

LITERATURE
To order Intel literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. Box 7641
Mt. Prospect, IL 60056-7641

In the U.S. and Canada
call toll free
(800) 548-4725
This 800 number is for external customers only.

CURRENT HANDBOOKS
Product line handbooks contain data sheets, application notes, article reprints and other design
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

Title

SET OF FOURTEEN HANDBOOKS
(Available in U.S. and Canada)

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

CONNECTIVITY

EMBEDDED MICROCONTROLLERS

EMBEDDED MICROPROCESSORS

FLASH MEMORY (2 volume set)

MICROPROCESSORS, VOL. 1:
InteI386'· 80286 & 8086 MICROPROCESSORS

MICROPROCESSORS, VOL. 2:
InteI486'· MICROPROCESSORS

MICROPROCESSORS, VOL. 3:
PENTIUM'· PROCESSORS

i750®, i860'·, i960® PROCESSORS AND RELATED PRODUCTS

OEM BOARDS, SYSTEMS & SOFTWARE

PACKAGING

PERIPHERAL COMPONENTS

PRODUCT OVERVIEW

PROGRAMMABLE LOGIC

NETWORKING

ADDITIONAL LITERATURE:
(Not included in handbook set)

AUTOMOTIVE PRODUCTS

COMPONENTS QUALITY/RELIABILITY

CUSTOMER LITERATURE GUIDE

EMBEDDED APPLICATIONS (1993/94)

INTERNATIONAL LITERATURE GUIDE
(Available in Europe only)

MILITARY AND SPECIAL PRODUCTS (2 volume set)

SYSTEMS QUALITY/RELIABILITY

Intel
Order Number ISBN

231003 N/A

231658 1-55512-202-7

270646 1-55512-203-5

272396 1-55512-204-3

210830 1-55512-214-0

230843 1-55512-196-9

241731 1-55512-197-7

241732 1-55512-198-5

272084 1-55512-217-5

280407 1-55512-201-9

240800 1-55512-208-6

296467 1-55512-207-8

210846 N/A

296083 1-55512-206-X

297360 1-55512-220-5

231792 1-55512-212-4

210997 1-55512-132-2

210620 N/A

270648 1-55512-179-9

EOO029 N/A

210461 1-55512-213-2

231762 1-55512-046-6

LlTCV1/110493

u.s. and CANADA LITERATURE ORDER FORM
NAME: __ ~

COMPANY: _______________________________________ _
ADDRESS: __ _

CITY: _________________________ STATE: ___ ZIP: ____ _
COUNTRY: _______________________________ __
PHONE NO.: ~ __ ~ ____________________________________ _

ORDER NO

Include postage:
Must add 15% of Subtotal to cover U.S.
and Canada postage. (20% all other.)

TITLE QTV. PRICE TOTAL

x =
x =
x =
x =
x = ---
x =
x =
x =
x =
x =

Subtotal.

Must Add Your
Local Sales Tax

) Postage

Total

Pay by check, money order, or include company purchase order with this form ($200 minimum). We also
accept VISA,. MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-3 weeks for
delivery.

D VISA D MasterCard D American Express Expiration Date ____________ _

Account No. ____________________________ __

Signature _____________________________ _

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

International Customers outside the U.S. and Canada
should use the International order form on the next page or
contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada, call Toll Free: (800) 548-4725
or FAX to (708) 296-3699. Please print clearly in ink to expedite your order.
Prices good until 12/31/94.
Source HB

INTERNATIONAL LITERATURE ORDER FORM

NAME:
COMPANY: __ _
ADDRESS: ~ __ _

CITY: _________________________ STATE: ___ ZIP:
COUNTRY: __ _
PHONE NO.: ~ __ ~ ____________________________________ __

ORDER NO TITLE QTY. PRICE TOTAL

x =

x =

x =

x =

x =

x =

x =

x =

x =

x =

Subtotal

Must Add Your
Local Sales Tax

Total

PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover).

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to
your local Intel Sales Office.

LOFINT1/l00693

\NTEl. 1
-rCT/-- , /} /}

c;>

z
o

Founded in 1968 to pursue the integration of large numbers of
transistors onto tiny silicon chips, Intel's history has been marked by
a remarkable number of scientific breakthroughs and innovations. In
1971, Intel introduced the 4004, the first microprocessor. Containing
2300 transistors, this first commercially-available computer on a chip
is considered primitive compared with today's million-plus transistor
products.

Innovations such as the microprocessor, the erasable program­
mable read-only memory (EPROM) and the dynamic random access
memory (DRAM) revolutionized electronics by making integrated
circuits the mainstay of both consumer and business computing
products.

Over the last two and a half decades, Intel's business has
evolved and today the company's focus is on delivering an extensive
line of component, module and system-level building block products
to the computer industry. The company's product line covers a broad
spectrum, and includes microprocessors, flash memory, microcontrol­
lers, a broad line of PC enhancement and local area network
products, multimedia technology products, and massively parallel
supercomputers. Intel's 32-bit X86 architecture, represented by the
InteI386T>' and Intel486™ microprocessor families, are the de facto
standard of modern business computing and installed in millions of
PCs worldwide.

Intel has over 25,000 employees located in offices and manufac­
turing facilities around the world. Today, Intel is the largest semicon­
ductor company in the United States and the second largest in the
world.

Intel Corporation makes no warranty for the use of its,products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your locai Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiiiated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

©INTEL CORPORATION. 1993

LGCPY1/100693

Intel486™ MICROPROCESSOR
FAMILY PROGRAMMER'S

REFERENCE MANUAL

1992

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION TO THE
Intel486™ MICROPROCESSOR FAMILY Page
1.1 ORGANIZATION OF THIS MANUAL ... 1-2
1.1.1 Part I-Application Programming 1-3
1.1.2 Part II-System Programming ... 1-3
1.1.3 Part 111- Numeric Processing .. 1-4
1.1.4 Part IV - Compatibility 1-5
1.1.5 Part V-Instruction Set .. ,............................. 1-6
1 .1.6 Appendices .. 1-6
1.2 RELATED LITERATURE .. 1-6
1.3 NOTATIONAL CONVENTIONS ... 1-7
1.3.1 Bit and Byte Order : .. 1-7
1.3.2 Undefined Bits and Software Compatibility 1-8
1.3.3 Instruction Operands 1-8
1.3.4 Hexadecimal Numbers .. 1-9
1.3.5 Segmented Addressing 1-9
1.3.6 Exceptions 1-9

PART I-APPLICATION PROGRAMMING

CHAPTER 2
BASIC PROGRAMMING MODEL
2.1 MEMORY ORGANIZATION ... 2-1
2.1.1 Unsegmented or "Flat" Model .. 2-3
2.1.2 Segmented Model......... 2-3
2.2 DATA TYPES ... 2-3
2.3 REGISTERS :... 2-8
2.3.1 General Registers 2-8
2.3.2 Segment Registers .. 2-10
2.3.3 Stack Implementation 2-12
2.3.4 Flags Register 2-13
2.3.4.1 STATUS FLAGS .. 2-13
2.3.4.2 CONTROL FLAG 2-13
2 .. 3.4.3 INSTRUCTION POINTER ... 2-14
2.4 INSTRUCTION FORMAT ... '.. 2-15
2.5 OPERAND SELECTION .. 2-17
2.5.1 Immediate Operands ;.. 2-18
2.5.2 Register Operands 2-19
2.5.3 Memory Operands 2-19
2.5.3.1 SEGMENT SELECTION ... 2-20
2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION .. 2-20
2.6 INTERRUPTS AND EXCEPTIONS .. 2-23

CHAPTER 3
APPLICATION PROGRAMMING
3.1 DATA MOVEMENT INSTRUCTIONS .. 3-1
3.1.1 General-Purpose Data Movement Instructions 3-1
3.1.2 Stack Manipulation Instructions 3-2
3.1.3 Type Conversion Instructions .. 3-4

vii

int:eL TABLE OF CONTENTS

Page
3.2 BINARY ARITHMETIC INSTRUCTIONS 3-6
3.2.1 Addition and Subtraction Instructions ... 3-7
3.2.2 Comparison and Sign Change Instruction .. 3-8
3.2.3 Multiplication Instructions .. 3-8
3.2.4 Division Instructions 3-9
3.3 DECIMAL ARITHMETIC INSTRUCTIONS ... 3-10
3.3.1 Packed BCD Adjustment Instructions 3-10
3.3.2 Unpacked BCD Adjustment Instructions ... 3-10
3.4 LOGICAL INSTRUCTIONS .. :... 3-11
3.4.1 Boolean Operation Instructions ... 3-11
3.4.2 Bit Test and Modify Instructions ... 3-12
3.4.3 Bit Scan Instructions .. 3-12
3.4.4 Shift and Rotate Instructions 3-13
3.4.4.1 SHIFT INSTRUCTIONS ... 3-13
3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS ... 3-14
3.4.4.3 ROTATE INSTRUCTIONS ... 3-16
3.4.4.4 FAST "bit bit" USING DOUBLE-SHIFT INSTRUCTIONS 3-19
3.4.4.5 FAST BIT STRING INSERT AND EXTRACT ... 3-20
3.4.5 Byte-Set-On-Condition Instructions 3-23
3.4.6 Test Instruction .. 3-23
3.5 CONTROL TRANSFER INSTRUCTIONS .. 3-23
3.5.1 Unconditional Transfer Instructions ... 3-23
3.5.1.1 JUMP INSTRUCTION .. 3-23
3.5.1.2 CALL INSTRUCTIONS 3-24
3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS 3-24
3.5.2 Conditional Transfer Instructions ... 3-25
3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS .. ,................ 3-25
3.5.2.2 LOOP INSTRUCTIONS ... 3-26
3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES ;......... 3-26
3.5.3 Software Interrupts 3-27
3.6 STRING OPERATIONS ,.. 3-27
3.6.1 Repeat Prefixes 3-28
3.6.2 Indexing and Direction Flag Control... 3-29
3.6.3 String Instructions 3-30
3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES 3-30
3.8 FLAG CONTROL INSTRUCTIONS 3-37
3.8.1 Carry and Direction Flag Control Instructions ... 3-37
3.8.2 Flag Transfer Instructions .. 3-37
3.9 NUMERIC INSTRUCTIONS 3-39
3.10 SEGMENT REGISTER INSTRUCTIONS ... 3-39
3.10.1 Segment-Register Transfer Instructions .. 3-40
3.10.2 Far Control Transfer Instructions ... 3-40
3.10.3 Data Pointer Instructions ... ;... 3-40
3.11 MISCELLANEOUS INSTRUCTIONS ... 3-41
3.11.1 CPUJD Detection Code 3-46
3.11.2 Address Calculation Instruction 3-46
3.11.3 No-Operation Instruction .. 3-46
3.11.4 Translate Instruction 3-46
3.11.5 Byte Swap Instruction ... ;... 3-46
3.11.6 Exchange-and-Add Instruction .. ;....................................... 3-47
3.11.7 Compare-and-Exchange Instruction .. ,.......................... 3-47

viii

intel® TABLE OF CONTENTS

PART II-SYSTEM PROGRAMMING

CHAPTER 4
SYSTEM ARCHITECTURE Page
4.1 SYSTEM REGISTERS ... 4-1
4.1.1 System Flags ~.. 4-2
4.1.2 Memory-Management Registers 4-4
4.1.3 Control Registers 4-5
4.1.4 Debug Registers 4-8
4.1.5 Test Registers .. 4"8
4.2 SYSTEM INSTRUCTIONS ... 4-9

CHAPTER 5
MEMORY MANAGEMENT
5.1 SELECTING A SEGMENTATION MODEL .. 5-3
5.1.1 Flat Model .. : ,.. 5-3
5.1.2 Protected F=lat Model.. 5-4
5.1.3 Multi-Segment Model.......... 5-4
5.2 SEGMENT TRANSLATION :.. 5-5
5.2.1 Segment Registers .. 5-7
5.2.2 Segment Selectors 5-8
5'.2.3 Segment Descriptors ... ; •... :... 5-10
5.2.4 Segment Descriptor Tables 5-15
5.2.5 Descriptor Table Base Registers ... : :. 5-16
5.3 Page Translation :... 5-17
5.3.1 PG Bit Enables Paging :... 5-18
5.3.2 Linear Address ... :..... 5-18
5.3.3 Page Tables ... 5-19
5.3.4 Page-Table Entries .. 5-20
5.3.4.1 PAGE FRAME ADDRESS ... 5-20
5.3.4.2 PRESENT BIT ... 5-20
5.3.4.3 ACCESSED AND DIRTY BITS ;... 5-21
5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS ... 5-22
5.3.4.5 PAGE-LEVEL CACHE CONTROL BITS ;... 5-22
5.3.5 Translation Lookaside Buffer 5-22
5.4 COMBINING SEGMENT AND PAGE TRANSLATION .. 5-23
5.4.1 Flat Model .. ,... 5-23'
5.4.2 Segments Spanning Several Pages , ;............................ 5-24
5.4.3 Pages Spanning Several Segments ,.. 5-24
5.4.4 Non-Aligned Page and Segment Boundaries .. ,.. 5-24
5.4.5 Aligned Page and Segment Boundaries 5-24
5.4.6 Page-Table Per Segment .. 5-24

CHAPTER 6
PROTECTION
6.1 SEGMENT-LEVEL PROTECTION ... 6-1
6.2 SEGMENT DESCRIPTORS AND PROTECTION .. 6-2
6.2.1 Type Checking .. ;.... 6-3
6.2.2 Limit Checking ... 6-4
6.2.3 Privilege Levels 6-5
6.3 RESTRICTING ACCESS TO DATA ... 6-7
6.3.1 Accessing Data in Code Segments 6-8
6.4 RESTRICTING CONTROL TRANSFERS .. 6-9
6.5 GATE DESCRiPTORS· ... 6-11

ix

TABLE OF CONTENTS

Page
6.5.1 Stack Switching 6-13
6.5.2 Returning from a Procedure 6~ 17
6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM ;......... 6-19
6.6.1 Privileged Instructions ,... 6-19
6.6.2 Sensitive Instructions ... 6-19
6.7 INSTRUCTIONS FOR POINTER VALIDATION ... 6-20
6.7.1 Descriptor Validation ... 6-21
6.7.2 Pointer Integrity and RPL : .. ,............ 6-22
6.8 PAGE-LEVEL PROTECTION ... 6-22
6.8.1 Page-Table Entries Hold Protection Parameters .. 6-23
6.8.1.1 RESTRICTING ADDRESSABLE DOMAIN ... 6-23
6.8.1.2 TYPE CHECKING ... 6-24
6.8.2 Combining Protection of Both Levels of Page Tables 6-24
6.8.3 Overrides to Page Protection .. ;... 6-24
6.9 COMBINING PAGE AND SEGMENT PROTECTION .. 6-25

CHAPTER 7
MULTITASKING .
7.1 TASK STATE SEGMENT :... 7-2
7.2 TSS DESCRIPTOR ... :.. 7-4
7.3 TASK REGISTER .. 7-5
7.4 TASK GATE DESCRIPTOR ... 7-5
7.5 TASK SWITCHING ... ,.. 7-8
7.6 TASK LINKING ... ' 7-10
7.6.1 Busy Bit Prevents Loops ... , ;....... 7-10
7.6.2 Modifying Task Linkages ... , 7-13
7.7 TASK ADDRESS SPACE ... ,.............. 7-13
7.7.1 Task Linear-to-Physical Space Mapping .. ~.................... 7-14
7.7.2 Task Logical Address Space : ,................... 7-14

CHAPTER 8
INPUT/OUTPUT
8.1 I/O ADDRESSING ... , .. ,.. 8-1
8.1.1 I/O Address Space .. , 8-2
8.1.2 Memory-Mapped I/O , , ,... 8-3
8.2 I/O INSTRUCTIONS ,.. 8-4
8.2.1 Register I/O .Instructions .. 8-4
8.2.2 Block I/O Instructions ... 8-5
8.3 PROTECTION AND I/O .. ;.......................... 8-6
8.3.1 1/0·Privilege Level ,.. 8-6
8.3.2 I/O Permission Bit Map , , ,........... 8-7

CHAPTER 9
EXCEPTIONS AND INTERRUPTS
9.1 EXCEPTION AND INTERRUPT VECTORS ... ;..... 9-1
9.2 INSTRUCTION RESTART ... 9-2
9.3 ENABLING AND DISABLING INTERRUPTS ... 9-3
9.3.1 NMI Masks Further NMls .. ,.... 9-3
9.3.2 IF Masks INTR ... 9-3
9.3.3 !;IF Masks Debug Faults :... 9-4
9.3.4 MOV or POP to SS Masks Some Exceptions and Interrupts ;................ 9-4
9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 9-5
9.5 INTERRUPT DESCRIPTOR TABLE .. ,.................... 9-5

x

intel® TABLE OF CONTENTS

Page
9.6 IDT DESCRIPTORS .. 9-7
9.7 INTERRUPT TASKS AND INTERRUPT PROCEDURES ... 9-7
9.7.1 Interrupt Procedures .. 9-7
9.7.1.1 STACK OF INTERRUPT PROCEDURE ... '....... 9-10
9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE .. 9-11
9.7.1.3 FLAG USAGE BY INTERRUPT PROCEDURE ~ .. 9-11
9.7.1.4 PROTECTION IN INTERRUPT PROCEDURES .. 9-11
9.7.2 Interrupt Tasks ... 9-12
9.8 ERROR CODE .. 9-13
9.9 EXCEPTION CONDITIONS ... 9-14
9.9.1 Interrupt O-Divide Error .. ,................................... 9-14
9.9.2 Interrupt 1 - Debug Exceptions 9-14
9.9.3 Interrupt3-Breakpoint , .. ;.... 9-15
9.9.4 Interrupt 4-0verflow ... 9-15
9.9.5 Interrupt 5 - Bounds Check 9-15
9.9.6 Interrupt 6-lnvalid Opcode ,... 9-15
9.9.7 Interrupt 7 - Device Not Available 9-16
9.9.8 Interrupt 8-Double Fault .. 9-17
9.9.9 Interrupt 9-(lntel reserved. Do not use.) ... 9-18
9.9.10 Interrupt 10-lnvalid TSS .. 9-18
9.9.11 Interrupt 11 - Segment Not Present 9-19
9.9.12 Interrupt 12-Stack Exception , , , ,......... 9-20
9.9.13 Interrupt 13 - General Protection 9-20
9.9.14 Interrupt 14-Page Fault ... 9-21
9.9.14.1 PAGE FAULT DURING TASK SWITCH .. 9-23
9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTER ,....................... 9-23
9.9.15 Interrupt 16 - Floating-Point Error 9-24
9.9.16 Interrupt 17 -Alignment Check ,.. 9-24
9.10 EXCEPTION SUMMARY ... 9-25
9.11 ERROR CODE SUMMARY ... 9-25

CHAPTER 10
INITIALIZATION
10.1 PROCESSOR STATE AFTER RESET ... 10-1
10.2 Intel486 SX MICROPROCESSOR/lnteI487 SX MATH COPROCESSOR

INITIALIZATION .. 10-3
10.3 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE ... 10-5
10.3.1 System Tables , , .. 10-5
10.3.2 NMI Interrupt .. : 10-5
10.3.3 First Instruction 10-5
10.3.4 Enabling Caching .. , , ... 10-5
10.4 SWITCHING TO PROTECTED MODE 10-6
10.4.1 System Tables 10-6
10.4.2 NMI Interrupt .. 10-6
10.4.3 PE Bit 10-6
10.5 SOFTWARE INITIALIZATION IN PROTECTED MODE ... 10-6
10.5.1 Segmentation .. , , 10-7
10.5.2 Paging .. ;.; ; ... 10-7
10:5.3 Tasks. 10-7
10.6 TLB TESTING......................... ... 10-8
10.6.1 Structure of the TLB 10-8
10.6.2 Test Registers .. 10-9
10.6.3 Test Operations : .. 10-11

xi

TABLE OF CONTENTS

Page
10.7 CACHE TESTING , ... 10-12
10.7.1 Structure of the Cache ; ... 10-12
10.7.2 Test Registers .. 10-13
10.7.3 Test Operations ... 10-15
10.8 INITIALIZATION EXAMPLE ... ; 10-16

CHAPTER 11
DEBUGGING
11.1 DEBUGGING SUPPORT ... 11-1
11.2 DEBUG REGISTERS ...•..................•.................................. 11-2
11.2.1 Debug Address Registers (DRO-DR3)•... 11-2
11.2.2 Debug Control Register (DR7) 11-2
11.2.3 Debug Status Register (DR6)•........•... 11-4
11.2.4 Breakpoint Field Recognition .. 11-5
11.3 DEBUG EXCEPTIONS .. 11-6
11.3.1 Interrupt 1 - Debug Exceptions ... 11-6
11.3.1.1 INSTRUCTION-BREAKPOINT FAULT ... 11-6
11 .3.1.2 DATA-BREAKPOI NT TRAP 11-7
11.3.1.3 GENERAL-DETECT FAULT .. 11-7
11.3.1.4 SINGLE-STEP TRAP :•....................... ; 11-8
11.3.1.5 TASK-SWITCH TRAP , .. 11-8
11.3.2 Interrupt 3 - Breakpoint Instruction .. ;.................. 11-8

CHAPTER 12
CACHING
12.1 INTRODUCTION TO CACHING .. 12-1
12.2 OPERATION OF THE INTERNAL CACHE ... 12-2
12.2.1 Cache Disabling Bits 12-2
12.2.2 Cache·Management Instructions .. 12-3
12.2.3 Self-Modifying Code .. 12-3
12.3 PAGE-LEVEL CACHE MANAGEMENT ... 12-3
12.3.1 Cache Management Bits 12-4
12.3.1.1 PCD BIT .. ·12-4
12.3.1.2 PWT BIT 12-4

CHAPTER 13
MULTIPROCESSING
13.1 LOCKED AND PSEUDO-LOCKED BUS CYCLES ; .. 13-1
13.1.1 LOCK Prefix and the LOCK# Signal ;; 13-2
13.1.2 Automatic Locking ... 13-3
13.1.3 Pseudo-Locking ; ... : ... 13-3

PART 111- NUMERIC PROCESSING

CHAPTER 14
INTRODUCTION TO NUMERIC APPLICATIONS
14.1 HISTORY ... 14-1
14.2 PERFORMANCE 14-2
14.3 EASE OF USE ... 14-3
14.4 APPLICATIONS ... : 14-4
14.5 PROGRAMMING INTERFACE 14-5

xii

infel® TABLE OF CONTENTS

CHAPTER 15
ARCHITECTURE OF THE FLOATING-POINT UNIT Page
15.1 NUMERICAL REGISTERS ... 15-1
15.1.1 The FPU Register Stack 15-1
15.1.2 The FPU Status Word 15-2
15. '1.3 Control Word 15-5
15.1.4 The FPU Tag Word' .. 15-6
15.1.5 Opcode Field of Last Instruction ... 15-7
15.1.6 The Numeric Instruction and Data Pointers .. 15-8
15.2 COMPUTATION FUNDAMENTALS .. 15-9
15.2.1 Number System ... 15-10
15.2.2 Data Types and Formats ... 15-12
15.2.2.1 BINARY INTEGERS .. 15-13
15.2.2:2 DECIMAL INTEGERS .. 15-13
15.2.2.3 REAL NUMBERS .. 15-13
15.2.3 Rounding Control................. 15-16
15.2.4 Precision Control.................. 15-17

CHAPTER 16
SPECIAL COMPUTATIONAL SITUATIONS
16.1 SPECIAL NUMERIC VALUES ... 16-1
16.1.1 Denormal Real Numbers ... 16-1
16.1.1.1 DENORMALS AND GRADUAL UNDERFLOW...................... 16-4
16.1.2 Zeros 16-6
16.1.3 Infinity.................. 16-8
16.1.4 NaN (Not-a-Number) : ... 16-8
16.1.4.1 SIGNALING NaNs ... 16-10
16.1.4.2 QUIET NaNs ... 16-11
16.1.5 Indefinite .. 16-12
16.1.6 Encoding of Data Types 16-13
16.1.7 Unsupported Formats .. 16-13
16.2 NUMERIC EXCEPTIONS .. 16-18
16.2.1 Handling Numeric Exceptions.. 16-19
16.2.1.1 AUTOMATIC EXCEPTION HANDLING ... 16-19
16.2.1.2 SOFTWARE EXCEPTION HANDLING .. 16-20
16.2.2 Invalid Operation 16-21
16.2.2.1 STACK EXCEPTION 16-21
16.2.2.2 INVALID ARITHMETIC OPERATION ... 16-22
16.2.3 Division by Zero 16-22
16.2.4 Denormal Operand 16-23
16.2.5 Numeric Overflow and Underflow 16-24
16.2.5.1 OVERFLOW......... 16-24
16.2.5.2 UNDERFLOW .. 16-26
16.2.6 Inexact (Precision) .. ; 16-27
16.2.7 Exception Priority..... 16-27
16.2.8 Standard Underflow/Overflow Exception Handler ... 16-28

CHAPTER 17
FLOATING-POINT INSTRUCTION SET
17.1 SOURCE AND DESTINATION OPERANDS ... 17-1
17.2 DATA TRANSFER INSTRUCTIONS .. 17-2
17.3 NONTRANSCENDENTAL INSTRUCTIONS .. 17-2
17.4 COMPARISON INSTRUCTIONS ... 17-4

xiii

infel® TABLE OF CONTENTS

Page
17.S TRANSCENDENTAL INSTRUCTIONS .. 17-S
17.6 CONSTANT INSTRUCTIONS ... 17-6
17.7 CONTROL INSTRUCTIONS .. 17-7

CHAPTER 18
NUMERIC APPLICATIONS
18.1 PROGRAMMING FACILITIES ... 18-1
18.1.1 High-Level Languages 18-1
18.1.2 C Programs c ... 18-1
18.1.3 PL/M-386/486 18-2
18.1.4 ASM386/486 18-4
18.1.4.1 DEFINING DATA ... 18-4
18.1.4.2 RECORDS AND STRUCTURES ... 18-S
18.1.4.3 Addressing Methods .. : 18-6
18.1.S Comparative Programming Example .. 18-7
18.2 CONCURRENT PROCESSING ... 18-12
18.2.1 Managing Concurrency '" .. 18-12
18.2.1.1 INCORRECT EXCEPTION SYNCHRONIZATION ... 18-13
18.2.1.2 PROPER EXCEPTION SYNCHRONIZATION ... 18-14

CHAPTER 19
SYSTEM-LEVEL CONSIDERATIONS
19.1 ARCHITECTURE 19-1
19.1.1 Independent of Addressing Mode 19-1
19.2 PROCESSOR INITIALIZATION AND CONTROL .. 19"1
19.2.1 System Initialization ... 19-2
19.2.2 Configuring the Numerics Environment .. 19-2
19.2.3 Initializing the .FPU ... 19-2
19.2.3.1 Intel486 DX CPU SOFTWARE EMULATION ... 19-3
19.2.3.2 Intel486 SX CPU SOFTWARE EMULATION PROCEDURE 19-3
19.2.4 Handling Numerics Exceptions 19-4
19.2.S Simultaneous Exception Response ... 19-5
19.2.6 Exception Recovery Examples 19-5

CHAPTER 20
NUMERIC PROGRAMMING EXAMPLES
20.1 CONDITIONAL BRANCHING EXAMPLE ; 20-1
20.2 EXCEPTION HANDLING EXAMPLES ... 20-2
20.3 FLOATING-POINT TO ASCII CONVERSION EXAMPLES .. 20-7
20.3.1 Function Partitioning .. 20-7
20.3.2 Exception Considerations .. 20-7
20.3.3 Special Instructions ... 20-21
20.3.4 Description of Operation .. 20-21
20.3.S Scaling the Value ... 20-22
20.3.S.1 INACCURACY IN SCALING .. ; 20-22
20.3.S.2 AVOIDING UNDERFLOW AND OVERFLOW .. 20-23
20.3.S.3 FINAL ADJUSTMENTS ... 20-23
20.3'.6 Output Format .. 20-23
20.4 TRIGONOMETRIC CALCULATION EXAMPLES .. : 20-23

xiv

intel® TABLE OF CONTENTS

PART IV-COMPATIBILITY

CHAPTER 21
EXECUTING 286 AND Intel386 DX OR SX CPU PROGRAMS Page
21.1 TWO WAYS TO RUN 2S6 CPU TASKS .. 21-2
21.2 DIFFERENCES FROM 2S6 CPU .. 21-2
21.2.1 Wraparound of 2S6 Processor 24-Bit Physical Address Space 21-2
21.2.2 Reserved Word of Segment Descriptor .. 21-2
21.2.3 New Segment Descriptor Type Codes .. : 21-3
21.2.4 Restricted Semantics of LOCK Prefix .. 21-3
21.2.S Additional Exceptions 21-3
21.3 DIFFERENCES FROM Intel3S6 CPU ... 21-4
21.3.1 New Flag 21-4
21.3.2 New Exception ... 21-4
21.3.3 New Instructions 21-4
21.3.4 New Control Register Bits .. ; 21-S
21.3.S New Page-Table Entry Bits .. 21-S
21.3.6 Changes in Segment Descriptor Loads .. 21-S

CHAPTER 22
REAL-ADDRESS MOPE
22.1 ADDRESS TRANSLATION .. 22-1
22.2 REGISTERS AND INSTRUCTIONS .. 22-2
22.3 INTERRUPT AND EXCEPTION HANDLING : .. 22-3
22.4 ENTERING AND LEAVING REAL-ADDRESS MODE .. 22-4
22.4.1 Switching to Protected Mode 22-4
22.S SWITCHING BACK TO REAL-ADDRESS MODE ... ; 22-4
22.6 REAL-ADDRESS MODE EXCEPTIONS .. : 22-S
22.7 DIFFERENCES FROM SOS6 CPU .. 22-S
22.S DIFFERENCES FROM 2S6 CPU IN REAL-ADDRESS MODE 22-9
22.S.1 Bus Lock 22-10
22.S.2 Location of First Instruction ... 22-10
22.S.3 Initial Values of General Registers .. 22-10
22.S.4 Bus Hold .. 22-11
22.S.S Math Coprocessor Differences .. 22-11
22.9 DIFFERENCES FROM Intel3S6 DX CPU IN REAL-ADDRESS MODE 22-11
22.10 PROCESSOR DETECTION CODE ... 22-11

CHAPTER 23
VIRTUAL-8086 MODE
23.1 EXECUTING SOS6 CPU CODE ... 23-1
23.1.1 Registers and Instructions 23-1
23.1.2 Address Translation ... 23-2
23.2 STRUCTURE OF A VIRTUAL-SOS6 TASK ... 23-3
23.2.1 Paging for Virtual-SOS6 Tasks 23-4
23.2.2 Protection within a Virtual-SOS6 Task .. 23-S
23.3 ENTERING AND LEAVINGVIRTUAL-SOS6 Mode .. 23-S
23.3.1 Transitions Through Task Switches 23-6
23.3.2 Transitions Through Trap Gates and Interrupt Gates ... 23-7
23.4 ADDITIONAL SENSITIVE INSTRUCTIONS ... 23-S
23.4.1 Emulating SOS6 Operating System Calls .. 23-9
23.4.2 Emulating the Interrupt-Enable Flag ... 23-9
23.S VIRTUAL I/O .. 23-9
23.S.1 I/O-Mapped I/O 23-10

inteL TABLE OF CONTENTS

Page
23.5.2 Memory-Mapped I/O 23-10
23.5.3 Special I/O Buffers 23-10
23.6 DIFFERENCES FROM 8086 CPU .. 23-11
23.7 DIFFERENCES FROM 286 CPU IN REAL-ADDRESS MODE 23-14
23.7.1 Privilege Level ... ; " 23-14
23.7.2 Bus Lock .. 23-14
23.8 DIFFERENCES FROM Intel386 DX AND SX CPUs ... 23-15

