description, 3-46 
instruction format and timing, E-3 
instruction specification, 26-191 
one-byte opcode map, A-4, A-5 

LEAVE (high level procedure exit), 
flag cross-reference, B-2 
general description, 3-35 
instruction format and timing, E-8-
instruction specification, 26-193 
one-byte opcode map, A~5 

LEN bits, and debug breakpoints, 11-5 
LES (load pointer using ES), 

flag cross-reference, Bc2 
general description, 3-40 
instruction format and timing, E-8 
instruction specification, 26-196 . 
one-byte opcode map, A-4 

lexical level, . 
and block-structured languages, 3-32 
and ENTER instruction, 3-30 

LFS (load pointer using FS), _ 
flag cross-reference, B-2 
general description, 3-40 
instruction format and timing, E-8 . 
instruction specification,· 26-196 
two-byte opcode map, A-6 

LGDT (load global/IDTR), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-194 
modR/M byteopcodes, A-8 
privileged instruction, 6-19 

LGS (load pointer using GS), 
flag cross-reference, B-2 
general description, 3-41 
instruction format and timing, E-8 
instruction specification, 26-196 
two-byte opcode map, A-6 

LIDT (load lOT register), 

Index-15 

and IDT (interrupt descriptor table), 9-7 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-194 
modR/M byte opcodes, A-8 
privileged instruction, 6-19 



limit, and segment descriptors, 5-10 
limit checking, segment descriptors, 6-4 
linear address, 

and logical address, 2-1 
and page translation, 5-17, 5-18 
and physical space mapping, 7-13 
and segment translation, 5-5 
and segmentation, 2-2, 5-2 
and task address mapping, 7-13 

LLDT (load LDTR), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification,.26-199 . 
modRIM byte opcodes, A-8 
privileged instruction, 6-19 

LMSW (load machine status word), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-201 
Intel 286 processor, 4-11 
modRIM byte opcodes, A-8 
privileged instruction, 6-19 

local descriptor table (LDT), 
segment descriptor tables, 5-15 
segment translation, 5-5 

LOCK#, .. 
and automatic locking,13-3 
and critical memory operations, 13-1 
and LOCK instruction, 4-11 
and LOCK prefiX, 13~2 . 

LOCK (assert LOCK# prefiX), 
and CMPXCHG instruction, 3-43 
and XADD instruction, 3-43 . 
and XCHG instruction, 3-2 
flag cross-reference, B-2 
instruction specification, 26"202 
one-byte opcode map, A-4 

LOCK instruction, . 
and LOCK#, 4~11 . 
instructions (system programming), 4-11 

LOCK prefiX, and LOCK#, 13-2 . 
locked bus cycles, and multiprocessing, 13-1' 
LODS (load string opetand), 

flag cross-reference, B-2 
general description, 3-30 
instruction format and timing"E-9 
instruction specification, 26-204 

LODSB (load string operand), . 
instrucion specification, 26-204 
one-byte opcode map, AA, A-5 

LODSD (load string operand), 
instrucion specification, 26-204 
one-byte opcode map, A-4, A-5 

LODSW (load' string operand), 
instruction specification, 26-204 
one-byte opcode map, A-4, A-5 

logical address, 
and segment translation, 2-2, 5-5 
and segmentation, 5-2 
task address mapping, 7-14 

INDEX 

use of, 2-1 
logical instructions, and application 

programming, 3-11 
long integer, numeric data type, 3-38; 14-6 
LOOP (loop control with CX counter), 

flag cross-reference, B-2 
general description, 3-25 
instruction format and timing, E-7 
instruction specification, 26-206 
one-byte opcode map, A-4 

LOOPE (loop while equal), 
flag cross-reference, B-2 
general description, 3-26 
instruction format and timing, E-7 
one-byte opcode map, A-4 

LOOPNE (loop while not equal), 
flag cross-reference, .B-2 
general description, 3-26 
instruction format and. timing, E-7 
one-byte opcode map, A-4 

LOOPNZ (loop while not zero), 
general description, 3-26 
instruction format and timing, E-7 

LOOPZ (loop while zero), 
general description, 3"26 
instruction format and timing, E-7 

low word, for doubleword data type, 2-4 
LSL (load segment limit), 

flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26"208 
pointer validation instructions, 6-20. 
two-byte opcode map, A-6 

LSS (load pointer using SS), 
flag cross-reference, B-2 
~eneral . description, 3-4 ~ . 
mstructIOn' format and tlmmg, E-8 
instruction specification, 26-196 
two-byte opcode map, A-6 

LTR (load task register), ' 
and task register description, 7-6 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-210 
modRIM byte opcodes, A-8 
privileged instruction, 6-19 

M/IO#, 
and I/O address space, 8-2 
and I/O instructions, 8-4 

maskable interrupts, and vector assignment, 
9-1 

memory, 
access types, 2-10 
for operand selection, 2-17 
model choice, 2-2 
model description, 2-1 

memory management, . 
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and segment registers, 5-6 
and segmentation, 2-1, 5-1 
and segments, 2-1 
description of, 2-1 

memory operand offset, and modR/M byte, 
2-19 

memory reference types, and segment 
registers, 5-7 

memory-management registers, 
and system programming, 4-4 
GDTR (global descriptor table register), 

4-4 
IDTR (interrupt descriptor table register), 

4-5 
LDTR (local descriptor table register), 4-4 
TR (task register), 4-5 

memory-mapped I/O, and physical memory, 
8-3 

miscellaneous instructions, and application 
programming, 3-41 

mixing 16-bit and 32-bit code, Intel486 
processor, 24-1 

mode bits, and EFLAGS register, 2-13 
modR/M byte, 

and effective-address computation, 2-20 
for memory operand offset, 2-19 

MOV (move data), 
and default segment selection, 2-19 
flag cross-reference, B-2 
instruction description, 3-1 
instruction format and timing, E-3, E-8; 

E-11 . 
instruction specification, 26-211, 26-213 
mask exceptions and interrupts, 9-4 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-6 

MOV to/from CRO (move to control register 
0), privileged instruction, 6-19 

MOV to/from DRn (move to debug register 
n), privileged instruction, 6-19 

MOV to/from TRn (move to test register n), 
privileged instruction, 6- 19 

MOVB (move data), one-byte opcode map, 
A-4 

MOVS (move data from string to string), 
flag cross-reference, B-2 
general description, 3-29 
instruction format and timing, E-9 
instruction specification, 26-215 

MOVSB (move data from string to string), 
instruction specification, 26-215 
one-byte opcode map, A-4 

MOVSD (move data from string to string), 
instruction specification, 26-215 
one-byte opcode map, A-4 

MOVSW.(move data from string to string), 
instruction specification, 26-215 
one-byte opcode map, A-4 

MOVSX (move with sign extension), 
flag cross-reference, B-2 
general description, 3-6 
instruction format and timing, E-3 
instruction specification, 26-217 
two-byte opcode map, A-7 

MOVZX (move with zero extension), 
flag cross-reference, B-2 
general description, 3-6 
instruction format and timing, E-3 
instruction specification, 26-218 
two-byte opcode map, A-6 

MP bit (monitor coprocessor), numerics 
environment configuration, 19-2 

MP (math present-bit 1), system control flag, 
4-7 

MUL (unsigned multiply), 
flag cross-reference, B-2 
general description and flags, 3-8 
instruction format and timing, E-4 
instruction specification, 26-219 
modR/M byte opcodes, A-8 
status flag summary, C-2 

multi-segment model, 
and general-protection exception, 5-5 
and segmentation, 5-4 

multi-segment model initialization, segmcnta 
tion, 10-5 

multiple faults, Interrupt 8 (double fault), 9-16 
multiprocessor systems, 

and cache consistency, 12-1 
and cache consistency, 13-1 
and processor communication, 13-1 

multitasking, 
and Intel486 processor, 7-1 
and task initialization, 10-6 
instructions (system programming), 4-10 
segment-level protection, 6-1 

NaN (not-a-number) operands, 
and Intel486 Floating Point Processor 

(FPU),16-8 
and invalid-operation exception, 16-10 

NE bit (numeric exception), 
numerics environment configuration, 19-2 

. system control flag, 4-7 
near form, RET (return from procedure), 6-17 
near pointer, data type, 2-6 
near transfer, and unconditional transfer 

instructions, 3-23 . 
NEG (two's complement negation), 

flag cross-reference, B-2 
instruction description, 3-8 
instruction specification, 26-221 
modRlM byte opcodes, A-8 
status flag summary, C-2 

NMI interrupt, 
and assigned vector, 9-1 
and protected mode initialization, 10-4 
and software initialization, 10-3 
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mask further NMI interrupts, 9-3 
no-wait, control instructions, 17-8 
nontranscendental instructions, floating-point 

instructions, 17-2 
NOP (no operation), 

flag cross-reference, B-2 
instruction description, 3-46 
instruction format and timing,E-6 
instruction specification, 26-222 

NOT (one's complement negation), 
flag cross-reference, B-2 
instruction description, 3-11 
instruction specification, 26-223 
modR/M byte opcodes, A-8 . 

NT flag (nested task-bit 14), system flag 
description, 4-3 

null error code, and exception handler, 9-13 
number system, Intel486 Floating Point 

Processor (FPU), 15-9 . 
numeric data pointers, and exception handlers, 

15-7 
numeric data type, 

and indefinite value, 16-12 
double real, 14-6 
encoding of, 16-12 
extended real, 14-6 
long integer, 14-6 
packed decimal, 14-6 
short integer, 14-6 
single real, 14-6 
word integer, 14-6 

numeric data types, Intel486 Floating Point 
Processor (FPU), 14-6 

numeric exceptions, 
denormalized operand, 16-17 
divide-by-zero, 16-17 
handling of, 16-18, 19-3 
inexact result (precision), 16-18 
invalid operation, 16-17 
numeric overflow, 16-17 
numeric underflow, 16-18 

numeric instruction pointers, and exception 
handlers, 15-7 

numeric instructions, 
and application programming, 3-38 
Intel486 Floating Point Processor (FPU), 

14-7 
numeric libraries, and FPU numeric 

applications, 18-1 
numeric overflow, 

and overflow exception, 16-23 
numeric exceptions, 16-17 

numeric programming, . 
ASM386/486 examples, 20-1 
conditional branching cxample, 20-1 
exception handling example, 20-1 
floating-point to ASCII conversion 

example, 20-7 
trigonometric .calculation, 20-7 

numeric underflow, 
and underflow exception, 16-25 
numeric exceptions, 16-18 

numerical exception masking, and FPU control 
word, 15-5 

numerical registers, Intel486 Floating Point 
Processor (FPU), 15-1 

numerics detection code, 3-42 
numerics environment configuration, Intel486 

Floating Point Processor (FPU), 19-2 
NW (not write-through - bit 29), system 

control flag, 4-6 

O/U# bit, stack exception, 16-20 
OF flag, and binary arithmetic instructions, 3-6 
OF (overflow flag), status flag, 2-14 
offset, 

for memory operand, 2-19 
for segmented address space, 2-3 

opcode, and instruction format, 2c16 
operand selection, for basic programming 

model, 2-17 
operand size, of instruction prefix, 2-16 
operand size prefix, instruction format, 2-16 
operating modes, of Intel486 processor, 1-2 
operating status, Intel486 processor, 2-.13 
OR (logical inclusive or), 

flag cross-reference, B-2 
instruction description, 3-12 
instruction specification, 26-224 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-2 

ordinal, data type, 2-6 
OUT (output to port), 

flag cross-reference, B-2 
instruction format and timing, E-15 
instruction specification, 26-226 
one-byte opcode map, A-4, A-5 
register I/O instructions, 8-5 
sensitive instructions, 8-6 

output port, and input/output, 8-1 
OUTS (output string), sensitive instructions, 

8-6 
OUTS (output string to. port), 

block I/O instructions, 8-6 
flag cross-reference, B-2 
instruction format and timing, E-15 
instruction specification, 26-228 

OUTSB (output string to port), 
instruction specification, 26-228 
one-byte opcode map, A-4, A-5 

OUTSD (output string to port), 
instruction specification, 26-228 
one-byte opcode map, A-4, A-5 

OUTSW (output string to port), 
instruction specification, 26-228 
one-byte opcode map, A-4, A-5 
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overflow exception, 
and Intel486 processor, 2-23 
and numeric overflow, 16-23 

overflow trap, Interrupt 4 (overflow), 9-15 

packed BCD, data type, 2-6 
packed decimal, numeric data type, 14-6 
page, combining protection with segment, '6-25 
page directory, and page translation, 5-17 
page directory register (PDBR), 

and CR3, 4-6 
and CR3 register, 5-18 

page directory update, automatic locking, 13-3 
page fault, 

and Interrupt 8 (double fault), 9-16 
and page table entries, 5-20 
and page translation, 5-17 
during task switching, 9-22 
Interrupt 14 (page fault), 9-21 
page frame address, 
with inconsistent stack pointer1 9-23 

page level management, caching, 12-3 
page protection, overriding, 6-24 
page table update, automatic locking, 13-3 
page tables, 

and combined protection, 6-24 
'and page translation, 5-17, 5-18, 5-20 
and protection parameters, 6-23 

page translation, 
and memory management, 5-17 
and physical address, 5-17 
and segment translation, 5-23 
linear address, 5-17 

paging, 
and I/O address space, 8-1 
and linear address space, 2-2 
and memory management, 2~1, 5-1 
and page-level protection, 6-22 
and PG bit, 5-18 
demand-paged virtual memory, 5-2 
description, 5-2 
exception handling, 2-24 
initialization, 10-6 

parity checking, and instruction prefetching, 
2-15 

PCD bit (page-level cache disable), 
cache control, 5-22 
cache management bits, 12-4 
system control flag, 4-6 