CHAPTER 24
MIXING 16-BIT AND 32-BIT CODE
24.1 USING 16-BIT AND 32-BIT ENVIRONMENTS , ; 24-2
24.2 MIXING 16-BIT AND 32-BIT OPERATIONS .. 24-2
24.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS .. 24-3
24.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS 24-4
24.4.1 Size of Code-Segment Pointer ... ; 24-4
24.4.2 Stack ManagemenUor Control Transfers ... 24-5
24.4.2.1 CONTROLLING THEOPERAND SIZE FOR A CALL ... 24-6
24.4.2.2 CHANGING SIZE OF A CALL ... 24-6
24.4.3 Interrupt Control Transfers .. 24-7
24.4.4 Parameter Translation 24-7
24.4.5 The Interface Procedure ... : 24-7

CHAPTER 25
COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 MATH COPROCESSORS
25.1 DIFFERENCES FROM Intel386 CPU/lntel387 NPX SYSTEMS 25-1
25.2 DIFFERENCES FROM 286/lnte1287 SYSTEMS ... 25-2
25.2.1 Data Types and Exception Handling ... 25-3
25.2.2 Tag, Status, and Control Words .. ; 25-6
25.2.3 Instruction Set .. 25-8
25.3 DIFFERENCES FROM 8086/8087 SYSTEMS .. 25-11

CHAPTER 26
INSTRUCTION SET

PART V -INSTRUCTION SET

26.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES .. 26-1
26.1.1 Default Segment Attribute 26~ 1
26.1.2 Operand-Size and Address-Size Instruction Prefixes ... 26-1
26.1.3 Address-Size Attribute for Stack .. 26-2
26.2 INSTRUCTION FORMAT .. " 26-2
26.2.1 ModR/M and SIB Bytes ... 26-3
26.2.2 How to Read the Instruction Set Pages .. 26-8
26.2.2.1 OPCODE COLUMN .. 26-8
26.2.2.2 INSTRUCTION COLUMN .. 26-9
26.2.2.3 CLOCKS COLUMN .. : " .. 26-11
26.2.2.4 DESCRIPTION COLUMN " ... 26-12
26.2.2.5 OPERATION .. 26-12
26.2.2.6 DESCRIPTION : ... 26-16
26.2.2.7 FLAGS AFFECTED 26-16
26.2.2.8 PROTECTED MODE EXCEPTIONS 26-17
26.2.2.9 REAL ADDRESS MODE EXCEPTIONS ... ~ 26-17

xvi

intel® TABLE OF CONTENTS

Page
26.2.2.10 VIRTUAL-8086 MODE EXCEPTIONS ... 26-17
AAA .. 26-18
AAD .. 26-19
AAM ... 26-20
AAS .. 26-21
ADC .. 26-22
ADD .. 26-24
AND .. 26-26
ARPL ... 26-27
BOUND .. 26-29
BSF .. 26-31
BSR .. 26-33
BSWAP .. 26-35
BT ... 26-36
BTC .. 26-38
BTR .. 26-40
BTS .. 26-42
CALL .. 26-44
CBW/CWDE ... 26-51
CLC : ... 26-52
CLD .. 26-53
CLI .. 26-54
CLTS .. 26-55
CMC ... 26-56
CMP ... 26-57
CMPS/CMPSB/CMPSW/CMPSD ... 26-59
CMPXCHG 26-62
CWD/CDQ 26-64
DAA .. 26-65
DAS .. 26-66
DEC .. 26-67
DIV ... 26-68
ENTER ... 26-70
F2XM1 .. 26-72
FABS .. 26-74
FADD/FADDP/FIADD ... 26-75
FBLD .. 26-77
FBSTP .. 26-79
FCHS ... 26-80
FCLEX/FNCLEX 26-81
FCOM/FCOMP/FCOMPP .. 26-82
FCOS ... 26-84
FDECSTP ~ ... 26-86
FDIV/FDIVP/FIDIV .. 26-87
FDIVR/FDIVPR/FIDIVR 26-89
FFREE .. 26-91
FICOM/FICOMP ... 26-92
FILD ... 26-94
FINCSTP 26-96
FINIT/FNINIT ... 26-97
FIST/FISTP ... 26-99
FLD .. 26-101

xvii

intel® TABLE OF CONTENTS

FLD1/FLDL2T/FLDL2E/
Page

FLDPI/FLDLG2/FLDLN2/FLDZ ... , 26-103
FLDCW : .. 26-105
FLDENV ... 26-107
FMUL/FMULP/FIMUL .. 26-109
FNOP ... 26-111
FPATAN : ... 26~112
FPREM ... 26-113
FPREM1 ... 26-115
FPTAN .. 26-117
FRNDINT .. 26-119
FRSTOR ... 26-120
FSAVE/FNSAVE ... 26-122
FSCALE .. , 26-124
FSIN ... 26-125
FSINCOS .. 26-127
FSQRT .. ; 26-l29
FST/FSTP ... 26"130
FSTCW/FNSTCW ... 26-132
FSTENV/FNSTENV ... : 26-133
FSTSW/FNSTSW ... 26-135
FSUB/FSUBP/FISUB ... , ; 26-137
FSUBR/FSUBPR/FISUBR ... , 26-1.39
FTST .. 26-141
FUCOM/FUCOMP/FUCOMPP ... 26-143
FWAIT .. 26-145
FXAM 26-146
FXCH ... 26-148
FXTRACT : : .. 26-150
FYL2X 26-152
FYL2XP1 26-154
HLT .. 26-156
IDIV .. 26~157
IMUL ... 26-159
IN .. : .. ; 26-161
INC .. 26-163
INS/INSB/INSW/INSD ~ ... : 26-164
INT/INTO ... 26-166
INVD ... 26-171
INVLPG .. 26-172
IRET/IRETD ... ' 26-173
Jcc ... 26-178
JMP .. : 26-182
LAHF ... 26-187
LAR ... : .. : 26-188
LEA .. 26-190
LEAVE .. ' ·26-192
LGDT/LIDT ... : ... 26-193
LGS/LSS/LDS/LES/LFS ... 26-195
LLDT ... ,26-198
LMSW .. ;. 26~200
LOCK ... ; ... 26-201
LODS/LODSB/LODSW/LODSD ... 26-203

xviii

infel® TABLE OF CONTENTS

Page
LOOP/LOOPeond .. 26-205
LSL ... 26-207
LTR ... 26-209
MOV ... 26-210
MOV ... ; ... 26-212
MOVS/MOVSB/MOVSW/MOVSD .. 26-214
MOVSX 26-216
MOVZX 26-217
MUL .. 26-218
NEG ... 26-220
NOP ... 26-221
NOT .. 26-222
OR .. 26-223
OUT .. 26-225
OUTS/OUTSB/OUTSW/OUTSD ... 26-227
POP .. 26-230
POPNPOPAD .. 26-233
POPF/POPFD .. 26-235
PUSH 26-236
PUSHNPUSHAD 26-238
PUSHF/PUSHFD .. 26-240
RCL/RCR/ROL/ROR ... 26-241
REP/REPE/REPZ/REPNE/REPNZ .. ; 26-244
RET .. 26-247
SAHF : .. 26-251
SAL/SAR/SHL/SHR•... 26-252
SBB .. 26-255
SCAS/SCASB/SCASW/SCASD ... 26-257
SETee ... 26-259
SGDT/SIDT .. 26-261
SHLD 26-263
SHRD 26-265
SLDT 26-267
SMSW 26-268
STC .. 26-269
STD .. 26-270
STI .. 26-271
STOS/STOSB/STOSW/STOSD ... 26-272
STR .. 26-274
SUB .. 26-275
TEST ... : 26-277
VERR, VERW 26"278
WAIT : ... 26-280
WBINVD ... 26-281
XADD .. , 26-282
XCHG•......................... : .. 26-284
XLAT/XLATB ... 26-285
XOR .. 26-287

xix

TABLE OF CONTENTS

APPENDIX A
OPCODE MAP

APPENDIX B
FLAG CROSS-REFERENCE

APPENDIX C
STATUS FLAG SUMMARY

APPENDIX D
CONDITION CODES

APPENDIX E
INSTRUCTION FORMAT AND TIMING

APPENDIX F
NUMERIC EXCEPTION SUMMARY

APPENDIX G
CODE OPTIMIZATION

APPENDIX H
REVISION HISTORY

GLOSSARY

INDEX

APPENDICES

Figures

Figure Title Page

1-1 Bit and Byte Order ; .. ; ;... 1-7
2-1 Segmented Addressing .: ... :.............. 2-4
2-2 Fundamental Data Types ; .. :...... 2-5
2-3 Bytes, Words, and Doublewords in Memory ;..................................... 2-5
2-4 Data Types .. 2~7
2-5 Application Register Set :.. 2-9
2-6 An Unsegmented Memory 2-10
2-7 A Segmented Memory : : ... : :.................. 2-11
2-8 Stacks ; : ... :.............2-l3
2-9 EFLAGS Register ... :....................... 2~14
2-10 Effective Address Computation .. :.................. 2-21
3-1 PUSH Instruction ; : ;.......................... 3-2
3-2 PUSHA Instruction .. , : : :....... 3-3
3-3 POP Instruction 3-4
3-4 POPA Instruction .. 3-5
3-5 Sign Extension 3-5
3-6 SHLJSAL Instruction .. 3-14
3-7 SHR Instruction .. 3-15

xx

int:et TABLE OF CONTENTS

Figure

3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
4-1
4-2
4-3
4-4
4-5
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5~9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
6-1
6-2 '
6-3
6-4
6-5
6-6
6c7
6-8
6-9
6-10
7-1

Figures
Title

SAR Instruction .. .
SHLD Instruction .. .
SHRD Instruction
ROL Instruction .. .
ROR Instruction
RCL Instruction .. .
RCR Instruction .. .
Formal Definition of the ENTER Instruction .. .
Nested Procedures .. .
Stack Frame After Entering MAIN
Stack Frame After Entering PROCEDURE A .. .
Stack Frame After Entering PROCEDURE B .. .
Stack Frame After Entering PROCEDURE C .. .
Low Byte of EFLAGS Register .. .
Flags Used with PUSHF and POPF .. .
CPUJD, MCPJD Detection Code .. .
ASCII Arithmetic Using BSWAP ... ;
System Flags
Memory Management Registers
Control Registers
Debug Registers .. .
Test Registers .. .
Flat Model : .. .
Protected Flat Model
Multi-Segment Model
TI Bit Selects Descriptor Table
Segment Translation .. .
Segment Registers .. .
Segment Selector .. .
Segment Descriptors
Segment Descriptor (Segment Not Present) .. .
Descriptor Tables ... ,
Pseudo-Descriptor Format .. .
Format of a Linear Address
Page Translation ... :
Format of a Page Table Entry ... ,
Format of a Page Table Entry for a Not-Present Page
Combined Segment and Page Address Translation
Each Segment Can Have Its Own Page Table
Descriptor Fields Used for Protection
Protection Rings .. .
Privilege Check for Data Access
Privilege Check for Control Transfer Without Gate
Call Gate .. .
Call Gate Mechanism .. .
Privilege Check for Control Transfer with Call Gate
Initial Stack Pointers in a TSS
Stack Frame During Interlevel Call .. .
Protection Fields of a Page Table Entry
Task State Segment

xxi

Page

3-15
3-16
3-17
3-18
3-18
3-18
3-19
3-32
3-33
3-34
3-35
3-35
3-36
3-38
3-38
3-42
3-48

4-2
4-4
4-5
4-8
4-9
5-3
5-5
5-6
5-8
5-9
5-9

5-10
5-11
5-14
5-15
5-16
5-19
5-19
5-20
5-21
5-23
5-25
.6-2
6-7
6-8

6-10
6-11
6-12
6-14
6-15
6-17
6-23

7-3

int:eL TABLE OF CONTENTS

Figure

7-2
7-3
7-4
7-5
7c6
7-7
8-1
8"2.
9-1
9-2
9'3
9'4
9-.5
9-6
9-7
10-1
10-2
10-3
10-4
10-5
10-6
11-1
14~1
15-1
15-2
15-3
15-4
15-5
15-6

15-7

15-8

15-9

15-10
15-11
16-1
16-2
16-3
16-4
18-1
18-2
18-3
18-4
18"5
18-6
18-7

Figures
Title

TSS Descriptor ... :
TR Register ... : : :
Task Gate Descriptor ... :
Task. Gates Reference Tasks , ;
Nested Tasks
Overlapping Linear-to-Physical Mappings .. .
Memory-Mapped I/O•......................•.................................
I/O Permission Bit Map : .. .
IDTR Register Locates IDT in Memory .. .

. IDT Gate Descriptors
,.Interrupt Procedure Call ; ; .. :
Stack Frame After Exception or Interrupt : ~
Interrupt Task.Switch ; ; :
Error Code .. : ~
Page Fault Error Code .. : ;; :
Contents of the EDX Register After Reset .. .
Contents of theCRO Register After Reset : ;
TLB Structure .. .
TLB Test Registers :
. Cache Structure ... i •••••••••••
Cache Test.Registers .. :
Debug Registers .. .
Evolution and Performance of Numeric Processors :
Intel486™ FPU Register Set .. ,
InteI486™ .. FPU Status Word
InteI486~~ FPU Control Word.Format .. .
Tag Word Format ... , : ; ..
Opcode Field .. .
Protected Mode Numeric Instruction .and Data Pointer Image in

Memory, 32-Bit Format .. :
Real Mode Numeric Instruction and Data Pointer Image in Memory;

32-Bit Format ..•.. : : ..
Protected Mode Numeric Instruction and Data Pointer Image in Memory,

i6-Bit Format
Real Mode Numeric Instruction and Data Pointer Image in Memory,

.16-Bit Format .. : : .. .
Double-Precisio(l Number System"
Numerical Data Formats : ; ;
Floating~Point System with Denormals
Floating-Point System without Denormals
Arithmetic Example Using Infinity
Coprocessor Detection Code .. j ... ; ••••
Sample C-386/486 Program : : : ..
Sample Numeric Constants .. ;;.:
.Status. Word Record Definition , ... ,
Str.ucture Definition ... ~ .. :
Sample PLlM-386/486 Program ... , ... ;
Sample ASM386/486 Program ... , .. .
.Instructions and Register Stack .. .

xxii

Page

7-4
7-6
7-7
7-8

7-12
7"15

8-3
8-7
9-6
9-8
9-9

9-10
9-12
9-13
9-22
10-2

. 10-2
10-9

10-10
10-13
10-14

11-3
14-2
15-2
15-3
15-6
15-7
15-7

15-8

15-9

15-9

15-10
15-11
15-12

16-5
16-5

16-20
16-24

18-2
18-5
18-6
18-6.
18-8
18-9

18-11

infel® TABLE OF CONTENTS

Figure

18-8
20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
22-1
22-2
23-1
23-2
23-3
24-1
26-1
26-2
26-3
26-4

Figures
Title

Exception Synchronization Examples
Conditional Branching for Compares .. .
Conditional Branching for FXAM
Full-State Exception Handler ... ;
Reduced-Latency Exception Handler .. .
Reentrant Exception Handler .. .
Floating-Point to ASCII Conversion Routine
Relationships Between Adjacent Joints .. ~ ..
Robot Arm Kinematics Example .. .
8086 Address Translation .. .
Real-Address Detection Code
8086 Address Translation .. .
Entering and Leaving Virtual-B086 Mode
Privilege Level 0 Stack After Interrupt in Virtual-8086 Mode
Stack After Far 16- and 32-Bit Calls .. .
Intel486™ Processor Instruction Format
ModR/M and SIB Byte Formats .. .
Bit Offset for BIT[EAX, 21]
Memory Bit Indexing

Tables

Page

18-14
20-2
20-3
20-4
20-5
20-6
20-8

20-24
20-26
22-2

22-12
23-3
23-5
23-7
24-5
26-2
26-4

26-15
26-16

Table Title Page

2-1 Register Names 2-8
2-2 Status Flags 2-14
2-3 Default Segment Selection Rules 2-20
2-4 Exceptions and Interrupts :... 2-24
3-1 Operands for Division ... 3-9
3-2 Bit Test and Modify Instructions ... 3-12
3-3 Conditional Jump Instructions.. 3-25
3-4 Repeat Instructions ... 3-29
3-5 Flag Control Instructions ... 3-37
5-1 Application Segment Types 5-12
6-1 System Segment and Gate Types 6-4
6-2 I nterlevel Return Checks 6-18
6-3 Valid Descriptor Types for LSL Instruction 6-21
6-4 Combined Page Directory and Page Table Protection 6-25
7-1 Checks Made during a Task Switch ... 7-11
7-2 Effect of a Task Switch on Busy, NT, and Link Fields 7-12
9-1 Exception and Interrupt Vectors ... 9-2
9-2 Priority Among Simultaneous Exceptions and Interrupts 9-5
9-3 I ntel Reserved Opcodes : ;.................. 9-16
9-4 Interrupt and Exceptions Classes .. 9-17
9-5 Invalid TSS Conditions ... 9-18
9-6 Alignment Requirements by DataType ... 9-24
9-7 Exception Summary ... 9-26
9-8 Error Code Summary 9-27

xxiii

Table

10-1
10-2

10-3
10-4
10-5
11-1
11-2
12-1
14~1
14-2
14-3
15-1
15-2
15-3
15-4
15-5
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
17-1
17-2
17-3
17-4
17-5
17-6
17-7
17-8
18-.1
18~2
18-3
19-1
22-1
22-2
26-1
. 26-2·
26-3
26-4
26-5
26-6

TABLE OF CONTENTS

Tables
Title

Processor State Following Power-Up ; .. .
Recommended Values of the FP Related Bits fm lI'teI486'· SX

Microprocessor/lntel487'M SX Math CoProcessor System ~ ~
EM and MP Bits Interpretations ; .. ;
Meaning of Bit Pairs in the TR6 Register ;; ;
Encoding of Cache Test Control Bits•...
Breakpointing Examples ; .. : ; ... ~ .. .
Debug Exception Conditions ;
Cache Operating Modes :•.................................
Numeric Processing Speed Comparisons .. .
Numeric. Data Types ... ; ; .. .
Principal Numeric Instructions· .. :
Condition Code Interpretation : .. .
Correspondence Between FPU and IU Flag Bits ;•............................
Summary of Format Parameters ; ... ; ... ;
Real Number Notation ... : :
Rounding Modes ... ;
Arithmetic and Nonarithmetic Instructions .. .
Denormalized Values .. ;
Zero Operands and Results .. .
Infinity Operands and Results .. .
Rules for Generating QNaNs
Binary Integer Encodings .. .
Packed Decimal Encodings .. .
Single and Double Real Encodings .. .
Extended Real Encodings
Unsupported Formats .. .
Masked Response to Invalid Operations .. .
Masked Overflow Results :•..................... ,
Data Transfer Instructions
Nontranscendental Instructions (Besides Basic Arithmetic)
Basic Arithmetic Instructions and Operands•........ :
Comparison Instructions
TEST Constants for Conditional Branching ;
Transcendental ·Instructions•...
Constant Instructions :
Control Instructions ... : :
PL/M-386/486 Built-In Procedures· ... : .. .
ASM386/486 Storage Allocation Directives :
Addressing Method Examples : : :

. FPU State Following Initialization ,
Exceptions and Interrupts
New Intel486'M CPU Exceptions ... ,
Effective Size Attributes .. ;
16-Bit Addressing Forms with the ModR/M. Byte

. 32-Bit Addressing Forms with the ModR/M Byte
32-Bit Addressing Forms with the SIB Byte .. .
Task Switch Times for Exceptions
Exceptions' .:: : : ~

xxiv

Page

10-3

10-4
10-4

10-10
10-15

11-5
11-6
12-3
14-2
14-6
14-7
15-4
15-5

15-14
15-14
15-16

16c2
16-3
16-6
16-9

16-12
16-14
16-15
16-16
16-17
16-18
16-22
16-25

17-2
17-3
17-3
17-4
17-5
17-6
17-7
17-7
18-3
18-4
18-7
19-3
22-6
22-9
26-2
26-5
29-6
26-7

26-12
26-17

Introduction to the Intel486 ™ 1
Microprocessor Family

CHAPTER 1
INTRODUCTION TO THE

Intel486™ MICROPROCESSOR FAMilY

The Intel486 microprocessors offer the highest performance for DOS, OS/2, Windows
and UNIX System V/386 applications. The Intel486 microprocessor family currently
includes the Intel486 SX CPU (and Intel48T" SX Math CoProcessor), Intel486 DX
CPU, and the Intel486 DX2 CPU. These processors are 100% binary compatible with
one another and with the Intel386™ family of microprocessors. Throughout this text,
these members are collectively referred to as the "Inte1486 processor." The high integra­
tion Intel486 processors maintain binary compatibility with previous members of the x86
architectural family. The instruction set microarchitecture has been reimplemented
using RISC design techniques such that frequently used instructions execute in one
cycle. An 8-Kbyte unified code and data cache combined with the high bandwidth, burst­
able data bus allow this performance level to be sustained, providing a significant per­
formance advantage without additional system complexity.

New features enhance multiprocessing systems. New instructions speed manipulation of
memory-based semaphores. On-chip hardware ensures cache consistency and provides
hooks for multi-level caching.

The built-in self-test extensively tests on-chip logic, cache memory and the on-chip pag­
ing translation cache. Debug features include breakpoint traps on code execution and
data accesses.

Features of the Intel486 processor include: .

• Full binary compatibility with Intel386 DX CPU, Intel386 SX CPU, Intel386 SL,
376™ embedded processor, 80286, 8086, and 8088 processors.

o Execution unit designed to execute frequently~used instructions in one .clock cycle.

o 32-bit integer processor for performing arithmetic and logical operations.
o Internal or coprocessor floating-point unit (Inte1486 FPU)·for supporting the 32-, 64-,

and 80-bit formats specified in IEEE standard 754 (object-code compatible with
Intel38T" DX and Inte1387 SX math coprocessors).

• Internal 8-Kbyte cache memory, which provides fast access to recently-used instruc­
tions and data.

o Bus control signals for maintaining cache consistency in multiprocessor systems.
• Segmentation, a form of memory management for creating independent, protected

address spaces.

• Paging, a form of memory management which provides access to data structures
larger than the available memory space by keeping therri partly in memory and partly
on disk.

• Restartable instructions that allow a program to be restarted following an exception
(necessary for supporting demand-paged virtual memory).

o Pipelined instruction execution overlaps the interpretation of different instructions.
o Debugging registers for hardware support of instruction and data breakpoints.

1-1

intet INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

The Intel486 processors are object-code compatible with four other Inte1386 processors:

• Inte1386 DX Processor (32-bit data bus)-A cost-effective form for high-end personal
computers and mid-range workstations.

• Inte1386 SX Processor (16-bit data bus) - The Intel386 processor adapted for mid­
range personal computers, which are sensitive to the higher system cost of a 32-bit
bus.

• Inte1386 SL Processor (16-bit data bus) - A high integration, static Intel386 micropro­
cessor with ISA peripheral subsystem and power management.

• 376 Embedded Processor (16-bit data bus) - A reduced form of the Intel386 proces­
sor optimized for embedded applications, such as process controllers. The 376 pro­
cessor lacks the paging and 8086-compatlbility features provided in the Intel486
processor. Tl)e 376 processor is available in a surface-mount plastic package, which
provides the lowest cost and smallest form factor for any implementation of the
Intel386 processor.

The operating mode of the Intel486 processor determines which instructions and archi­
tectural features are accessible. The Intel486 processor has three modes for running
programs:

• Protected mode uses the native 32-bit instruction set of the processor. In this mode
all instructions and architectural features are available.

• Real-address mode (also called "real mode") emulates the programming environ­
ment of the 8086 processor, with a few extensions (such as the ability to break out of
this mode). Reset initialization places the processor into real mode.

• Virtual-8086 mode (also called "V86 mode") is another form of 8086 emulation
mode. Unlike real-address mode, virtual-8086 mode is compatible with protection and
memory-management. The processor can enter virtual-8086 mode from protected
mode to run a program written for the 8086 processor, then leave virtual-8086 mode
and re-enter protected mode to continue a program which uses the 32-bit instruction
set.

1.1 ORGANIZATION OF THIS MANUAL

This book presents the architecture of the Intel486 processor in five parts:

• Part I - Application Programming

• Part II - System Programming

• Part III - Numeric Processing

• Part IV - Compatibility

• Part V - Instruction Set

• Appendices

1-2

intel,. INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

These divisions are determined by the architecture and by the ways programmers use
this book. The first three parts are explanatory, showing the purpose of architectural
features, developing terminology and concepts, and describing instructions as they relate
to specific purposes or to specific architectural features. The remaining parts are refer­
ence material for programmers developing software for the Intel486 processor.

The first four parts cover the operating modes and protection mechanism of the Intel486
processor. The distinction between application programming and system programming is
related to the protection mechanism of the Intel486 processor. One purpose of protec­
tion is to prevent applications from interfering with the operating system. For this rea­
son, certain registers and instructions are inaccessible to application programs. The
features discussed in Part I and Part III are those which are accessible to applications;
the features in Part II are available only to programs running with special privileges, or
programs running on systems where the protection mechanism is nbt used.

The features available to application programs in protected mode and to all programs in
virtual-8086 mode are the same. These features are described in Part I and Part III of
this book. The additional features available to system programs in protected mode are
described in Part II. Part IV describes real-address mode and virtual-8086 mode, as well
as how to run a mix of 16-bit and 32-bit programs.

1.1.1 Part I...,...Application Programming

This part presents the features used by most application programmers. It does not
include features used in numeric applications, which are discussed in Part III.

Chapter 2 - Basic Programming Model: Introduces the models of memory organization.
Defines the data types. Presents the register set used by applications. Introduces the
stack. Explains string operations. Defines the parts of an instruction. Explains address
calculations. Introduces interrupts and exceptions as they apply to application
programming.

Chapter 3 - Application Programming: Surveys the instructions. commonly used for
application programming. Considers instructions in functionally related groups; for
example, string instructions are considered in one section, while control-transfer instruc­
tions are considered in another. Explains the concepts behind the instructions. Details of
individual instructions are deferred until Part IV, the instruction-set reference.

1.1.2 Part 11-System Programming

This part presents the features used by operating systems, device drivers, debuggers, and
other software which support application programs. Some additional information rele­
vant to systems programming is presented in Part III.

1-3

intet INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

Chapter 4- System Architecture: Describes the features of the Intel486 processor used
by system programmers. Introduces the registers and data structures of the Intel486
processor which are not discussed in Part I or Part III. Introduces the system-oriented
instructions in the context of the registers and data structures they support. References
the chapters in which each register, data structure, and instruction is discussed in, more
detail.

Chapter 5 - Memory Management: Presents details of the data structures, registers" and
instructions which support segmentation. Explains how system designers can choose
between an unsegmented ("flat") mood of memory organization and a model with
segmentation.

Chapter 6 - Protection: Dis,cusses protection as it applies to segments. Explains the
implementation of privilege rules, stack switching, pointer validation, user and supervi­
sor modes. Protection aspects of multitasking are deferred until the following chapter.

Chapter 7-Multitasking: Explains how the hardware of the Intel486 processor supports
multitasking with context-switching operations and intertask protection.

Chapter 8 - Input/Output: Describes the I/O features Of the Intel486 processor,' includ­
ing I/O instructions, protection as it relates to I/O, and the I/O permission'bit map.

Chapter 9 - Exceptions and Interrupts: Explains the basic interrupt mechanisms of the
Intel486 processor. Shows how interrupts and exceptions relate to protection. Discusses
all possible exceptions, listing causes and including information needed to handle and
recover from each exception.

Chapter 10 - Initialization: Defines the condition of the processor after reset initializa­
tion. Explains how to set up registers, flags, and data structures. Shows how to test the
on-chip cache and the translation lookaside buffer. Contains an example of aninitializa­
tion program.

Chapter '11- Debugging: Tells how to use the debugging registers of th~ Intel486
processor.

Chapter 12-Caching: Explains the general concept of caching and the specific mecha­
nisms used by the internal cache on the Intel486, processor.

Chapter 13 - Multiprocessing: Explains the instructions and flags which support multiple
processors with shared memory.

1.1.3 Part 111-Numeric Processing

This part explains the floating-point arithmetic features of the Intel486 microprocessor
family. These features are an object-code compatible implementation of the features
provided by the Inte1387 DX or SX math. coprocessor used with the Intel386 DX or SX
processor.

1-4

inteL INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

Chapter 14-Introduction to Numeric Applications: Gives an overview of the floating­
point unit and reviews the concepts of numerical computation.

Chapter 15 -Architecture of the Floating-Point Unit: Presents the floating-point regis­
ters and data types available to both applications and systems programmers.

Chapter 16 - Special Computational Situations: Discusses the special values that can be
represented in the -real -formats of the Intel486 processor - denormal numbers, zeros,
infinities, NaNs (Not a Number) - as well as the numerical exceptions. This chapter
should be read thoroughly by systems programmers, but can be skimmed by applications
programmers. Many of these special situations may never arise in applications programs.

Chapter 17-Floating-Point Instruction Set: Surveys the instructions commonly used for
numeric processing. Details of individual instructions are deferred until Part V, the
instruction-set reference.

Chapter 18 - Numeric Applications: Describes the Intel486 processor's floating-point
arithmetic facilities. Gives short programming examples in both assembly language and
high-level languages.

Chapter 19-5ystem-Level Considerations: Provides information of interest to systems
software writers.

Chapter 20-Numeric Programming Examples: Provides detailed examples of assembly­
language numeric programming with the Intel486 processor, including conditional
branching, conversion between floating-point values and their ASCII representations,
and use of trigonometric functions.

1.1.4 Part IV - Compatibility

This part explains the features of the architecture which support programs written for
earlier Intel processors. The native mode of execution is an upward-compatible superset
of the environment of the 286 and Intel386 processors. All three execution modes have
support for 16-bit programming: 16-bit operations can be performed in protected mode
using the operand-size prefix, programs written for the 8086 processor or the real mode
of the 286 processor can run in real mode on the Intel386 DX or SX processor, and a
virtual machine monitor can be used to emulate real mode using virtual-8086 mode, even
while multitasking with 32-bit programs.

Chapter 21- Executing 286 and Intel386 DX or SX CPU Programs: Explains the pro­
gramming differences between the 286 and Intel486 processors, and between the
Inte1386 DX and SX and Intel486 processors.

Chapter 22 - Real-Address Mode: Explains the real mode of the Intel486 processor. In
this mode, the Intel486 processor appears as a fast real-mode 286 or Inte1386 processor
or a fast 8086 processor enhanced with additional instructions.

1-5

inteL INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

Chapter 23 - Virtual-8086 Mode: Describes how the Intel486 processor supports execu­
tion of one or more 8086, 8088, 80186 or 80188 programs in an Intel486 processor
protected-mode environment.

Chapter 24-Mixing 16-Bit and 32-Bit Code: Explains how the Intel486 processor can
mix 16-bit and 32-bit modules within the same program or task. Any particular module
can use both 16-bit and 32-bit operands and addresses.

Chapter 25 - Compatibility with 8087, Inte1287, and Intel387 Math CoProcessors: Com­
pares the floating-point unit of the Intel486 processors with the arithmetic of the numer­
ics coprocessors used with earlier Intel processors.

1.1.5 Part V -Instruction Set

Parts I, II, and III present the general features of the instruction set as they relate to
specific aspects of the architecture. Part V presents the instructions in alphabetical
order, with the detail needed by assembly language programmers and programmers of
debuggers, compilers, operating systems, etc. Instruction descriptions include an algo­
rithmic description of operations, effect of flag settings, effect on flag settings, effect of
operand- and address-size attributes, and exceptions which may be generated.

1.1.6 Appendices

The appendices present tables of encodings and other details in a format designed for
quick reference by programmers.

1.2 RELATED LITERATURE

The following books contain additional material related to Intel processors:

Intel386 "I Processor Hardware Reference Manual, Order Number 231732
InteI386T>' Processor System Software Writer's Guide, Order Number 231499
InteI386T>' High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory Man­
agement, Order Number 231630
376"1 Embedded Processor Programmer's Reference Manual, Order Number 240314.
Intel386 "I DX Processor Programmer's Reference Manual, Order Number 230985
InteI386T>' SXProcessor Programmer's Reference Manual, Order Number 240331
80387 Programmer's Reference Manual, Order Number 231917
376"1 High-Performance 32-Bit Embedded Processor, Order Number 240182
InteI386T>' SX Microprocessor, Order Number 240187
50-MHz InteI486'" DX CPU-Cache Chip Set Hardware Reference Manual, Order Number
241172
50-MHz Intel486'" DX CPU-Cache Module Hardware Reference Manual, Order Number
241091
Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843

1·6

inteL, INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

The Inte1486'" Microprocessor Hardware Reference Manual is the companion of this book
for use by hardware designers. It contains information which may be useful to program­
mers, especially system programmers .. Order Number 240552

The Inte1486'" Microprocessor Data Book (Order Number 240440), Intel486'" DX2 Micro­
processor Data Book (Order Number 241245-001), and Inte1486'" SX CPUllntel487'" SX
Math CoProcessor Data Book (Order Number 240950-002) contains the latest informa­
tion regarding device parameters (voltage levels, bus cycle timing, priority of simulta­
neous exceptions and interrupts, etc.).

The Inte1486'" Microprocessor Product Brief Book describes many related products com­
monly used with Intel486 CPU. Order Number 240459

1.3 NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation
of instructions, and for hexadecimal numbers. A review of this notation makes the man­
ual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bot­
tom of the figure; addresses increase toward. the top. Bit positions are numbered from
right to left. The numerical value of a set bit is equal to two raised to the power of the bit
position. The Intel486 processor is a "little endian" machine; this means the bytes of a
word are numbered starting from the least significant byte. Figure 1-1 illustrates these
conventions.

GREATEST
ADDRESS

31

DATA STRUCTURE

23 15 7

UNDEFINED

BYTE 3 BYTE 2 BYTE 1 BYTE 0

o:. BIT OFFSET

28

24

20

16

12

8

4
SMALLEST

0 ADDRESS

t
BYTE OFFSET

Figure 1-1. Bit and Byte Order

1-7

240486;1-1

intet INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

Numbers are usually expressed in decimal nDtation (base 10). When hexadecimal
(base 16) numbers are used, they are indicated by an 'R' suffix.

1.3~2 Undefined Bits and Software Compatibility

In many register and memory layout descriptiDns, certain bits are marked as reselVed.
When bits are marked as uridefined or reserved, it is essential for cDmpatibility with
future processDrs that software treat these bits as having a future, though unknown,
effect. SDftware should fDllDW these guidelines in dealing with reserved bits:

• Do. not depend on the states of any reserved bits when testing the values Df registers
which contain such bits. Mask Dut the reserved bits befDre testing. .

• Do. nDt depend Dn the states Df any reserved bits when stDring to. memDry Dr to' a
register. .

• Do. nDt d,epend Dn the. ability to' retain infDrmatiDn written into. any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
dDcumentatiDn, if any, Dr relDad them with values previDusly stDred from the same
register.

NOTE
Dep~nding ~pon th~ .valu~s ofreselVedregisterbits will make softWare dependent upon
the unspecified manner in which the Intel486processor handles these bits. Depending
upon reselVed va.luesrisks incompatibility with future processors. AVOID ANY SOFT-
WARE DEPENDENCE UPON THE STATE OF RESERVED Intel486 PROCESSOR
REGISTER BITS. .. .

1.3.3 Instruction O'perarids

When instructiDns are represented symb()lically, a subset Df the assembly language fDr
the Inte1486 processDr is used: In this subset; an instructiDn has the fDllDwing fDrmat:

label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is fDllDwed by aCDIDn.

• A mnemonic is a reserved name fDr a class Df instructiDn DpcDdes which have the
same functiDn. . '

• The Dperands argumenti, argument2, and argument3 are DptiDnai. There may be from
zero to. three Dperands, depending Dn the 0pcDde. When present, they take the fDrm
pf either literals Dr identifiers fDr data items. Operand identifiers are either reserved
names Df registers Dr are assumed to' be assigned to' data items declared in anDther
part Df the program (which may nQt be ShDwn in the example).

1·8

hirU'et INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

When two operands are present in an arithmetic or logical instruction, the right oper­
and is the source and the left operand is the destination. Some assembly languages
put the source and destination in reverse order.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOAD REG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand.

1.3.4 Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the char­
acter H. A hexadecimal digit is a character from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, F). A leading zero is added if the number would otherwise begin with one of the
digits A-F. For example, OFH is equivalent to the decimal number 15.

1.3.5 Segmented Addressing

The Intel486 processor uses byte addressing. This means memory is organized and
accessed as a sequence of bytes. Whether one or more bytes are being accessed, a byte
number is used to address memory. The memory which can be addressed with this
number is called an address space.

The Intel486 processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments. For
example, a program can keep its code (instructions) and stack in separate· segments.
Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. An example of the notation used to show segmented addresses
is shown below.

CS:EIP

This example refers to a byte within the code segment. The byte number is held in the
EIP register.

1.3.6 Exceptions

An exception is an event which occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. There are several different types of
exceptions, and some of these types may provide error codes. An error code reports
additional information about the error. Error codes are produced only for some excep­
tions. An example of the notation used to show an exception and error code is shown
below.

#PF(fault code)

1-9

intet INTRODUCTION TO THE Intel486™ MICROPROCESSOR FAMILY

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code is
zero, as shown below.

#PF(O)

1-10

Part I
Application Programming

Basic Programming Model 2

CHAPTER 2
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment (except for the
floating-point features) as seen by assembly-language programmers. The chapter intro­
duces the architectural features whi_ch directly affect the design and implementation of
application programs. Floating-point applications are described separately in Part III.

The basic programming model consists of these parts:

• Memory organization

• Data types
• Registers

• Instruction format

• Operand selection

• Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers may choose to make I/O instructions available to applications or may choose to
reserve these functions for the operating system. For this reason, the I/O features of the
Intel486 processor are discussed in Part II.· .. :.

This chapter contains a section for each feature of the architecture normally visible to
applications.

2.1MEMO,RV ORGANIZATION

The memory on the bus of an Intel486 processor is· call~d physical· memory~ It· is orga­
nized as a. sequence of 8-bit bytes. Each byte is assigned a unique address, called a
physical address, which ranges from zero to a maximum of 232_1 (4 gigabytes). Memory
management is a hardware mechanism for making reliable and efficient use of memory.
When memory management is used, programs do not directly address physical memory.
Programs address a memory model, called virtual memory.

Memory management consists of segmentation and paging.· Segmentation is a mecha­
nism for providing multiple, independent address spaces. Paging is a mechanisintb sup­
port a model of a large address space in RAM using a small amount of RAM and some
disk storage. Either or both of these mechanisms may be used. An address issued by a
program is a logical address. Segmentation hardware translates a logical address into an
address for a continuous, unsegmented address space, called a linear address. Paging
h~rdware translates a linear address into a physical ·address. j

Memory may appear as a single, addressable space like physical memory. Or, it may
appear as one or more independent memory spaces, called segments. Segments can be
assigned specifically for holding a program's code (instructions), data, or stack. In fact, a
single program may have up to 16,383 segments of different sizes and kinds. Segments

2-1

intel® BASIC PROGRAMMING MODEL

can be used to increase the reliability of programs and systems. For example, a pro­
gram's stack can be put into a different segment than its code to prevent the stack from
growing into the code space and overwriting instructions with data.

Whether or not multiple segments are used, logical addresses are translated into linear
addresses by treating the address as an offset into a segment. Each segment has a seg­
ment descriptor, which holds its base address and size . limit. If the offset does· not exceed
the limit, and no other condition exists which would prevent reading the segment, the
offset and base address are added together to form the linear address.

The linear address produced by segmentation is used directly as the physical address if
bit 31 of the CRO register is clear (the CRO register is discussed in Chapter 4). This
register bit controls whether paging is used or not used. If the bit is set, the paging
hardware is used to translate the linear address into the physical address.

The paging hardware gives another level of organization to memory. It breaks the linear
address space into fixed blocks of 4K bytes, called pages. The logical address space is
mapped into the linear address space, which is mapped into some number of pages. A
page may be in memory or on disk. When a logical address is issued, it is translated into
an address for a page in memory, or an exception is issued. An exception gives the
operating system a chance to read the page from disk and update the page mapping. The
program which generated the exception then can be restarted without generating an
exception.

If multiple segments are used, they are part of the programming environment seen by
application programmers. If paging is used, it is normally invisible to the application
programmer. It only becomes visible when there is an interaction between the applica­
tion program and the paging algorithm used by the operating system. When all of the
pages in· memory are used, the operating system uses its paging algorithm to decide
which mem()ry pages should be· sent to disk. All paging· algorithms (except random algo­
rithms) have some kind of worst-case behavior which may be exercised by some kinds of
application programs.

The architecture of the Intel486 processor gives designers the freedom to choose a dif­
ferent memory model for each program, even when more than one program is running at
the same time. The model of memory organization can range between the following
extremes:

• A "flat" address space where the code, stack, and data spaces are mapped to the
same linear addresses. To the greatest extent possible, this· eliminates segmentation
by· allowing any type of memory reference to access any type of data ..

• A segmented address space with separate segments for the code, data, and stack
spaces. As many as 16,383 linear address spaces of up to 4 gigabytes each can be used.

Both models can provide memory protection .. Models intermediate between these
extremes also can be chosen. The reasons for choosing a particular memory model and
the manner in which system programmers implement a model are discussed in Part II...,..
System Programming.

2-2

intel® BASIC PROGRAMMING MODEL

2.1.1 Unsegmented or "FI~t" Model

The simplest memory model is the flat model. Although there isn't a mode bit or control
register which turns off the segmentation mechanism, the same effect can be achieved by
mapping all segments to the same linear addresses. This will cause all memory opera.:.
tions to refer to the same memory space.

In a flat model, segments may cover the entire 4 gigabyte range of physical addresses, or
they may cover only those addresses which are mapped to physical memory. The advan­
tage of the smaller address space is it provides a minimum level of hardware protection
against software bugs; an exception will occur if any logical address refers to an address
for which no memory exists.

2.1.2 Segmented Model

In a segmented model of memory organization, the logical address space consists of as
many as 16,383 segments of up to 4 gigabytes each, or a total as large as 246 bytes (64
terabytes). The processor maps this 64 terabyte logical address space onto the physical
address space (up to 4 gigabytes) by the address translation mechanism described in
Chapter 5. Application programmers may ignore the details of this mapping. The advan­
tage of the segmented model is that offsets within each address space are separately
checked and access to each segment can be individually controlled.

A pointer into a segmented address space consists of two parts (see Figure 2-1).

1. A segment selector, which is a 16-bit field which identifies a segment.

2. An offset, which is a 32-bit byte address within a segment.

The processor uses the segment selector to find the linear address of the beginning of
the segment, called the base address .. Programs access memory using fixed offsets from
this base address, so an object-code module may be loaded into memory and run without
changing the addresses it uses (dynamic linking). The size of a segment is defined by the
programmer, so a segment can be exactly the size of the module it contains.

2.2 DATA TYPES

Bytes, words, and doublewords are the principal data types (see Figure 2-2). A byte is
eight bits. The bits are numbered 0 through 7, bit 0 being the least significant bit (LSB).

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits.
The bits of a word are numbered from 0 through 15, bit 0 again being the least signifi­
cant bit. The byte containing bit 0 of. the word is·called the low byte; the byte containing
bit 15 is called the high byte. On the Intel486 processor, the low byte is stored in the byte
with the lower address. The address of the low byte also is the address of the word. The
address of the high byte is used only when the upper half of the word is being accessed
separately from the lower half.

2-3

intel® BASIC PROGRAMMING MODEL

I

I

I
I-

-

OPERAND --
, OFFSET WITHIN SEGM ENT I-

SEGMENT SELECTOR

15 o

SEGMENT SELECTOR

31 o

OFFSET WITHIN SEGMENT

240486i2-1

Figure 2·1. Segmented Addressing

A doubleword is four bytes occupying any four consecutive addresses_ A doubleword
contains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again
being the least significant bit. The word containing bit 0 of the doubleword is called the
low word; the word containing bit 31 is called the high word. The low word is stored in
the two bytes with the lower addresses. The address of the lowest byte is the address of
the doubleword. The higher addresses are used only when the upper word is being
accessed separately from the lower word, or when individual bytes are being accessed.
Figure 2-3 illustrates the arrangement of bytes within words and doublewords.

Note that words do not need to be aligned at even-numbered addresses and double­
words do not need to be aligned at addresses evenly divisible by four. This allows maxi­
mum flexibility in data structures (e.g., records containing mixed byte, word, and
doubleword items) and efficiency in memory utilization. Because the Intel486 processor
has a 32-bit data bus, communication between processor and memory takes place as

2-4

intel®

31

BASIC PROGRAMMING MODEL

7.

I BYTE

15 7

HIGH BYTE LOW BYTE

address N + 1 address N

15

HIGH WORD LOW WORD

address N +3 address N +2 address N + 1 address N

Figure 2-2. Fundamental Data Types

DOUBLEWORD AT ADDRESS A
CONTAINS 7AFE0636

WO"," "'""'50 co,,.,,, " .. I
~

BYTE AT ADDRESS 9 CONTAINS 1F

T
WO," AUOO'"'' co,,.,,,,,,,, I
WORD AT ADDRESS 2 CONTAINS 74CB I
wo,"" "'"'", co,,.,., CO" I

7A

FE

06

36

1F

23

DB

74

CB

31

0

I BYTE

0

I WORD

0

I DOUBLEWORD

240486i2-2

E

D

C

B

A

9

8

7

6

5

4

3

2

o

240486i2-3

Figure 2-3. Bytes, Words, and Doublewords in Memory

2-5

intel® BASIC PROGRAMMING MODEL

doubleword transfers aligned to addresses evenly divisible by four; the processor c()n­
verts doubleword transfers aligned to other addresses into multiple transfers. These
unaligned operations reduce speed by requiring extra bus cycles. For maximum speed,
data structures (especially stacks) should be designed so, whenever possible, word oper­
ands are aligned to even addresses and doubleword operands are aligned to addresses
evenly divisible by four.

Although bytes, words, and doublewords are the fundamental types of operands, the
processor also supports additional interpretations of these operands. Specialized instruc­
tions recognize the following data types (shown in Figure 2-4):

• Integer: A signed binary number held in a 32-bit doubleword, 16cbit word, or 8-bit
byte. All operations assume a two's complement representation. The sign bit is
located in bit 7 in a byte, bit 15 in a word, and bit 31 ina doubleword: The sign bit is
set for negative integers, clear for positive integers and zero. The value of an 8-bit
integer is from -128 to + 127; a 16-bit integer from - 32,768 to + 32,767; a 32-bit
integer from - 231 to + 231 -1.

• Ordinal: An unsigned binary number contained in a 32-bit doubleword, 16-bit word,
or 8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a 16-bit ordinal from 0 to

. 65,535; a 32-bit ordinal from 0 to 232 - 1.

• Near Pointer: A 32-bit logical address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for references
within a segment in a segmented model. .

• Far Pointer: A 48-bit logical address consisting of a 16-bit segment selector and a
32-bit offset. Far pointers are used in a segmented memory model to access other
segments. .

• String: A conti~uous sequence of bytes, words, or doublewords. A string may contain
from zero to 2 2 ~ 1 bytes (4 gigabytes).

• Bit field: A contiguous sequence of bits. A bit field may begin at any bit position of
any byte and may contain up to 32 bits.

• Bit string: A contiguous sequence of bits. A bit string may begin at any bit position of
any byte and may contain up to 232 - 1 bits.

• BCD: A representation of a binary-coded decimal (BCD) digit in the range 0 through
9. Unpacked decimal numbers are stored as unsigned byte quantities. One digit is
stored in each byte. The magnitude of the number. is the binary value of the low-order
half-byte; values 0 to 9 are valid and are interpreted as the value of a digit. The
high-order half-byte must be zero during multiplication and division; it may contain
any value during addition and subtraction.

• Packed BCD: A representation of binary-coded decimal digits, each in the range 0 to
9. One digit is stored in each half-byte, two digits in each byte. The digit in bits 4 to 7
ismore significant than the digit in bits 0 to 3. Values 0 to 9 are valid for a digit.

• Floating-Point Types: For a discussion of the data types used by floating-point instruc­
tions, see Chapter 15.

2-6

BASIC PROGRAMMING MODEL

7 0
Ii" I" i I

-d~ -I
15 0

liiiJiI'liiij'''1
\- -I

-II-
~ 0

I' i ii'i'" Ii i"'I' i' iii.' I" 'i,I'1
\- -I

--II-
7 0,

1"'1"'1

15 0
1'''1'''1''11'''1
I- -I

~ 0 'Ii i i" , ,:" i'" I i" 1''' I" i iii: I

1"'1"'1 •••

N
1"'i"'I •••

,'i'I'''I'''I'''1

-t 1:-' J-

o
1"11"'1'"1'''1

-J I-
-I t-

~ 0
I' , , Iii' I' iii ii' I' , ii' , , Ii' : Ji iii
I.. -I

47 31 0
I Ii , i" , I i Ii i " i I "i i Ii iii II I" , I II i I " i I" , Ji ' i I

\ • - I
1 • .\
"I.' I'i','" I'" I 'i' liil I' Ii ii"" I' 11'11' Ii ii' 'I

1"'1"'1'111"'1"'1111' ••• 1'''111'1"11'''1

I'" I' Ii Iii i I Ii iii" iii' I I i Ii i"' I Ii i I Ii , I

Figure 2·4. Data Types

2-7

BYTE INTEGER
7·BIT MAGNITUDE
'-BIT SIGN

WORD INTEGER
15·BIT MAGNITUDE
1·BIT SIGN

DOUBLEWORD INTEGER
31·BIT MAGNITUDE
1·BIT SIGN

BYTE ORDINAL
8·BIT MAGNITUDE

WORD ORDINAL
16·BIT MAGNITUDE

DOUBLEWORD ORDINAL
32·BIT MAGNITUDE

BCD INTEGER
4·BIT DIGIT PER BYTE
4.BIT DIGIT PER BYTE

PACKED BCD INTEGER
4·BIT PER HALF·BYTE
4·BIT PER HALF·BYTE

NEAR POINT
32·BIT OFFSET
4·BIT DIGIT PER BYTE

FAR POINTER
32·BIT OFFSET
16·BIT SELECTOR

BIT FIELD
UP TO 32 BITS

BIT STRING
UP TO 4 GIGABITS

BYTE STRING
UP TO 4 GIGABYTES

240486i2·4

int:et BASIC PROGRAMMING MODEL

.2.3 REGISTERS

.The Intel486 processor contains sixteen registers which may be used by an application
programmer. As Figure 2-5 shows, these registers may be grouped as:

1. General registers: These eight 32-bit registers are free for use by the programmer.

2. Segment. registers. These registers hold· segment selectors associated with different
forms of memory access. For example, there are separate segment registers for
access to code and stack space. These six registers determine, at any given time;
which segments of memory are currently available.

3. Status and control registers. These registers report and allow modification of the
state of the Intel486 processor.

2.3.1 Gener.al Registers

The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI,
and ED!. These registers are used to hold operands for logical and arithmetic opera­
tions. They also may be used to hold operands for address calculations (except the ESP
register cannot be used as an index operand). The names of these registers are derived
from the names of the general registers on the 8086 processor, the AX, BX, CX, DX,
BP, SP, SI, and DI registers. As Table 2-1 shows, the low 16 bits of the general registers
can be referenced using these names.

Each byte of the 16-bit registers AX, BX, CX, and DX also have other names. The byte
registers are named AH, BR, CR, and DR (high bytes) and AL, BL, CL, and DL (low
bytes).

Table 2-1. Register Names

8-Bit. 16-Bit 32-Bit

AL AX EAX
AH
BL BX EBX
BH
CL CX ECX
CH
OL OX EOX
OH

SI ESI
01 EOI
BP EBP
SP ESP

2-8

intel® BASIC PROGRAMMING MODEL

GENERAL REGISTERS

31 23 15 7 o 16·BIT 32·BIT

AH AL AX EAX

OH OL OX EOX

CH CL CX ECX

BH BL BX EBX

BP EBP

,

SI ESI

01 EOI

SP ESP

SEGMENT REGISTERS
15 o

CS

SS

OS

ES

FS

GS

STATUS ANO CONTROL REGISTERS
31 o

EFLAGS

EIP

240486i2·5

Figure 2-5. Application Register Set

2-9

int:et BASIC PROGRAMMING MODEL

All of the general-purpose registers are available for address calculations and for the
results of most arithmetic and logical operations; however, a few instructions assign
specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. By assigning specific registers for these
functions, the instruction set can be encoded more compactly. The instructions using
specific registers include: double-precision multiply and divide, I/O, strings, translate;
loop, variable shift and rotate, and stack operations. .

2.3.2 Segment Registers

Segmentation gives system designers the flexibility to choose among various models of
memory organization. Implementation of memory models· is the subject of Part
II - System Programming,

The segment registers contain 16-bit segment selectors; which index into tables in mem­
ory. The tables hold the base address for each segment, as well as other information
regarding memory access. An unsegmented model is created by mapping each segment
to the same place in physical memory, as shown in Figure 2-6.

At any instant, up to six segments of memory are immediately available. The segment
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments:
Each register is associated with a particular kind of memory access (code, data, or stack).
Each register specifies a segment, from among the segments used by the program, which
is used for its kind of access (see Figure 2-7). Other segments can be used by loading
their segment selectors into the segment. registers.

DIFFERENT LOGICAL SEGMENTS

GS------.

FS

ES

OS

CS

SS ____

ONE PHYSICAL ADDRESS SPACE

Figure 2·6. An Unsegmented Meinory

2-10

240486i2-6

infel®

F

BASIC PROGRAMMING MODEL

DIFFERENT LOGICAL SEGMENTS DIFFERENT ADDRESS SPACE
IN PHYSICAL MEMORY

CS I
ss ,

OS J
ESt

CODE
SEGMENT

S I

STACK - SEGMENT
r--

- DATA
~ SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

Figure 2·7. A Segmented Memory

240486i2-7

The segment containing the instructions being executed is called the code segment. Its
segment selector is held in the CS register. The Intel486 processor fetches instructions
from the code segment, using the contents of the EIP register as an offset into the
segment. The CS register is loaded as the result of interrupts, exceptions, and instruc­
tions which transfer control between segments (e.g., the CALL, IRET and JMP
instructions).

Before a procedure is called, a region of memory needs to be allocated for a stack. The
stack is used to hold the return address, parameters passed by the calling routine, and
temporary variables allocated by the procedure. All stack operations use the SS register
to find the stack segment. Unlike the CS register, the SS register can be loaded explic­
itly, which permits application programs to set up stacks.

The DS, ES, FS, and GS registers allow as many as four data segments to be available
simultaneously. Four data segments give efficient and secure access to different types of
data structures. For example, separate data segments can be created for the data struc­
tures of the current module, data exported from a higher-level module, a dynamically­
created data structure, and data shared with another program. If a bug causes a program
to run wild, the segmentation mechanism can limit the damage to only those segments
allocated to the program. An operand within a data segment is addressed by specifying
its offset either in an instruction or a general register.,

2-11

BASIC PROGRAMMING MODEL

Depending on the structure of data (Le., the way data is partitioned into segments), a
program may require access to more than four data segments. To access additional
segments, the DS, ~S, FS, and OS registers can be loaded by an application program

.. during execution. The only requirement is to load the appropriate segment register
before accessing data in its segment.

A base address is kept for each segment. To address data within a segment, a 32-bit
offset is added to the segment's base address. Once a segment is selected (by loading the
segment selector into a segment register), an instruction only needs to specify the offset.
Simple rules define which segment register is used to form an address when only an
offset is specified.

2.3.3 Stack Implementation

Stack operations are supported by three registers:

1. Stack Segment (SS) Register: Stacks reside in memory. The number of stacks in a
system is limited only by the maximum number of segments. A stack may be up to 4
gigabytes long, the maximum size of a segment on the Intel486 processor. One stack
is available at a time-the stack whose segment selector is held in the SS register.
This is the current stack, often referred to simply as "the" stack. The SS register is
used automatically by the processor for all stack operations.

2. Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack
(TOS) in the current stack segment. It is used by PUSH and POP operations, sub­
routine calls and returns, exceptions, and interrupts. When an item is pushed onto
the stack (see Figure 2-8), the processor decrements the ESP register, then writes
the item at the new TOS. When an item is popped. off the stack, the processor
copies it from the TOS, then increments the ESP register. In other words, the stack
grows down in memory toward lesser addresses.

3. Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to
access data structures passed on the stack. For example, on entering a subroutine
the stack contains the return address and some number of data structures passed to
the subroutine. The subroutine adds to the stack whenever it needs to create space
for temporary local variables. As a result, the stack pointer moves around as tempo­
rary variables are pushed and popped. If the stack pointer is copied into the base
pointer before anything is pushed on the stack, the base pointer can be used to
reference data structures with fixed offsets. If this is not done, the offset to access a
particular data structure would change whenever a temporary variable is allocated
or de-allocated.

When the EBP register is used to address memory, the c.urrent stack segment is
selected (i.e., the SS segment). Because the stack segment does not have to be
specified, instruction encoding is more compact. The EBP register also can be used
to address other segments.

Instructions, such as the ENTER and LEAVE instructions, are provided which
automatically set up the EBP register for convenient access to variables.

2-12

int'et

STACK SEGMENT

31

TOP OF STACK

[I] PUSHES PUT THE
TOP OF STACK AT
LOWER ADDRESSES

2.3.4 Flags Register

BASIC PROGRAMMING MODEL

o
BOTTOM OF STACK
(INITIAL ESP VALUE)

J ESP
I

OJ POPS PUT THE
TOP OF STACK AT
HIGHER ADDRESS

Figure 2·8. Stacks

J

240486;2-8

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register
named EFLAGS. Figure 2-9 defines the bits within this register. The flags control cer­
tain operations and indicate the status of the Intel486 processor.

The flags may be considered in three groups: status flags, control flags, and system flags.
Discussion of the system flags occurs in Part II.

2.3.4.1 STATUS FLAGS

The status flags of the EFLAGS register report the kind of result produced from the
execution of arithmetic instructions. The MOV instruction does not affect these flags.
Conditional jumps and subroutine calls allow a program to sense the state of the status
flags and respond to them. For example, when the counter controlling a loop is decre­
mented to zero, the state of the ZF flag changes, and this change can be used to sup­
press the conditional jump to the start of the loop.

The status flags are shown in Table 2-2.

2.3.4.2 CONTROL FLAG

The control flag DF of the EFLAGS register controls string instructions.

DF (Direction Flag, bit 10)

2-13

intel®

Name

OF
SF
ZF
AF
PF
CF

3
1

BASIC PROGRAMMING MODEL

111111111
8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

..J C o A VR N 00 IT S Z o A o P 1 o 0 o 0 o 0 o 0 o 0 o 0 o T
II.

C MF Q F F F F F F F F F

X ALIGNMENT CHECK (ACJj
X VIRTUAL 8086 MODE (VM)
X RESUME FLAG (RF)
X NESTED TASK (NT)
X 1/0 PRIVILEGE LEVEL (IOPL)
S OVERFLOW FLAG (OF)
C DIRECTION FLAG (OF)
X INTERRUPT ENABLE FLAG (IF)
X TRAP FLAG (TF)
S SIGN FLAG (SF)
S ZERO FLAG (ZF)
S AUXILIARY CARRY FLAG (AF)
S PARITY FLAG (PF)
S CARRY FLAG CF ()

S INDICATES A STATUS FLAG
C INDICATES A CONTROL FLAG
X INDICATES A SYSTEM FLAG

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED.
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ.

Figure 2-9. EFLAGS Register

Table 2-2; Status Flags

Purpose Condition Reported

240486;2·9

overflow Result exceeds positive or negative limit of number range
sign Result is negative (less than zero)
zero Result is zero
auxiliary carry Carry out of bit position 3 (used for BCD)
parity Low byte of result has even parity (even number of set bits)
carry flag Carry out of most significant bit of result

Setting the DF flag causes string instructions to auto-decrement, that is, to process
strings from high addresses to low addresses. Clearing the DF flag causes string instruc­
tions to auto-increment, or to process strings from low addresses to high addresses.

2.3.4.3 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for
the next instruction to execute. The instruction pointer is not directly available to the

2·14

intel® BASIC PROGRAMMING MODEL

programmer; it is controlled implicitly by control-transfer instructions Gumps, returns,
etc.), interrupts, and exceptions ..

The EIP register is advanced from one instruction boundary to the next. Because of
instruction prefetching, it is only an approximate indication of the bus activity which
loads instructions into the processor.

The Intel486 processor does not fetch single instructions. The processor prefetches
aligned 128-bit blocks of instruction code in advance of instruction execution. (An
aligned 128-bit block begins at an address which is clear in its low four bits.) These
blocks are fetched without regard to the boundaries between instructions. By the time an
instruction starts to execute, it already has been loaded into the processor and decoded.
This is a performance feature, because it allows instruction execution to be overlapped
with instruction prefetch and decode.

When a jump or call is executed, the processor prefetches the entire aligned block con­
taining the destination address. Instructions which have been prefetched or decoded are
discarded. If a prefetch would generate an exception, such as a prefetch beyond the end
of the code segment, the exception is not reported until the execution of an instruction
containing at least one exception-generating byte. If the instruction is discarded, no
exception is generated.

In real mode prefetching may cause the processor to access addresses not anticipated by
programmers. In protected mode exceptions are correctly reported when these addresses
are executed. There may not be hardware mechanisms which account for real mode
behavior of the processor. For example, if a system does not return the RDY# signal
(the signal which terminates a bus cycle) for bus cycles to unimplemented addresses,
prefetching must be prevented from referencing these addresses. If a system implements
parity checking, prefetching must be prevented from accessing addresses beyond the end
of parity-protected memory. (Alternatively, RDY # can be returned even for bus cycles
to unimplemented addresses, and parity errors can be ignored on prefetches beyond the
end of parity-protected memory.)