PE (protection enable - bit 0), 
and protected mode initialization, 10-4 
system control flag, 4-8 

PF (parity flag), status flag, 2-14 
PG (paging-bit 31), 

system control flag, 4-6 
to enable paging, 5-18 

physical address, 
description, 2-1 
and linear address, 2-1 
and page translation, 5-17 

and PG bit, 5-18 
and segmentation, 5-2 

physical memory, 
and I/O address space, 8-2 
and memory-mapped I/O, 8-3 
description, 2-1 

PL/M-386/486, and FPU numeric applications, 
18-2 

PLOCK#, 
and instruction prefetching, 13-1 
and pseudo-locking, 13-3 

PMUL, one-byte opcode map, A-4 
pointer integrity, 

and ARPL (adjust requested privilege 
. level), 6-22 
and RPL (requested privilege level), 6-22 

pointer parameter verification, instructions 
(system programming), 4-9 ' 

pointer validation instructions, 
and protection, 6-20 
LAR (load access rights), 6-20 
LSL (load segment limit), 6-20 

POP (pop word from stack), 
flag cross-reference, B-2 
general description, 3-3 
instruction format and timing, E-3, E-8 
instruction specification, 26-231 
mask exceptions and interrupts, 9-4 
one-byte opcode map, A-4, A-5 . 
two-byte opcode map, A-6, A-7 . 

POPA (pop all general registers), 
flag cross-reference, B-2 
general description, 3-4 
instruction format and timing, E-3 
instruction specification, 26-234 
one-byte opcode map, A-4 

POPAD (pop all general registers), instruction 
specification, 26-234 

POPF (pop stack into flags), 
flag cross-reference, B-2 
instruction description, 3-38 
instruction format and timing, E-lO 
instruction specification, 26-236 
one-byte opcode map, A-4, A-5 

POPFD (pop stack into flags), instruction 
specification, 26-236 

position-independent code, and segmentation, 
5-1 

power-up, 
and RESET signal, 10-1 
and self test, 10-1 , 

precision control, Intel486 Floating Point 
Processor (FPU), 15c16 

prefix, and instruction format, 2-16 
present bit, 

and page table entries, 5-20 
and TSS descriptor, 7-4 
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privilege levels, segment descriptors, 6-5 
privileged instruction, 

CLTS (clear task-switched flag), 6-19 
HLT (halt processor), 6-19 
LGDT (load GDT register), 6-19 
LIDT (load IDT register), 6-19 
LLDT (load LDT register), 6-19 
LMSW (load machine status word), 6-19 
LTR (load task register), 6-19 
MOV to/from CRO (move to control 

register 0), 6-19 
MOV to/from DRn (move to debug register 

n),6-19 
MOV to/from TRn (move to test register 

n),6-19 
procedure return, and gate descriptors, 6-17 
process synchronization, and XCHG 

instruction, 3-2 
processor communication, and multiprocessing 

systems, 13-1 
processor detection code, to distinguish 

processors, 22-11 
processor state, 

after reset, 10-1 
and TSS (task state segment), 7-2 

programmed exceptions, software interrupts; 
9-1 

protected flat model, and segmentation, 5-4 
protected mode, 

Intel486 operating mode, 1-2 
initialization switching, .10-4 
Intel 286 processor, 21-1 
software initialization, 10-5 

protection, 
and control·transfer restrictions, 6-9 
and data access restrictions, 6'7 
and gate descriptors, 6-11 
and input/output, 8-6 
and pointer validation instructions, 6-20 
and segment descriptors, 6-2 
page-level protection, 6-22 
segment-level protection, 6-1 

protection mechanism, 
and IOPL flag, 4-3 . 
and memory. organization model, 2-2 
and privilege levels, 6-5 
and read-only acces, 6-24 
read/write access, 6-24 

protection parameters, and page-table entries, 
6-23 

protection violations, Interrupt 13 (general 
protection), 9-20 

pseudo-locking, 
and instruction prefetching, 13-4 
and multiprocessing, 13-1 
and PLOCK#, 13-3 

pseudodenormal numbers, 
and Intel486 processor, 16-13 
denormal exception, 16-13 

PUSH (push operand onto stack), 
flag cross-reference, B-2 
instruction description, 3-2 
instruction format and timing, E-3, E-8 
instruction specification, 26c237 
modR/M byte opcodes, A-8 . 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-6, A-7 

PUSHA (push all general registers), 
flag cross-reference, B-2 
general description, 3-3 
instruction format and timing, E-3 
instruction specification, 26-239 
one-byte opcode map, A-4 

PUSHAD (push all general registers), 
instruction specification, 26-239 

PUSHF (push flags onto stack), 
flag cross-reference, B-2 
instruction' description, 3-38 
instruction format and timing, E-1O 
instruction specification, 26-241 
one-byte opcode map, A-4, A-5 

PUSHFD (push flags onto stack), instruction' 
specification, 26-241 . , 

PWT bit (page-level write-through), 
cache control, 5-22 
cache management bits, 12-4 
system control flag, 4-6 

QNaN real indefinite, 
and invalid operation exception, 16-11 
and quiet NaN (not-a-number), 16-11' 

quadwords, description, 3-4 
quiet NaN (not-a-number), and QNaN real 

indefinite, 16-11 

RCL (rotate through carry left), 
flag cross-reference, B-2 
instruction description, 3-16 
instruction specification, 26-242 
modR/M byte opcodes, A-8 
status flag summary, C-2 

RCR (r;otate through carry right); 
flag cross-reference, B-2 
instruction description,. 3-16 
instruction specification, 26~242 
mod¥-IM byte opcodes, A-8 
status flag summary, C-2 

re-entrant code, and tasks, 7-3 
re-entrant procedure, description, 7-1 
re-entrant task switching, and busy bit, 7-12 
read access, and accessed bit, 5-21 
read-only access, and protection mechanism, 

6-24 
read/write access, protection mechanism, 6-24 
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read/write bit, and page table entries, 5-22 
readable bit, executable-segment descriptor, 

6-3 
real numbers, FPU data type, 15-12 
real-address mode, 

address translation, 22-1 
entering and leaving, 22-4 
Intel486 operating mode, 1-2 
Intel486 processor, 22-1 
Inte1386 DX processor, 22-1 
Inte1386 DX processor differences, 22-9 
Intel 80186 processor, 22-1 
Intel 80188 processor, 22-1 
Intel 286 processor, 22-1 
Intel 286 processor differences, 22-9 
Intel 8086 processor, 22-1 
Intel 8086 processor' differences, 22-5 
Intel 8088 processor, 22-1 
software initialization, 10-2 
switch to protected mode, 22-4 

records and structure decIaratives, 
ASM386/486, 18-4 

register I/O instructions, 
IN (input from port), 8-5 
OUT (output from port), 8-5 

register specifier, instruction format, 2-16 
registers, ' 

and real-address mode, 22-2 
for application programming, 2-8 
for operand selection, 2-17 
for system programming, 4-1 

relative address, and JMP instruction, 3-23 
REP INS, instruction format and timing,E-15 
REP LODS, instruction format and timing, 

E-lO . 
REP MOYS, instruction format and timing, 

E-lO 
REP OUTS, instruction format and timing, 

E-15 
REP prefix, and MOYS instruction, 3-29 
REP (repeat), 

instruction description, 3-28 
instruction speCification, 26-245 
one-byte opcode map, A-4 

REP STOS, instruction format and timing, 
E-lO 

REPE CMPS, instruction format and timing, 
E-lO 

REPE (repeat while equal), 
instruction description, 3-28 
instruction specification, 26-245 
one-byte opcode map, A-4 

REPE SCAS, instruction format and timing, 
E-IO 

repeat, instruction prefix, 2-16 
repeat prefix, instruction format, 2-16 

REPNE CMPS (compare strings), instruction 
format and timing, E-lO 

REPNE (repeat while not equal), 
instruction description, 3-28 
instruction speCification, 26-245 
one-byte opcode map, A-4 

REPNE SCAS, instruction format and timing, 
E-lO . 

REPNZ (repeat while not zero), 
instruction description, 3-28 
instruction specification,· 26-245 

REPZ (repeat while zero), 
instruction description, 3-28 
instruction specification, 26-245 

requester privilege level, segment selectors, 5-9 
reset, and processor state, 10-1 
reset initialization, and RESET signal, 1O~ 1 
RESET signal, and reset initialization, 10-1 
RET (return from procedure), 

far form description, 6"17. 
general description, 3-24 
instruction format and timing, E-7, E-8 
instruction specification, 26-248 
near form description, 6-17 
one-byte opcode map, A-4, A-5 

RF flag (resume flag), 
debugging support,11-1 
mask debug faults, 9-4 
system flag description, 4-3 

robot arm kinemetics, example, 20-23 
ROL (rotate left), . 

flag cross-reference, B-2 
instruction description, 3-16 
instruction speCification, 26-242 
modRiM byte opcodes, A-8 
status flag summary, C-2 

ROR (rotate right), 
flag cross-reference, B-2 
instruction description, 3-16 
instruction specification, 26-242 
modRiM byte opcodes, A-8 
status flag summary, C-2 

round-off errors, and Intel486 Floating Point 
Processor (FPU), 14-4 

rounding control, Intel486 Floating Point 
Processor (FPU), 15-15 

RPL (requested privilege level), 
and data access restrictions, 6-7 
and pointer integrity, 6-22 
and segment selectors, 6-6 

S bit, segment descriptors, 5-12 
SAHF (store AH into flags), 

instruction description, 3-37 
instruction format and timing, E-lO 
instruction specification, 26-252 
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one-byte opcode map, A-4, A-5 

SAL (shift arithmetic left), 
instruction description, 3-13 
instruction specification, 26-253 
status flag summary, C-2 

SAR (shift arithmetic right), 
instruction description, 3-14 
instruction specification, 26-253 
modR/M byte opcodes, A-8 
status flag summary, C-2 

SBB (integer subtraction with borrow), 
flag cross-reference, B-2 
instruction description, 3-7 
instruction specification, 26-256 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-1 

SCAS(compare string data), 
flag cross-reference, B-2 
instruction format and timing, E-9 
instruction specification, 26-258 

, status flag summary, C-2 
SCAS (scan string data), instruction 

description, 3-29 
SCASB (compare string data), 

instruction specification, 26-258 
one-byte opcode map, A-4, A-5 

SCASD (compare string data), 
instruction specification, 26-258 
one-byte opcode map, A-4, A-5 

SCASW (scan string data), 
instruction specification, 26-258 
one-byte opcode map, A-4, A-5 

segment, c\escription, 5-1 
segment descriptors, 

and base, 5-10 
and flat model, 5-3 
and granularity bit, 5-10 
and Intel 80286 processor, 21-1 
and limit, 5-10 
and logical address translation, 2-2 
and protection, 6-2 
and S bit, 5-12 
and segment selectors, 5-10,5-8 
and segment translation, 5-5 
and segment-present bit, 5-14 
and type, 5-12 
and type field, 5-13 
automatic locking, 13-3 
code segments, 5-13 
D bit, 5-12 
data segments, 5-13 
descriptor table base registers, 5-16 
DPL (descriptor privilege level), 5-14, 6-6 
segment descriptor tables, 5-15 

segment level protection, 
and PE control flag, 4-8 
segmentation, 6-1 

INDEX 

segment limits, and protected flat model, 5-4 
segment override prefix, instruction format, 

2-16 
segment privilege level, DPL (descriptor 

privilege level), 5-14 
segment register instructions, and application 

programming, 3-39 
segment registers, 

and segment selectors, 2-10 
and segment translation, 5-6 
as register operand, 2-19 
of Intel486 processor, 2-8 

segment selectors, 
and index, 5-9 
and requester privilege level, 5-9 
and RPL (requested privilege level), 6-6 
and segment descriptors, 5-10 
and segment registers, 2-10 
and segment translation, 5-8 
and table indicator bit, 5-9 
for segmented address space, 2-3 

segment translation, 
and page translation, 5-23 
and segment selectors, 5-8' 
and segmentation, 5-5 

segment-not-present fault, Interrupt 11 
(segment not present), 9-18 

segment-present bit, segment descriptors, 5-14 
segmentation, 

and combined protection with page, 6-25 
and default assignment, 2-19 
and default selection, 2-20 
and exceptions handling, 2-24 
and explicit memory operands, 2-19 
and flat model, 5-3 
and flat model initialization, 10-5 
and I/O address space, 8-1 
and instruction prefix override, 2-16 
and linear address, 5-2 
and logical address, 5-2 
and memory management, 2-1,5-1 
and memory organization model, 2-2, 2-3 
and model selection, 5-3 
and multi-segment model, 5-4 
and multi-segmented model initialization, 