Prefetching can be kept from referencing a particular address by placing enough dis­
tance between the address and the last executable byte. For example, to keep prefetch­
ing away from addresses in the block from lOOOOH to lOOOFH, the last executable byte
should be no closer than OFFEEH. This places one free byte followed by one free,
aligned, 128-bit block between the last byte of the last instruction and the address which
must not be referenced. The prefetching behavior of the Intel486 processor is
implementation-dependent; future Intel products may have different prefetching
behavior.

2.4 INSTRUCTION FORMAT

The information encoded in an instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these oper­
ands. If an operand is located in memory, the instruction also must select, explicitly or
implicitly, the segment which contains the operand.

2-15

intel® BASIC PROGRAMMING MODEL

An instruction may have various parts and formats.' The exact format of instructions is
shown in Appendix A; the parts of an instruction are . described below. Of these parts,
only the opcode is always present. The other parts mayor may not be present, depending
on the operation involved and the location and type of the operands. The parts of an
instruction, in order of occurrence, are listed below:

• Prefixes: one or more bytes preceding an instruction which modify the operation of
the instruction. The following prefixes can b~ used by application programs:

1. Segment override - explicitlyspeeifies which segment register an instruction
should use, instead of the default segment re~ister. '

2. Address size-switches between 16- and 32-bit addressing. Either size can be the
default; this prefix selects the non-default size.

3. Operand size - switches between 16- and 32-bit. data size. Either ,size can be the
default; this, prefix selects the. non-default size.

4. Repeat - used with a string inst;uction to cause the instruction t() be repeated for
each element of the, string., . ,

• Opcode: specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different form of the operation.

• Register specifier: an, instruction may specify one or two register operands. Register
specifiers occur either in the same byte as the opcode or in the same byte as. the
addressing-mode specifier.' .

• Addressing-mode specifier: when present, specifies whether an operand is a register
or memory location; if in memory, 'specifies.whethera displacement, ,a base register,
an index register, and scaling are to be used.

• SIB (scale, index, base) byte: when the addressing-mode specifier indicates an index
register will be used to calculate the address of an operand, a SIB byte is included in
the instruction to encode the. base register, the index register, and a scaling factor.

o Displacement: when the addressing-mode specifier indicates a displacement will be
used to compute the address of an operand, the displacement is encoded in the
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is
used in the common case when the displacement is sufficiently small. The processor
extends an 8-bit displacement to 16 or 32 bits, taking into account the sign.

• Immediate operand: when present, directly provides the value of an operand. Imme­
diate operands maybe bytes, words, or doublewords. In cases where an 8-bit imme­
diate operand is us~d with a: 16- or 32-bitoperand, the processor extends the eight-bit
operand to an integer of the same sign and magnitude in the larger size. In the same
way, a 16-bit operand is extended to 32~bits. '

2-16

intel® BASIC PROGRAMMING MODEL

2.5 OPERAND SELECTION

An instruction acts on zero or more operands. An example of a zero-operand instruction
is the NOP instruction (no operation). An operand can be held in any of these places:

• In the instruction itself (an immediate operand).

• In a register (iri the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP,
or EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the
case of 8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers;
or the EFLAGS register for flag operations). Use of 16-bit register operands requires
use of the 16-bit operand size prefix (a byte with the value 67H preceding the
instruction) .

• In memory.

" At an I/O port.

Access to operands is very fast. Register and immediate operands are available
on-chip - the latter because they are preJetched as par! of interpreting the instruction.
Memory operands residing in the on-chip cache can be accessed just as fast.

Of the instructions which have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of both. For example:

Implicit operand: AAM

By definition, AAM (ASCII adju"St for multiplication) operates on the contents of
the AX register. .

Explicit operand: XCHG EAX, EBX

The operands to be exchanged are encoded in the instruction with the opcode.

Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER (the explicit operand) is copied to the top of the
stack (the implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for exam­
ple, update the EFLAGS register.

An instruction can explicitly reference one or two operands. Two-operand instructions,
such as MOV, ADD, and XOR, generally overwrite one of the two participating oper­
ands with the result. This is, the difference between the source operand (the one unaf­
fected by the operation) and the destination operand (the one overwritten by the reSUlt);

2-17

intel® BASIC PROGRAMMING MODEL

For most instructions, one of the two explicitly specified operands-either the source or
the destination - can be either in a register or in memory. The other operand must be in
a register or it must be an immediate source operand. This puts the explicit two-operand
instructions into the following groups:

• Register to register

• Register to memory

• Memory to register

• Immediate to register

• Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data
from memory to memory. Both operands of some string instructions are in memory and
are specified implicitly. Push and pop stack operations allow transfer between memory
operands and the memory-based stack.

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD
instructions. Two of the three operands are specified explicitly, as for the two-operand
instructions, while a third is taken from theECX register or supplied as an immediate.
Other three-operand instructions, such as the string instructions when used with a repeat
prefix, take all their operands from registers.

2.5.1 Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of
the operands. Such an operand is called an immediate operand. It may be a byte, word,
or doubleword. For example:

SHR PATTERN, 2

One byte of the instruction holds the. value 2, the number of bits by which to shift the
variable PATTERN.

TEST PATTERN, 0FFFF00FFH

A doubleword of the instruction holds the mask which is used to test the variable
PATTERN.

IMUL ex, MEMWORD, 3

A word in memory is multiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate
value. When the destination is the EAX or AL register, the instruction encoding is one
byte shorter than with the other general registers.

2-18

intel® BASIC PROGRAMMING MODEL

2.5.2 Register Operands

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX,
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI,
DI, SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, -CL,
or DL).

The Intel486 processor has instructions for referencing the segment registers (CS, DS,
ES, SS, FS, and GS). These instructions are used by application programs only if system
designers have chosen a segmented memory model.

The, Intel486 processor also has instructions for changing the state of individual flags in
the EFLAGS register. Instructions have been provided for setting and clearing flags
which often need to be accessed. The other flags, whiCh are not accessed so often, can be
changed by pushing the contents of the EFLAGS register on the stack, making changes
to it while it's on the stack, and popping it back into the register.

2.5.3 Memory Operands

Instructions with explicit operands in memory must reference the segment containing
the operand and the offset from the beginning of the segment to the operand. Segments
are specified using a segment-override prefix, which is a byte placed at the beginning of
an instruction. If no segment is specified, simple rules assign the segment by default.: The
offset is specified in one of the following ways:

1. Most instructions which access memory contain a byte for specifying the addressing
method of the operand. The byte, called the modR/M byte, comes after the opcode
and specifies whether the operand is in a register or in memory. If the operand is in
memory, the address is calculated from a segment register and any of the following
values: a base register, an index register, a scaling factor, and a displacement. When
an index register is used, the modR/M byte also is followed by another byte to
specify the index register and scaling factor. This form of addressing is the most
flexible.

2. A few instructions use implied address modes:

, A MOV instruction with the AL or EAX register as either source or destination can
address memory with a doubleword encoded in the instruction. This special form of
the MOV instruction allows no base register, index register, or scaling factor to be
used. This form is one byte shorter than the general-purpose form.

String operations address memory in the DS seginent using the ESI register, (the
MOVS, CMPS, OUTS, and LODS instructions) or using the ES segment and EDI
register (the MOVS, CMPS, INS, SCAS, and STOS instructions).

Stack operations address memory in the SS segment using the ESP register (the
PUSH, POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF,
POPFD, CALL, LEAVE, RET, IRET, and IRETD instructions, exceptions, and
interrupts).

2-19

intel® BASIC PROGRAMMING MODEL

2.5.3.1 SEGMENT SELECTION

Explicit specification of a segment is optional. If a segment is not specified using a
segment-override prefix, the processor automatically chooses a segment according to the
rules of Table 2-3. (If a flat model of memory organization is used, the rules for selecting
segments are not apparent to application programs.)

Different kinds of memory access have different default segments. Data operands usu­
ally use the main data segment (the DS segment). However, the ESP and EBP registers
are used for addressing the stack, so when either register is used, the stack segment (the
SS segment) is selected.

Segment-override prefixes are provided for each of the segment registers. Only the fol­
lowing special cases have a default segment selection which is not affected by a segment­
override prefix:

• Destination strings in string instructions use the ES segment

• Destination of a push or source of a pop uses the SS segment

• Instruction fetches use the CS segment

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION

The modRIM byte provides the most flexible form of addressing. Instructions which have
a modRIM byte after the opcode are the most common in the instruction set. For mem­
ory operands specified by a modRIM byte, the offset within the selected segment is the
sum of three components:

• A displacement

• A base register

• An index register (the index register may be multiplied by a factor of 2, 4, or 8)

Table 2-3. Default Segment Selection Rules

Type of Reference
Segment Used

Default Selection Rule
Register Used

Instructions Code Segment Automatic.with instruction fetch.
CS register

Stack Stack Segment All stack pushes and pops. Any mem-
SS register ory reference which uses ESP or EBP

as a base register.

Local Data Data Segment All data references except when rela-
DS register tive to stack or string destination.

Destination Strings E-Space Segment Destination of string instructions.
ES register

2-20

intel® BASIC PROGRAMMING MODEL

The offset which results from adding these components is called an effective address.
Each of these components may have either a positive or negative value. Figure 2-10
illustrates the full set of possibilities for modR/M addressing.

The displacement component, because it is encoded in the instruction, is useful for
relative addressing by fixed amounts, such as:

• Location of simple scalar operands.

• Beginning of a statically allocated array.

• Offset to a field within a record.

The base and index components have similar functions. Both use the same set of general
registers. Both can be used for addressing which changes during program execution,
such as:

• Location of procedure parameters and local variables on the stack.

• The beginning of one record among several occurrences of the same record type or in
an array of records.

• The beginning of one dimension of multiple dimension array.

o The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ III the following
respects:

• The ESP register cannot be. used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default
selection. In all other cases, the DS segment is the default selection.

The scaling factor permits efficient indexing into an array when the array elements are 2,
4, or 8 bytes. The scaling of the index register is done in hardware at the time the
address is evaluated. This eliminates an extra shift or multiply instruction.

SEGMENT + BASE + (INDEX' SCALE) +" DISPLACEMENT

{CSI ~EAX} {~~~} {1} 1 l ss ~8~ EDX 2 NO DISPLACEMENT
~~ + EBX + :.BX. + a.BIT DISPLACEMENT
FS ~~~ EBP 4 32·BIT DISPLACEMENT
GS ESI ESI a

EDI . EDI

240486;2-10

Figure 2-10. Effective Address Computation

2-21

infel® BASIC PROGRAMMING MODEL

The base, index, and displacement components may be used in any combination; any of
these components may be null. A scale factor can be used only when an index also is
used. Each possible combination is useful for data structures commonly used by pro­
grammers in high-level languages and assembly language. Suggested uses for some com­
binations of address components are described below.

DISPLACEMENT

The displacement alone indicates the offset of the operand. This form of addressing is
used to access a statically allocated scalar operand. A byte, word, or doubleword dis­
placement can be used.

BASE

The offset to the operand is specified indirectly in one of the general registers, as for
"based" variables.

BASE + DISPLACEMENT

A register and a displacement can be used together for two distinct purposes:

1. Index into static array when the element size is not 2, 4, or 8 bytes. The displace­
ment component encodes the offset of the beginning of the array. The register holds
the results of a calculation to determine the offset to a specific element within the
array.

2. Access a field of a record. The base register holds the address of the beginning of
the record, while the displacement is an offset to the field:

An important special. case of this combination is access to parameters in a procedure
activation record. A procedure activation record is the stack frame created when a sub­
routine is entered. In this case, the EBP register is the best choice for the base .register,
because it automatically selects the stack segment. This .is a compact encoding for this
common function.

(INDEX * SCALE) + DISPLACEMENT

This combination is an efficient way to index into a static array when the element size is
2, 4, or 8 bytes. The displacement addresses the beginning of the array, the index register
holds the subscript of the desired array element, and the processor automatically con­
verts the subscript into an index by applying the scaling factor.

BASE + INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement
holds the address of the beginning of the array) or one of several instances of an array of
records (the displacement is an offset to a field within the record).

2-22

int'et BASIC PROGRAMMING MODEL

BASE + (INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the ele­
ments of the array are 2, 4, or 8 bytes in size.

2.6 INTERRUPTS AND EXCEPTIONS

The Intel486 processor has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events which are responses of the processor to certain
conditions detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily sus~
pend the program being run in order to run a program of higher priority. The major
distinction between these two kinds of interrupts is their origin. An exception is always
reproducible by re-executing the program which caused the exception; while an interrupt
can have a complex, timing-dependent relationship with programs.

Application programmers normally are not concerned with handling exceptions or inter­
rupts. The operating system, monitor, or device driver handles them. More information
on interrupts for system programmers may be found in Chapter 9. Certain kinds of
exceptions, however, are relevant to application programming, and many operating sys­
tems give application programs the opportunity· to service these exceptions. However,
the operating system defines the interface between the application program and the
exception mechanism of the. Intel486 processor. Table 2-4 lists the interrupts and
exceptions.

• A divide-error exception results when the DIV or IDIV instruction is executed with a
zero denominator or when the quotient is too large for the destination operand. (See
Chapter 3 for more information on the DIV and IDIV instructions.) ,

• A debug exception may be sent back to an application program if it results from the
TF (trap) flag.

• A breakpoint exception results when an INT3 instruction is executed. This instruction
is used by some debuggers to stop program execution at specific points.

• An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction.

• A bounds-check exception results when the BOUND instruction is executed with an
array index which falls outside the bounds of the array. See Chapter 3 for a discussion
of the BOUND instruction.

• The device-not-available exception occurs whenever the processor encounters an
escape instruction and either the TS (task switched) or the EM (emulate coprocessor)
bit of the CRO control register is set.

2-23

BASIC PROGRAMMING MODEL

Table 2-4. Exceptions and Interrupts

Vector Description
Number

0 Divide Error

1 Debugger Call

2 NMI Interrupt

3 Breakpoint

4 INTO-detected Overflow,

5 BOUND Range Exceeded

6 Invalid Opcode

7 Device Not Available :

8 Double Fault

9 (Intel reserved. Do not use.
Not used by InteI486'· CPU.)

10 Invalid Task State Segment

11 Segment Not Present

12 Stack Exception

13 General Protection
"

14 Page Fault

15 (Intel reserved. Do not use.)

16 Floating-Point· Error

17 Alignment Check :

18-31 (Intel reserved. Do' not use.)

32-255 Maskable Interrupts ..

• An alignment-check exception is generated for unaligned memory operations in user
mode (privilege level 3), provided both AM and AC are set. Memory operations at
supervisor mode (privilege levels 0, 1, and 2), or memory operations which default to
supervisor mode, do not generate this exception. .

The INT instruction generates an interrupt whenever it is executed; the processor treats
this interrupt as an exception. Its effects (and the effects of. all other exceptions) are
determined by exception handler routines in the application program .orthe operating
system. The INT instruction itself is discussed in Chapter 3. See Chapter 9 for a more
complete description of exceptions. . .

Exceptions caused by segmentation and paging are handled differently than illterrupts.
Normally, the contents of the program counter (EIP register) are saved on the s~ack
when an exception or interrupt is generated. But exceptions resulting from segmentation
and paging restore the contents of some processor registers to their.state before interpre­
tation of the instruction began. The saved contents of the program counter address the
instruction which caused the exception, rather than the instruction after it. This lets the
operating system fix the exception-generating condition and restart the program which
generated the exception. This mechanism is completely transparent to the program.

2-24

Application Programming 3

CHAPTER 3
APPLICATION PROGRAMMING

This chapter is an overview of the integer instructions which programmers can use to
write application software for the Intel486 processor. The instructions are grouped by
categories of related functions. (Additional application instructions for operating on
floating-point operands are described in Part III.)

The instructions not discussed in this chapter or Part III normally are used only by
operating-system programmers. Part II describes these system-level instructions.

These instruction descriptions are for the Intel486 processor in protected mode. The
instruction set in this mode is a 32-bit superset of the instruction set used in Intel 16-bit
processors. In real-address mode or virtual-8086 mode, the Intel486 processor appears to
have the architecture of a fast, enhanced 8086 processor with instruction set extensions.
See Chapters 21, 22, 23, 24 and 25 for more information about running the 16-bit
instruction set. All of the instructions described in this chapter are available in all
modes ..

The instruction set descriptions in Chapter 26 contain more detailed information on all
instructions, including encoding, operation, timing, effect on flags, and exceptions which
may be generated.

3; 1 DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods for moving bytes; words, or doublewords
between memory and the processor registers. They come in three types:

1. General-purpose data movement instructions.

2. Stack manipulation instructions.

3. Type-conversion instructions.

3.1.1 General·Purpose Data Movement Instructions

MOV (Move) transfers a byte, word, or doubleword from the source operand to the
destination operand. The MOV instruction is useful for transferring data along any of
these paths:

• To a register from memory.

• To memory from a register.

• Between general registers.

• Immediate data to a register.

• Immediate data to memory.

3-1

inteL APPLICATION PROGRAMMING

The MOV instruction cannot move from memory to memory or from a segment register
to a segment register. Memory-to-memory moves can be performed, however, by the
string move instruction MOVS. A special form of the MOV instruction is provided for
transferring data between the AL or EAX registers and a location in memory specified
by a 32-bit offset encoded in the instruction. This form of the instruction does not allow
a segment override, index register, or scaling factor to be used. The encoding of this
form is one byte shorter than the encoding of the general-purpose MOV instruction. A
similar encoding is provided for moving an 8-, 16-, or 32-bit immediately into any of the
general registers.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place
of three MOV instructions. It does not require a temporary location to save the contents
of one operand while the other is being loaded. The .XCHG instruction is especially
useful for implementing semaphores or similar data structures for process
synchronization,

The XCHG instruction can swap two byte operands, two word operands, or two double­
word operands. The operands for the XCHG instruction may be two register operands,
or a register operand and a memory operand. When used with a memory operand,
XCHG automatically activates the LOCK signal. (See Chapter 13 for more information
on bus locking.) .

3.1.2 Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (ESP register), then copies the source oper­
and to the top of stack (see Figure 3-1). The PUSH instruction often is used to place
parameters on the stack before calling a procedure. Inside a procedure, it can be used to
reserve space on the stack for temporary variables. The PUSH instruction operates on

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD

31 o 31 o

I-ESP

DOUBLEWORD -ESP

240486;3·1

Figure 3-1. PUSH Instruction

3-2

APPLICATION PROGRAMMING

memory operands, immediate operands, and register operands (including segment regis­
ters). A special form of the PUSH instruction is available for pushing a 32-bit general
register on the stack. This form has an encoding which is one byte shorter than the
general-purpose form.

PUSHA (Push All Registers) saves the contents of the eight general registers on the
stack (see Figure 3-2). This instruction simplifies procedure calls by reducing the number
of instructions required to save the contents of the general registers. The processor
pushes the general registers on the stack in the following order: EAX, ECX, EDX, EBX,
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the
PUSHA instruction is reversed using the paPA instruction.

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by
the ESP register) to the destination operand, and then increments the ESP register to
point to the new top of stack. See Figure 3-3. pop moves information from the stack to
a general register, segment register, or to memory. A special form of the POP instruction
is available for popping a doubleword from the stack to a general register. This form has
an encoding which is one byte shorter than the general-purpose form.

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION

31 o 31 o

I- ESP

EAX

ECX

EDX

EBX

OLD ESP

EBP

ESI

EDI - ESP

240486;3-2

Figure 3-2. PUSHA Instruction

3-3

intel® APPLICATION PROGRAMMING

BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD

31 o 31 o

I-ESP

DOUBLEWORD - ESP

240486i3-3

Figure 3-3. POP Instruction

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general
registers, except for the ESP register. The ESP register is restored by the action of
reading the stack (popping). See Figure 3-4.

3.1.3 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into 64-bit quantities (called quadwords). These instructions are especially
useful for converting signed integers, because they automatically fill the extra bits of the.
larger item with the value of the sign bit of the smaller item. This results in an integer of
the ·same sign and magnitude, but a larger format. This kind of conversion, shown in
Figure 3-5, is called sign extension.

There are two kinds of type conversion instructions:

• The CWD, CDO, CBW, and CWDE instructions which only operate on data in the
EAX register.

• The MOVSX and MOVZX instructions, which permit one operand to be in a general
register while letting the other operand be in memory or a register.

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word)
double the size of the source operand. The CWD instruction copies the sign (bit 15) of
the word in the AX register into every bit position in the DX register. The CDO instruc­
tion copies the sign (bit 31) of the doubleword in the EAX register into every bit posi­
tion in the EDX register. The CWD instruction can be used to produce a doubleword
dividend· from a word before a word division, and the CDO instruction can be used to
produce a quadword dividend from a doubleword before doubleword division.

3-4

intel@ APPLICATION PROGRAMMING

BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION

31

EAX

ECS

EDX

EBX

IGNORED

EBP

ESI

EDI

31

SS SS SS SS SS

o 31

r- ESP

. Figure 3"4. POPA Instruction

15

SN NN NN NN NN NN

15

S S SS S S SN NN NN NN NN NN

Figure 3-5. Sign Extension

3-5

o

NN NN

o

NN NN

o

r-- ESP

240486i3-4

BEFORE SIGN
EXTENSION

AFTER SIGN
EXTENSION

240486i3-5

APPLICATION PROGRAMMING

CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into
every bit position in the AX register.

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in
the AX register into every bit position in the EAX register.

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by using the value of the sign to fill empty positions.

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit valueby clearing the empty bit positions.

3.2 BINARY ARITHMETIC INSTRUCTIONS

The arithmetic instructions of the Intel486 processor operate on numeric data encoded
in binary. Operations include the add, subtract, multiply, and divide as well as incre­
ment, decrement, compare, and change sign (negate). Both signed and unsigned binary
integers are supported. The binary arithmetic instructions may also be used as steps in
arithmetic on decimal integers. Source operands can be immediate values,general reg­
isters, or memory. Destination operands can be general registers or memory (except
when the source operand is in memory). The basic .arithmetic instructions have special
forms for using an immediate value as the source operand and the AL or EAX registers
as the destination operand. These forms are one byte shorter than the general-purpose
arithmetic instructions.

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of
result which was produced. The kind of instruction used to test the flags depends on
whether the data is being interpreted as signed or unsigned. The CF flag contains infor­
mationrelevant to unsigned integers; the Sf and OE'flagscontain ipJormationrelevant
to signed integers. The ZF flag is relevant to both signed and unsigned integers; the ZF
flag is set when all bits of the result are clear.

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to
reflect the size of the operation. For example, an 8-bit ADD instruction sets the CF flag
if the sum of the operands exceeds 255 (decimal).

If the integer is unsigned, the CF flag may be tested after one of these arithmetic oper­
ations to determine whether the operation required a carry or borrow to be propagated
to the next stage of the operation. The CF flag is set if a carry occurs (addition instruc­
tions ADD, ADC, AAA, and DAA) or borrow occurs (subtraction instructions SUB,
SBB, AAS, DAS, CMP, and NEG).

The INC and DEC instructions do not change the state of the CF fllig. This allows the
instructions to be used to update counters used for loop control without changing the
reported state of arithmetic results. To test the arithmetic state of the counter, the ZF
flag can be tested to detect loop termination, or the ADD and SUB instructions can be
used to update the value held by the counter.

3-6

intel® APPLICATION PROGRAMMING

The SF and OF flags support signed integer arithmetic. The SF flag has the value of the
sign bit of the result. The most significant bit (MSB) of the magnitude of a signed
integer is the bit next to the sign - bit 6 of a byte, bit 14 of a word, or bit 30 of a
doubleword. The OF flag is set in either of these cases:

• A carry was generated from the MSB into the sign bit but no carry was generated out
of the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other
words, the result was greater than the greatest positive number which could be rep­
resented in two's complement form.

• A carry was generated from the sign bit into the MSB but no carry was generated into
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG).
In other words, the result was smaller than the smallest negative number which could
be represented, in two's complement form.

These status flags are tested by either kind of conditional instruction: Jee Gump on
condition ee) or SETee (byte set on condition).

3.2.1 Addition and Subtraction Instructions

ADD (Add Integers) replaces the destination operand with the sum of the source and
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

ADC (Add Integers With Carry) replaces the destination operand with the sum of the
source and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the
ADC instruction performs the same operation as the ADD instruction. An ADC instruc­
tion is used to propagate carry when adding numbers in stages, .for example when using
32-bit ADD instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF
flags are affected.

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the
state of the CF flag. This allows the use of INC instructions to update counters in loops
without disturbing the status flags resulting from an arithmetic operation used for loop
control. The ZF flag can be used to detect when carry would have occurred. Use an
ADD instruction with an immediate value of 1 to perform an increment which updates
the CF flag. A one-byte form of this instruction is available when the operand is a
general register. The OF, SF, ZF, AF, and PF flags are affected.

SUB (Subtract Integers) subtracts the source operand from the destination operand and
replaces the destination operand with the result. If a borrow is required, the CF flag is
set. The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF,
ZF, AF, PF, and CF flags are affected.

SBB· (Subtract Integers with Borrow) subtracts the source operand from the destination
operand and replaces the destination operand with the result, minus 1 if the CF flag is
set. If the CF flag is clear, the SBB instruction performs the same operation as the SUB
instruction. An SBB instruction is used to propagate borrow when subtracting numbers
in stages, for example when using 32-bit SUB instructions to subtract one· quadword
operand from another. The OF, SF; ZF, AF, PF, and CF flags are affected.

3-7

infel® APPLICATION PROGRAMMING

DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction pre­
serves the state of the CF flag. This allows the use of the DEC instruction to update
counters in loops without disturbing the status flags resulting from an arithmetic opera­
tion used for loop control. Use a SUB instruction with an immediate value of 1 to
perform a decrement which updates the CF flag. A one-byte form of this instruction is
available when the operand is a general register. The OF, SF, ZF, AF, and PF flags are
affected.

3.2.2 Comparison and Sign Change Instruction

CMP (Compare) subtracts the source operand from the destination operand. It updates
the OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination
operands. A subsequent Jee or SETee instruction can test the flags.

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG
instruction is to change the sign of a two's complement operand while keeping its mag­
nitude. The OF, SF, ZF, AF, PF, and CF flags are affected.

3.2.3 Multiplication Instructions

The Intel486 processor has separate multiply instructions for unsigned and signed oper­
ands. The MUL instruction operates on unsigned integers, while the IMUL instruction
operates on signed integers as well as unsigned.

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source
operand and the AL, AX, or EAX register. If the source is a byte, the. processor multi­
plies it by the value held in the AL register and returns the double-length result in the
AH and AL registers. If the source operand is a word, the processor multiplies it by the
value held in the AX register and returns the double-length result in the DX and AX
registers. If the source operand is a doubleword, the processor multiplies it by the value
held in the EAX register and returns the quadword result in the EDX and EAX regis­
ters. The MUL instruction sets the CF and OF flags when the upper half of the result is
non-zero; otherwise, the flags are cleared. The state of the SF, ZF, AF, and PF flags is
undefined.

IMUL (Signed Integer Multiply) performs a signed multiplication operation. The IMUL
instruction has three forms:

1. A one-operand form. The operand may be a byte, word, or doubleword located in
memory or in a general register. This instruction uses the EAXand EDX registers
as implicit operands in the same way as the MUL instruction.

2. A two-operand form. One of the source operands is in a general register while the
other may be in a general register or memory. The result replaces the general­
register operand.

3. A three-operand form; two are source operands and one is the destination. One of
the source operands is an immediate value supplied by the instruction; the second
may be in memory or in a general register. The result is stored in a general register.

3·8

intel® APPLICATION PROGRAMMING

The immediate operand is a two's complement signed integer. If the immediate
operand is a byte, the processor automatically sign-extends it to the size of the
second operand before performing the multiplication.

The three forms are similar in most respects:

• The length of the product is calculated to twice the length of the operands.

• The CF and OF flags are set when significant bits are carried into the upper half of
the result. The CF and OF flags are cleared when the upper half of the result is the
sign-extension of the lower half. The state of the SF, ZF, AF, and PF flags is
undefined.

However, forms 2 and 3 differ because the product is truncated to the length of the
operands before it is stored in the destination register. Because of this truncation, the
OF flag should be tested to ensure that no significant bits are lost. (For ways to test the
OF flag, see the JO, INTO, and PUSHF instructions.)

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the
operands are signed or unsigned, the lower half of the product is the same. The CF and
OF flags, however, cannot be used to determine if the upper half of the result is
non-zero.

3.2.4 Division Instructions

The Intel486 processor has separate division instructions for unsigned and signed oper­
ands. The DIY instruction operates on unsigned integers, while the IDlY instruction
operates on both signed and unsigned integers. In either case, a divide-error exception is
generated if the divisor is zero or if the quotient is too large for the AL, AX, or EAX
register.

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX
register by the source operand. The dividend (the accumulator) is twice the size of the
divisor (the source operand); the quotient and remainder have the same size as the
divisor, as shown in Table 3-1.

Non-integral results are truncated toward O. The remainder is always smaller than the
divisor. For unsigned byte division, the largest quotient is 255. For unsigned word divi­
sion, the largest quotient is 65,535. For unsigned doubleword division the largest quo­
tient is 232_1. The state of the OF, SF; ZF, AF, PF, and CF flags is undefined.

Table 3-1. Operands for ·Division

Operand Size
Dividend Quotient Remainder

(Divisor)

Byte AX register AL register AH register
Word DX and AX AX register DX register
Doubleword EDX and EAX EAX register EDX register

3-9

intel® APPLICATION PROGRAMMING

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the
source operand. The IDIV instruction uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is + 127, and the minimum
negative quotient is -128. For signed word division, the maximum positive quotient is
+32,767, and the minimum negative quotient is -32,768. For signed doubleword divi­
sion the maximum positive quotient is 232_1, the minimum negative quotient is _231.
Non-integral results are truncated towards O. The remainder always has the same sign as
the dividend and is less than the divisor in magnitude. The state of the OF, SF, ZF, AF,
PF, and CF flags is undefined.

3.3 DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic is performed by combining the binary arithmetic instructions
(already discussed in the prior section) with the decimal arithmetic instructions. The
decimal arithmetic instructions are used in one of the following ways:

• To adjust the results of a previous binary arithmetic operation to produce a valid
packed or unpacked decimal result.

• To adjust the inputs to a subsequent binary arithmetic operation so that the operation
will produce a valid packed or unpacked decimal result. These instructions operate
only on the AL or AH registers. Most use the AF flag.

3.3.1 Packed BCD Adjustment Instructions

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed dec­
imal operands in the AL register. A DAA instruction must follow the addition of two
pairs of packed decimal numbers (one digit in each half-byte) to obtain a pair of valid
packed decimal digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF,
and CF flags are affected. The state of the OF flag is undefined.

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid
packed decimal operands in the AL register. A DAS instruction must always follow the
subtraction of one pair of packed decimal numbers (one digit in each half-byte) from
another to obtain a pair of valid packed decimal digits as results. The CF flag is set if a
borrow is needed. The SF, ZF, AF, PF, and CF flags are affected. The state of the OF
flag is undefined.

3.3.2 Unpacked BCD Adjustment Instructions

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow
the addition of two unpacked decimal operands in the AL register. The CF flag is set
and the contents of the AH register are incremented if a carry occurs. The AF and CF
flags are affected. The state of the OF, SF, ZF, and PF flags is undefined.

3-10

intel® APPLICATION PROGRAMMING

AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow
the subtraction of one unpacl<:ed decimal operand from another in the AL register. The
CF flag is set and the contents of the AH register are decremented if a borrow is
needed. The AF and CF flags are affected. The state of the OF, SF, ZF, and PF flags is
undefined.

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of
two decimal numbers to produce a valid decimal result. The upper digit is left in the AH
register, the lower digit in the AL register. The SF, ZF, and PF flags are affected. The
state of the AF, OF, and CF flags is undefined.

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers
to prepare for the division of two valid unpacked decimal operands, so that the quotient
produced by the division will be a valid unpacked decimal number. TheAH register
should contain the upper digit and the AL register should contain the lower digit. This
instruction adjusts the value and places the result in the AL register. The AH register
will be clear. The SF, ZF, and PF flags are affected. The state of the AF, OF, and CF
flags is undefined.

3.4 LOGICAL INSTRUCTIONS

The logical instructions have two operands. Source operands can be immediate values,
general registers, or memory. Destination operands can be general registers or memory
(except when the source operand is in memory). The logical instructions modify the state
of the flags. Short forms of the instructions are available when an immediate source
operand is applied to a destination operand in the AL or EAX registers. The group of
logical instructions includes:

• Boolean operation instructions.

• Bit test and modify instructions.

• Bit scan instructions.

• Rotate and shift instructions.

• Byte set on condition.

3.4.1 Boolean Operation Instructions

The logical operations are performed by the AND, OR, XOR, and NOT instructions.

NOT (Not) inverts the bits in the specified operand to form a one's complement of the
operand. The NOT instruction is a unary operation which uses a single operand in a
register or memory. NOT has no effect on the flags.

3-11

intel® APPLICATION PROGRAMMING

The AND, OR, and XOR instructions perform the standard logical operations "and,"
"or," and "exclusive or." These instructions can use the following combinations of
operands:

• Two register operands.

• A general register operand with a memory operand.

• An immediate operand with either a general register operand or a memory operand.

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag
undefined, and update the SF, ZF, and PF flags.

3.4.2 Bit Test and Modify Instructions

This group of instructions operates on a single bit which can be in memory or in a
general register. The location of the bit is specified as an offset from the low end of the
operand. The value of the offset either may be given by an immediate byte in the instruc­
tion or may be contained in a general register.

These instructions first assign the value of the selected bit to the CF flag. Then a new
value is assigned to the selected bit, as determined by the operation. The state of the
OF, SF, ZF, AF, and PF flags is undefined. Table 3-2 defines these instructions.

Table 3-2. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag <- Selected Bit no effect
BTS (Bit Test and Set) CF flag <- Selected Bit Selected Bit <- 1
BTR (Bit Test and Reset) CF flag <- Selected Bit Selected Bit <- 0
BTC (Bit Test and Complement) CF flag <- Selected Bit Selected Bit <- - .(Selected Bit)

3.4.3 Bit Scan Instructions

These instructions scan a word or doubleword for a set bit and store the bit index (an
integer representing the bit position) of the first set bit into a register. The bit string
being scanned may be in a register or in memory. The ZF flag is set if the entire word is
clear, otherwise the ZF flag is cleared. In the former case, the value of the destination
register is left undefined. The state of the OF, SF, AF, PF, and CF flags is undefined.

BSF (Bit Scan Forward) scans low-to-high (from bit 0 toward the upper bit positions).

BSR (Bit Scan Reverse) scans high-to-low (from the uppermost bit toward bit 0).

3-12

infel® APPLICATION PROGRAMMING

3.4.4 Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand.

These instructions fall into the following classes:

• Shift instructions.

• Double shift instructions.

• Rotate instructions.

3.4.4.1 SHIFT INSTRUCTIONS

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords.
An arithmetic shift right copies the sign bit into empty bit positions on the upper end of
the operand, while a logical shift right fills high order empty bit positions with zeros. An
arithmetic shift is a fast way to perform a simple calculation. For example, an arithmetic
shift right by one bit position divides an integer by two. A logical shift right divides an
unsigned integer or a positive integer, but a signed negative integer loses its sign bit.

The arithmetic and logical shift right instructions, SAR and SHR, differ .only in their
treatment of the bit positions emptied by shifting the.contents of the operand. Note that
there is no difference between an arithmetic shift left and a logical shift left. Two names,
SAL and SHL, are supported for this instruction in the assembler.

A count specifies the number of bit positions to shift an operand. Bits can be shifted up
to 31 places. A shift instruction can give the count in any of three ways. One form of shift
instruction always shifts by one bit position. The· second form gives the count as an
immediate operand. The third form gives the count as the value contained in the CL
register. This last form allows the count to be a result from a calculation. Only the low
five bits of the CL register are used.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the
CF flag is left with the value of the last bit shifted out of the operand. In a single-bit
shift, the OF flag is set if the value of the uppermost bit (sign bit) was changed by the
operation. Otherwise, the OF flag is cleared. After a shift of more than one bit position,
the state of the OF flag is undefined. On a shift of one or more bit positions, the SF, ZF,
PF, and CF flags are affected, and the state of the AF flag is undefined.

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left
by one bit position or by the number of bits specified in the count operand (an immedi­
ate value or a value contained in the CL register). Empty bit positions are cleared. See
Figure 3-6.

SHL (Shift Logical Left) is another name for the SAL instruction. It is supported in the
assembler.

3-13

int:et APPLICATION PROGRAMMING

INITIAL STATE: .

CF OPERAND o 1 0 0 0 1 0 0 0 1 0 0 0 .1 0 0 0 1 0.0 0 1 00 0 1 0 0 0 1 1 1 1

AFTER l·BIT SHL/SAL INSTRUCTION:

00010001000100010001000100011110 o

AFTER 10·BIT SHLISAL INSTRUCTION:

0010001000100Ul000l1110000000000 o

240486i3·6

Figure 3-6. SHL/SALlnstruction

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right
by one bit position or by the number of bits specified in the count operand (an iinmedi­
ate value ora vitluecoritairied: iri the CL'register). Empty bit positions are cleared. See
Figure 3-7. .

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand
to the right by one bit position or, by the number of bits specified in the count operand
(an immediate value or a value contained in the CL register). The sign of the operand is
preserved by clearing empty bit positions if the operand is positive, or setting the empty
bits if the clperandis negative. See Figure 3-8.

Even though this instruction can be used to divide integers by an integer power of two,
the type of division is not the same as that produced by the IDIV instruction. The
quotient from the IDIV instruction is rounqed toward zero, whereas the "quotient". of
the SAR iil'struc,tioh is rounded toward negative infini~. This difference is apparent only
for negative .nllmbers. For example, when the IDIV instruction is used to divide -9 by 4,
the result is ~ 2 with ,a remainder of '- L If the SAR instruction is used to shift - 9 right
by tWo bits, the result is ~ 3. The "remainder" of this kind of division is + 13; however,
the SAR iristruqtion stores onlythe·high-ordyr bit of the remainder (in the CF flag).

3.,4.4.2 DOUBLE~SH.IFT INSTRUCTIONS

These instructions provide the ba~ic'operations needed to implement operations on long
unaligned bit strings. The double shifts operate either on word or doubleword operands,
as follows:

• Ta,ke two Word operands .an,d prodUCt! a one-word result (32-bit shift).

• Take two doubleword operands and produce a doubleword result (64-bit shift).

3-14

intel® APPLICATION PROGRAMMING

INITIAL STATE:

OPERAND CF

10001000100010001000100010001111 ~

AFTER 1·BIT SHR INSTRUCTION:

o 01000100010001000100010001000111

AFTER 10·BIT SHR INSTRUCTION:

o 00000000001000100010001000100010

240486;3·7

Figure 3·7. SHR Instruction

INITIAL STATE (POSITIVE OPERAND):

OPERAND CF

01000100010001000100010001000111 ~

AFTER 1·BIT SAR INSTRUCTION:

00100010001000100010001000100011

INITIAL STATE (NEGATIVE OPERAND):

OPERAND CF

110001000100010001000100010000111 0
AFTER 1·BIT SAR INSTRUCTION

11100010001000100010001000100011

240486;3·8

Figure 3·8. SAR Instruction

3-15

inteJ® APPLICATION PROGRAMMING

Of the two operands, the source operand must be in a register while the destination
operand may be in a register or in memory. The number of bits to be shifted is specified
either in the CL register or in an immediate byte in the instruction. Bits shifted out of
the source operand fill empty bit positions in the destination operand, which also is
shifted. Only the destination operand is stored.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the
CF flag is set to the value of the last bit shifted out of the destination operand, and the
SF, ZF, and PF flags are affected. On a shift of one bit position, the OF flag is set if the
sign of the operand changed, otherwise it is cleared. For shifts of more than one bit
position, the state of the OF flag is undefined. For shifts of one or more bit positions,
the state of AF flag is undefined.

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling
empty bit positions with bits shifted out of the source operand (see Figure 3-9). The
result is stored back into the destination operand. The source operand is not modified.

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while
filling empty bit positions with bits shifted out of the source operand (see Figure 3-10).
The result is stored back into the destination operand. The source operand is not
modified.

3.4.4.3 ROTATE INSTRUCTIONS

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits
are emptied during a rotation.

DESTINATION (MEMORY OR REGISTER)

31 o

SOURCE (REGISTER)

. 240486i3·9

Figure 3·9. SHLD Instruction

3-16

int'eL APPLICATION PROGRAMMING

31

SOURCE (REGISTER)

31

DESTINATION (MEMORY OR REGISTER)

240486;3-10

Figure 3-10. SHRD Instruction

Rotate instructions use only the CF and OF flags. The CF flag may act as an extension
of the operand in two of the rotate instructions, allowing a bit to be isolated and then
tested by a conditional jump instruction (JC or JNC). The CF flag always contains the
value of the last bit rotated out of the operand, even if the instruction does not use the
CF flag as an extension of the operand. The state of the SF, ZF, AF, and PF flags is not
affected.

In a single-bit rotation, the OF flag is set if the operation changes the uppermost bit
(sign bit) of the destination operand. If the sign bit retains its original value, the OF flag
is cleared. After a rotate of more than one bit position, the value of the OF flag is
undefined.

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one
bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). For each bit position of the rotation, the bit
which exits from the left of the operand returns at the right. See Figure 3-11.

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by
one bit position or by the number of bits specified in the count operand (an immediate
value or a value contained in the CL register). For each bit position of the rotation, the
bit which exits from the right of the operand returns at the left. See Figure 3-12.

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destina­
tion operand left by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on
the upper end of the destination operand. Each bit which exits from the left side of the
operand moves into the CF flag. At the same time, the bit in the CF flag enters the right
side. See Figure 3-13.

3-17

inteL APPLICATION PROGRAMMING

31 o

~~.--~~L-___________ D_E_ST_IN_A_T_IO_N_(_M_E_M_O_RY __ O_R_R_EG_�_sT_E_R_) _____________ ~

240486i3-11

Figure 3·11. ROL Instruction

31 o

~-------------D-E-ST-I-N-AT-IO-N--(M-E-M-O-R-Y-O-R-R-E-GI-S-TE_R_) __________ ~~I--~--.~~

240486i3-12

Figure 3·12. ROR Instruction

DESTINATION (MEMORY OR REGISTER)

240486i3-13

Figure 3·13. RCL Instruction

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword desti·
nation operand right by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower
end of the destination operand. Each bit which exits from the right side of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters the left side. See
Figure 3-14.

3-18

nntel® APPLICATION PROGRAMMING

DESTINATION (MEMORY OR REGISTER)

240486i3-14

Figure 3-14. RCR Instruction

3.4.4.4 FAST "bit bit" USING DOUBLE-SHIFT INSTRUCTIONS

One purpose of the double shift instructions is to implement a bit string move, with
arbitrary misalignment of the bit strings. This is called a "bit bIt" (BIT BLock Transfer).
A simple example is to move a bit string from an arbitrary offset into a doubleword­
aligned byte string. A left-to-right string is moved 32 bits at a time if a double shift is
used inside the move loop.

MOV ESI,ScrAddr
MOV EDI,DestAddr
MOV EBX,WordCnt
MOV CL,RelOffset
MOV EDX, [ESIJ
ADD ESI,4

BltLoop:
LODS
SHLD EDX,EAX,CL
XCHG EDX,EAX
STOS
DEC EBX
JNZ BltLoop

relative offset Dest-Src
load first word of source
bump source address

new low order part in EAX
EDX overwritten with aligned stuff
Swap high and low words
Write out next aligned chunk
Decrement loop count

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest
possible performance. Without a double shift, the best which can be achieved is 16 bits
per loop iteration by using a 32-bit shift, and replacing the XCHG instruction with a
ROR instruction by 16 to swap the high and low words of registers. A more general loop
than shown above would require some extra masking on the first doubleword moved
(before the main loop), and on the last doubleword moved (after the main loop), but
would have the same 32-bits per loop iteration as the code above.

3-19

intel® APPLICATION PROGRAMMING

3.4.4.5 FAST BIT STRING INSERT AND EXTRACT

The double shift instructions also make possible:

• Fast insertion of a bit string from a register into an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the inserted bits

• Fast extraction of a bit string into a register from an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the extracted bits

The following coded examples illustrate bit insertion and extraction under various
conditions:

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e.,· spans
four bytes or less):

Insert a right-justified bit string from a register into
a bit string in memory.

Assumptions:
1. The base of the string array is doubleword aligned.
2. The length of the bit string is an immediate value

and the bit offset is held in a register.

The ESI register holds the right-justified bit string
to be inserted.
The EDI register holds the bit offset of the start of the
substring.
The EAX register and ECX are also used.

MOV ECX,EDI save original offset
SHR EDI,3 divide offset by 8 (byte addr)
AND CL,7H get low three bits of offset
MOV EAX, [EDIlstrg_base move string dword into EAX
ROR EAX,CL right jusiify old bit field
SHRD EAX,ESI,length bring in new bits
ROL EAX,length right justify new bit field
ROL EAX,CL bring to final position
MOV [EDIlstrg_base,EAX replace doubleword in memory

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans five
bytes or less):

Insert a right-justified bit string from a register into
a bit string in memory.

Assumptions:
1. The base of the string array is doubleword aligned.

; 2. The length of the bit string is an immediate value
and the bit offset is held in a register.

The ESI register holds the right-justified bit string
to be inserted.

3-20

intel® APPLICATION PROGRAMMING

The EDI' register holds the bit offset of the start of the
substring.
The EAX, EBX, ECX, and EDI registers also are used.

MOV ECX, EIH temp storage for offset
SHR EDI,5 divide offset by 32 (dwords)
SHL EDI,2 multiply by 4 (byte address)
AND CL,1FH get low five bits of offset
MOV EAX,[EDIlstrg_base move low string dword into EAX
MOV EDX,[EDIlstrg_base+4 other string dword into EDX
MOV EBX,EAX temp storage for part of string
SHRD EAX,EDX,CL shift by offset within dword
SHRD EAX,EBX,CL shift by offset within dword
SHRD EAX,ESI,length bring in new bits
ROL EAX,length right justify new bit field
MOV EBX,EAX temp storage for string
SHLD EAX,EDX,CL shift by offset within word
SHLD EDX,EBX,CL shift by offset within word
MOV [EDIJstrg_base,EAX replace dword in memory
MOV [EDIlstrg_base+4,EDX replace'dword in memory

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e.,
spans four or five bytes): '

Insert right-justified bit string from a register into
a bit string in memory.

Assumptions:
1. The base of the string array is doubleword ,aligned.
2. The length of the bit string is 32 bits

and the bit offset is held in a register.

The ESI register holds the 32-bit string to be inserted.
The EDI register holds the bit offset to the start of the
substring.
The EAX, EBX, ECX, and EDI registers also are used.

MOV EDX,EDI
SHR EDI,5
SHL EDI,2
AND CL,1FH
MOV EAX,[EDIlstrg_base
MOV EDX, [EDIlstrg_base+4
MOV EBX,EAX
SHRD EAX,EDX
SHRD EDX,EBX
MOV EAX,ESI
MOV EBX,EAX
SHLD EAX,EDX
SHLD EDX,EBX

save original offset
divide offset by 32 (dwords)
multiply by 4 (byte address)
isolate low five bits of offset
move low string dword into EAX
other string dword into EDX
temp storage for part of string
shift by offset within dword
shift by offset within dword
move 32-bit field into position
temp storage for part of string
shift by offset within word
shift by offset within word

3-21

intel~ APPLICATION PROGRAMMING

MOV [EDIlstrg_base,EAX ; .replace· dword in memory'
MOV [EDIlstrg_base,+4,EDX ; replace dword in memory

4. Bit String Extraction from M~mo~"Y(when the bit stdng is 1-25 bits long, i.e.', spans
four bytes or less):

Extract a right-justified bit s~ring'into a register from
.a bit string in memory •.

Assumptions:
1) The base of the string array is doubleword. aligned.
2) The length of .. the bit· string is an immediate value

and the bit offset.is held ina register.
':',

The EAX register hold the right-justified, .zero-padded
bit string that was extracted.
The EDI register holds the bit offs~t of the start of the
substring.
The EDI, and ECX registers also are·used~

MOV ECX,EDI
SHR EDI,3
AND CL,7H
MOV EAX, [EDI j strg_bas'e .
SHR EAX,CL
AND EAX,mask

temp storage for offset·
divide offset by 8 (byte addr)
get .low three bits of offset
~ove '~tring ~wor~ into EA*'"
shift by offset within dword
ext~~ct~d'bit field iri EAX'

5. Bit String Extraction from Memory (when bit string is 1-32 b'its lo~g, i.e., spans five
bytes or less): . '.

Extract a right-justified bii stri~g into a register 'from 'a
bit string in memory.

Assumptions:
1) The base of the strihg 'a~ray~is' doUbleword ~ligned.
2) The length of the"bit'stri'ng is'an immediate'

value and the bit offset is held in'a register.

The EAX register holds the right-justified, zero-padded
bit string that was extracted.
The EDI register holds ·th~ bit offset :of the start of the
substring. . ,<'

The EAX, EBX, and· ECX registersaiso are used.
; .

MOV ECX,EDI ; -temp storage for offset
SHR EDI,5 ;.divide'oHset by 32 (dwords)
SHL EDI,2 ;'multiply by 4 (byte address)
AND CL,1FH get low five bits of offset in
MOV EAX,[EDIlstrg~base ","; move lowstring'dword into EAX
MOV EAX,[EDIlstrg~base +4 other string dword into EDX
SHRD EAX,EDX,CL .shiftright b~~~ffset in dword
AND EAX,mask extracted bit field in EAX

3-22

:., ,

' . ~

int'et APPLICATION PROGRAMMING

3.4.5 Byte-Set-On-Condition Instructions

This group .of instructions sets a byte to the·value of zero or one, depending on any of
the 16 conditions defined by the status flags. The byte may be in a register or in memory.
These instructions are especially useful for implementing Boolean expressions in high­
level languages such as Pascal.

Some languages represent a logical one as an integer with all bits set. This can be done
by using the SET~c instruction with the mutually exclusive condition, then decrementing
the result.

SETcc (Set Byte on. Condition cc) loads the. value 1 into a byte if condition cc is true;
. clears the byte otherwise. See Appendix D for a definition of the possible conditions ..

3.4.6 Test Instruction

TEST (Test) performs, the logical "and" of the two operands, clear~ the. OF . and CF
flags, leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can
be tested by conditional control transfer instructions or the byte-set-on-condition
instructions. The operands may be bytes, words, or dou~lewords.

The difference between the TEST and AND instructions is the TEST instruction does
not alter the destination operand. The difference between the TESTiliidBT instructions
is the TEST instruction can test the value Of multiple bits iIi one operation, while the BT
instruction tests. a single bit. " i . ' .

. ': .

3.5 CONTROL TRANSFER INSTRUCTIONS'

The Intel486 processor provides both conditional and unconditional control transfer
instructions to direct the flow pf execution, Conditional tnmsfers are executed only for
certain conibinations of the state of the flags. Unconditioiuil control transfers are always
executed., ' ,

3.5.1 Unconditional Transfer Instructions·

The JMP, CALL, RET, INT and IRET instructions transfer execution to a destination
in a code segment. The destination can be witb.in the same code se~ent (near transfer)
or in a different code segment (Jar transfer). The forms of these instructions which
transfer execution to other segments arediscussed in a later section of this chapter. If
the model 'of memory organization used in !l par,ticular application does not make seg­
nients v~sible to application pfogrammers,Jadran~fers will '~ot be ~sed. " . ' ';

3.5.1.1 JUMP INSTRUCTION
';,' "

JMP (Jump) unconditionally transfers execution to the d,estination. The JIy1P instruction
is a one-way transfer of execution; it ,does no(save a return address on thestacL

3-23

intel~ APPLICATION PROGRAMMING

The JMP instruction transfers execution from the current routine to a different routine.
The address of the routine is specified in the instruction, in a register, or in memory. The
location of the address determines whether it is interpreted as a relative address or an
absolute address.

Relative Address. A relativ~ jump uses a displacement (immediate mode constant used
for address calculation) held in the instruction. The displacement is signed and variable­
length (byte or doubleword). The destination address is formed by adding the displace­
ment to the address held in the EIP register. The EIP register then contains the address
of the next instruction to be executed.

Absolute Address. An absolute jump is used with a 32-bit segment offset in either of the
following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register and execution continues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register and execution
continues.

3.5.1.2 CALL INSTRUCTIONS

CALL (Call Procedure) transfers execution and saves the address of the instruction
following the CALL instruction . for later use by a RET (Return) instruction. CALL
pushes the current contents of the EIP register on the stack. The RET instruction in the
called procedure us.es this address to transfer execution back to the calling program.

CALL instructions, like JMP instructions, have relative and absolute forms.

Indirect CALL instructions specify an absolute address in one of the following ways:

1. The program can jump to an address in ageneral register. This 32-bit value is copied
into theEIP register, the return address is pushed on the stack, and execution
90ntinues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the ElP register, the return address is
pushed on the stack, and execution continues.

3.5.1.3 RETURN ANDFIETURN~FROM":INTERRUPTINSTRUCTIONS

RET (Return FromProcedtln!) termin.ates a procedure and transfe~s execution to the
instruction following the CALL instruction which originally invoked the procedure. The
RET instruction restores the contents of the EIP register which were pushed on the
stack when the procedure was called.

The RET instructions have an optional immediate operand. When present, this constant
is added to the contents of the ESP register, which has the effect of removing any
parameters pushed on the stack before the procedure call.

3-24

intel® APPLICATION PROGRAMMING

IRET (Return From Interrupt) returns control to an interrupted procedure. The IRET
instruction differs from the RET instruction in that it also restores the EFLAGS register
from the stack. The contents of the EFLAGS register are stored on the stack when an
interrupt occurs.

3.5.2 Conditional Transfer Instructions

The conditional transfer instructions are jumps which transfer execution if the states in
the EFLAGS register match conditions specified in the instruction.

3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS

Table 3-3 shows the rrinemonics for the jump instructions. The instructions listed as pairs
are alternate names for the same instruction. The assembler provides these names for
greater clarity in program listings.

A form of the conditional jump instructions is available which uses a displacement added
to the contents of the EIP register if the specified condition is true. The displacement
may be a byte or doubleword. The displacement is signed; it can be used to jump for­
ward or backward.

Table 3-3. Conditional Jump Instructions

Unsigned Conditional Jumps

Mnemonic Flag States Description
JNJNBE (CF or ZF)=O above/not below nor equal
JAE/JNB CF=O above or equal/not below
JB/JNAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry
JE/JZ ZF=1 equal/zero
JNC CF=O not carry
JNE/JNZ ZF=O not equal/not zero
JNP/JPO PF=O not parity/parity odd
JP/JPE PF=1 parity/parity even

Signed Conditional Jumps

JG/JNLE ((SF xor OF) or ZF) ;=0 greater/not less nor equal
JGE/JNL (SF xor OF) = 0 greater or equal/not less
JLlJNGE (SF xor OF) = 1 less/not greater nor equal
JLE/JNG ((SF xor OF) or ZF) = 1 less or equal/not greater
JNO OF=O not overflow
JNS SF=O not sign (non-negative)
JO OF=1 overflow
JS SF='1 sign (negative)

3-25

intel~ APPLICATION PROGRAMMING

3.5.2.2 LOOP INSTRUCTIONS

The loop instructions are conditional jumps which use a value placed in the ECX regis­
ter as a count for the number of times to run a loop. All loop instructions decrement the
contents of the ECX register on each reposition and terminate when zero· is reached.
Four of the five loop instructions accept the ZF flag as a condition for terminating the
loop before the count reaches zero. .

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements
the contents of the ECX register before testing for the loop-terminating condition. If
contents of the ECX register are non-zero, the program jumps to the destination speci­
fied in the instruction. The LOOP instruction causes the execution of a block of code to
be repeated until the count reaches zero. When zero is reached, execution is transferred
to the instruction immediately following the LOOP instruction. If the value in the ECX
register is zero when the instruction is first called, the count is pre-decremented to
OFFFFFFFFH and the LOOP runs 232 times.' .

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same
instruction. These instructions are conditional jumps which decrement the contents of
the ECX register before testing for the loop-terminating condition. If the contents of the
ECX register are non-zero and the ZF flag is set, the program jumps to the destination
specified in the instruction. When zero is reached or the ZF flag is clear, execution is
transferred to the instruction immediately following the LOOPE/LOOPZ instruction.

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms
for the same instruction. These instructions are conditional jumps which decrement the
contents of the ECX register before testing for the loop-terminating condition. If the
contents of the ECX register are non-zero and the ZF flag is clear, the program jumps to
the destination specified in the instruction. When zero is reached or the ZF flag is set,
execution is transferred to the instruction immediately following the LOOPE/LOOPZ.
instruction.

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the
ECX register holds a value of zero. The JECXZ instruction is used in combination with
the LOOP instruction and with the string scan and compare instructions. Because these
instructions decrement the contents of the ECX register before testing for zero, a loop
will run 232 times if the loop is entered with a zero value in the ECX register. The
JECXZ instruction is used to create loops which fall through without executing when the
initial value is zero. A JECXZ instruction at the beginning of a loop can be used to jump
out of the . loop if the count is zero. When used with repeated string scan and compare
instructions, the JECXZ instruction can determine whether the loop terminated due to
the count or due to satisfaction of the scan or compare conditions.

3-26

APPLICATION PROGRAMMING

3.5.3 Software_ Interrupts

The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of
execution to an exception or interrupt handler.

INTn (Software Interrupt) calls the handler specified by an interrupt vector encoded in
the instruction. The INT instruction may specify any interrupt type. This instruction is
used to support multiple types of software interrupts or to test the operation of interrupt
service routines. The interrupt service routine terminates with an IRET instruction,
which returns execution to the instruction following the INT instruction.

INTO (Interrupt on Overflow) calls the handler for the overflow exception, if the OF
flag is set. If the flag is clear, execution continues without calling the handler. The OF
flag is set by arithmetic, logical, and string instructions. This instruction supports the use
of software interrupts for handling error conditions, such as arithmetic overflow.

BOUND (Detect Value Out of Range) compares the signed value held in a general reg­
ister against an upper and lower limit. The handler for the bounds-check exception is
called if the value held in the register is less than the lower bound or greater than the
upper bound. This instruction supports the use of software interrupts for bounds check­
ing, such as checking an array index to make sure it falls within the range defined for the
array.

The BOUND instruction has two operands. The first operand specifies the general reg­
ister being tested. The second operand is the base address of two words or doublewords
at adjacent locations in memory. The lower limit is the word or doubleword with the
lower address; the upper limit has the higher address. The BOUND instruction assumes
that the upper limit and lower limit are in adjacent memory locations. These limit values
cannot be register operands; if they are, an invalid-opcode exception occurs.

The upper and lower limits of an array can reside just before the array itself. This puts
the array bounds ata constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra bus
cycles to obtain the effective address of the array bounds.

3.6 STRING OPERATIONS

String operations manipulate large data structures in memory, such as alphanumeric
character strings. See also the section on I/O for information about the string I/O
instructions (also known as block I/O instructions).

3-27

APPLICATION PROGRAMMING

The string operations are made by putting string instructions (which execute only one
iteration of an operation) together with other features of the instruction set, such as
repeat prefixes. The string instructions are:

,

MOVS - Move String
CMPS - Compare string
SCAS - Scan string
LODS - Load string
STOS:. Store string

After a string instruction executes, the string source and destination registers point to
the next elements in their strings. These registers automatically increment or decrement
their contents by the number of bytes occupied by each string element. A string element
can be a byte, word, or doubleword. The string registers are:

ESI - Source index register .
EDI - Destination index register

String operations can begin at higher addresses and work toward lower ones, or they can
begin at lower addresses and work toward higher ones. The direction is controlled by:

DF - Direction flag

If the DF flag is clear, the registers are incremented. If the flag is set, the registers are
decremented. These instructions set and clear the flag:

STD - Set direction flag instruction
CLD - Clear direction flag instruction

To. operate on more than one .element of a string, a repeat prefix must be used, such as:

REP.- Repeat while the ECX, register not zero .
REPE/REPZ - Repeat while the ECX register not zero and the ZF flag is set
REPNE/REPNZ-Repeat while the ECX register not zero and the ZF flag is clear

Exceptions or interrupts which occur during a string instruction leave the registers in a
state which allows the string instruction to be restarted. The source and destination
registers point to the next string elements, the EIP register points to the string instruc­
tion, and the ECX register has the value it held following the last successful iteration.
All that is necessary to restart the operation is to service the interrupt or fix the source
of the exception, then execute an IRET instruction.

3.6.1 Repeat Prefixes

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated
operation of a string instruction; This form of iteration allows string operations to pro­
ceed much faster than would be. possible with a software loop;

3-28

intel® APPLICATION PROGRAMMING

When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied.

For each repetition of the instruction, the string operation may be suspended by aQ
exception or interrupt. After the exception or interrupt has been serviced, the string
operation can restart where it left off. This mechanism allows long string operations to
proceed without affecting the interrupt response time of the system.

All three prefixes shown in Table 3-4 cause the instruction to repeat until the ECX
register is decremented to zero, if no other termination condition is satisfied. The repeat
prefixes differ in their other termination condition. The REP prefix has no other termi­
nation condition. The REPE/REPZ and REPNE/REPNZ prefixes are used exclusively
with the SCAS (Scan String) and CMPS (Compare String) instructions. The REPEl
REPZ prefix terminates if the ZF flag is clear. The REPNE/REPNZ prefix terminates if
the ZF flag is set. The ZF flag does not require initialization before execution of a
repeated string instruction, because both the SCAS and CMPS instructions affect the ZF
flag according to the results of the comparisons they make.

3.6.2 Indexing and Direction Flag Control

Although the general registers are completely interchangeable under most conditions,
the string instructions require the use of two specific registers. The source and destina­
tionstrings are in merpory addressed by the ESI and EDI registers. The ESI register
points to source operands. By default, the ESI register is used with the DS segment
register. A segment-override prefix allows the ESI register to be used with the CS, SS,
ES, FS, or GS segment registers. The EDI register points to destination operands. It
uses the segment indicated by the ES segment register; no segment override is allowed.
The use of two different segment registers in one instruction permits operations between
strings in different segments.