10-5 
and override prefix for segment selection, 

2-19, 2-20 
and physical address, 5-2 
and position-independent code, 5-1 
and protected flat model, 5-4 
and segment translation, 5-5 
and segment-level protection, 6-1 

self test, and power-up, 10-1 
self-modifying code, internal cache, 12-3 
semaphores, 
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sensitive instructions, 
and I/O operations, 6-19 
CLI (clear interrupt-enable flag), 8-6 
IN (input), 8-6 
INS (input string), 8-6 

. OUT (output), 8-6 
OUTS (output string), 8-6 
STI (set interrupt-enable flag), 8-6 

SETB, two-byte opcode map, A-6 
SETBE, two-byte opcode map, A-6 
SETcc (byte set on condition), 

and status flags, 3-7 
flag cross-reference, B-2 
general description, 3-22 
instruction format and timing, E-7 
instruction specification, 26-260 

SETL, two-byte opcode map, A-7 
SETLE, two-byte opcode map, A-7 
SETNB, two-byte opcode map, A-6 
SETNBE, two-byte opcode map, A-6 
SETNL, two-byte opcode map, A-7 
SETNLE, two-byte opcode map, A-7 
SETNO, two-byte opcode map, A-6 
SETNP, two-byte opcode map, A-7 
SETNS, two-byte opcode map, A-7 
SETNZ, two-byte opcode map, A-6 
SETa, two-byte opcode map, A-6 
SETP, two-byte opcode map, A-7 
SETS, two-byte opcode map, A-7 
SETZ, two-byte opcode map, A-6 
SF flag, and binary arithmetic instructions, 3-6 
SF (sign flag), status flag, 2-14 
SGDT (store global/IDTR), 

flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-262 
modR/M byte opcodes, A-8 

sharing data, using 16-bit and 32-bit 
environments, 24-3 

SHL (shift left), 
instruction description, 3-13 
instruction specification, 26-253 
modR/M byte opcodes, A-8 

SHLD (shift left double precision), 
flag cross-reference, B-2 
instruction description, 3-16 
instruction specification, 26-264 
status flag summary, C-2 
two-byte opcode map, A-6 

short integer, numeric data type, 14-6 
SHR (shift right), 

instruction description, 3-13 
instruction specification, 26-253 
modRiM byte opcodes, A-8 

SHRD (shift right double precision), 
flag cross-reference, B-2 
instruction description, 3-16 
instruction specification, 26-266 
status flag summary, C-2 
two-byte opcode map, A~ 7 

SIB (scale/index/base byte), instruction format, 
2-16 

SIDT (store global/IDTR), 
flag cross-reference, B-2 . 
instruction format and timing, E-12 
instruction specification, 26-262 
modR/M byte opcodes, A-8 

sign extension, description, 3-4 
single real, numeric data type, 14-6 
. single-step trap, Interrupt 1 (debug 

exceptions), 9-14, 11-8 . 
size limit, and segment descriptor, 2-2 
SLDT (store LDTR), 

flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-268 
modR/M byte opcodes, A-8 

SMSW instruction, and Intel 286 processor, 
4-11 

SMSW (store machine status word), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-269 
modR/M byte opcodes, A-8 

software exception handling, numeric 
exceptions, 16-18 

software initialization, 
and real-address mode, 10-2 
in protected mode, 10-5 

software interrupts, programmed exceptions, 
9-1 

source operands, 
floating-point instructions, 17-1 
for binary arithmentic instructions, 3-6 
for two-operand instructions, 2-17 

spawning, See copy-on-write strategy 
special numeric values, FPU data formats, 

16-1 
SS register, 

and stack segment, 2-11 
segment register, 2-10 

stack, and interrupt procedures, 9-9 
stack exception, numeric exceptions, 16-20 
stack fault, Interrupt 12 (stack exception), 9-19 
stack frame, description of, 3-30 
stack frame pointer set, display, 3-30 
stack operations, and default segment 
selection, 2-19 
stack overflow, stack exception, 16-20 . 
Stack Pointer (ESP) Register, description of, 

2-12 
stack segment, and SS register, 2-11 
Stack Segment (SS) Register, description of, 

2-12 
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stack switching, and gate descriptors, 6-13 
stack underflow, stack exceetion, 16-20 
Stack-Frame Base Pointer (EBP) Register, 

description of; 2-13 
standard underflow/overflow exception 

handler, and IEEE Standard, 16-27 
status flags, 

and lec instruction, 3-7 
and SETcc instruction, 3-7 

status registers, of Intel486 processor, 2-8 
STC (set carry flag), 

flag cross-reference,· B-2 
instruction format and timing, E-lO 
instruction specification, 26-270 
one-byte opcode map, A-5 

STD (set direction flag), 
flag cross-reference, B-2 
instruction format and timing, E-lO 
instruction specification, 26-271 
one-byte opcode map, A-5 

STI (set interrupt flag), 
flag cross-reference, B-2 
instruction format and timing, E-lO 
instruction specification, 26-272 
one-byte opcode map, A-5 

STI (set interrupt-enable flag), 
and INTR interrupts, 9-3 
sensitive instructions, 8-6 

STOS (store string data), 
flag cross-reference, B-2 
general description, 3-30 
instruction format and timing, E-9 
instruction specification, 26-273 

STOSB (stOl:e string data), 
instruction specification, 26-273 
one-byte opcode map, A-4, A-5 

STOSD (store string data), 
instruction specification, 26-273 
one-byte opcode map, A-4, A-5 

STOSW (store string data), 
instruction specification, 26-273 
one-byte opcode map, A-4, A-5 

STR (store task register), 
and task register description, 7-6 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-275 
modR/M byte opcodes, A-8 

string, data type, 2-6 
string insertion/extraction, and double-shift 

instructions, 3-19 
string instructions, and EFLAGS register, 2-13 
string operations, 

and application programming, 3-27 
and default segment selection, 2-19 

SUB (integer subtract), 
flag cross-reference, B-2 
instruction specification, 26-276 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 

status flag summary, C-l 
SUB (subtract integers), instruction 

description, 3-7 
supervisor level, and addressable domain 

restriction, 6-23 
synchronization, exceptions, 18-13, 18-14 
system control, instructions (system 

programming), 4-9 
system control flag, 

AM (alignment mask-bit 18), 4-7 
CD (cache disable-bit 30), 4-6 
EM (emulation-bit 2), 4-7 
ET (extension type-bit 4), 4-7 
MP (math present-bit 1),4-7 
NE (numeric error- bit 5), 4-7 
PCD (page-level cache disable-CR3 bit 4), 

4-6 
PE (protection enable - bit 0), 4-8 
PG (paging-bit 31), 4-6 
PWT (page-level writes transparent - CR3 

bit 3), 4-6 
TS (task switched-bit3), 4-7 
WP (write protect - bit 16), 4-7 

system control flags, and CRO register, 4-5 
system flags, and system programming, 4-2 
system programming, and Intel486 Floating 

Point Processor (FPU), 19-1 
system tables, 

and protected mode initialization, 10-4 
and software initialization, 10-3 

T bit (trap bit of TSS), 
and BT bit, 11-4 
and debugging support, 11-1 

table .indicator bit, segment selectors, 5-9 
tag, and cache associative memories, 12-1 
task, description, 7-1 
task address mapping, logical to physical 

space, 7-14 
task address space, descripion, 7-13 
task creation, See copy-an-write strategy 
task gate descriptor, and protected task 

reference, 7-6 
task gates, 

and IDT descriptors, 9-7 
and task switching, 6-11, 7-1 

task linking, 
and Intel486 processor, 7-11 
and TSS (task state segment), 7-11 
modification of, 7-13 

task state segment, 
and stack switching, 6-15 
and TSS descriptor, 7-2 
description, 7~1 
descriptors and task switching, 7-1 

task switching, 
and exceptions, 7-1 
and Intel486 processor, 7-7 
and interrupts, 7-1 
and LDT switching, 7-1 
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and page fault, 9-22 
and task gates, 6-11, 7-1 
and task state segment descriptors, 7-1 

task-switch breakpoint trap, Interrupt 1 
(debug exceptions), 9-14 

task-switch trap, Interrupt 1 (debug 
exceptions), 11-8 

tasks, 
and NT flag, 4-3 
and re-entrant code, 7-3 
initialization, 10-6 

TEST (logical compare), 
flag cross-reference, B-2 
instruction description, 3-23 
instruction format and timing, E-4 
instruction specification, 26-278 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-2 

test registers, and translation lookaside buffer 
(TLB),4-8 

TF flag (trap flag), 
debugging support, 11-1 
system flag description, 4-3 

three-operand instructions, 
and ECX register, 2-18 
description of, 2-18 

TLB (translation lookaside buffer), 
initialization testing, 10-6 
structure of, 10-7 
test operations, 10-10 
test registers, 10-8 

top-of-stack (TOS), 
and ESP register, 2-12 
and PUSH instruction, 3-2 

TR4 (test status register), cache test register, 
10-13 

TR6 (test command register), TLB test 
register, 10-8 

TR7 (test data register), TLB test register, 
10-9 

TR (task register), 
and current TSS, 7-4 
register description, 4-5 

transcendental instructions, floating-point 
instructions, 17-4 

transferring control, in 16-bit and 32-bit 
environments, 24-3 

translation lookaside buffer (TLB), 
and page translation, 5-18, 5-22 
and test registers, 4-8 

trap gates, 
and exceptions, 6-11 
and IDT descriptors, 9-7 

traps, 
exception conditions, 9-13 
exception description, 9-2 
exception processor-detected, 9-1 

trigonometric calculation, numeric 
programming, 20-7 

TS (task switched - bit3), system control flag, 
4-7 

TSS Busy bit, automatic locking, 13-3 
TSS (task state segment), 

and I/O permission bit map, 8-7 
and Intel 286 processor compatibility, 7-2 
and processor state information, 7-2 
and task linking, 7-11 

two-operand instructions, description of, 2-17 
type, segment descriptors, 5-12 
type checking, 

and protection mechanism, 6-24 
segment descriptors, 6-3 

type field, segment descriptors, 5-13 

underflow exception, 
and de normal values, 16-3 
and inexact exception, 16-26 
and numeric underflow, 16-25 

unordered, comparison instructions, 17-4 
unsegmented model, creation of, 2-10 
unsupported formats, and data type encoding, 

16-13 
user level, and addressable domain restriction, 

6-23 
user mode (privilege level 3), and alignment­

check exception, 4-2 
user mode write protect, and copy-on-write 

strategy, 6-24 
user/supervisor bit, and page table entries, 

5-22 

vector, exception/interrupt identification, 9-1 
VERR (verify segment for read), 

descriptor validation, 6-21 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-279 
modR/M byte opcodes, A-8 

VERW (verify segment for write), 
descriptor validation, 6-21 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-279 
modR/M byte opcodes, A-8 

virtual memory, 
and memory model, 2-1 
description, 5-14 

virtual-8086 mode, 
address translation, 23-2 
and VM flag, 4-3 
bus lock, 23-14 
entering and leaving, 23-5 
Intel486 operating mode, 1-2 
Intel486 processor, 23-1 
I/O protection, 8-6 
Inte1386 DX processor differences, 23-15 
Intel 286 processor differences, 23-13 
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Intel 8086 processor differences, 23-10 
Intel 8086 processor programs, 23-1 
paging tasks, 23-4 
registers and instructions, 23-1 
task protection, 23-5 
task structure, 23-3 
virtual I/O, 23-9 

VM flag (virtual-8086 mode - bit 17), system 
flag description, 4-3 

wait, control instructions, 17-8 
WAIT (wait), 

flag cross-reference, B-2 
instruction format and timing, E-20 
instruction specification, 26-281 
one-byte opcode map, A-4, A-5 

WBINVD (write-back and invalidate cache), 
cache management instructions, 12-3 
flag cross-reference, B-2 
instruction format and timing, E-ll 
instruction specification, 26-282 
two-byte opcode map, A" 7 

word, data .type, 2-3 
word integer, numeric data type, 14-6 
WP (write protect - bit 16), system control 

flag, 4-7 
writable bit, and data-segment descriptor, 6-3 
write access, 

and accessed bit, 5-21 
and dirty bit, 5-21 

write protection, and user-mode pages, 6-24 
write-back, and caching, 12-2 
write-through, 

and caching, 12-2 
and external cache, 12-2 
and internal cache, 12-2 

INDEX 

XADD (exchange and add), 
flag cross-reference, B-2 
instruction description, 3-48 
instruction format and timing, E-6 
instruction specification; 26-283 
status flag summary, C-1 
two-byte opcode map, A-6 

XCHG (exchange), 
automatic locking, 13-3 
flag cross-reference, B-2 
instruction description, 3-2 
instruction format and timing, E-3 
instruction specification, 26-285 
one-byte opcode map, A-4 

XLAT (table look-up translation), 
flag cross-reference, B-2 
instruction format and timing, E-9 
instruction specification, 26-286 
one-byte opcode map, A-4 

XLATB (table look-up translation), 
instruction description, 3-42 
instruction specification, 26-286 

XOR (logical exclusive or), 
flag cross-reference, B-2 
instruction description, 3-12 
instruction specification, 26-288 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4 
status flag summary, C-2 

zero operands, and Intel486 Floating Point 
Processor (FPU), 16-6 

zero-divide exception, and division by zero, 
16-21 

ZF flag, and binary .arithmetic instructions, 3-6 
ZF (zero flag), status flag, 2-14 
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1551 N. Tu[;lin Avenue 
Suilo 800 
5[1nl[l Ana 92701 
Tol: (800) 628-8686 
TWX: 910-595-1114 
FAX: (714) 541-9157 

tlntet Corp. 
15260 Ventura Boulevard 
Suite 360 
Sherman Oaks 91403 
Tel: (800) 628-8686 
FAX: (818) 995-6624 

COLORADO 

*tlntel Corp. 
600 S. Cherry SI. 
Suite 700 
Denver 80222 
Tel: (800) 628-8686 
TWX: 910-931-2289 
FAX: (303) 322-8670 

CONNECTICUT 

tlntel Corp. 
103 Mill Plain Road 
Danbury 06811 
Tel: (800) 628-8686 
FAX: (203) 794-0339 

FLORIDA 

tlntel Corp. 
800 Fairway Drive 
Suite 160 
Deerfield Beach 33441 
Tel: (800) 628-8686 
FAX: (305) 421-2444 

Intel Corp. 
2250 Lucien Way 
Suite 100, Room 8 
Maitland 32751 
Tel: (800) 628-8686 
FAX: (407) 660-1283 

'Sales and Service Office 
'Field Application Location 

NORTH AMERICAN SALES OFFICES 
GEORGIA NEW YORK *tlntel Corp. 

tlntel Corp. *Inlel Corp. 
5000 Quorum Drive 
Suite 750 

20 Technology Parkway 850 Crosskeys Office Park Dallas 75240 
Suite 150 Fairport 14450 Tel: (800) 628-8686 
Norcross 30092 Tel: (800) 628-8686 
Tel: (800) 628-8686 TWX: 510-253-7391 *tlntel Corp. 
FAX: (404) 605-9762 FAX: (716) 223-2561 20515 SH 249 

tlntel Corp. Suite 401 
IDAHO 300 Westage Business Center Houston 77070 

Intel Corp. Sulle 230 Tel: (800) 628-8686 

9456 Fairview Ave., Suite C Fishkill 12524 TWX: 910-881-2490 

Boise 83704 Tel: (800) 628-8686 FAX: (713) 988-3660 

Tel: (800) 628-8686 FAX: (914) 897-3125 
FAX: (208) 377-1052 *tlntei Corp. UTAH 

ILLINOIS 
2950 Express Dr., South 

tlntel Corp. Suite 130 
*tlntel Corp. Islandia 11722 428 East 6400 Soulh 

Tel: (800) 628-8686 Suite 135 
Woodfield Corp. Center III Murray 84107 
300 N. Martingale Road TWX: 510-227·6236 

FAX: (516) 348-7939 Tel: (800) 628-8686 
Suite 400 FAX: (801) 268-1457 
Schaumburg 60173 
Tel: (800) 628-8686 OHIO 
FAX: (708) 706-9762 *Inlel Corp. WASHINGTON 

INDIANA 
56 Milford Dr., Suite 205 

tlntel Corp. Hudson 44236 

tlntel Corp. Tel: (800) 628-8686 2800 1561h Avenue S.E. 
FAX: (216) 528-1026 Suite 105 

8910 Purdue Road Bellevue 98007 
Suite 350 *tlntel Corp. Tel: (800) 628-8686 
Indianapolis 46268 3401 Park Center Drive FAX: (206) 746-4495 
Tel: (800) 628-8686 Suite 220 
FAX: (317) 875-8938 ~:rrtoci~~~~-8686 WISCONSIN 
MARYLAND TWX: 810-450-2528 

*tlntel Corp. 
FAX: (513) 890-8658 Intel Corp. 

400 N. Executive Dr. 
100tO Junction Dr. OKLAHOMA Suite 401 
Suite 200 Brookfield 53005 
Annapolis Junction 2070t ~nJg~ 1frg'roadway 

Tel: (800) 628-8686 
Tel: (800) 628-8686 FAX: (414) 789-2746 
FAX: (410) 206-3678 Suite 115 

Oklahoma City 73162 
MASSACHUSETTS Tel: (800) 628-8686 

CANADA 
*tlntel Corp. 

FAX: (405) 840-9819 

Westford Corp. Center OREGON 
5 Carlisle Road BRITISH COLUMBIA 
2nd Floor tlntel Corp. 
Westford 01886 15254 N.W. Greenbrier Pkwy. Intel Semiconductor of 
Tel: (800) 628-8686 Building B Canada, Ltd. 
TWX: 710-343-6333 Beaverton 97006 999 Canada Place 
FAX: (508) 692-7867 Tel: (800) 628-8686 Suite 404, #11 

TWX: 910-467-8741 Vancouver V6C 3E2 
MICHIGAN FAX: (503) 645-8181 Tel: (800) 628-8686 

tlntel Corp. PENNSYLVANIA 
FAX: (604) 844-2813 

7071 Orchard Lake Road 
*tlntel Corp. Suite 100 ONTARIO 

West Bloomfield 48322 925 Harvest Drive 

Tel: (800) 628-8686 Sulle 200 tlntel Semiconductor of 
FAX: (313) 851-8770 Blue Bell 19422 Canada, Ltd. 