When ESI and EDI are used in string instructions, they automatically are incremented
or decremented after each iteration. String operations can begin at higher addresses and
work toward lower ones, or they can begin at lower addresses and work toward higher
ones. The direction is controlled by the DF flag. If the flag is clear, the registers are
incremented. If the flag is set, the registers are decremented. The STD and CLD
instructions set and clear this flag. Programmers should always put a known value in the
DF flag before using a string instruction.

Table 3-4. Repeat Instructions

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=O none
REPE/REPZ ECX=O ZF=O
REPNE/REPNZ ECX=O ZF=1

3-29

int:et APPLICATION PROGRAMMING

3.6.3 String Instructions

MOVS (Move String) moves the string element addressed by the ESI register to the
location addressed by the EDI register. The MOVSB instruction moves bytes, the
MOVSW instruction moves words, and the MOVSD instruction moves doublewords.
The MOVS instruction, when accompanied by the REP prefix, operates as a memory­
to-memory block transfer. To set up this operation, the program must initialize theECX,
ESI, and EDI registers. The ECX register specifies the number of elements in the block.

CMPS (Compare Strings) subtracts the destination string element from the source string
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written
back to memory. If the string elements are equal, the ZF flag is set; otherwise, it is
cleared. CMPSB compares bytes, CMPSW compares words, and CMPSD compares
doublewords.

SCAS (Scan String) subtracts the destination string element from the EAX, AX, pr AL
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF
flags. The string and the register are not modified. If the values are equal, the ZF flag is
set, otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction
scans words; the SCASD instruction scans doublewords.

When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SCAS or CMPS
instructions, the loop which is formed is terminated by the loop counter or the effect the
seAS or CMPS instruction has on the ZF flag.

LODS (Load String) places the source string element addressed by the ESI register into
the EAX register for doubleword strings, into the AX register for word strings, or into
the AL register for byte strings. This instruction usually is used in a loop, where other
instructions process each element of the string as they appear iIi the register.

- STOS (Store String) places the source string element from the EAX, AX, or AL register
into the string addressed by the EDI register. This instruction usually is used in a loop,
where it writes to memory the result of processing a string element read from memory
WIth the LODS instruction. A REP STOS instruction is the fastest way. to initialize a
large block of memory.

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES

These instructions provide machine-language support for implementing block-structured
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify
procedure entry and exit in compiler-generated code. They support a structure of point­
ers and local variables on the stack called a stack frame.

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of
block-structured languages. In these languages, a procedure has access to its own vari­
ables and some number of other variables defined elsewhere in the program. The scope

3-30

infel® APPLICATION PROGRAMMING

of a procedure is the set of variables to which it has access. The rules for scope vary
among languages; they may be based on the nesting of procedures, the division of the
program into separately-compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be
reserved on the stack for dynamic storage in the procedure being entered. Dynamic
storage is the memory allocated for variables created when the procedure is called, also
known as automatic variables. The second parameter is the lexical nesting level (from 0
to 31) of the procedure. The nesting level is the depth of a procedure in the hierarchy of
a block-structured program. The lexical level has no particular relationship to either the
protection privilege level or to the I/O privilege level.

The lexical nesting level determines the number of stack frame pointers to copy into the
new stack frame from the preceding frame. A stack frame pointer is a doubleword used
to access the variables of a procedure. The set of stack frame pointers used by a proce­
dure to access the variables of other procedures is called the display. The first double­
word in the display is a pointer to the previous stack frame. This pointer is used by a
LEAVE instruction to undo the effect of an ENTER instruction by discarding the cur­
rent stack frame.

Example: ENTER 2048,3

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two
previous stack frames in the stack frame for this procedure.

After the ENTER instruction creates the display for a procedure, it allocates the
dynamic (automatic) local variables for the procedure by decrementing the contents of
the ESP register by the number of bytes specified in the first parameter. This new value
in the ESP register serves as the initial top-of-stack for all PUSH and POP operations
within the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP
register pointing to the first doubleword in the display. Because stacks grow down, this is
actually the doubleword with the highest address in the display. Data manipulation
instructions which specify the EBP register as a base register automatically address
locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical
level is 0, the non-nested form is used. The non-nested form pushes the contents of the
EBP register on the stack, copies the contents of the ESP register into the EBP register,
and subtracts the first operand from the contents of the ESP register to allocate dynamic
storage. The non-nested form differs from the nested form in that no stack frame point­
ers are copied. The nested form of the ENTER instruction occurs when the second
parameter (lexical level) is not zero.

Figure 3-15 shows the formal definition of the ENTER instruction. STORAGE is the
number of bytes of dynamic storage to allocate for local variables, and LEVEL is the
lexical nesting level.

3-31

APPLICATION PROGRAMMING

Push EBP
Set a temporary value FRAMLPTR : = ESP
If LEVEL 0 then

End if

Repeat LEVEL - 1) times:
EBP :=EBP -4
Push the doubleword pointed to by EBP

End repeat
Push FRAMLPTR

EBP : = FRAMLPTR
ESP: = ESP - STORAGE

Figure 3-15. Formal Definition of the ENTER Instruction

The main procedure (in which all other procedures are nested) operates at the highest
lexical level, level 1. The first procedure it calls operates at the next deeper lexical level,
level 2. A level 2 procedure can access the variables of the main program, which are at
fixed locations specified by the compiler. In the case of level 1, the ENTER instruction
allocates only the requested dynamic storage on the stack because there is no previous
display to copy.

A procedure which calls another procedure at a lower lexical level gives the called pro­
cedure access to the variables of the caller. The ENTER instruction provides this access
by placing a pointer to the calling procedure's stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give
access to its variables. In this case, the ENTER instruction copies only that part of the
display from the calling procedure which refers to previously nested procedures operat­
ing at higher lexical levels. The new stack frame does not include the pointer for
addressing the calling procedure's stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the
same lexical level. In this case, each succeeding iteration of the re-entrant procedure can
address only its own variables and the variables of the procedures within which it is
nested. A re-entrant procedure always can address its own variables; it does not require
pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the
ENTER instruction makes certain that procedures access only those variables of higher
lexical levels, not those at parallel lexical levels (see Figure 3-16).

3-32

intel® APPLICATION PROGRAMMING

MAIN (LEXICAL LEVEL 1)

PROCEDURE A (LEXICAL LEVEL 2)

PROCEDURE B (LEXICAL LEVEL 3)

PROCEDURE C (LEXICAL LEVEL 3)

PROCEDURE D (LEXICAL LEVEL 4)

240486i3-16

Figure 3-16. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control
access to the variables of nested procedures. In the figure, for example, if PROCE­
DURE A calls PROCEDURE B which, in turn, calls PROCEDURE C, then PROCE­
DURE C will have access to the variables of MAIN and PROCEDURE A, but not those
of PROCEDURE B because they are at the same lexical level. The following definition
describes the access to variables for the nested procedures in the figure.

1. MAIN has variables at fixed locations.

2. PROCEDURE A can access only the variables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN.
PROCEDURE B cannot access the variables of PROCEDURE C or PROCE­
DURED.

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN.
PROCEDURE C cannot access the variables of PROCEDURE B or PROCE­
DURED.

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A,
. and MAIN. PROCEDURE D cannot access the variables of PROCEDURE B.

In the following diagram, an ENTER instruction at the beginning of the MAIN program
creates three doublewords of dynamic storage for MAIN, but copies no pointers from
other stack frames (See Figure 3-17). The first doubleword in the display holds a copy of
the last value in the EBP register before the ENTER instruction was executed. The
second doubleword (which, because stacks grow down, is stored at a lower address)

3-33

DISPLAY [

DYNAMIC [
STORAGE

APPLICATION PROGRAMMING

OLD EBP

MAIN'S EBP

I- EBP

I- ESP

Figure 3-17. Stack Frame After Entering MAIN

240486;3-17

holds a copy of the contents of the EBP register following the ENTER instruction. After
the instruction is executed, the EBP register points to the first doubleword pushed on
the stack, and the ESP register points to the last doubleword in the stack frame.

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (see
Figure 3-18). The first doubleword is the last value held in MAIN's EBP register. The
second doubleword is a pointer to MAIN's stack frame which is copied from the second
doubleword in MAIN's display. This happens to be another copy of the last value held in
MAIN's EBP register. PROCEDURE A can access variables in MAIN because MAIN
is at level 1. Therefore the base address for the dynamic storage used in MAIN is the
current address in the EBP register, plus four bytes to account for the saved contents of
MAIN's EBP register. All dynamic variables for MAIN are at fixed, positive offsets from
this value.

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new
display (See Figure 3-19). The first doubleword holds a copy of the last value in PRO­
CEDURE A's EBP register. The second and third doublewords are copies of the two
stack frame pointers in PROCEDURE A's display. PROCEDURE B can access vari­
ables in PROCEDURE A and MAIN by using the stack frame pointers in its display.

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new
display for PROCEDURE C (See Figure 3-20). The first doubleword holds a copy of the
last value in PROCEDURE B's EBP register. This is used by the LEAVE instruction to
restore PROCEDURE B's stack frame. The second and third doublewords are copies of
the two stack frame pointers in PROCEDURE A's display. If PROCEDURE C were at
the next deeper lexical level from PROCEDURE B, a fourth doubleword would be
copied, which would be the stack frame pointer to PROCEDURE B's local variables.

3-34

intel® APPLICATION PROGRAMMING

"""" [
DYNAMIC [
STORAGE

OLD EBP

MAIN'S EBP

MAIN'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

f-- EBP

- EBP

Figure 3-18. Stack Frame After Entering PROCEDURE A

,,,pe., [

DYNAMIC [
STORAGE

OLD EBP

MAIN'S EBP

MAIN'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE A'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE B'S EBP

- EBP

- ESP

Figure 3-19. Stack Frame After Entering PROCEDURE B

3·35

24048613·18

24048613·19

infel® APPLICATION PROGRAMMING

"OS,'"~ [
DYNAMIC [.
STORAGE

OLD EBP

MAIN'S EBP

MAIN'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE A'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE B'S EBP

PROCEDURE B'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE C'S EBP

- EBP

-- ESP

Figure 3-20. Stack Frame After Entering PROCEDURE C

240486i3·20

Note that PROCEDURE .B and PROCEDURE C are at the same level, so PROCE­
DURE C is not intended to access PROCEDURE B's variables. This does not mean
that PROCEDURE C is completely isolated from PROCEDURE B; PROCEDURE C
is called by PROCEDURE B, so the pointer to the returning stack frame is a pointer to
PROCEDURE B's stack frame. In addition, PROCEDURE B can pass parameters to
PROCEDURE C either on the stack or through variables global to both procedures
(i.e., variables in the scope of both procedures).

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The
LEAVE instruction does not have any operands. The LEAVE instruction copies the
contents of the EBP register into the ESP register to release all stack space allocated to

3-36

intel® APPLICATION PROGRAMMING

the procedure. Then the LEAVE instruction restores the old value of the EBP register
from the stack. This simultaneously restores the ESP register to its original value. A
subsequent RET instruction then can remove any arguments and the return address
pushed on the stack by the calling program for use by the procedure.

3.8 FLAG CONTROL INSTRUCTIONS

The flag control instructions change the state of bits in the EFLAGS register, as shown
in Table 3-5.

3.8.1 Carry and Direction Flag Control Instructions

The carry flag instructions are useful with instructions like the rotate-with-carry instruc­
tions RCL and RCR. They can initialize the carry flag, CF, to a known state before
execution of an instruction which copies the flag into an operand.

The direction flag control instructions set or clear the direction flag, DF, which controls
the direction of string processing. If the DF flag is clear, the processor increments the
string index registers, ESI and EDI, after each iteration of a string instruction. If the DF
flag is set, the processor decrements these index registers.

3.8.2 Flag Transfer Instructions

Though specific instructions exist to alter the CF and DF flags, there is no direct method
of altering the other application-oriented flags. The flag transfer instructions allow a
program to change the state of the other flag bits using the bit manipulation instructions
once these flags have been moved to the stack or the AH register.

The LAHF and SAHF instructions deal with five of the status flags, which are used
primarily by the arithmetic and logical instructions.

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register
bits 7, 6, 4, 2, and 0, respectively (see Figure 3-21). The contents of the remaining bits 5,
3, and 1 are left undefined. The contents of the EFLAGS register remain unchanged.

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively (see Figure 3-21).

Table 3-5. Flag Control Instructions

Instruction Effect

STC (Set Carry Flag) CF -1
CLC (Clear Carry Flag) CF - 0
CMC (Complement Carry Flag) CF <-- - (CF)
CLD (Clear Direction Flag) DF - 0
STD (Set Direction Flag) DF -1

3-37

APPLICATION PROGRAMMING

THE BIT POSITIONS OF THE FLAGS ARE THE SAME,
WHETHER THEY ARE HELD IN THE EFLAGS REGISTER
OR THE AH REGISTER. BIT POSITIONS SHOWN AS
o OR 1 ARE INTEL RESERVED. DO NOT USE.

Figure 3-21. Low Byte of EFLAGS Register

240486i3·21

The PUSHF and POPF instructions are not only useful for storing the flags in memory
where they can be examined and modified, but also are useful for preserving the state of
the EFLAGS register while executing a subroutine.

PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see
Figure 3-22). The PUSHFD instruction pushes the entire EFLAGS register onto the
stack (the RF flag reads as clear, however) ..

POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 14,
11, 10, 8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege
level of the current code segment is 0 (most privileged), the IOPL bits (bits 13 and 12)
also are affected. If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is affected.
The POPFD instruction pops a doubleword into the EFLAGS register, and it can
change the state of the AC bit (bit 18) as well as the bits affected by a POPF instruction.

, f.. "!-. ---'---,----'------,---,---,--------•• 11 PUSHFD/POPFD

, ... __ ---------__ 11 PUSHF/POPF

31 15

o A V R o N
..J 00 o 0 o 0 o 0 o 0 o 0 o 0 D..

C M F T Q F F

BIT POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED.
DO NOT USE.

o

I T S Z o A o P 1 C
F F F F F F F

Figure 3-22. Flags Used with PUSHFand POPF

240486i3·22

intel® APPLICATION PROGRAMMING

3.9 NUMERIC INSTRUCTIONS

The Intel486 processor includes hardware and instructions for high-precision numeric
operations on a variety of numeric data types, including 80-bit extended real and 64-bit
long integer. Arithmetic, comparison, transcendental, and data transfer instructions are
available. Frequently-used constants are also provided, to enhance the speed of numeric
calculations.

The numeric instructions are embedded in the instruction stream of the Intel486 proces­
sor, as though they were being executed by a single device having both integer and
floating-point capabilities. But the floating-point unit of the Intel486 CPU actually works
in parallel with the integer unit, resulting in higher performance.

Refer t~ Section 10.2 to confirm the presence of an Intel486 floating point unit.

Part III of this manual, Chapters 14-18, describe the numeric instructions in more detail.

3.10 SEGMENT REGISTER INSTRUCTIONS

There are several distinct types of instructions which use segment registers. They are
grouped together here because, if system designers choose an unsegmented model of
memory organization, none of these instructions are used. The instructions which deal
with segment registers are:

1. Segment-register transfer instructions.
MbVSegReg, •••
MOV "', SegReg
PUSH SegReg
POP SegReg

2. Control transfers to another executable segment.

3.

JMP far
CALL far
RET far

Data pointer instructions.
LDS reg, 48-bit memory operand
LES reg, 48-bit memory operand
LFS reg, 48-bit memory operand
LGS reg, 48-bit .emory operand
LSS reg, 48-bit memory operand

4. Note that the following interrupt-related instructions also are used in unsegmented
systems. Although they can transfer execution between segments when segmentation
is used, this is transparent to the application programmer.
INT n
INTO
BOUND
IRET

3-39

intel® APPLICATION PROGRAMMING

3.10.1 Segment-Register Transfer Instructions

Forms of the MOV, POP, and PUSH instructions also are used to load and store seg­
ment registers. These forms operate like the general-register forms, except that one
operand is a segment register. The MOV instruction cannot copy the contents of a
segment register into another segment register.

The POP and MOV instructions cannot place a value in the CS register (code segment);
only the far control-transfer instructions affect the CS register. When the destination is
the SS register (stack segment), interrupts are disabled until after the next instruction.

On the Inte1386 DX processor, loading a segment register always results in locked read
and write cycles to set the Accessed bit. On the Intel486 processor, locked cycles are
generated only if the Accessed bit is not already set.

No 16-bit operand size prefix is needed when transferring data between a segment reg­
ister and a 32-bit general register.

3.10.2 Far Control Transfer Instructions

The far control-transfer instructions transfer execution to a destination in· another seg­
ment by replacing the contents of the CS register. The destination is specified by a far
pointer, which is a 16-bit segment selector and a 32-bit offset into the segment. The far
pointer can be an immediate operand or an operand in memory.

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS
registers on the stack.

Far RET. An intersegment RET instruction restores the values of the CS and EIP reg­
isters from the stack.

3.10.3 Data Pointer Instructions

The data pointer instructions load a far pointer into the processor registers. A far
pointer consists of a 16-bit segment selector, which is loaded into a segment register, and
a 32-bit offset into the segment, which is loaded into a general register.

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS
register and a general register. The source operand must be a memory operand, and the
destination operand must be a general register.

Example: LDS ESI, STRING_X

3-40

infel® APPLICATION PROGRAMMING

Loads the DS register with the segment selector for the segment addressed by
STRING-.X, and loads the offset within the segment to STRING-.X into the ESI
register. Specifying the ESI register as the destination operand is, a convenient way
to prepare for a string operation, when the source string is not in the cOrrent data
segment. '

LES (Load Pointer Using ES) has the same effect as the LDS instruction, except the
segment selector is loaded into the ES register rather than the DS register.

Example: LES EDr, DESTINATIDN_X

Loads the ES register with the segment selector for the segment addressed by DES­
TINATION-.X, and loads the offset within the segment to DESTINATION-.X into
the EDI register. This instruction is a convenient way to select a destination for
string operation if the desired location is not in the current E-data segment.

LFS (Load Pointer Using FS) has the same effect as the LDS instruction, except the FS
register receives the segment selector rather than the DS register. . .

LGS (Load Pointer Using GS) has the same effect as the LDS instruction, except the GS
register receives the segment selector rather than the DS register.

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS
register receives the segment selector rather than the DS register. This instruction is
especially important, because it allows the two registers which identify the stack (the SS
and ESP registers) to be changed in one uninterruptible operation. Unlike the other
instructions which cim load the SS register, interrupts are not inhibited at the end of the
LSS instruction. The other instructions, such as POP SS, turn off interrupts to permit
the following instruction to load the ESP register without an intervening interrupt. Since
both the SS and ESP registers can be loaded by the LSS instruction, there is no need to
disable or re-enable interrupts.

3.11 MISCELLANEOUS INSTRUCTIONS,

The following instructions do not fit in any of the previous categories, but are no less
important. .

The BSWAP, XADD, and CMPXCHG instructions are not available on Intel386 DX or
SX microprocessors. An Intel386 CPU can perform the same operations in multiple
instructions. To use these instructions, always include functionally-equivalent code for
Intel386 CPUs. Use the code in Figure 3-23 to determine whether these instructions can
be used. '

The INVD and WBINVD instructions cannot be implemented on earlier processors due
to the introduction of on-chip cache on the Intel486 CPU. Use the code in Figure 3-23
for detecting an Intel486 processor at runtime.

3-41

TITLE CPUID
DOSSEG
model
stack
.data

fp_status
id_mess
fp_8087
fp_80287
fp_80387
c8086
c286
c386
c486
c486nfp
period
presenL86
presenL286
presenL386
presenL486

small
100h

dw
db
db
db
db
db
db
db
db
db
db
dw
dw
dw
dw

APPLICATION PROGRAMMING

"This system nas a$"
"and an 8087 math coprocessor$"
"and an Inte1287" math coprocessor$"
"and an Inte1387" math coprocessor$"
"n8086/8088 microprocessor$"
"n80286 microprocessor$"
, 'Inte1386" microprocessor$"
"Inte1486" DX microprocessor/lnteI487" SX math coprocessor$"
"Intel486 SX microprocessor$"
".$" ,13,10

The purpose of this code is to allow the user the ability to identify
the processor and coprocessor that is currently in the system. The
algorithm of the program is to first determine the processor id.

start:

int

When that is accomplished, the program continues to then identify
whether a coprocessor exists in the system. If a coprocessor or
integrated coprocessor exists, the program will identify the
coprocessor id. If one does not exist, the program then terminates .

• code

mov ax, ~data
mov ds, ax I set segment register

mov dx, offset lprint header message
id_mess

mov ah,9h
21h

Figure 3-23. CPUJD, MCPJD Detection Code

3-42

infel® APPLICATION PROGRAMMING

8~86 check
Bits 12-15 are always set on the 8~86 processor.

pushf
pop bx
mov ax, ~fffh
and ax, bx
push ax
popf
pushf
pop ax
and ax, 3f~~~h
cmp ax, ~f~~~h
mov dx, offset c8~86
mov preseL86,1
je check_fpu

8~286 CPU Check

save EFLAGS
store EFLAGS in BX
clear bits 12-15

in EFLAGS
store enw EFLAGS value on stack
replace current EFLAGS value
set new EFLAGS
store new EFLAGS in AX
if bits 12-15 are set, then CPU

is an 8~86/8~88

store 8~86/8~88 message
turn on 8~86/8~88 flag
if CPU is 8~86/8~88, check for
8~87

Bits 12-15 are always clear on the 8~286 processor.

or
push
popf
pushf
pop
and
mov
mov
mov
jz

bx, ~f~~~h
. bx

ax
ax, ~f~~~h
dx, offset c286
presenL86, ~
presenL286,1
check_fpu

try to set bi ts 12-15 '

If bits 12-15 are cleared, then
CPU is a 286

turn off 8~86/8~88 flag
turn on 286 flag
if CPU is 286, check for Intel287
microprocessor

Intel386 CPU check
The AC bit, bit #18, is a new bit
on the Intel486 DX CPU to generate
on the Intel486 DX CPU, but not on

mov bx,sp

and sp,not 3
db 66h
pushf
db 66h
pop ax
db 66h
mov cx, ax
db 66h
xor ax,~

dw 4
db 66h
push ax
db 66h
popf

introduced in the EFLAGS register
alignment faults. This bit can be set
the Intel386 CPU.

save current stack pointer to
align it
align 'stack to avoid AC fault

push original EFLAGS

get original EFLAGS

save original EFLAGS
xor EAX, 4~~~~h

flip AC bit in EFLAGS
upper 16-bi ts of xor constant

save for EFLAGS

copy to EFLAGS

Figure 3-23. CPUJD, MCPJD Detection Code (Contd.)

3-43

int'et APPLICATION PROGRAMMING

db 66h
pushf
db 66h
pop ax
db 66h
xor ax,cx

moV dx ,offset
c386

mov presenL286,9
mov presenL386,l
je check_fpu

486 DX CPU and 486DX CPU w/o FPU checking

mov
mov
mov

dx, offset, c486nfp·
presenL386,9
presenL486,l

push EFLAGS

get new EFLAGS value

if AC bi t cannot be changed,
CPU is
store Intel386 microprocessor message

turn off 286 flag
if CPU is Inte1386 CPU, now check for
Intel287lInte1387 math coprocessors

store Intel486 NFP message
turn off Intel386 CPU flag
turn on Intel486 CPU flag

Co-processor checking begins here for the 8986/286/Intel386 CPUs.
The algorithm is to determine whether or not the floating-point
status and control words can be written to, the correct coprocessor
is then determined depending on the processor id. Coprocessor checks
are first performed for an 8986, 286 and an Intel486 DX CPU. If the
coprocessor id is still undetermined, the system must contain an Intel386
CPU. The Intel386 CPU may work with either an Intel287 or an Intel387 math coprocessor.
infinity of the coprocessor must be checked to determine the correct
coprocessor id.

check_fpu:
fninit check for 8087 IIntel28 7 IInte138 7

math coprocessors
mov fp_status,SaSah ini tialize temp word to non-zero value
fnstsw fp_status save FP status word
mov ax, fp_status check FP status word
cmp al,0 see if correct status with

wri tten
jne prinLone jump if not Valid, no NPX

installed
fnstcw fp_status save FP control word
mov ax, fp_status check FP control word
and ax ,103fh see if selected parts looks OK
cmp ax,3fh check that ones and zeroes

correctly read
jne prinLone jump if not Valid, no NPX installed

cmp presenL486,l check if Intel486 CPU flag is on
je is_486 if so, jump to print Intel486 CPU message
jmp noL486 else continue with Inte1386 CPU checking

is_486
mov dx, offset store Intel486 CPU message

c486
jmp prinLone

Figure 3-23. CPUJD, MCPJD Detection Code (Contd.)

3-44

inteL

noL486 :

80287/80387

restore_EFLAGS:

prinLone:

prinL87_287:

prinLfpu:

exi t:

cmp
jne

mov
int

check for

fldl

fldz
fdi v

fld
f chs
f compp

fstsw
mov
mov
sahf
jz

mov

fini t
mov
int
db
push
db
popf
mov
jmp

mov
int
jmp

mov
int
cmp
mov
je
mov

mov
int
jmp

mov
mov
int

mov
int

end

APPLICATION PROGRAMMING

presenL386,1
prinL87_287

ah,9h
21h

the 386 CPU

st

fp_status
ax, fp_status
dx,offset fp_80287

restore_EFLAGS

dX,offset fp_80387

ah,9h
21h
66h
cx
66h

sp, bx
exit

ah,9h
21h
exi t

ah,9h
21h
presenL86,1
dx, offset fp_8087
prinLfpu
dX,offset fp_80287

ah,9h
21h
exit

dX,offset period
ah,9h
21h

ax,4c00h
21h

start

check if Intel386 CPU flag is on
if Intel386 CPU flag not on, check NPX for
8086/8~88 286
print out Intel386 CPU ID first

must use default control from
FNINIT
form infinity

1 8087IIntel287 math coprocessors says +inf =
inf

form negative infinity
Intel387 math coprocessor says +inf <> -inf
see if they are the same and
remove them
look at status from FCOMPP

store Intel287 math coprocessor message
see if ini ties matched
jump if 8087IIntel287 math coprocessor is
present
store Intel387 math coprocessor message

clear any pending fp exception
print NPX message

push ECX

restore original EFLAGS register
restore original stack pointer

print out CPU ID with no NPX

print out 8086/8088/286 first

if 8086/8088 flag is on
store 8087 message

else CPU = 286, store Intel287
math coprocessor message

print out NPX

print out a period of end message

terminate program

Figure 3-23. CPUJD, MCPJD Detection Code (Contd.)

3-45

infel® APPLICATION PROGRAMMING

3.11.1 CPUJD Detection Code

The CPU identification assembly code (Figure 3-23) will determine for the user which
Intel microprocessor is installed, and if an Intel math coprocessor is present. If an
Intel486 microprocessor is installed, the program will determine if the CPU has an inte­
grated floating-point unit (FPU). Refer to Section 10.2 and 19.2.3 to guarantee proper
configuration of the Intel486 microprocessor (with and without FPU). Please understand
that only these code sequences have been validated by Intel to detect CPUID, math
coprocessor function, and initialize accordingly. Any other approach may produce
unpredictable results in future processors.

3.11.2 Address Calculation Instruction

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory
(rather than its contents) into the destination operand. The source operand must be in
memory, and the destination operand must be a general register. This instruction isespe­
dally useful for initializing the ESI or EDI registers before the execution of string
instructions or initializing the EBX register before an XLAT instruction. The LEA
instruction can perform any indexing or scaling which may be needed.

Example: LEA EBX, EBCDIC-TABLE

Causes the processor to place the address of the starting location of the table
labeled EBCDICTABLE into EBX.

3.11.3 No-Operation Instruction

NOP (No Operation) occupies a byte of code space. When executed, it increments the
EIP register to point at the next instruction, but affects nothing else.

3.11.4 Translate Instruction

XLATB (Translate) replaces the contents of the AL register with a byte read from a
translation table in memory. The contents of the AL register are interpreted as an
unsigned index into this table, with the contents of the EBX register used as the base
address. The XLAT instruction does the same operation and loads its result into the
same register, but it gets the byte operand from memory. This function is used to convert
character codes from one alphabet into another. For example, an ASCII code could be
used to look up its EBCDIC equivalent.

3.11.5 Byte Swap Instruction

BSWAP (Byte Swap) reverses the byte order in a 32-bit register operand. Bit positions
7 .. 0 are exchanged with 31..24, and bit positions 15 .. 8 are exchanged with 23 .. 16. This

. instruction is useful for converting between "big-endian" and "little-endian" data for­
mats. Executing this instruction twice in a row leaves the register in the same value as

3-46

intel® APPLICATION PROGRAMMING

before. This instruction also speeds execution of decimal arithmetic by operating on four
digits at a time as shown in Figure 3-24. See introduction for Section 3.11 regarding
Inte1386 processors when using BSWAP.

3.11.6 Exchange-and-Add Instruction

XADD (Exchange and Add) takes two operands: a source operand in a register and a
destination operand in a register or memory. The source operand is replaced with the
destination operand, and the destination operand is replaced with the sum of the source
and destination operands. The flags reflect the result of the addition. This instruction
can be combined with LOCK in a multiprocessing system to allow multiple processors to
execute one do loop. See introduction for Section 3.11 regarding Inte1386 processors
when using XADD.

3.11.7 Compare-and-Exchange Instruction

CMPXCHG (Compare and Exchange) takes three operands: a source operand in a reg­
ister, a destination operand in a register or memory, and the accumulator (i.e., the AL,
AX, or EAX register, depending on operand size). If the values in the destination oper­
and and the accumulator are equal, the destination operand is replaced with the source
operand. Otherwise, the original value of the destination operand is loaded into the
accumulator. The flags reflect the result which would have been obtained by sllbtracting
the destination operand from the accumulator. The ZF flag is set if the values in the
destination operand and the accumulator were equal, otherwise it is cleared.

The CMPXCHG instruction is useful for testing and modifying semaphores. It performs
a check to see if a semaphore is free. If the semaphore is free it is marked allocated,
otherwise it gets the ID of the current owner. This is all done in one uninterruptible
operation. In a single processor system, it eliminates the need to switch to level 0 to
disable interrupts to execute multiple instructions. For multiple processor systems,
CMPXCHG can be combined with LOCK to perform all bus cycles atomically. See
introduction for Section 3.11 regarding Intel386 processors when using CMPXCHG.