Tel: (800) 628-8686 2650 Queensview Drive 
MINNESOTA 

FAX: (215) 641-0785 Suite 250 
Ottawa K2B 8H6 

tlntel Corp. SOUTH CAROLINA Tel: (800) 628-8686 
3500 W. 80th SI. Intel Corp. FAX: (613) 820-5936 
Suite 360 

~~~:o~~~1t~~:.~~g~ 
7403 Parklane Rd., Suite 3 tlntel Semiconductor of Columbia 29223 
Tel: (800) 628-8686 Canada, Ltd. 

TWX: 910-576-2867 FAX: (803) 788-7999 190 Attwell Drive 
FAX: (612) 831-6497 Suite 500 

Intel Corp. Rexdale M9W 6H8 
NEW JERSEY 100 Executive Center Drive Tel: (800) 628-8686 

Intel Corp. 
Suite 109, 8183 FAX: (416) 675·2438 
Greenville 29615 

2001 Route 46, Suite 310 Tel: (800) 628-8686 
QUEBEC Parsippany 07054-1315 FAX: (803) 297-3401 

Tel: (800) 628-8686 
tlntel Semiconductor of FAX: (201) 402-4893 TEXAS 
Canada, Ltd. 

*tlntel Corp. tlntel Corp. 1 Rue Holiday 
lincroft Office Center 8911 N. Capital of Texas Hwy. Suite 320 
125 Half Mile Road Suite 4230 Tour East 
Red Bank 07701 Austin 78759 Pt. Claire H9R 5N3 
Tel: (800) 628-8686 Tel: (800) 628-8686 Tel: (800) 628-8686 
FAX: (908) 747-0983 FAX: (512) 338-9335 FAX: 514-694-0064 

CGlSALE/111293 



NORTH AMERICAN DISTRIBUTORS 
ALABAMA Arrow/Schwaber Electronics Wyle Laboratories Avnet Computer Arrow/Schwaber Electronics 

Arrow/Schweber Electronics 
26707 W. Agoura Road 15370 Barranca Pkwy. 55 Federal Road, #103 4250 E. Rivergreen Pkwy., #E 
Calabasas 91302 Irvine 92713 Danbury 06810 Duluth 30136 

1015 Henderson Road Tel: (818) 880·9686 Tel: (714) 753·9953 Tel: (203) 797·2880 Tel: (404) 497·1300 Huntsville 35806 
Tel: (205) 837·6955 

FAX: (818) 772·8930 FAX: (714) 753·9877 FAX: (203) 791·9050 FAX: (404) 476·1493 

FAX: (205) 721·1581 Arrow/Schwaber Electronics Wyle Laboratories Hamilton Hallmark Avnet Computer 
Hamilton Hallmark ' 48834 Kato Road, Suite 103 15360 Barranca Pkwy., #2QO 125 Commerce Court, Unit 6 3425 Corporate Way, #G 
4890 ~niversity Square, #_1 Fremont 94538 Irvine 92713 Cheshire 06410 Duluth 30136 
HuntsviJre 35816 Tel: (510) 490·9477 Tel: (714) 753·9953 Tel: (203) 271·2844 Tel: (404) 623·5452 
Tel: (205) 837·8700 Arrow/Schwaber Electronics FAX: (714) 753·9877 FAX: (203) 272·1704 FAX: (404) 476·0125 
FAX: (205) 830·2565 6 Cromwell # 1 00 Wyle Laboratories Pioneer Standard Hamilton Hallmark 

~~oSb~;prg~ate Dr., #120 
Irvine 92718 
Tol: (714) 838·5422 

2951 Sunrise Blvd., #175 2 Trap Falls Road 3425 Corporate Way, #G & #A 
Rancho Cordova 95742 Shelton 06484 Duluth 30136 

Huntsville 35805 FAX: (714) 454·4206 Tel: (916) 638·5282 Tel: (203) 929·5600 Tel: (404) 623·5475 
Tel: (205) 830-9526 

Arrow/Schweber Electronics FAX: (916) 638·1491 FAX: (404) 623·5490 
FAX: (205) 830·9557 

Pioneer Technologies Group 
95t 1 Ridgehaven Court 

Wyle Laboratories FLORIDA Pioneer Technologies Group San Diego 92123 
4835 University Square, #5 Tel: (619) 565·4800 9525 Chesapeake Drive 

Anthem Electronics 
4250 C. Rivergreen Parkway 

Huntsville 35805 FAX: (619) 279·8062 San Diego 92123 Duluth 30136 
Tel: (205) 837·9300 Tel: (619) 565·9171 598 South Northlake Blvd., #1024 Tel: (404) 623·1003 
FAX: (205) 837·9358 Arrow/Schweber Electronics FAX: (619) 365·0512 Altamonte Springs 32701 FAX: (404) 623·0665 

1180 Murphy Avenue Tel: (813) 797·2900 
Wyle Laboratories San Jose 95131 Wyle Laboratories FAX: (813) 796·4880 Wyle Laboratories 
7800 Governers Drive Tel: (408) 441·9700 3000 Bowers Avenue 6025 The Corners Pkwy., #111 
Tower Building, 2nd Floor FAX: (408) 453·4810 Santa Clara 95051 Arrow/Schwebel' Electronics Norcross 30092 
Huntsville 35806 Tel: (408) 727·2500 400 Fairway Drive, #102 Tel: (404) 441·9045 
Tel: (205) 830·1119 Avnet Computer FAX: (408) 727·5896 Deerfield Beach 33441 FAX: (404) 441·9086 
FAX: (205) 830·1520 3170 Pullman Street Tel: (305) 429·8200 

Costa Mesa 92626 Wyle Laboratories FAX: (305) 428·3991 
ARIZONA Tel: (714) 641·4150 17872 Cowan Avenue ILLINOIS 

Anthem Electronics FAX: (714) 641·4170 Irvine 92714 Arrow/Schweber Electronics 
Tel: (714) 863·9953 37 Skyline Drive, #3101 Anthem Electronics 

1555 W. 10th Place, #101 Avnet Computer FAX: (714) 263·0473 Lake Mary 32746 . 1300 Remington Road, Suite A 
Tempe 85281 1361B West 190th Street Tel: (407) 333·9300 Schaumberg 60173 
Tel: (602) 966·6600 Gardena 90248 Wyle Laboratories FAX: (407) 333·9320 Tel: (708) 884-0200 
FAX: (602) 966·4826 Tel: (800) 426·7999 26010 Mureau Road, #150 FAX: (708) 885·0480 
Arrow/Schweber Electronics . FAX: (310) 327·5389 Calabasas 91302 Avnet Computer 
2415 W. Erie Drive Tel: (818) 880·9000 3343 W. Commercial Boulevard . Arrow/Schweber Electronics 
Tempe 85282 Avnet Computer FAX: (818) 880·5510. ~:~ea~~~;d~~~t~ifci9 1140 W. Thorndalo Rd. 
Tel: (602) 431·0030 755 Sunrise Boulevard, #150 Itasca 60143 
FAX: (602) 252·9109 Roseville 95661 Zeus Arrow Electronics Tel: (305) 730·9110 Tol: (700) 250·0500 

Tel: (916) 781·2521 6276 San Ignacio Ave., #E FAX: (305) 730·0368 
Avnet Computer FAX: (916) 781·3819 San Jose 95119 Avnot Computor 
1626 S. Edwards Drive Tel: (408) 629·4789 Avnet Computer 1124 Thorndalo Avonuo 
Tempe 85281 Avnet Computer FAX: (408) 629·4792 3247 Tech Drive North Bensenville 60106 
Tel: (602) 902·4600 1175 Bordeaux Drive, #A SI. Petersburg 33716 Tel: (708) 860·8572 
FAX: (602) 902·4640 Sunnyvale 94089 Zeus Arrow Electronics Tel: (813) 573·5524. FAX: (708) 773·7976 

Hamilton Hallmark 
Tel: (408) 743·3454 22700 Sav; Ranch Pkwy. FAX: (813) 572·4324 

4637 S. 36th Place 
FAX: (408) 743·3348 Yorba Linda 92687-4613 Hamilton Hallmark 

Tel: (714) 921·9000 Hamilton Hallmark 1130 Thorndale Avenue 
Phoenix 85040 Avne! Computer 

FAX: (714) 921·2715 3350 N.W. 53rd 51., #105·107 Bensenville 60106 
Tel: (602) 437-1200 21150 Califa Street Ft. Lauderdale 33309 Tel: (708) 860·7780 
FAX: (602) 437·2348 Woodland Hills 91376 Tel: (305) 484·5482 FAX: (708) 860·8530 
Wyle Laboratories Tel: (818) 594·8301 COLORADO FAX: (305) 484·2995 
4141 E. Raymond FAX: (818) 594·8333 MTI Systems 
Phoenix 85040 Hamilton Hallmark Anthem Electronics Hamilton Hallmark 1140 W. Thorndale Avenue 
Tel: (602) 437-2088 3170 Pullman Street 373 Inverness Drive South 10491 72nd SI. North Itasca 60143 
FAX: (602) 437·2124 Costa Mesa 92626 Englewood 80112 Largo 34647 Tel: (708) 250·8222 

Tel: (714) 641·4100 Tel: (303) 790·4500 Tel: (813) 541·7440 FAX: (708) 250·8275 . 
CALIFORNIA FAX: (714) 641·4122 FAX: (303) 790-4532 FAX: (813) 544·4394 

Pioneer Standard 
Anthem Electronics Hamilton Hallmark Arrow/Schweber Electronics Hamilton HaJimark 2171 Executive Dr., #200 
9131 Oakdale Ave. 1175 Bordeaux Drive, #A 61 Inverness Dr. East,. #105 7079 University Boulevard Addison 60101 
Chatsworth 91311 Sunnyvale 94089 Englewood 80112 Winter Park 32792 Tel: (708) 495·9680 
Tel: (818) 775-1333 Tel: (408) 435·3500 Tel: (303) 799·0258 Tel: (407) 657·3300 FAX: (708) 495·9831 
FAX: (818) 775·1302 FAX: (408) 745·6679 FAX: (303) 373·5760 FAX: (407) 678·4414 
Anthem Electronics Wyle Laboratories 
1 Oldfield Drive Hamilton Hallmark Hamilton Hallmark Pioneer Technologies'Group 2055 Army Trail Road, #140 
Irvine 92718-2809 4545 Viewridge Avenue 12503 E. Euclid Drive, #20 337 Northlake alvd., #1000 Addison 60101 
Tel: (714) 768·4444 San Diego 92123 Englewood 80111 Alta Monte Springs 32701 Tel: (800) 853·9953 
FAX: (714) 768·6456 Tel: (619) 571-7540 Tel: (303) 790·1662 Tel: (407) 834·9090 FAX: (708) 620-1610 

Anthem Electronics 
FAX: (619) 277-6136 FAX: (303) 790·4991 FAX: (407) 834·0865 

580 Menlo Drive, #8 Hamilton Hallmark Hamilton Hallmark Pioneer Technologies Group INDIANA 
Rocklin 95677 21150 Calila 51. 710 Wooten Road, #102 674 S. Military Trail 

Arrow/Schweber Electronics Tel: (916) 624·9744 Woodland Hills 91367 Colorado Springs 80915 Deerfield Beach 33442 
FAX: (916) 624·9750 Tel: (818) 594·0404 Tel: (719) 637·0055 Tel: (305) 428·8877 7108 Lakeview Parkway West Or. 

Anthem Electronics FAX: (818) 594·8234 FAX: (719) 637·0088 FAX: (305) 481·2950 Indianapolis 46268 
Tel: (317) 299·2071 

9369 Carroll Park Drive Hamilton Hallmark Wyle Laboratories Pioneer Technologies Group FAX: (317) 299·2379 
San Diego 92121 580 Menlo Drive, #2 451 E. 124th Avenue 8031-2 Phillips Highway 
Tel: (619) 453·9005 Rocklin 95762 Thornton 80241 Jacksonville 32256 Avnet Computer 
FAX: (619) 546-7893 Tel: (916) 624·9781 Tel: (303) 457·9953 Tel: (904) 730·0065 485 Gradle Drive 
Anthem Electronics FAX: (916) 961·0922 FAX: (303) 457·4831 Carmel 46032 
1160 Ridder Park Drive Wyle Laboratories Tel: (317) 575·8029 

San Jose 95131 Pioneer Standard 1000 112 Circle North FAX: (317) 844·4964 

Tel: (408) 452·2219 5850 Canoga Blvd., #400 CONNECTICUT SI. Petersburg 33716 
FAX: (408) 441·4504 Woodland Hills 91367 Tel: (813) 530·3400 Hamilton Hallmark 

Tel: (818) 883·4640 Anthem Electronics FAX: (813) 579·1518 4275 W. 96th 
Arrow Commercial Systems Group 

Pioneer Standard 
61 Mattatuck Heights Road Indianapolis 46268' 

1502 Crocker Avenue Waterburg 06705 . Tel: (317) 872·8875 
Hayward 94544 217 Technology Dr., #110 Tel: (203) 575·1575 GEORGIA FAX: (317) 876·7165 
Tel: (510) 489·5371 Irvine 92718 FAX: (203) 596·3232 
FAX: (510) 48~·9393 Tel: (714) 753·5090 Arrow Commercial Systems Group Pioneer Standard 

Arrow Commercial Systems Group Pioneer Technologies Group Arrow/Schweber Electronics 3400 C. Corporate Way 9350 Priority Way West Dr. 
12 Beaumont Road Duluth 30136 Indianapolis 46250 

14242 Chambers Road 134 Rio Robles Wallingford 06492 Tel: (404) 623·8825 Tel: (317) 573·0880 
Tustin 92680 San Jose 95134 
Tel: (714) 544·0200 Tel: (408) 954-9100 

Tel: (203) 265·7741 FAX: (404) 623·8802 FAX: (317) 573·0979 

FAX: (714) 731·8438 FAX: (408) 954·9113 
FAX: (203) 265·7988 
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NORTH AMERICAN DISTRIBUTORS (Contd.) 
KANSAS Hamilton Hallmark MISSOURI NEW YORK Pioneer Technologies Group 

Arrow/Schwaber Electronics 
100 Centennial Drive 

Arrow/Schwaber Electronics Anthem Electronics 2200 Gateway Clr. Blvd, #215 

~:~~~g~) °J:l~~430 Morrisville 27560 
9801 Legler Road 2380 Schuetz Road 47 Mall Drive Tel: (919) 460-1530 
Lenexa 66219 FAX: (508) 532-9802 St. Louis 63141 Commack 11725 FAX: (919) 460-1540 
Tel: (913) 541·9542 Tel: (314) 567-6888 Tel: (516) 864·6600 
FAX: (913) 541·0328 Pioneer Standard FAX: (314) 567·1164 FAX: (516) 493-2244 

Avnst Computer 
44 Hartwell Avenue 

Avnet Computer Arrow/Schwaber Electronics OHIO 
Lexington 02173 

15313 W. 95th Street Tel: (617) 861·9200 741 Goddard Avenue 3375 Brighton Henrietta Arrow Commercial Systems Group 
Lenexa 61219 FAX: (617) 863-1547 Chesterfield 63005 Townline Rd. 284 Cramer Creek Court 
Tel: (913) 541-7989 Tel: (314) 537-2725 Rochester 14623 

Dublin 43017 
FAX: (913) 541-7904 Wyle Laboratories FAX: (314) 537-4248 Tel: (716) 427-0300 

Tel: (614) 889-9347 15 Third Avenue FAX: (716) 427·0735 
Hamilton Hallmark Burlington 01803 Hamilton Hallmark FAX: (614) 889·9680 
10809 Lakeview Avenue Tel: (617) 272-7300 3783 Rider Trail South Arrow/Schweber Electronics 
Lenexa 66215 FAX: (617) 272·6809 Earth C~ 63045 20 Oser Avenue Arrow/Schweber Electronics 
Tel: (913) 888·4747 Tel: (314 291·5350 Hauppauge 11788 6573 Cochran Road, #E 
FAX: (913) 888·0523 MICHIGAN FAX: (314) 291·0362 Tel: (516) 231-1000 Solon 44139 

FAX: (516) 231-1072 Tel: (216) .248-3990 

KENTUCKY Arrow/Schweber Electronics NEW HAMPSHIRE ~~~e~~t~~~~:~ay 
FAX: (216) 248-1106 

Hamilton Hallmark 
19880 Haggerty Road 

Avnet Computer Arrow/Schweber Electronics Livonia 48152 Hauppauge 11788 
1847 Mercer Road, #G Tel: (800) 231-7902 2 Executive Park Drive Tel: (516)434·7443 

8200 Washington Village Dr. 
Lexington 40511 FAX: (313) 462-2686 Bedford 03102 Centerville 45458 
Tel: (800) 235·6039 Tel: (800) 442·8638 

FAX: (516) 434·7426 Tel: (513) 435·5563 
FAX: (606) 288-4936 ~876t2~?hSt~~':t, S.W., #5 

FAX: (603) 624·2402 ~~~g\~~~~~!eRd. 
FAX: (513) 435·2049 

MARYLAND 
Grandville 49418 

NEW JERSEY Rochester 14623 Avnet Computer 
Tel: (616) 531·9607 Tel: (716) 272-9110 7764 Washington Village Dr. 

Anthem Electronics FAX: (616) 531·0059 Anthem Electronics FAX: (716) 272-9685 Dayton 45459 
7168A Columbia Gateway Drive 

~~~~~ ~oa~g~~e~rook Rd. #120 
26 Chapin Road, Unit K Hamilton Hallmark 

Tel: (513) 439·6756 
Columbia 21046 Pine Brook 07058 FAX: (513) 439-6719 
Tel: (410) 995·6640 Tel: (201) 227-7960 933 Motor Parkway 

Novi 48375 Hauppauge 11788 Avnet Computer FAX: (410) 290·9862 Tel: (313) 347-1820 FAX: (201) 227-9246 
Tel: (516) 434-7470 30325 Bainbridge Rd., Bldg. A 

Arrow Commercial Systems Group FAX: (313) 347·4067 Arrow/Schweber Electronics FAX: (516) 434-7491 Solon 44139 
200 Perry Parkway Hamilton Hallmark 4 East Stow Rd., Unit 11 Hamitton Hallmark Tel: (216) 349-2505 
Gaithersburg 20877 44191 Plymouth oaks Blvd., #1300 Marlton 08053 1057 E. Henrietta Road FAX: (216) 349-1894 
Tol: (30t) 670·1600 Plymouth 48170 Tel: (609) 596-8000 Rochester 14623 FAX: (301) 670·0f88 Tel: (313) 416·5800 FAX: (609) 596-9632 Tel: (716) 475-9130 Hamilton Hallmark 

Arrow/Schwober Electronics FAX: (313) 416-5811 Arrow/Schweber Electronics FAX: (716) 475·9119 7760 Washington Village Dr. 
Dayton 45459 9800J Patuxont Woods Dr. Hamilton Hallmark 43 Route 46 East Hamilton Hallmark Tel: (513) 439·6735 Columbia 21046 Pine Brook 07058 

Tel: (30f) 596·7800 41650 Garden Brook Rd., #100 
Tel: (201) 227·7880 

3075 Veterans Memorial Hwy. FAX: (513) 439·6711 
Novi 49418 Ronkonkoma 11779 FAX: (301) 995·6201 Tel: (313) 347·4271 FAX: (201) 538·4962 Tel: (516) 737-0600 Hamilton Hallmark 

Avnet Computer FAX: (313) 347-4021 Avnet Computer FAX: (516) 737·0838 5821 Harper Road 
7172 Columbia Gateway Dr., #G Pioneer Standard l·B Keystone Ave., Bldg. 36 MTI Systems Solon 44139 
Columbia 21045 4505 Broadmoor S.E. Cherry Hill 08003 1 Penn Plaza Tel: (216) 49B-l100 
Tel: (301) 995-3571 Grand Rapids 49512 Tel: (609)424-8961 250 W. 34th Street 

FAX: (216) 248-4803 
FAX: (301) 995-3515 Tel: (616) 698-1800 FAX: (609) 751-2502 New York 10119 Hamilton Hallmark 
Hamilton Hallmark FAX: (616) 698·1831 Hamilton Hallmark Tel: (212) 643-1280 777 Dearborn Park Lane, #L 
10240 Old Columbia Road Pioneer Standard 1 Keystone Ave., Bldg. 36 FAX: (212) 643-1288 Worthington 43085 
Columbia 21046 13485 Stamford Cherry Hill 08003 Pioneer Standard Tel: (614) 888-3313 
Tel: (410) 988·9800 Livonia 46150 Tel: (609) 424-0110 68 Corporate Drive FAX: (614) 888·0767 
FAX: (410) 381-2036 Tel: (313) 525-1800 FAX: (609) 751·2552 Binghamton 13904 
North Atlantic Industries FAX: (313) 427-3720 Hamilton Hallmark Tel: (607) 722-9300 MTI Systems 

FAX: (607) 722·9562 23404 Commerce Park Rd. 
Systems Division 10 Lanidex Plaza West Beachwood 441.22 

7125 River Wood Dr. MINNESOTA Parsippani 07054 Pioneer Standard Tel: (216) 464·6688 
Columbia 21046 

Anthem Electronics Tel: (201) 515-5300 60 Crossway Park West FAX: (216) 464-3564 
Tel: (301) 312·5800 7646 Golden Triangle Drive FAX: (201) 515-1601 Woodbury, Long Island 11797 
FAX: (301) 312-5850 

Eden Prairie 55344 MTI Systems 
Tel: (516) 921-8700 Pioneer Standard 

Pioneer Technologies Group Tel: (612) 944-5454 43 Route 46 East 
FAX: (516) 921·2143 4433 Interpoint Boulevard 

15810 Gaither Road FAX: (612) 944-3045 Pinebrook 07058 Pioneer Standard Dayton 45424 
Gaithersburg 20877 Arrow/Schweber Electronics Tel: (201) 882-8780 840 Fairport Park Tel: (513) 236·9900 

Tel: (301) 921-0660 FAX: (201) 539-6430 Fairport 14450 FAX: (513) 236·8133 

FAX: (301) 670·6746 10100 Viking Drive, #100 Tel: (716) 381-7070 Eden Prairie 55344 Pioneer Standard FAX: (716) 381·5955 Pioneer Standard 
Wyle Laboratories Tel: (612) 941-5280 14·A Madison Rd. 4800 E. 131st Street 
7180 Columbia Gateway Dr. FAX: (612) 942·7803 Falrtield 07006 Zeus Arrow Electronics Cleveland 44105 
Columbia 21046 Avnet Computer Tel: (201) 575·3510 100 Midland Avenue Tel: (216) 587-3600 
Tel: (410) 312-4844 FAX: (201) 575·3454 Port Chester 10573 FAX: (216) 663·1004 
FAX: (410) 312-4953 10000 West 76th Street Tel: (914) 937·7400 

Eden Prairie 55344 Wyle Laboratories FAX: (914) 937-2553· 

MASSACHUSETTS 
Tel: (612) 829-0025 20 Chapin Road, Bldg. 10-13 OKLAHOMA 
FAX: (612) 944·2781 Pinebrook 07056 NORTH CAROLINA 

Anthem Electronics Hamilton Hallmark Tel: (201) 882·8358 Arrow/Schweber Electronics 
Arrow/Schweber Electronics 

36 Jonspin Road 9401 James Ave South, #140 FAX: (201) 882·9109 12101 E. 51st Street, #106 

Wilmington 01887 ~~~~~~n21t8~1~~~gb 
5240 Greensdairy Road Tulsa 74146 

Tel: (508) 657·5170 NEW MEXICO 
Raleigh 27604 Tel: (918) 252·7537 

FAX: (508) 657·6008 FAX: (612) 881-9461 
Tel: (919) 876·3132 FAX: (918) 254-0917 

Alliance Electronics, Inc. FAX: (919) 878-9517 

Arrow/Schweber Electronics Pioneer Standard 10510 Research Ave. Avnet Computer Hamilton Hallmark 
25 Upton Dr. 7625 Golden Triange Dr., #G Albuquerque 87123 2725 Millbrook Rd., #123 5411 S. 125th E. Ave., #305 
Wilmington 01887 Eden Prairie 55844 Tel: (505) 292·3360 Raleigh 27604 Tulsa 74146 
Tel: (508) 658-0900 Tel: (612) 944-3355 FAX: (505) 275·6392 Tel: (919) 790-1735 Tel: (918) 254-6110 
FAX: (508) 694·1754 FAX: (612) 944-3794 FAX: (919) 872-4972 FAX: (918) 254-6207 

Avnet Computer 
Avnet Computer Wyle Laboratories 7801 Academy Rd. Hamilton Hallmark Pioneer Standard 
100 Centennial Drive 1325 E. 79th Street, #1 Bldg. 1, Suite 204 5234 Greens Dairy Road 9717 E. 42nd St., #105 
Peabody 01960 ~~~~rn\n21t8~3~~~~~ Albuquerque 87109 Raleigh 27604 Tulsa 74146 
Tel: (508) 532-9886 Tel: (505) 828-9725 Tel: (919) 878·0819 Tel: (918) 665·7840 
FAX: (508) 532-9660 FAX: (612) 853-2298 FAX: (505) 828·0360 FAX: (919) 878-8729 FAX: (918) 665·1891 
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OREGON 

Almac Arrow Electronics 
1885 N.W. 169th Ptace 
Beaverton 97006 
Tel: (503) 629·8090 
FAX: (503) 645·0611 

Anthem Electronics 
9090 S.W. Gemini Drive 
Beaverton 97005 
Tel: (503) 643·1114 
FAX: (503) 626·7928 

Avnst Computer 
9750 Southwest Nimbus Ave. 
Beaverton 97005 
Tel: (503) 627·0900 
FAX: (502) 526·6242 

Hamilton Hallmark 
9750 S.W. Nimbus Ave. 
Beaverton 97005 
Tel: (503) 526·6200 
FAX: (503) 641·5939 

Wyle Laboratories 
9640 Sunshine Court 
Bldg. G, Sune 200 
Beaverton 97005 
Tel: (503) 643·7900 
FAX: (503) 646·5466 

PENNSYLVANtA 

Anthem Electronics 
355 Business Center Dr. 
Horsham 19044 
Tel: (215) 443·5150 
FAX: (215) 675·9875 

~r~e~~~~~~t~rive, #320 
Mers 16046 
Tel: (412) 772·1888 
FAX: (412) 772·1890 

Pioneer Technologies Group 
259 Kappa Drive 
Pittsburgh 15238 
Tel: (412) 782·2300 
FAX: (412) 963·8255 

Pionear Technologies Group 
500 Enterprise Road 
Keith Valley Business Center 
Horsham 19044 
Tel: (713) 530·4700 

~:e~8~~:~O~~~1 
Marlton 08053·3185 
Tel: (609) 985·7953 
FAX: (609) 965·6757 

TEXAS 

Anthem Electronics 
651 N. Plano Road, #401 
Richardson 75081 
Tel: (214) 236·7100 
FAX: (214) 236-0237 

Arrow/Schweber Electronics 
11500 Metric Blvd., #160 
AusUn 76758 
Tel: (512) 8354180 
FAX: (512) 832·5921 

NORTH AMERICAN DISTRIBUTORS (Contd.) 
Arrow/Schweber Electronics UTAH Hamilton Hallmark Avnst Computer 
3220 Commander Dr. 

Anthem Electronics 2440 S. 179th Street Canada System Engineering Group 
Carrollton 75006 New Berlin 53146 151 Superior Blvd. 
Tel: (214) 360·6464 1279 West 2200 South Tel: (414) 797-7644 Mississuaga LST 2L 1 
FAX: (214) 246·7208 Salt Lake City 64119 FAX: (414) 797·9259 Tel: (416) 795·3635 

Tel: (601) 973·8555 FAX: (416) 677·5061 
Arrow/Schweber Electronics FAX: (601) 973·8909 Pioneer Standard 
10699 Kinghurst Dr .. #100 Arrow/Schweber Electronics 

120 Bishop Way #163 Avnet Computer Houston 77099 Brookfield 53005 
Tel: (713) 5304700 1946 W. Perkway Blvd. Tel: (414) 764·3460 190 Colonado Road 

Salt Lake City 84119 FAX: (414) 76()'3613 Nepean K2E 7J5 
Avnet Computer Tet: (601) 973·6913 Tel: (613) 727·2000 
4004 BettUne, SUite 200 FAX: (601) 972·0200 Wylo laboratories FAX: (613) 226-1184 
Dallas 75244 Avnet Computer W226 N555 Eastmound Drivo 
Tel: (214) 306·8181 Waukesha 53186 Hamilton Hallmark 
FAX: (214) 308·6129 

1100 E. 6600 South, #150 Tel: (414) 521·9333 151 Superior Blvd., Unit 1·6 Salt Lake City 84121 FAX: (414) 521·9496 Mlssissauga LST 2L1 
Avnet Computer Tel: (B01) 261>-1115 Tel: (416) 564·6060 
1235 North Loop West, #525 FAX: (601) 266·0362 ALASKA FAX: (416) 564·6033 
Houston 77008 Hamilton Hallmark 
Tel: (713) 667·8572 1100 East 6600 South, #120 Avnet Computer Hamilton Hallmark 
FAX: (713) 661·6651 Salt Lake City 64121 1400 West Benson Blvd., #400 190 Colonade Road 
Hamilton Hallmark Tel: (601) 266-2022 ~~I:~3~~e2n~O:99 Nepean K2E 7J5 
12211 Technology Blvd. FAX: (601) 263·0104 FAX: (907) 277·2639 Tel: (613) 226·1700 
Austin 787'Z7 . Wyle Laboratories FAX: (613) 226·1184 
Tel: (512) 256·6648 1325 West 2200 South, #E 

CANADA Zentronics FAX: (512) 256·3777 
f.1:sl~~~'7~~~J~ 5600 Keaton Crescent, #1 

Hamilton Hallmark Misslssauga LSR 3S5 
11420 Page Mill Road FAX: (601) 972·2524 ALBERTA Tel: (416) 507·2600 
Dallas 75243 

WASHtNGTON ~~~: 2~rGt~!~~ Northeast 
FAX: (416) 507·2631 

Tel: (214) 553·4300 
FAX: (214) 5534395 Almac Arrow ElectroniCS Calga'Y T2E 6Z2 Zentronlcs 
Hamilton Hallmark 14360 S.E. Eastgate Way Tel: (403) 291-3264 155 Colonnade Rd., South 
6000 Westglen Bellevue 98007 FAX: (403) 250·1591 #17 : 

Tel: (206) 643-9992 Nepean K2E 7Kl Houston 77063 FAX: (206) 643·9709 Zentronics Tel: (613) 226-8840 Tel: (713) 761-6100 6615 6th Street N.E., #100 FAX: (613) 226-8352 FAX: (713) 953·6420 Anthem Electronics Calga'Y T2E 7H . 

Pioneer Standard 
19017· 120th Ave .. N.E. #102 Tel: (403) 295·8838 

1826-0 Kramer Lane Bothell 96011 FAX: (403) 295-11714 QUEBEI:: Tel: (206) 463·1700 Austin 78758 FAX: (206) 486·0571 BRtTtSH COLUMBtA Tel: (512) 6354000 Arrow/Schweber Eloctronlcs 
·FAX: (512) 635·9629 Avnet Computer Almac Arrow Electronics ~b~a~~:~~~5Blvd. 
Pioneer Standard 

17761 N.E. 76th Place 8544 Baxter Place 
Redmond 96052 Burnaby VSA 4T6 Tel: (514) 421-7411 

13765 Beta Road Tel: (206) 867·0160 Tel: (604) 421·2333 FAX: (514) 421·7430 Dallas 75244 
Tel: (214) 263-3166 

FAX: (206) 887'0~61 FAX: (604) 421·5030 

FAX: (214) 490·6419 Hamilton Hallmark Hamilton Hallmark Arrow/Schweber ElectroniCS 
8630 154th Avenue 8610 Commerce Court .. 500 Boul. St . .Jean·Baptlste Ave. 