3-47

infel® APPLICATION PROGRAMMING

$title('ASCII Add/Subtract With BSWAP')

code

name

segment er public use32

Add a string of 4 ASCII decimal digits together;
The upper nibble MUST be 3.
DS: [ESI) points at operand 1
DS: [EBX) points at operand 2
DS: [EDI) points at the destination

add10 proc near

Perform ASCII add using BSWAP instruction on i486 CPU.

mov
bswap
add
mov
bswap
add
rcr
mov
and
sub
shr
and

add

or
bswap
mov
rcl
ret

add10

eax, [esi)
eax
eax,96969696H
ecx, [ebx)
ecx
eax,ecx
ch,1
edx,eax
eax,OFOFOFOFOH
edx,eax
eax,4
eax,OAOAOAOAH

eax,edx

eax,30303030H
eax
[edi) ,eax
ch,1

endp

Get low four digits of first operand
Put into big-endian form
Adjust for addition so carries work
Get low four digits of second operand
Put into big endian form
Do the add with inter-digit carry
Save the carry flag
Save the value
Extract upper nibble
Zero out upper nibble of each byte
Prepare for fixup
If non-zero upper nibble then form
10 as adjustment value to lower nibble
Form adjusted lower nibble value
upper nibbles may be 1 from adjustment
Convert back to ASCII
Back to little-endian
Set destination
Restore carry

Subtract a string of 4 ASCII decimal digits together.
The upper nibble must be 3.

sub10

DS: [ESI) points at operand 1
DS: [EBX) points at operand 2 [ESI)-[EBX)
DS: [EDI) points at the destination

proc near

Perform ASCII subtract using BSWAP instruction on i486 CPU.

240486i3-24011

Figure 3-24. ASCII Arithmetic Using BSWAP

3-48

inteL

mov
bswap
mov
bswap
sub
rcr
mov
and
sub
shr
and

add

or
bswap
mov
rcl
ret

sub10

APPLICATION PROGRAMMING

eax, [esiJ
eax
ecx, [ebxJ
ecx
eax,ecx
ch,1
edx,eax
eax,OFOFOFOFOH
edx,eax
eax,4
eax,OAOAOAOAH

eax,edx

eax,30303030H
eax
[ediJ,eax
ch,1

endp

Get low four digits of first operand
Put into big-endian form
Get low four digits of second operand
Put into big endian form
Do the subtract with inter-digit borrow
Save the carry flag
Save the value
Extract upper nibble, F if borrow happened
Zero out upper nibble of each byte
Prepare for fixup
If non-zero upper nibble then form
10 as adjustment value to lower nibble
Form adjusted lower nibble value
upper nibbles may be 1 from adjustment
Convert back to ASCII
Back to little-endian
Set destination
Restore borrow

code ends
end

240486;3-24012

Figure 3-24. ASCII Arithmetic Using BSWAP (Contd.)

3-49

Part II
System Programming

System Architecture 4

CHAPTER 4
SYSTEM ARCHITECTURE

Many of the architectural features of the Intel486 processQr are used only by system
programmers. This chapter presents an overview of these features. Application program­
mers may need to read this chapter, and the following chapters which describe the use of
these features, in order to understand the hardware facilities used by system program­
mers to create a reliable and secure environment for application programs. The system­
level architecture also supports powerful debugging features which application
programmers may wish to use during program development.

The system-level features of the architecture include:

Memory Manag{!ment
Protection .
Multitasking
Input/Output
Exceptions and Interrupts
Initialization
Coprocessing and Multiprocessing
Debugging
Cache Management

These features are supported by registers and instructions, all of which are introduced in
the following sections. The purpose of this chapter is not to explain each feature in
detail, but rather to place the remaining chapters of Part II in perspective. When a
register or instruction is mentioned, it is accompanied by an explanation or a reference
to a following chapter.

4.1 SYSTEM REGISTERS

The registers intended for use by system programmers fall into these categories:

EFLAGS Register
Memory-Management Registers
Control Registers
Debug Registers
Test Registers

The system registers control the execution environment of application programs. Most
systems restrict access to these facilities by application programs (although systems can
be built where all programs run at the most privileged level, in which case application
programs are allowed to modify these facilities).

4-1

SYSTEM ARCHITECTURE

4.1.1 System Flags

The system flags of the EFLAGS register control I/O, maskable interrupts, debugging,
task switching, and the virtual-8086 mode. An application program should ignore these
flags, and should' not attempt to change their state. In most systems, an attempt to
change the state of a system flag by an application program results in an exception.
These flags are shown 'in Figure 4-1.

AC (Alignment Check Mode, bit 18)

Setting the AC flag and the AM bit in the CRO register enables alignment checking on
memory references. An alignment-check exception is generated when reference is made
to an unaligned operand, such as a word at an odd byte address or a doubleword at an
address which is not an integral multiple of four. Alignment-check exceptions are gen­
erated only in user mode (privilege level 3). Memory references which default to privi­
lege level 0, such as segment descriptor loads, do not generate this exception even when
caused by a memory reference in user-mode.

The alignment check interrupt can be used to check alignment of data. This is useful
when exchanging data with other processors like i860™ 64-bit microprocessor which
require all data to be aligned., The alignment check interrupt can also be used by inter­
preters to flag some pointers as special by misaligning the pointer. This eliminates over­
head of checking each pointer and only handles the special pointer when used.

3
1

o 0

11111 1 1 1 1
8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

o A VR o N OD IT S Z OA o P 1 C o 0 o 0 o 0 o 0 o 0 II.
C MF T 5! F F F F F F F F F

AUG_ CHEa<(AcJ J
VIRTUAL 8086 MODE (VM)
RESUME FLAG (RF)
NESTED TASK (NT)
1/0 PRIVILEGE LEVEL (IOPL)
INTERRUPT ENABLE FLAG (IF)
TRAP FLAG (TF)

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED.
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ.

240486i4-1

Figure 4-1. System Flags

4-2

intel® SYSTEM ARCHITECTURE

VM (Virtual-8086 Mode, bit 17)

Setting the VM flag places the processor in virtual-8086 mode, which is an emulation of
the programming environment of an 8086 processor. See Chapter 23 for more
information.

RF (Resume Flag, bit 16)

The RF flag temporarily disables debug exceptions so that an instruction can be
restarted after a debug exception without immediately causing another debug exception.
When the debugger is entered, this flag allows it to run normally rather than recursively
calling itself until the stack overflows. The RF flag is not affected by the POPF, POPFO
or IRET instructions. See Chapter 9 and Chapter 11 for details.

NT (Nested Task, bit 14)

The processor uses the nested task flag to control chaining of interrupted and called
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is affected
by the POPF, POPFO, and IRET instructions. Improper changes to the state of this flag
can generate unexpected exceptions in application programs. See Chapter 7 and
Chapter 9 for more information on nested tasks.

IOPL (I/O Privilege Level, bits 12 and 13)

The I/O privilege level is used by the protection mechanism to control access to the I/O
address space. The privilege level of the code segment currently executing (CPL) and the
IOPL determine whether this field can be modified by the POPF, POPFO, and IRET
instructions. See Chapter 8 for more information.

IF (Interrupt-Enable Flag, bit 9)

Setting the IF flag puts the processor in a mode in which it responds to maskable inter­
rupt requests (INTR interrupts). Clearing the IF flag disables these interrupts. The IF
flag has no effect on either exceptions or nonmaskable interrupts (NMI interrupts). The
CPL and IOPL determine whether this field can be modified by the CLI, STI, POPF,
POPFO, and IRET instructions. See Chapter 9 for more details about interrupts.

TF (Trap Flag, bit 8)

Setting the TF flag puts the processor into single-step mode for debugging. In this mode,
the processor generates a debug exception after each instruction, which allows a pro­
gram to be inspected as it executes each instruction. Single-stepping is just one of several
debugging features of the Intel486 processor. If an application program sets the TF flag
using the POPF, POPFO, or IRET instructions, a debug exception is generated. See
Chapter 9 and Chapter 11 for more information.

4-3

SYSTEM ARCHITECTURE

4.1.2 Memory-Management Registers

Four registers of the Intel486 processor specify the location of the data structures which
control segmented memory management, as shown in Figure 4-2. Special instructions are
provided for loading and storing these registers. The GDTR and IDTR registers may be
loaded with instructions which get a six-byte block of data from memory. The LDTR and
TR registers may be loaded with instructions which take a 16-bit segment selector as an
operand. The remaining bytes of these registers are then loaded automatically by the
processor from the descriptor referenced by the operand.

Most systems will protect the instructions which load memory-management registers
from use by application programs (although a system in which no protection is used is
possible). . .

GDTR Global Descriptor Table Register

This register holds the 32-bit base address and .16-bit segment limit for the global
descriptor table (GDT). When a reference is made to data in memory, a segment selec­
tor is used to find a segment descriptor in the GDT or LDT. A segment descriptor
contains the base address for a segment. See . Chapter ·5 for an explanation of
segmentation.

LDTR Local Descriptor Table Register

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit segment
selector for the local descriptor table (LDT). The segment which contains the LDT has
a segment descriptor in the GDT. There is no segment selector for the GDT. When a
reference is made to data in memory, a segment selector is used to find a segment
descriptor in the GDT or LDT. A segment descriptor contains the base address fora
segment. See Chapter 5 for an explanation of segmentation. .

SYSTEM ADDRESS REGISTERS
47 32-BIT UNEAR BASE ADDRESS 16 15 LIMIT o

SYSTEM SEGMENT
REGISTERS

15 o
TR SELECTOR

LDTR SELECTOR

DESCRIPTOR REGISTERS (AUTOMAnCALLY LOADED)

32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT UMIT ATTRIBUTES

II II

240486;4-2

Figure 4·2. Memory Management Registers

4-4

SYSTEM ARCHITECTURE

IDTR Interrupt Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the interrupt
descriptor table (IDT). When an interrupt occurs, the interrupt vector is used as an
index to get a gate descriptor from this table. The gate descriptor contains a pointer used
to start up the interrupt handler. See Chapter 9 for details of the interrupt mechanism.

TR Task Register

This register holds the 32-bit base address, 16-bit segment limit, descriptor attributes,
and 16-bit segment selector for the task currently being executed. It references a task
state segment (TSS) descriptor in the global descriptor table. See Chapter 7 for a
description of the multitasking features of the Intel486 processor.

4.1.3 Control Registers

Figure 4-3 shows the format of the control registers CRO, CR1, CR2, and CR3. Most
systems prevent application programs from loading the control registers (although an
unprotected system would allow this). Application programs can read this register to
determine if a numerics coprocessor is present. Forms of the MOV instruction allow the
register to be loaded from or stored in general registers. For example:

MDV EAX, CR9
MDV CR3, EBX

The CRO register contains system control flags, which control modes or indicate states
which apply generally to the processor, rather than to the execution of an individual task.
A program should not attempt to change any of the reserved bit positions. Reserved bits
should always be set to the value previously read.

3
1

2
3

1
5

PAGE DIRECTORY BASE REGISTER (PDBR)

PAGE FAULT LINEAR ADDRESS

RESERVED

RESERVED

Figure 4-3. Control Registers

4-5

D

CR3

CR2

CR1

CRD

240486i4·3

SYSTEM ARCHITECTURE

The LMSW instruction can only modify the lower 16 bits of CRO.

PG (Paging, bit 31)
, ,

This bit enables paging when set and disables paging when clear. See Chapter ~ for more
information about paging. See Chapter 10 for information on how to enable paging.

When an exception is generated during paging, the CR2 register has the 32-bit linear
address which caused the exception. See Chapter 9 for more information about handling
exceptions generated during paging (page faults).

When paging is used, the CR3 register has the 20 most-significant bits of the address of
the page directory (the first-level page table). The CR3 register is also known as the
page-directory base register (PDBR). Note that the page directory must be aligned to a
page boundary, so the low 12 bits of the register are ignored. Unlike the Iiltel386 DX
processor, the Intel486 processor assigns functions to two of these bits. These are:

PCD (Page-Level Cache Disable, bit 4 of CR3)

The state of this bit is drjven on the PCD pin during QUs cycles which are not paged,
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus
cycles when paging is not enabled. The PCD pin is used to control caching ,in an external,
cache on a cycle-by-cycle basis.

PWT (Page-Level Writes Transparent, bit 3 of CR3)

The state of this bit· is driven on the PWT pin during bus Cycles which are not paged,
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus
cycles when paging is not enabled. The PWT pin is used to control write-through in an
external cache on a cycle~by-cycle basis. '

CD (Cache Disable, bit 30)

This bit enables the internal cache when clear and disables the cache when set. Cache
misses do not cause cache line fills when the bitis set. Note that cache hits are not
9isabled; to completely disable the cache, the cache must be flushed. See Chapter 12 for
information on caching.

NW (Not Write-through, bit 29)

This bit enables write-throughs and cache invalidation cycles when cle,ar and disables
invalidation cycles and write-throughs which hit in the cache when set. See Chapter 12
for information on caching., Disabling write-throughs can allow stale data to appear in
the cache.

4-6

SYSTEM ARCHITECTURE

AM (Alignment Mask, bit 18)

This bit allows alignment checking when set and disables alignment checking when clear.
Alignment cJtecking is performed only when the AM bit is set, the AC flag is set, and the
CPL.is 3 (user mode).

WP (Write Protect, bit 16)

When set, this bit write-protects user-level pages against supervisor-level writes. When
this bit is clear, read-only user-level pages can be written by a supervisor process. This
feature is useful for implementing the copy-on-write method of creating a new process
(forking) used by some operating systems, such as UNIX.

NE (Numeric Error, bit 5)

This bit enables the standard mechanism for reporting floating-point numeric errors
when set. When NE is clear and the IGNNE# input is active, numeric errors are
ignored. When the NE bit is clear and the IGNNE# input is inactive, a numeric error
causes the processor to stop and wait for an interrupt. The interrupt is generated by
using the FERR# pin to drive an input to the interrupt controller (the FERR# pin
emulates the ERROR# pin of the Intel287™ and Intel387 DX coprocessors). The NE
bit, IGNNE# pin, and FERR# pin are used with external logic to implement PC-style
error reporting.

ET (Extension Type;bit 4)

This bit is one to indicate support of Intel387 DX math coprocessor instructions (Intel
reserved).

TS (Task Switched, bit 3)

The processor sets the TS bit with every task switch and tests it when interpreting
floating-point arithmetic instructions. This bit allows delaying save/restore of numeric
content until the numeric data is actually used. The CLTS instruction will clear this bit.

EM (Emulation, bit 2)

When the EM bit is set, execution of a numeric instruction generates the coprocessor­
not-available exception. The EM bit must be set in the Intel486 SX microprocessor.

MP (Math Present, bit 1)

On the 286 and Intel386 DX processors, the MP bit controls the function of the WAIT
instruction, which is used to synchronize with a coprocessor. When running 286 and
Intel386 DX programs on processors with the Intel486 FPU, this bit should be set. The
MP bit should be reset in the Intel486 SX Cpu.

4-7

intet SYSTEM ARCHITECTURE

PE (Protection Enable, bit 0)

Setting the PE bit enables segment-level protection. See Chapter 6 for more information
about protection. See Chaptf;r 10 and Chapter 22 for information on how to enable
~~ .

4.1.4 Debug Registers

The debug registers bring advanced debugging abilities to the Intel486 processor, includ­
ing data breakpoints and the ability to set instruction· breakpoints without modifying
code segments (useful in debugging ROM-based software). Only programs executing at
the highest privilege level can access these registers. See Chapter 11 for a complete
description of their formats and use. The debug registers are . shown in Figure 4-4.

4.1.5 Test Registers

The test registers are not a formal part of the architecture. They are an implementation­
dependent facility provided for testing the translation lookaside buffer (TLB) and the
cache. See Chapter 10 for a complete description of their formats and use. The test
registers are shoWn in Figure 4-5. .

31 23 15 7 o

LENIR~LENIR~LENIR/WILENIR/W 00 o 0 0 01~1~1~1~1~1~ GL GL
33221100 1 1 00 DR7

0000000000000000 ~I~ ~ 000000000 SS SS
TS 32 1 0

DR6

RESERVED DR5

RESERVED

BREAKPOINT 3 LINEAR ADDRESS DR3

BREAKPOINT 2 LINEAR ADDRESS DR2

BREAKPOINT 1 LINEAR ADDRESS DR1

BREAKPOINT 0 LINEAR ADDRESS DRO

NOTE: 0 MEANS INTEL RESERVED. DO NOT DEFINE.

240486;4-4

Figure 4-4. Debug Registers

4-8

SYSTEM ARCHITECTURE

31
1 1 1
2109876543210

p p p R
PHYSICAL ADDRESS CW lRU o 0 L E 00

OT P

LINEAR ADDRESS V 0 o U

U w
:0000 C

E C
UNUSED SET SELECT N T

T l

LINEAR ADDRESS V lRU VALID o 0 0

DATA

V VALID
CTl CONTROL
ENT ENTRY

Figure 4-5. Test Registers

4.2 SYSTEM INSTRUCTIONS

System instructions deal with functions such as:

1. Verification of pointer parameters (see Chapter 6):

TR7

TR6

TR5.

TR4

TR3

240486;4-5

Instruction Description Useful to Protected from
Application? Application?

ARPL Adjust RPL No No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No

4-9

infel® SYSTEM ARCHITECTURE

2. Addressing descriptor tables (see Chapter 5):

Instruction Description Useful to Protected from
Application? Application?

LLOT Load LOT Register Yes No
SLOT Store LOT Register Yes No
LGOT· Load GOT Register No Yes
SGOT Store GOT Register No No

3. Multitasking (see Chapter 7):

Instruction Description Useful to Protected from
Application? Application?

lTR Load Task Register No Yes
STR Store Task Register Yes No

4. Floating-Point Numerics (see Part III):

Instruction Description
Useful to Protected from

Application? Application?

ClTS Clear TS bit in CRO No Yes
ESC Escape Instructions Yes No
WAIT Wait Until Yes No

Coprocessor Not Busy

5. Input and Output (see Chapter 8):

Instruction Description
Useful to Protected from

Application? Application?

IN Input Yes Can be
OUT Output Yes Can be
INS Input String Yes Can be
OUTS Output String Yes Can be

6. Interrupt control (see Chapter 9):

Instruction Description Useful to Protected from
Application? Application?

CLI Clear IF flag Can be Can be
STI Store IF flag Can be Can be
LlOT load lOT Register No Yes
SlOT Store lOT Register No No

4-10

SYSTEM ARCHITECTURE

7. Debugging (see Chapter 11):

Instruction Description Useful to Protected from
Application? Application?

MOV Load and store debug No Yes
registers

8. Cache Management:

Instruction Description Useful to Protected from
Application? Application?

INVD Invalidate cache, No Yes
no write-back

WBINVD Invalidate cache, No Yes
with write-back

INVLPG Invalidate TLB entry No Yes

9. System Control:

Instruction Description
Useful to Protected from

Application? Application?

SMSW Store MSW No No
LMSW Load MSW No Yes
MOV Load And Store Control Register No Yes
HLT Halt Processor No Yes
LOCK Bus Lock No Can Be

The SMSW and LMSW instructions are provided for compatibility with the 286 pro­
cessor. A program for the Intel486 processor should not use these instructions. A pro­
gram should access the Control Registers using forms of the MOV instruction. The
LMSW instruction does not affect the PG, CD, NW, AM, WP, NE or ET bits, and it
cannot be used to clear the PE bit.

The HL T instruction stops the processor until an enabled interrupt or RESET signal is
received. (Note that the NMI interrupt is always enabled.) A special bus cycle is gener­
ated by the processor to indicate halt mode has been entered. Hardware may respond to
this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initial­
ization may be invoked. Software designers may need to be aware of the response of
hardware to halt mode.

The LOCK instruction prefix is used to invoke a locked (atomic) read-modify-write
operation when modifying a memory operand. The LOCK# signal is asserted and the
processor does not respond to requests for bus control during a locked operation. This
mechanism is used to allow reliable communications between processors in multiproces­
sor systems.

In addition to the chapters mentioned above, detailed information about each of these
instructions can be found in the instruction reference chapter, Chapter 26.

4-11

Memory Management 5

CHAPTER 5
MEMORY MANAGEMENT

Memory management is a hardware mechanism which lets operating systems create sim­
plified environments for running programs. For example, when several programs are
running at the same time, they must each be given an independent address space. If they
all had to share the same address space, each would have to perform difficult and time­
consuming checks to avoid interfering with the others.

Memory management consists of segmentation and paging. Segmentation is used to give
each program several independent, protected· address spaces. Paging is used to support
an environment where large address spaces are simulated using a small amount of RAM
and some disk storage. System designers may choose to use either or both of these
mechanisms. When several programs are running at the same time, either mechanism
can be used to protect programs against interference from other programs.

Segmentation allows memory to be completely unstructured and simple, like the memory
model of an 8-bit processor, or highly structured with address translation and protection.
The memory management features apply to units called segments. Each segment is an
independent, protected address space. Access to segments is controlled by data which
describes its size, the privilege level required to access it, the kinds of memory references
which can be made to it (instruction fetch, stack push or pop, read operation, write
operation, etc.), and whether it is present in memory.

Segmentation is used to control memory access, which is useful for catching bugs during
program development and for increasing the reliability of the final product. It also is
used to simplify the linkage of object code modules. There is no reason to write position­
inc\ependent code when full use is made of the segmentation mechanism, because all
memory references can be made relative to the base addresses of a module's code and
data segments. Segmentation can be used to create ROM-based software modules, in
which fixed addresses (fixed, in the sense that they cannot be changed) are offsets from
a segment's base address. Different software systems can have the ROM modules at
different physical addresses because the segmentation mechanism will direct all memory
references to the right place.

In a simple memory architecture, all addresses refer to the same address space. This is
the memory model used by 8-bit microprocessors, such as the 8080 processor, where the
logical address is the physical address. The Intel486 processor can be used in this way by
mapping all segments into the same address space and keeping paging disabled. This
might be done where an older design is being updated to 32-bit technology without also
adopting the new architectural features.

An application also could make partial use of segmentation. A frequent cause of soft­
ware failures is the growth of the stack into the instruction code or data of a program.
Segmentation can be used to prevent this. The stack can be put in an address space
separate from the address space for either code or data. Stack addresses always would

5-1

MEMORY MANAGEMENT

refer to the memory in the stack segment, while data addresses always would refer to
memory in the data segment. The stack segment would have a maximum size enforced by
hardware. Any attempt to grow the stack beyond this size would generate an exception.

A complex system of programs may make full use of segmentation. For example, a
system in which programs share data in real time can have precise control of access to
that data. Program bugs appear as exceptions generated when a program makes
improper access. This is useful as an aid to debugging during program development, and
it also may be used to trigger error-recovery procedures in systems delivered to the end
user.

Segmentation hardware translates a segmented (logical) address into an address fora
continuous, unsegmented address space, called a linear address. If paging is enabled,
paging hardware translates a linear address into a physical address. If paging is not
enabled, the linear address is used as the physical address. The physical address appears
on the address bus coming out of the processor.

Paging is a mechanism used to simulate a large, unsegmented address space using a
small, fragmented address space and some disk storage. Paging provides access to data
structures larger than the available memory space by keeping them partly in memory and
partly on disk.

Paging is applied to units of 4K bytes called pages. When a program attempts to access a
page which is on disk, the program is interrupted in a special way. Unlike other excep­
tions and interrupts, an exception generated due to address translation, restores the
contents of the processor registers to values which allow the exception-generating
instruction to be re-executed. This special treatment is called instmction restart. It allows
the operating system to read the page from disk, update the mapping of linear addresses
to physical addresses for that page, and restart the program. This process is transparent
to the program.

If an operating system never sets bit 31 of the eRO register (the PG bit), the paging
mechanism will never be enabled. Linear addresses will be used as physical addresses.
This might be done where a design using a 16-bit processor is being updated to use a
32-bit processor. An operating system written for a 16-bit processor does not use paging
because the size of its address space is so small (64K bytes) that it is more efficient to
swap entire segments between RAM and disk, rather than individual pages.

Paging would be enabled for operating systems which can support demand-paged virtual
memory, such as UNIX. Paging is transparent to application software, so an operating
system intended to support application programs written for 16-bit processors may run
those programs with paging enabled. Unlike paging, segmentation is not transparent to
application programs. Programs which use segmentation must be run with the segments
they were designed to use.

5-2

int:eL MEMORY MANAGEMENT

5.1 SELECTING A SEGMENTATION MODEL

A model for the segmentation of memory is chosen on the basis of reliability and per­
formance. For example, a system which has several programs sharing data in real time
would get maximum performance from a model which checks memory references in
hardware. This would be a multi-segment model.

At the other extreme, a system which has just one program may get higher performance
from an unsegmented or "flat" model. The elimination of "far" pointers and" segment­
override prefixes reduces code size and increases execution speed. Context switching is
faster, beca~se the contents of the segment registers no longer have to be saved or
restored.

Some of the benefits of segmentation also can be provided by paging. For example, data
can be shared by mapping the same pages onto the address space of each program.

5.1.1 Flat Model

The simplest model is the flat model. In this model, all segments are mapped to the
entire physical address space. A segment offset can refer to either code or data areas. To
the greatest extent possible, this model removes the segmentation mechanism from the
architecture seen by either the system designer or the application programmer. This
might be done for a programming environment like UNIX, which supports paging but
does not support segmentation.

A segment is defined by a segment descriptor. At least two segment descriptors must be
created for a flat model, one for code references and one for data references. Both
descriptors have the same base address value. Whenever memory is accessed, the con­
tents of one of the segment registers are used to select a segment descriptor. The seg­
ment descriptor provides the base address of the segment and its limit, as well as access
control information (see Figure 5-1).

SEGMENT
REGISTERS

ES .

SEGMENT
DESCRIPTORS

I ACCESS I LIMIT I
I BASE ADDRESS J~

Figure 5-1. Flat Model

5-3

PHYSICAL
MEMORY

EPROM

DRAM

4G

o

240486i5·1

MEMORY MANAGEMENT

ROM usually is put at the top of the physical address space, because the processor
begins execution at OFFFFFFFOH. RAM is placed at the bottom of the address space
because the initial base address for the DS data segment after reset initialization is O.

For a flat model, each descriptor has a base address of 0 and a segment limit of 4
gigabytes. By setting the segment limit to 4 gigabytes, the segmentation mechanism is
kept from generating exceptions for memory references which fall outside of a segment.
Exceptions could still be generated by the paging or segmentation protection mecha­
nisms, but these also can be removed from the memory model.

5.1.2 Protected Flat Model

The protected flat model is like the flat model, except the segment limits are set to
include only the range of addresses for which memory actually exists. A general­
protection exception will be generated on any attempt to access unimplemented mem­
ory. This might be used for systems in which the paging mechanism is disabled, because
it provides a minimum level of hardware protection against some kinds of program bugs.

In this model, the segmentation hardware prevents programs from addressing non­
existent memory locations. The consequences of being allowed access to these memory
locations are hardware-dependent. For example, if the processor does not receive a
READY# signal (the signal used to acknowledge and terminate a bus cycle), the bus
cycle does not terminate and program execution stops.

Although no program should make an attempt to access these memory locations, an
attempt may occur as a result of program bugs. Without hardware checking of addresses,
it is possible that a bug could suddenly stop program execution. With hardware checking,
programs fail in a controlled way. A diagnostic message can appear and recovery proce­
dures can be attempted.

An example of a protected flat model is shown in Figure 5~2. Here, segment descriptors
have been set up to cover only those ranges of memory which exist. A code and a data
segment cover the EPROM and DRAM of physical memory. The code segment limit can
be optionally set to allow access to DRAM area. The data segment limit must be set to
the sum of EPROM and DRAM sizes. If memory-mapped I/O is used, it can be
addressed just beyond the end of DRAM area.

5.1.3 Multi-Segment Model

The most sophisticated model is the multi-segment model. Here, the full capabilities of
the segmentation mechanism are used. Each program is given its own table of segment
descriptors, and its own segments. The segments can be completely private to the pro­
gram, or they can be shared with specific other programs. Access between programs and·
particular segments can be individually controlled.

5-4

infel®

SEGMENT
REGISTERS

MEMORY MANAGEMENT

SEGMENT
DESCRIPTORS

PHYSICAL
MEMORY

LOGICAL
OFFSETS

r-~----~4G 4Gr-----~

EPROM

MEMORY I/O

MEMORY I/O
DRAM

DRAM

EPROM
~ ______ ... 0 0"--____ ..

Figure 5-2. Protected Flat Model

240486;5-2

Up to six segments can be ready for immediate use. These are the segments which have
segment selectors loaded in the segment registers. Other segments are accessed by load­
ing their segment selectors into the segment registers (see Figure 5-3).

Each segment is a separate address space. Even though they may be placed in adjacent
blocks of physical memory, the segmentation mechanism prevents access to the contents
of one segment by reading beyond the end of another. Every memory operation is
checked against the limit specified for the segment it uses. An attempt to address mem­
ory beyond the end of the segment generates a general-protection exception.

The segmentation mechanism only enforces the address range specified in the segment
descriptor. It is the responsibility of the operating system to allocate separate address
ranges to each segment. There may be situations in which it is desirable to have seg­
ments which share the same range of addresses. For example, a system may have both
code and data stored in a ROM. A code segment descriptor would be used when the
ROM is accessed for instruction fetches. A data segment descriptor would be used when
the ROM is accessed as data.

5.2 SEGMENT TRANSLATION

A logical address consists of the 16-bit segment selector for its segment and a 32-bit
offset into the segment. A logical address is translated into a linear address by adding
the offset to the base address of the segment. The base address comes from the segment
descriptor, a data structure in memory which provides the size and location of a segment,
as well as access control information. The segment descriptor comes from one of two
tables, the global descriptor table (GDT) or the local descriptor table (LDT). There is

5-5

SEGMENT
REGISTERS

CS

SS

OS

ES

FS

GS

MEMORY MANAGEMENT

SEGMENT
DESCRIPTORS

PHYSICAL
MEMORY

Figure 5-3. Multi-Segment Model

240486i5·3

one ODT for all programs in the system, and one LDT for each separate program being
run. If the operating system allows, different programs can share the same LDT. The
system also may be set up with no LDTs; all programs will then use the ODT.

Every logical address is associated with a segment (even if the system maps all segments
into the same linear address space). Although a program may have thousands of seg­
ments, only six may be available for immediate use. These are the six segments whose
segment selectors are loaded in the processor. The segment selector holds information
used to translate the logical address into the corresponding linear address.

Separate segment registers exist in the processor for each kind of memory reference (code
space, stack space, and data spaces). They hold the segment selectors for the segments
currently in use. Access to other segments requires loading a segment register using a
form of the MOV instruction. Up to four data spaces may be available at the same time,
thus providing a total of six segment registers.

5-6

int:et MEMORY MANAGEMENT

When a segment selector is loaded, the base address, segment limit, and access control
information also are loaded into the segment register. The processor does not reference
the descriptor tables again until another segment selector is loaded. The information
saved in the processor allows it to translate addresses without making extra bus cycles. In
systems in which multiple processors have access to the same descriptor tables, it is the
responsibility of software to reload the segment registers when the descriptor tables are
modified. If this is not done, an old segment descriptor cached in a segment register
might be used after its memory-resident version has been modified.

The segment selector contains a 13-bit index into one of the descriptor tables. The index
is scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit
base address of the descriptor table. The base address comes from either the global
descriptor table register (GDTR) or the local descriptor table register (LDTR). These
registers hold the linear address of the beginning of the descriptor tables. A bit in the
segme~t selector specifies which table to use, as shown in Figure 5-4.

The translated address is the linear address, as shown in Figure 5-5. If paging is not
used, it is also the physical address. If paging is used, a second level of address transla­
tion produces the physical address. This translation is described in Section 5.3.

5.2.1 Segment Registers

Each kind of memory reference is associated with a segment register. Code, data, and
stack references each access the segments specified by the contents of their segment
registers. More segments can be made available by loading their segment selectors into
these registers during program execution.