Pioneer Standard Redmond 96052 Burnaby VSA 4N6 
Quebec H2E 5R9 

10530 Rockley Road, #100 Tel: (206) 861-6697 Tel: (604) 420·4101 
Tel: (416) 871-7500 

Houston 77099 FAX: (206) 867·0159 FAX: (604) 420·5376 FAX: (418) 871·8616 
Tel: (713) 495·4700 
FAX: (713) 495·5642 Wyle laboratorIes Zentronics Avnet Computer 

15365 N.E. 90th Street ~l:~!~d~~~oMd .. #106 m~~~e"nr~~3rrp8 Wyte Laboratories Redmond 98052 
1810 Greenville Avenue Tel: (206) 86H 150 Tel: (604) 273·5575 Tel: (514) 335·2483 
Richardson 75081 FAX: (206) 881-1567 FAX: (604) 273·2413 FAX: (514) 335·2481 
Tel: (214) 235·9953 
FAX: (214) 644·5064 WISCONSIN ONTARtO Hamilton Hallmark 
Wyle Laboratories Arrow/Schweber Electronics Arrow/Schweber Electronics 7575 Transcanada Highway 

#600 4030 West Braker Lane, #330 200 N. Patrick, #100 1093 Meyerslde, Unit 2 SI. Laurent H4T 2V6 Austin 76758 Brookfield 53045 Mlsslssauga LST 1 M4 Tet: (514) 335·1000 Tel: (512) 345·6853 Tel: (414) 792·0150 Tet: (416) 670·7769 FAX: (514) 335·2461 FAX: (512) 345·9330 FAX: (414) 792·0156 FAX: (416) 670·7761 

Wyle Laboratories Avnet Computer Arrow/Schweber Electronics Zentronlcs 
11001 South Wilcrest, #100 20875 Crossroads Circle, #400 36 Antares Or .• Unit 100 520 McCaffrey 
Houston 77099 Waukesha 53186 . Nepean K2E 7W5 St. Laurent H4T 1 N3 
Tet: (713) 879·9953 Tel: (414) 784-6205 Tel: (613) 226-6903 Tel: (514) 737·9700 
FAX: (713) 879·6540 FAX: (414) 764·6006 FAX: (613) 723·2016 FAX: (514) 737·5212 
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FINLAND 

Intel Finland OY 
Ruosllantie 2 
00390 Helsinki 
Tel: (358) 0544644 
FAX: (358) 0 544 030 

FRANCE 

Intel Corporation SAR.L. 
1, Rue Edison-BP 303 
78054 St. Quentin-en-Vvelines 
Cedex 
Tel: (33) (1) 30577000 
FAX: (33) (1) 30 64 60 32 

EUROPEAN SALES OFFICES 
GERMANY 

Intel GmbH 
Dornacher Strasse 1 
85622 Feldkirchen/Muenchen 
Tel: (49) 089/90992-0 
FAX: (49) 089/9043948 ' . 

ISRAEL 

Intel Semiconductor Ltd. 
Atidim Industrial Park-Neve Sharet 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 03 498080 
FAX: (972) 03491870 

ITALY 

Intel Corporation Italia S.'p.A. 
Milanofiori Palazzo E ' 
20094 Assago 
Milano 
Tel: (39) (2) 575441 
FAX: (39) (2) 3498464 

NETHERLANDS, 

Intel Semiconductor B.V. 
Postbus 84130 
3009 CC Rotterdam 
Tel: (31) 1040711.11 
FAX: (31) 104554688 

RUSSIA 

~r~~:~~~h~~~~~:a ~a' 
121357 Moscow 
Tel: 007-095-4439785 
FAX: 007-095-4459420 
TLX: 612092 smail suo 

SPAIN 

Intel Iberia S.A. 
Zubaran,28 
28010 Madrid 
Tel: (34) (1) 308 2552 
FAX: (34) (1) 410 7570 

SWEDEN 

Intel Sweden A.B. 
Dalvagen 24 
171 36 Solna 
Tel: (46) 8 705 5600 
FAX: (46) 8 278085 

UNITED KINGDOM 

Intel Corporation (U.K.) Ltd. 
Pipers Way 
SWindon, Wiltshire SN3 1 RJ 
Tel: (44) (0793) 696000 
FAX: (44) (0793) 641440 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA GERMANY ""lasi Elettronica SPAIN UNITED KINGDOM 

t*Elbatex GmbH "'Avnet Electronic 2000 
P.1. 00839000155 
Viale Fulvia Testi, N.280 "'ATD Electronica "Arrow Electronics Eitnergasse 6 Stahlgruberring 12 20126 Milano Avenue de la Industria, 32, 2B 8t. Martins Business Centre A-1231 Wien 81829 Muenchen Tel: (39) 2 661431 28100 Alcobendas Cambridge Road Tel: (43) 1816020' Tel: (49) 89 45110-01 FAX: (39) 2 66101385 Madrid Bedford - MK42 OlF 

FAX: (43) 181652141 FAX: (49) 89 45110129 Tel: (34) (1) 661 6551 Tel: (44) 234 270272 
tSpoerle Electronic *Jermyn GmbH 

tOmnilogic Telcom FAX: (34) (1) 661 6300 ' FAX: (44) 234 211434 
Heillgenst. SIr. 62 1m Dachsstueck 9 Via lorenteggio 270/A 
A-1190 Wien 65549 limburg 

20152 Milano 
~~3!~~~3~~t~?a~r~_2 *Avnet EMG Ltd. 

Tel: (43) 1 318 72 700 Tel: (49) 6431 5080 
Tel: (39) 2 48302640 Jubilee House 

FAX: (43) 1 36922 73 FAX: (49) 6431 508289 
FAX: (39) 2 43802010 28100 Alcobendas Jubilee Road 

Madrid Letchworth 
BELGIUM tMetrologie GmbH NETHERLANDS Tel: (34) (1) 6611142 Hertsfordshire - 5GB 1 QH 

t"'lnelco Distribution 
Steinerstrasse 15 FAX: (34) (1) 661 5755 Tel: (44) 462 488 500 
81369 Muenchen tDatelcom B.V. FAX: (44) 462 488 567 

Avenue des Croix de Guerra 94 Tel: (49) 89 724470 Meidoornkade 22 
1120 Bruxelles FAX: (49) 89 72447111 3993 AE Houten SWEDEN "'Bytech Components 
Tel: (32) 2 244 2811 Tel: (31) 3403 57222 12a Cedarwood 
FAX: (32) 2 216 3304 "Proelectron Venriebs 'GmbH , FAX: (31) 3403 57220 tAvnet Computer AS Chineham Business Park 

"'Diode Bel~um Max-Planck-Strasse 1-3 Box 184 4 Crockford Lane 
Kelbe~ II, inervas'traat, 14/B2 63303 Draieich' "'Diode Components 5·123 -23 Farsta Basingstoke 
1930 ventem Tel: (49) 6103 304343 Coltbaan 17 Tel: (46) 8 705 18 00 Hants RG121RW 
Tel: (32) 2 725 46 60 FAX: (49) 6103 304425 3439 NG Nieuwegein FAX: (46) 8 735 2373 Tel: (44) 256 707 107 
FAX: (32) 2 725 45 11 tAein Elektronik GmbH 

Tel: (31) 3402 9 1234 
.. Avnet Nonec AB 

FAX: (44) 256 707.162 
FAX: (31) 3402 3 59 24 

DENMARK ~~~~3~e~tt'Zt:p 66 
Box 1830 

~B~:C~t;Xi~t~~~ntre t*Koning en Hartman 5-171 27 Solna 
*Avnet Nortec AlS Tel: (49) 2153 7330 Energieweg 1 Tel: (46) 8705 1800 Eastern Road 
Transformervej 17 FAX: (49) 2153 733513 2627 AP Oelft FAX: (46) 8B3 6918 Bracknell 
DK-2730 Herlev Tel: (31) 15609906 Berks - RG12 2PW 
Tel: (45) 42842000 GREECE FAX: (31) 15619194 "'lIT Multikomponent AB Tel: (44) 344 55 333 ' 
FAX: (45) 4492 1552 

tErgodata 
Ankdammsgatan 32 FAX: (44) 344 867 270 

t"'lTT Multikomponenl AS NORWAY 
Box 1330 

Aigiroupoleos 2A S-l71 26 Solns "'Datrontech Naverland 29 176 76 Kalithea *Avnet Nortec A/8 Tel: (46) 8 830020 4244 Birchett Road :. DK-2600 Gloslrup Tel: (30) 1 9510922 Postboks 123 FAX: (46) 8 27 13 03 Aldersh"ot Tel: (45) 42456645 FAX: (30) 1 95 93 160 N-1364 Hvalslad Hants-GUll lLU FAX: (45) 4245 7624 

':i~~~~~~~~~3~~;~r~~Tv. 150 
Tel: (47) 284 6210 Tel: (44) 252313155 

SWITZERLAND 
FINLAND FAX: (47) 284 6545 FAX: (44) 252 341939 

t*OY Fintronic AB 
Athens 17671 

tComputer System Integration AlS tElbatexAG *Jermyn Electronics Tel: (30) 1 9242072 Hardstr.7 Pyynmie,3 FAX: (30) 1 924 1066 Postbox 198 CH-5430 Wettingen 
Vestry Estate 

02230 Espoo ~~~O(~~ S~~~tt:~ 411 
Otford Road 

Tel: (358) 0 687 331 Tel: (41) 56 27 50 00 Sevenoaks 
FAX: (358) 0 887 33 343 IRELAND FAX: (47) 638 45 310 FAX: (41) 27 1924 Kenl TN14 5EU 

t"'Micro Marketing tFabrimex AG 
Tel: (44) 732 743 743 

FRANCE Taney Hall PORTUGAL ~~~~~a~~~ch 
FAX: (44) 732 451 251 

*Arrow Electronique Eglinton Terrace 
*ATD Electronica lOA tMetrologie VA 

73-79 Rue des Solets Dundrum Tel: (41) 1 3668686 

~~~~d~~:~ SlIIc 585 Dublin 14 Edificio Altejo FAX: (41) 1 3832379 
94663 Rungis Cedex Tel: (353) (1) 2989400 Rua 3 piso 5-sala 505 

High Wycombe 
Tel: (33) (1) 4978 4978 FAX: (353) (1) 298 9828 Urbanlzacao de Matinha tlMIC Microcomputer 
FAX: (33) (1) 4978 0596 1900 Lisboa Zurichstrasse 

Bucks - HP11 2E 

Tel: (351) (1) 8580191/2 Tel: (44) 494 526 271 
*Avnet 

ISRAEL CH-8185 Winkel-Ruti FAX: (44) 494 421 860 FAX: (351) (1) 858 7841 Tel: (41) (1) 8620055 
79, rue Pierre Semard t*Eastronics Limited FAX: (41) (1) 8620266 "'MMD/Rapid Ltd. 92322 Chatillon Rozanis 11 ~~:tb~'.O~~~i~b~~CS'a~~~~~e~~s 3A Tel: (33) (1) 4965 2500 P.O.B. 39300 t*lndustrade AG 

Rapid Silicon 
FAX: (33) (1) 4965 2769 Tel Baruch 1900 L1sboa Hertistrasse 31 

3 Bennet Court 
Tel: (351) (1) 847 2202 Bennet Road 

tMetrologie Tel-Aviv 61392 CH-8304 WaJliselien Reading 
Tour d'Asnleres Tel: (972) 3 6458 777 FAX: (351) (1) 847 2197 Tel: (41) (1) 8328111 Berks - RG2 OOX 
4, Avenue Laurent Cery FAX: (972) 3 6458 666 FAX: (41) (1) 8307550 Tel: (44) 734 750 697 
92606 Asnieres Cedex SOUTH AFRICA FAX: (44) 734313255 
Tel: (33) (1) 4060 9000 ITALY 

t'EBE TURKEY FAX: (33) (1) 4791 0561 
*Intesl Div. Della Deutsche PO Box 912-1222 

*Tekelec Divisione lIT Industries GmbH Silverton 0127 *Empa Electronic 
Cite des Bruyeres PJ.06550110156 178 Erasmus Street Florya Is Merkezl 
5, Rue Carle Vernet-8P 2 Milanofiori Palazzo 85 Meyerspark Basyol londra Asfalti 
92310 Savres 20094 Assago (Milano) Pretoria 0184 f:f~gt,I(~a5~~a~g~~ rei: (33) (1) 4623 2425 Tel: (39) 2 824701 Tel: (27) 128037680-93 
FAX: (33) (1) 4507 2191 FAX: (39) 2 8242631 FAX: (27) 128038294 FAX: (90) (1) 599 3061 
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AUSTRALIA 

Intel Australia Pty. Ltd. 
Unit 13 
Allambie Grove Business Park 
25 Frenchs Forest Road East 
Frenchs Forest, NSW, 2086 
Sydney 
Tel: 61-2-975-3300 
FAX: 61-2-975-3375 

Intel Australia Ply. Ltd. 
711 High Street 
1st Floor 
East Kw. Vic., 3102 
Melbourne 
Tel: 61-3-610-2141 
FAX: 61-3-619 7200 

BRAZIL 

Intel Semlcondutores do Brasil 
Rua Florida, 1703·2 and CJ.22 
CEP 04565-001 Sao Paulo 
SP Brazil 
Tel: 55-11-530-2296 
FAX: 55-11-531-5765 

CHINA/HONG KONG 

Intel PAC Corporation 
Room 517-518 
China World Tower 
1 Jian Guo Men Wai Avenue 
Beijing 100004 
Republic of China 
Tel: 661-505-0366 
FAX: 661-505-0363 

INTERNATIONAL SALES OFFICES 
Intel Semiconductor Ltd. * Intel Japan K.K.* Intel Japan KK.* SINGAPORE 
32/F Two Pacific Place Hachioji ON Bldg. TK Gotanda Bldg. 9F 
88 Queensway 4-7-14 Myojin-machi 8-3-6 Nishi Gotanda Intel Singapore Technology, Ltd. 
Central Hachioji-shl, Tokyo 192 Shinagawa, Tokyo 141 101 Thomson Road #08-05 
Hong Kong Tel: 0426-48-8770 Tel: 03-3493-6061 United Square 
Tel: (652) 844-4555 FAX: 0426-48-6775 FAX: 03-3493-5951 Singapore 1130 
FAX: (652) 668-1969 Tel: (65) 250-7611 

Intel Japan KK '* 
KOREA 

FAX: (65) 250-9256 
Kawa·asa Bldg. 

INDIA 2-11-5 Shin-Yokohama 
Kohoku·ku, Yokohama·shl Intel Korea, Ltd. TAIWAN 

Intel Asia Electronics, Inc. Kanagawa, 222 16th Floor, Life Bldg. 
4/2, Samrah Plaza Tel: 045-474-7660 61 Yoido-dong, Youngdeungpo·Ku Intel Technology Far East ltd. 
St. Mark's Road FAX: 045-471-4394 Seoul 150·0lD Taiwan Branch 
Bangalore 560001 Tel: (2) 764-6166 8th Floor, No. 205 
Tel: 91·80·215065 Intel Japan K.K.'* FAX: (2) 784-6096 Bank Tower Bldg. 
FAX: 91-80-215067 Ryokuchi·Eki Bldg. Tung Hua N. Road 
TLX: 953-845-2646 INTL IN 2-4-1 terauchi Taipei 

i~r:o~6~~~-i_~ib~saka 560 
MEXICO Tel: 666-2-5144200 

FAX: 686-2-717-2455 
JAPAN FAX: 06-663-1064 Intel Tecnologia de Mexico 686-2-719-6164 

SA de C.V. 
Intel Japan K.K. Intel Japan K.K. Av. Mexico No. 2798-9B, S.H. 
5-6 Tokodai, Tsukuba-shi Shinmaru Bldg. 44680 Guadalajara, Jal. 
Ibaraki, 300-26 1-5-1 Marunouchi Tel: 011-523-640-1259 
Tel: 0296-47-6511 Chiyoda-ku, Tokyo 100 FAX: 011-523-642-7661 
FAX: 0296-47-6450 Tel: 03-3201-3621 

FAX: 03-3201-6650 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA GUATEMALA SES Computers & Technologi~s Okaya Koki SOUTH AFRICA 

Dafsys Consulting SA Pvt. Ud. 2-4-18 Sakae 
Abinitio 11/18, SNS Chambers Naka·ku, Nagoya·shi 460 Electronic Building Elements Chacabuco, 90-6 Piso 11 Calle2-Zona9 239 Palace Upper Orchards Tel: 052-204-8315 1069-Buenos Aires Guatemala City 178 Erasmus St. 

Tel. & FAX: 54.1334.1871 
Sankey Road, Sadashivanagar FAX: 052-204-8380 (off Watermeyet SI.) Tel: 5022-32-4104 Bangalore 560 080 

FAX: 5022-32-4123 Tel: 91-812-348481 Ryoyo Electro Corp. Meyerspark, Pretoria, 0184 
AUSTRALIA FAX: 91-612-343665 Konwa Bldg. Tel: 011-2712-603-7680 

FAX: 011-2712-803-8294 
NJS Electronics Australia INDIA 1-12-22 Tsukiji 
lA/37 Ricketts Road SES Computers & Technologies Chuo-ku, Tokyo 104 
Mount Waverley, VIC 3149 Priya International Limited Pvt. Ud. Tel: 03-3546-5011 
Tel: 61-3-558-9666 0-6, II Floor Arvind Chambers FAX: 03-3546-5044 TAIWAN 
FAX: 61-3-556-9929 Devatha Plaza 194, Andheri-Kurla Road 

NSD-Australia 
131/132 Residency Rd. Andheri (East) 

KOREA Micro Electronics Corporation Bangalore 560 025 Bombay 400 069 
205 Middleborough Rd. Tel: 91-80-214027, 91-60-214395 Tel: 91-22-6341564, 91-22-6341667 12th Floor, Section 3 
Box Hill, Victoria 3128 FAX: 91-60-214105 FAX: 91-22-4937524 Samsung Electronics 285 Nanking East Road 
Tel: 03 8900970 Samsung Main Bldg. Taipei, R.O.C. 
FAX: 03 8990619 Priya International Limited SES Computers & Technologies 150 Taepyung-Ro-2KA, Chung-Ku Tel: (666) 2-7196419 

Apeejay House, 4th Floor Pvt. Ud. Seoul 100-102 FAX: (866) 2-7197916 
BRAZIL 130 Apollo Street 60S-A, Ansal Chambers II c.p.a. Box 8780 

Hitech Bombay 400 023 No.6. Bhikaji Camaplace Tel: (622) 751-3660 Acer Sertek Inc. 

Luis Carlos Berrini, 801 CJ121 Tel: 91-22-2660949, 91-22-2665822 New Delhi 110 066 TWX: KORSST K 27970 15th Floor, Section 2 
Tel: 91-11-6661663 FAX: (822) 753-9065 Chien Kuo North Rd. 04571, Sao Paulo. SP Brazil Priya International Limited FAX: 91-11-6640471 Taipei 18479 R.O.C. Tel: 5511-536-0355 Flat No.8, 10th Floor Tong Baek Electronic Co., Ltd. Tel: 886-2-501-0055 FAX: 5511-240-2650 Akashdeep Building 16-58 Hangang-ro 3-ga TWX: 23756 SERTEK 

Microlinear Barakhamba Rd. JAMAICA Yongsan-gu, Seoul FAX: (686) 2-5012521 
Avenida Wilhelm Winter. 345 New Delhi 110 001 Tel; 82-2-715-6623 
Distrito Industrial· Jundiai, SP Tel: 91-11-3314512, 91-11-3310413 Me Systems FAX: 82-2-715-9374 

13213-000 FAX: 91-11-3719107 10-12 Grenada Crescent 
Tel: 5511-732-6111 Kingston 5 URUGUAY 

FAX: 5511-732-2892 Priya International Limited Tel: (609) 926-0104 SAUDI ARABIA 
5·J, Century Plaza FAX: (609) 929-5678 

ME Systems, Inc. Interiase 
CHILE 560-562 Mount Road, Teynampet Blvr. Espana 2094 

Madras 600 018 642 N. Pastoria Ave. 11200 Montevideo 
Sisteco Tel: 91-44-451031, 91-44-451597 JAPAN Sunnyvale. CA 94080 Tel: 5962-49-4600 
Vecinal 40- Las Candes FAX: 91-44·813549 

Asahi Electronics Co. Ltd. 
U.S.A. FAX: 5962-49-3040 

Santiago Tel: (406) 732-1710 
Tel: 562-234-1644 Priya International Limited KMM Bldg. 2-14·1 Asano FAX: (406) 732-3095 
FAX: 562-233-9695 No. 10, II Floor, Minerva House Kokurakita-ku TLX: 494-3405 ME SVS 

94 Sarojini Devi Rd. Kitakyushu-shi 802 VENEZUELA 
CHINA/HONG KONG Secunderabad 500 003 Tel: 093-511-6471 

Tel: 91-642-813120, 91-642-613549 FAX: 093-551-7661 SINGAPORE Unixel CA Novel Precision Machinery Co., Ltd. 
Room 728 Trade Square Priya International Limited Oia Semicon Systems, Inc. Electronic Resources Pte, Ltd. 4 Transversal de Monte Cristo 
681 Cheung Sha Wan Road Lords, III Floor Flower Hill Shinmachi Higashi-kan 17 Harvey Road Edt. AXXA, Piso 1, of. 1 &2 
Kowloon, Hong Kong 7/1 Lord Sinha Road 1-23 Shinmachi, Setagaya·ku #03·01 Singapore 1336 Centro Empresarial Boleita 
Tel: (652) 360-8999 Calcutta 700 071 Tokyo 154 Tel: (65) 263-0686 Caracas 
TWX: 32032 NVTNL HX Tel: 91-33-222378, 91-33-222379 Tel: 03-3439-1600 TWX: RS 56541 ERS Tel: 582-238-7749 
FAX: (652) 725-3695 FAX: 91-33-224684 FAX: 03-3439-1601 FAX: (65) 269-5327 FAX: 582-238-1616 

*Field A,..,plication Location CG{SALEJll1293 



ALABAMA 

Birmingham 
Huntsville 

ALASKA 

Anchorage 

ARIZONA 

Phoenix'" 
Tucson 

ARKANSAS 

Little Rock 

CALIFORNIA 

Bakersfield 
Brea 
Carson'" 
Fresno 
Livermore 
Mar Del Rey 
Ontario'" 
Orange 
Sacramento* 
San Diego* 
San Francisco* 
Santa Clara* 
Ventura 
Sunnyvale 
Walnut Creek* 
Woodland HilIs* 

COLORADO 

Colorado Springs 
Denver 
Englewood* 

CONNECTICUT 

Glastonbury* 

DELAWARE 

New Castle 

FLORIDA 

Ft. Lauderdale 
Heathrow 
Jacksonville 
Melbourne 
Pensacola 
Tampa 
West Palm Beach 

ARIZONA 

Computervision Customer 
Education ' 
2401 W. Behrend Dr., Suite 17 
Phoenix 85027 
Tel: 1-800-234-8806 

MINNESOTA' 

3500 W. 80th Street 
Suite 360 

~~~:o~\n2~tZ~5~~~~ 

*Carry-in locations 

NORTH AMERICAN SERVICE OFFICES 
COMPUTERVISION 

Intel Corporation's North American Preferred Service Provider 
Central Dispatch: 1-S00,S76-SERV (1-S00-S76-737S) 

GEORGIA MICHIGAN NORTH DAKOTA 

Atlanta'" Ann Harbor Bismark 
Savannah Benton Harbor 
West Robbins Flint OHIO 

Grand Rapids· 

HAWAII Leslie Cincinnati-
Uvonia* Columbus 

Honolulu St. Joseph ~1e°~ndence* Troy" Mid~e Heights· 
ILLINOIS 

MINNESOTA Toledo* 

Buffalo'" Bloomington'" OREGON Calumer City Caruth Chicago Beaverton'" 
Lansing' 

MISSOURI Oak Brook PENNSYLVANIA 
Springfield 

~:~g~71~d* INDIANA 51. Louis'" 

Carmel'" NEVADA East Erie 
Ft. Wayne Pittsburgh* 

Minden Wayne'" 

KANSAS Las Vegas 
Reno SOUTH CAROLINA 

Overland Park* Charleston 
Wichita NEW HAMSHIRE 

Cherry Point 
Manchester* Columbia 

KENTUCKY Fountain Inn 

Lexington 
NEW JERSEY 

SOUTH DAKOTA 
Louisville Edison* 
Madisonville ,Hamlon Town* Sioux Falls 

Parsippany* 
LOUISIANA TENNESSEE 

NEW MEXICO 
Bartlett Baton Rouge 

Metarie Albuquerque Chattanooga 
Knoxville 

MAINE NEW YORK Nashville 

Brunswick Albany* 
Amherst* 

TEXAS 

Dewitt* Austin 
MARYLAND Fairport* Bay City 

Frederick 
Farmingdale* Beaumont 

Linthicum* 
New York City* Canyon 

College Station 
Rockville* NORTH CAROLINA Houston* 

Irving* 
MASSACHUSETTS Brevard San Antonio 

Charlotte Tyler 
Boston* . Greensboro 
Natick* Haveluch UTAH 
Norton* Raleigh 
Springfield Wilmington Salt Lake City* 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

Computervision Customer 
Education 
1 Oakbrook Terrace 
Suite 600 
Oakbrook 60181 
Tel: 1-800·234·8806 

MASSACHUSETTS 

Computervislon Customer 
Education 
11 Oak Park Drive 
Bedford 01730 
Tel: 1·800·234·8806 

SYSTEMS ENGINEERING OFFICES 
NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 

VIRGINIA 

Charlottesville 
Glen Allen 
Maclean'" 
Norfolk 
Virginia Beach 

WASHINGTON 

Bellevue"" 
Olympia 
Renton 
Richland 
Spokane 
Verdale 

WASHINGTON D.C.· 

WEST VIRGINIA 

St. Albans 

WISCONSIN 

Brookfield* 
Green'Bay 
Madison 
Wausau 

CANADA 

Calgary* 
Edmonton 
Halifax 
London· 
Montreal* 
Ottawa 
Toronto* 
Vancouver, BC* 
Winnipeg 
Regina 
-St. John 

CG/SALE/111293 
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