Every segment register has a "visible" part and an "invisible" part, as shown in
Figure 5-6. There are forms of the MOV instruction to load the visible part of these
segment registers. The invisible part is loaded by the processor.

The operations which load these registers are instructions for application programs
(described in Chapter 3). There are two kinds of these instructions:

1. Direct load instructions such as the MOV, POP, LDS, LSS, LGS, and LFS instruc­
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL and JMP
instructions. These instructions change the contents of the CS register as an inciden­
tal part of their function.

When these instructions are used, the visible part of the segment register is loaded with
a segment selector. The processor automatically fetches the base address, limit, type, and
other information from the descriptor table and loads the invisible part of the segment
register.

Because most instructions refer to segments whose selectors already have been loaded
into segment registers, the processor can add the logical-address offset to the segment
base address with no performance penalty.

5-7

infel~

I

SEGMENT
SELECTOR

IT
I

I

MEMORY MANAGEMENT

LIMIT

GLOBAL
DESCRIPTOR

TABLE

TI = 0

~

I

I

I

I

I

I

I

I

I

LOCAL
DESCRIPTOR

TABLE

TI = 1

~

I

I

I

I

I

I

I

I

J

I

I SELECTOR J
I LIMIT I

I BASE ADDRESS : GDTR I BASE ADDRESS I LDTR

Figure 5-4. TI Bit Selects Descriptor Table

5.2.2 Segment Selectors

240486i5-4

A segment selector points to the information which defines a segment, called a segment
descriptor. A program may have more segments than the six whose segment selectors
occupy segment registers. When this is true,· the program uses forms of theMOV
instruction to change the contents of these registers when it needs to access a· new
segment.

A segment selector identifies a segment descriptor by specifying a descriptor table and a
descriptor within that table. Segment selectors are visible to application programs as a

5-8

intel®

LOGICAL
ADDRESS

MEMORY MANAGEMENT

OFFSET

SEGMENT BASE
DESCRIPTOR ADDRESS +

LINEAR
ADDRESS "'-_-'-_-10. __ '"

Figure 5-5. Segment Translation

VISIBLE PART INVISIBLE PART

SELECTOR BASE ADDRESS, LIMIT, ETC.

Figure 5-6. Segment Registers

o

240486i5-5

CS

SS

DS

ES

FS

GS

240486i5-6

part of a pointer variable, but the values of selectors are usually assigned or modified by
link editors or linking loaders, not application programs. Figure 5-7 shows the format of
a segment selector.

Index: Selects one of 8192 descriptors in a descriptor table. The processor multiplies the
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the
base address of the descriptor table (from the GDTR or LDTR register).

Table Indicator bit: Specifies the descriptor table to use. A clear bit selects the GDT; a
set bit selects the current LDT.

Requester Privilege Level: When this field contains a privilege level having a greater
value (i.e., less privileged) than the program, it overrides the program's privilege level.
When a program uses a less privileged segment selector, memory accesses take place at
the lesser privilege level. This is used to guard against a security violation in which a less
privileged program uses a more privileged program to access protected data.

5-9

infel ® MEMORY MANAGEMENT

15 3 2 1 0

TABLE INDICATOR (0 = GDT,1 = LOT)
REQUESTED PRIVILEGE LEVEL
(00 = MOST PRIVILEGED, 11 = LEAST)

Figure 5-7. Segment Selector

240486;5·7

For example, system utilities or device drivers must run with a high level of privilege in
order to access protected facilities such as the control registers of peripheral interfaces.
But they must not interfere with other protected facilities, even if a request to do so is
received from a less privileged program. If a program requested reading a sector of disk
into memory occupied by a more privileged program, such as the operating system, the
RPL can be used to generate a general-protection exception when the less privileged
segment selector is used. This exception occurs even though the program using the seg­
ment selector would have a sufficient privilege level to perform the operation on its own.

Because the first entry of the GDT is not used by the processor, a selector which has an
index of 0 and a table indicator of 0 (Le., a selector which points to the first entry of the
GDT) is used as a "null selector." The processor does not generate an exception when a
segment register (other than the CS or SS registers) is loaded with a null selector. It
does, however, generate an exception when a segment register holding a null selector is
used to access memory. This feature can be used to initialize unused segment registers.

5.2.3 Segment Descriptors

A segment descriptor is a data structure in memory which provides the processor with
the size and location of a segment, as well as control and status information. Descriptors
typically are created by compilers, linkers, loaders, or the operating system, but not
application programs. Figure 5-8 illustrates the two general descriptor formats. The sys­
tem segment descriptor is described more fully in Chapter 6. All types of segment
descriptors take one of these formats.

Base: Defines the location of the segment within the 4 gigabyte physical address space.
The processor puts together the three base address fields to form a single 32-bit value.
Segment base values should be aligned to 16 byte boundaries to allow programs to
maximize performance by aligning code/data on 16 byte boundaries.

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (212). When the
bit is clear, the segment limit is interpreted in units of one byte; when set, the segment
limit is interpreted in units of 4K bytes (one page). Note that the twelve least significant

5-10

MEMORY MANAGEMENT

3
1

DESCRIPTORS USED FOR APPLICATION CODE AND DATA SEGMENTS

2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
432 1 0 9 6 7 6 5 4 321 0 967

BASE 31:24 GD 01~1 LIMIT L 19:16 pi r lsi TYPE I BASE 23:16

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

3
1

DESCRIPTORS USED FOR SPECIAL SYSTEM SEGMENTS

2 2 2 2 2 1 1 1 1 1 1 111 1
432 1 0 967 6 5 432 1 0 967

BASE 31:24 BASE 23:16

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

AVL AVAILABLE FOR USE
BY SYSTEM SOFTWARE

BASE SEGMENT BASE ADDRESS
DPL DESCRIPTOR PRIVILEGE LEVEL
S DESCRIPTOR TYPE

(0 = SYSTEM; 1 = APPLICATION)
G GRANULARITY
LIMIT SEGMENT LIMIT
P SEGMENT PRESENT
TYPE SEGMENT TYPE
o DEFAULT OPERATION SIZE

(RECOGNIZED IN CODE SEGMENT DESCRIPTORS
ONLY; 0 = 16-BIT SEGMENT; 1 = 32-BIT SEGMENn

Figure 5-8_ Segment Descriptors

o

o

240486;5-8

bits of the address are not tested when scaling is used. For example, a limit of a with the
Granularity bit set results in valid offsets from a to 4095. Also note that only the Limit
field is affected. The base address remains byte granular.

Limit: Defines the size of the segment. The processor puts together the two limit fields
to form a 20-bit value. The processor interprets the limit in one of two ways, depending
on the setting of the Granularity bit: .

1. If the Granularity bit is clear, the Limit has a value from 1 byte to 1 megabyte, in
increments of 1 byte_

2. If the Granularity bit is set, the Limit has a value from 4 kilobytes to 4 gigabytes, in
increments of 4K bytes.

5-11

intel® MEMORY MANAGEMENT

For most segments, a logical address may have an offset ranging from 0 to the limit.
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit
field; they may be addressed with any offset except those from 0 to the limit (see the
Type field, below). This is done to allow segments to be created in which increasing the
value held in the Limit field allocates new memory at the bottom of the segment's
address space, rather than at the top. Expand-down segments are intended to hold
stacks, but it is not necessary to use them. If a stack is going to be put in a segment which
does not need to change size, it can be a normal data segment.

S bit: Determines whether a given segment is a system segment or a code or data seg­
ment. If the S bit is set, then the segment is either a code or a data segment. If it is clear,
then the segment is a system segment.

D bit: The code segement D bit indicates the default length for operands and effective
addresses. If the D bit is set, then 32-bit operands and 32-biteffective addressing modes
are assumed. If it is clear, then 16-bit operands and addressing modes are assumed.

Type: The interpretation of this field depends on whether the segment descriptor is for
an application segment or a system segment. System segments have a slightly different
descriptor format, discussed in Chapter 6. The Type field of a memory descriptor spec­
ifies. the kind of access which may be made to a segment, and its direction of growth (see
Table 5-1).

Table 5-1. Application Segment Types

Number E W A
Descriptor

Description
Type

0 0 0 0 Data Read·Only
1 0 0 1 Data Read-Only, accessed
2 0 1 0 Data Read/Write
3 0 1 1 Data Read/Write, accessed
4 1 0 0 Data Read-Only, expand-down
5 1 0 1 Data Read-Only, expand-down, accessed
6 1 1 0 Data Read/Write, expand-down
7 1 1 1 Data Read/Write, expand-down, accessed

Number C R A
Descriptor

Description
Type

8 0 0 0 ,Code Execute-Only
9 0 0 1 Code Execute-Only, accessed

10 0 1 0 Code Execute/Read
11 0 1 1 Code Execute/Read, accessed
12 1 0 0 Code Execute-Only, conforming
13 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 Code Execute/Read-Only, conforming, accessed

5-12

intel® MEMORY MANAGEMENT

For data segments, the three lowest bits of the type field can be interpreted as expand­
down (E), write enable (W), and accessed (A). For code segments, the three lowest bits
of the type field can be interpreted as conforming (C), read enable (R), and
accessed (A).

Data segments can be read-only or read/write. Stack segments are data segments which
must be read/write. Loading the SS register with a segment selector for any other type of
segment generates a general-protection exception. If the stack segment needs to be able
to change size, it can be an expand-down data segment. The meaning of the segment
limit is reversed for an expand-down segment. While an offset in the range from 0 to the
segment limit is valid for other kinds of segments (outside this range a general­
protection exception is generated), in an expand-down segment these offsets are the
ones which generate exceptions. The valid offsets in an expand-down segment are those
which generate exceptions in the other kinds of segments. Expand-up segments must be
addressed by offsets which are equal or less than the segment limit. Offsets into expand­
down segments always must be greater than the segment limit. This interpretation of the
segment limit causes memory space to be allocated at the bottom of the segment when
the segment . limit is decreased, which is correct for stack segments because they grow
toward lower addresses. If the stack is given a segment which does not change size, it
does not need to be an expand-down segment.

Code segments can be execute-only or execute/read. An execute/read segment might be
used, for example, when constants have been placed with instruction code in a ROM. In
this case, the constants can be read either by using an instruction with a CS override
prefix or by placing a segment selector for the code segment in a segment register for a
data segment.

Code segments can be either conforming or non-conforming. A transfer of execution
into a more privileged conforming segment keeps the current privilege level. A transfer
into a non-conforming segment at a different privilege level results in a general­
protection exception, unless a task gate is used (see Chapter 6 for a discussion of multi··
tasking). System utilities which do not access protected facilities, such as data-conversion
functions (e.g., EBCDIC/ASCII translation, Huffman encoding/decoding, math library)
and some types of exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND
range exceeded) may be loaded in conforming code segments.

The Type field also reports whether the segment has been accessed. Segment descriptors
initially report a segment as having been accessed. If the Type field then is set to a value
for a segment which has not been accessed, the processor restores the value if the seg­
ment is accessed. By clearing and testing the low bit of the Type field, software can
monitor segment usage (the low bit of the Type field also is called the Accessed bit).

For example, a program development system might clear all of the Accessed bits for the
segments of an application. If the application crashes, the states of these bits can be used
to generate a map of all the segments accessed by the application. Unlike the break­
points provided by the debugging mechanism (Chapter 11), the usage information
applies to segments rather than physical addresses.

5-13

intet MEMORY MANAGEMENT

The processor may update the Type field when a segment is accessed, even if the access
is a read cycle. If the descriptor tables have been put in ROM, it may be necessary for
hardware to prevent the ROM from being enabled onto the data bus during a write
cycle. It also may be necessary to return the READY # signal to the processor when a
write cycle to ROM occurs, otherwise the cycle does not terminate. These features of the
hardware design are necessary for using ROM-based descriptor tables with the Intel386
DX processor, which always sets the Accessed bit when a segment descriptor is loaded.
The Intel486 processor, however, only sets the Accessed bit if it is not already set. Writes
to descriptor tables in ROM can be avoided by setting the Accessed bits in every
descriptor.

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used
to control access to the segment, using the protection mechanism described in Chapter 6.

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present
exception when a selector .for the descriptor is loaded into a segment register. This is
used to detect access to segments which have become unavailable. A segment can
become unavailable when the system needs to create free memory. Items in memory,
such as character fonts or device drivers, which currently are not being used are
de-allocated. An item is de-allocated by marking the segment "not present" (this is done
by clearing the Segment-Present bit). The memory occupied by the segment then can be
put to another use. The next time the de-allocated item is needed, the segment-not­
present exception will indicate the segment needs to be loaded into memory. When this
kind of memory management is provided in a manner invisible to application programs,
it is called virtual memory. A system may maintain a total amount of virtual memory far
larger than physical memory by keeping only a few segments present in physical memory
at anyone time.

Figure 5-9 shows the format of a descriptor when the Segment-Present bit is clear. When
this bit is clear, the operating system is free to use the locations marked Available to
store its own data, such as information regarding the whereabouts of the missing
segment.

1 1 1 1 1 1
31 65432 0987 o

D D
AVAILABLE 0 P T

TYPE AVAILABLE
L

+4

AVAILABLE +0

240486;5-9

Figure 5-9. Segment Descriptor (Segment Not Present)

5-14

intel® MEMORY MANAGEMENT

5.2.4 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors. There are two kinds of
descriptor tables:

• The global descriptor table (GDT)

• The local descriptor tables (LDT)

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table
is an array of segment descriptors, as shown in Figure 5-10. A descriptor table is variable
in length and may contain up to 8192(213) descriptors. The first descriptor in the GDT
is not used by the processor. A segment selector to this "null descriptor" does not
generate an exception when loaded into a segment register, but it always generates an

GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE

I I
+ 38 + 38

I I
+ 30 + 30

I I
+ 28 + 28

I I
+ 20 + 20

I I
+ 18 + 18

I I
+ 10 + 10

I I
+ 8 + 8

FIRST DESCRIPTOR IN GOT J
IS NOT USED + 0 + 0

GDTR REGISTER LDTR REGISTER

I SELECTOR

I LIMIT I LIMIT

BASE ADDRESS r- -

NOTE: ADDRESSES SHOWN IN HEXADECIMAL

240486i5-10

Figure 5-10. Descriptor Tables

5-15

intel® MEMORY MANAGEMENT

exception when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment
registers can be guaranteed to generate an exception.

5.2.5 Descriptor Table Base Registers

The processor finds the global descriptor table (GDT) and interrupt descriptor table
(IDT) using the GDTR and IDTR registers. These registers hold 32-bit base addresses
for tables in the linear address space. They also hold 16-bit limit values for the size of
these tables. When the registers are loaded or stored, a 48-bit "pseudo-descriptor" is
accessed in memory, as shown in Figure 5-11. The GDT and IDT should be aligned on a
16 byte boundary to maximize performance due to cache line fills.

The limit value is expressed iil bytes. As with segmeI ts, the limit value is added to the
base address to get the address of the last valid byte. A limit value of 0 results in exactly
one valid byte. Because segment descriptors are always eight bytes, the limit should
always be one less than an integral multiple of eight (i.e., 8N - 1). The LGDT and
SGDT instructions read and write the GDTR register; the LIDT and SIDT instructions
read and write the IDTR register.

A third descriptor table is the local descriptor table (LDT). It is identified using a 16-bit
segment selector held in the LDTR register. The LLDT and SLDT instructions read and
write the segment selector in,the LDTR register. The LDTR register also holds the base,
address and limit for the LDT, but these are loaded automatically by the processor from
the segment descriptor for the LDT. The LDT should be aligned on a 16 byte boundary
to maximize performance due to cache line fills.

Alignment check faults may be generated by storing a pseudo-descriptor in user mode
, (privilege level 3). User-mode programs normally do not store pseudo-descriptors, but
the possibility of generating an alignment check fault in this way can be avoided by
placing the pseudo-descriptor at an odd word address (i.e., an address which is 2 MOD
4). This causes the processor to store an aligned word, followed by an aligned
doubleword. '

47 16 15 o
BASE ADDRESS LIMIT , I

5 2 1 o

BYTE ORDER IS SHOWN BELOW

240486i5-11

Figure 5·11. Pseudo-Descriptor' Format

5-16

intel® MEMORY MANAGEMENT

5.3 Page Translation

A linear address is a 32-bit address into a uniform, unsegmented address space. This
address space may be a large physical address space (i.e., an address space composed of
4 gigabytes of RAM), or paging can be used to simulate this address space using a small
amount of RAM and some disk storage. When paging is used, a linear address is trans­
lated into its corresponding physical address, or an exception is generated. The excep­
tion gives the operating system a chance to read the page from disk (perhaps sending a
different page out to disk in the process), then restart the instruction which generated
the exception.

Paging is different from segmentation through its use of small, fixed-size pages. Unlike
segments, which usually are the same size as the data structures they hold, on the
Intel486 processor, pages are always 4K bytes. If segmentation is the only form of
address translation which is used, a data structure which is present in physical memory
will have all of its parts in memory. If paging is used, a data structure may be partly in
memory and partly in disk storage.

The information which maps linear addresses into physical addresses and exceptions is
held in data structures in memory called page tables. As with segmentation, this informa­
tion is cached in processor registers to minimize the number of bus cycles required for
address translation. Unlike segmentation, these processor registers are completely invis­
ible to application programs. (For testing purposes, these registers are visible to pro­
grams running with maximum privileges; see Chapter 10 for details.)

The paging mechanism treats the 32-bit linear address as having three parts, two lO-bit
indexes into the page tables and a 12-bit offset into the page addressed by the page
tables. Because both the virtual pages in the linear address space and the physical pages
of memory are aligned to 4K-byte page boundaries, there is no need to modify the low 12
bits of the address. These 12 bits pass straight through the paging hardware, whether
paging is enabled or not. Note that this is different from segmentation, because segments
can start at any byte address.

The upper 20 bits of the address are used to index into the page tables. If every page in
the linear address space were mapped by a single page table in RAM, 4 megabytes
would be needed. This is not done. Instead, two levels of page tables are used. The top
level page table is called the page directory. It maps the upper 10 bits of the linear
address to the second level of· page tables. The second level of page tables maps the
middle 10 bits of the linear address to the base address of a page in physical memory
(called a page frame address).

An exception may be generated based on the contents of the page table or the page
directory. An exception gives the operating system a chance to bring in a page table from
disk storage. By allowing the second-level page tables to be sent to disk, the paging
mechanism can support mapping of the entire linear address space using only a few
pages in memory.

5-17

MEMORY MANAGEMENT

The CR3 register holds the page frame address of the page directory. For this reason,it
also is called the page directory base register or PDBR. The upper 10 bits of the linear
address are scaled by four (the number of bytes in a page table entry) and added to the
value in the PDBRregister to get the physical address of an entry in the page directory.
Because the page frame address is always. clear in its lowest 12 bits, this addition is
performed by concatenation (replacement of the low 12 bits with the scaled index).

When the entry in the page directory is accessed, a number of checks are performed.
Exceptions may be generated if the page is protected or is notpresent in memory. If no
exception is generated, the upper 20 bits of the· page table entry are used as the page
frame address of a second-level page table. The middle 10 bits of the linear address are
scaled by four (again, the size of a page table entry) and concatenated with the page
frame address to get the physical address of an entry in the second-level page table.

Again, access checks are performed, and exceptions ·may be generated. If no exception
occurs, the upper 20 bits of the second-level page table entry are concatenated with the
lowest 12 bits of the linear address to form the physical address of the operand (data) in
memory.

Although this process may seem complex, it all takes place with very little overhead. The
processor has a cache for page table entries called the translation lookaside buffer
(TLB). The TLB satisfies most requests for reading the page tables. Extra bus Cycles
occur only when a new page is accessed. The page size (4K bytes) is large enough so that
very few bus cycles are made to the page tables, compared to the number of bus cycles
made to instructions and data. At the same time, the page size is small enough to make
efficient use of memory. (No matter how small a data structure is, it occupies at least
one page of memory.)

5.3.1 PG Bit Enables Paging

If paging is enabled, a second stage of address translation is used to generate the phys­
ical address from the linear address. If paging. is not enabled, the linear address is used
as the physical address.

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is
set by the operating system during software initialization. The PG bit mustbe set if the
operating system is running more than one program in virtual-8086 mode or if demand­
paged virtual memory is used. . .

5.3.2 Linear Address

Figure 5-12 shows the format of a linear address.

5-18

MEMORY MANAGEMENT

31 22 21 12 11 o I DIRECTORY TABLE OFFSET I
240486i5·12

Figure 5-12. Format of a Linear Address

PAGE DIRECTORY

PGTBLENTRY

CR3

240486i5·13

Figure 5-13. Page Translation

Figure 5-13 shows how the processor translates the DIRECTORY, TABLE, and OFF­
SET fields of a linear address into the physical address using two levels of page tables.
The paging mechanism uses the DIRECTORY field as an index into a page directory,
the TABLE field as an index into the page table determined by the page directory, and
the OFFSET field to address an operand within the page specified by the page table.

5.3.3 Page Tables

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096
bytes of memory or, at most, 1K 32-bit entries. All pages, including page directories and
page tables, are aligned to 4K-byte boundaries.

Two levels of tables are used to address a page of memory. The top level is called the
page directory. It addresses up to 1K page tables in the second level. A page table in the
second level addresses up to 1K pages in physical memory. All the tables addressed by
one page directory, therefore, can address 1M or 220 pages. Because each page contains
4K or 212 bytes, the tables of one page directory can span the entire linear address space
of the Intel486 processor (220 x 212 = 232).

5-19

intel® MEMORY MANAGEMENT

The physical address of the current page directory is stored in the CR3 register, also
called the page directory base register (PDBR). Memory management software has the
option of using one page directory for all tasks, one page directory for each task, or some
combination of the two .. See Chapter 10 for information on initialization of the CR3
register. See Chapter 7 for how the contents of the CR3 register can change for each
task.

5.3.4 Page-Table Entries

Entries in either level of page tables have the same format, except that the page direc­
tory has no Dirty bit. Figure 5·14 illustrates this format. The bit position of the D bit is
reserved for future Intel use.

5.3.4.1 PAGE FRAME ADDRESS

The page frame address is the base address of a page. In a page table entry, the upper
20 bits are used to specify a page frame address, and the lowest 12 bits specify control
and status bits for the page. In a page directory, the page frame address is the address of
a page table. In a second-level page table,· the page frame address is the address of a
page containing instructions or data.

5.3.4.2 PRESENT BIT

The Present bit indicates whether the page frame address in a page table entry maps to
a page in physical memory. When set, the page is in memory.

When the Present bit is clear, the page is not in memory, and the rest of the page table
entry is available for the operating system, for example, to store information regarding
the whereabouts of the missing page. Figure 5·15 illustrates the format of a page table
entry when the Present bit is clear.

I

3
1

11
2 1 876543210

PAGE FRAME ADDRESS 31 ... 12 IAVAILlolol+lglfl~lllpl

... ~~~-- . J11 PROGRAMMER USE
INTEL RESERVED. DO NOT DEFINE . .
INTEL RESERVED. NOT NOT DEFINE .
DIRTY
ACCESSED
PAGE CACHE DISABLE
PAGE WRITE TRANSPARENT
USERISUPERVISOR
READIWRITE
PRESENT

Figure 5·14. Format of a Page Table Entry

5-20

240486;5-14

infel® MEMORY MANAGEMENT

31 1 0

AVAILABLE H
240486i5·15

Figure 5-15. Format of a Page Table Entry for a Not-Present Page

If the Present bit is clear in either level of page tables when an attempt is made to use a
page table entry for address translation, a page-fault exception is generated. In systems
which support demand-paged virtual memory, the following sequence of events then
occurs:

1. The operating system copies the page from disk storage into physical memory.

2. The operating system loads the page frame address into the page table entry and
sets its Present bit. Other bits, such as the R/W bit, may be set, too.

3. Because a copy of the old page table entry may stilI exist in the translation lookaside
buffer (TLB), the operating system empties it. See Section 5.3.5 for a discussion of
the TLB and how to empty it.

4. The program which caused the exception is then restarted.

Since there is no Present bit in CR3 to indicate when the page directory is not resident
in memory, the page directory pointed to by CR3 should always be present in physical
memory.

5.3.4.3 ACCESSED AND DIRTY BITS

These bits provide data about page usage in both levels of page tables. The Accessed bit
is used to report read or write access to a page or second-level page table. The Dirty bit
is used to report write access to a page.

With the exception of the Dirty bit in a page directory entry, these bits are set by the
hardware; however, the processor does not clear either of these bits. The processor sets
the Accessed bits in both levels of page tables before a read or write operation to a page.
The processor sets the Dirty bit in the second-level page table before a write operation
to an address mapped by that page table entry. The Dirty bit in directory entries is
undefined.

The operating system may use the Accessed bit when it needs to create some free mem­
ory by sending a page or second-level page table to disk storage. By periodically clearing
the Accessed bits in the page tables, it can see which pages have been used recently.
Pages which have not been used are candidates for sending out to disk.

5-21

int:et MEMORY MANAGEMENT

The operating system may use the Dirty bit when a page is sent back to disk. By clearing
the Dirty bit when the page is brought into memory, the operating system can see if it
has received any write access. If there is a copy of the page on disk and the copy in
memory has not received any writes, there is no need to update disk from memory.

See Chapter 1-3 for how the Intel486 processor updates the Accessed and Dirty bits in .
multiprocessor systems.

5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS

The ReadlWrite and User/Supervisor bits are used for protection checks applied to
pages, which the processor performs at the same time as address translation. See Chap­
ter 6 for more information on protection.

5.3~4.5 PAGE-LEVEL CACHE CONTROL BITS

The PCD and PWT bits are used for page-level cache management. Software can control
the caching of individual pages or second-level page tables using these bits. , See
Chapter 12 for more information on caching.

5 .. 3.5 Translation Lookaside Buffer

The processor stores the most recently used page table entries in an on-chip cache called
the translation lookaside buffer or TLB. Most paging is performed using the contents of
the TLB. Bus cycles to the page tables are performed only when a new page is used.

The TLB is invisible to application programs, but not to operating systems. Operating­
system programmers must flush the TLB (dispose of its page table entries) when entries
in the page tables are changed. If this is not done, old data which has not received the
changes might get used for address translation. A change to an entry for a page which.is
not present in memory does not require flushing the TLB, because entries for not­
present pages are not cached.

The TLB is flushed when the CR3 register is loaded. The CR3 register can be loaded in
either of two ways:

1. Explicit loading using MOY instructions, suth as:
MOV CR3, EAX

2. Implicit loading by a task switch which changes the contents of the CR3 register.
(See Chapter 7 for more information on task switching.)

An individual entry in the TLB can be flushed using an INVLPG instruction. This is
useful when the mapping of an individual page is changed.

5·22

intel® MEMORY MANAGEMENT

5.4 COMBINING SEGMENT AND PAGE TRANSLATION

Figure 5-16 combines Figure 5-5 and Figure 5-13 to summarize both stages of translation
from a logical address to a physical address when paging is enabled. Options available in
both stages of address translation can be used to support several different styles of
memory management.

5.4.1 Flat Model

When the Intel486 processor is used to run software written without segments, it may be
desirable to remove the segmentation features of the Intel486 processor. The Intel486
processor does not have a mode bit for disabling segmentation, but the same effect can
be achieved by mapping the stack, code, and data spaces to the same range of linear
addresses. The 32-bit offsets used by Intel486 processor instructions can cover the entire
linear address space.

When paging is used, the segments can be mapped to the entire linear address space. If
more than one program is being run at the same time, the paging mechanism can be
used to give each program a separate address space.

lOGICAL
ADDRESS

PAGE DIRECTORY

o
OFFSET

PAGE FRAME

'------l~ OPERAND

PAGE TABLE

PG TBl ENTRY

Figure 5-16. Combined Segment and Page Address Translation

5-23

240486i5·16

intel® MEMORY MANAGEMENT

5.4.2 Segments Spanning Several Pages

The architecture allows segments which are larger than the size of a page (4K bytes). For
example, a large data structure may span thousands of pages. If paging were not used,
access to any part of the data structure would require the entire data structure to be
present in physical memory. With paging, only the page containing the part being
accessed needs to be in memory.

5.4.3 Pages Spanning Several Segments

Segments also may be smaller than the size of a page. If one of these segments is placed
in a page which is not shared with another segment, the extra memory is wasted. For
example, a small data structure, such as a I-byte semaphore, occupies 4K bytes if it is
placed in a page by itself. If many semaphores are used, it is more efficient to pack them
into a single page.

5.4.4 Non-Aligned Page and Segment Boundaries

The architecture does not enforce any correspondence between the boundaries of pages
and segments. A page may contain the end of one segment and the beginning of another.
Likewise, a segment may contain the end of one page and the beginning of another.

5.4.5 Aligned Page and Segment Boundaries

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which may
fit in one page is placed in two pages, there may be twice as much paging overhead to
support access to that segment.

5.4.6 Page-Table Per Segment

An approach to combining paging and segmentation which simplifies memory­
management software is to give each segment its own page table, as shown in
Figure 5-17. This gives the segment a single entry in the page directory which provides
the access control information for paging the segment.

5-24

intel® MEMORY MANAGEMENT

PAGE FRAMES

LOT PAGE DIRECTORY PAGE TABLES I I
~ PTE I PTE

PTE

DESCRIPTOR 1-+ POE ~ I I DESCRIPTOR 1-+ POE I-

PTE W I
PTE

LOT PAGE DIRECTORY PAGE TABLES I I
PAGE FRAMES

240486;5-17

Figure 5-17. Each Segment Can Have Its Own Page Table

5-25

Protection 6

CHAPTER 6
PROTECTION

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks
from interfering with each other. For example, protection can keep one task from over­
writing the instructions or data of another task.

During program development, the protection mechanism can give a clearer picture of
program bugs. When a program makes an unexpected reference to the wrong memory
space, the protection mechanism can block the event and report its occurrence.

In end-user systems, the protection mechanism can guard against the possibility of soft­
ware failures caused by undetected program bugs. If a program fails, its effects can' be
confined to a limited domain. The operating system can be protected against damage, so
diagnostic information can be recorded and automatic recovery may be attempted.

Protection may be applied to segments and pages. Two bits in a processor register define
the privilege level of the program currently running (called the current privilege level or
CPL). The CPL is checked during address translation for segmentation and paging.

Although there is no control register or mode bit for turning off the protection mecha­
nism, the same effect can be achieved by assigning privilege level 0 (the highest level of
privilege) to all segment selectors, segment descriptors, and page table entries.

6.1 SEGMENT-LEVEL PROTECTION

Protection provides the ability to limit the amount of interference a malfunctioning pro­
gram can inflict on other programs and their data. Protection is a valuable aid in soft­
ware development because it allows software tools (operating system, debugger, etc.) to
survive in memory undamaged. When an application program fails, the software is avail­
able to report diagnostic messages, and the debugger is available for post-mortem anal-'
ysis of memory and registers. In production, protection can make software more reliable
by giving the system an opportunity to initiate recovery procedures.

Each memory reference is checked to verify that it satisfies the protection checks. All
checks are made before the memory cycle is started; any violation prevents the cycle
from starting and results in an exception. Because checks are performed in parallel with
address translation, there is no performance penalty. There are five protection checks:

1. Type check

2. Limit check

3. Restriction of addressable domain

4. Restriction of procedure entry points

5. Restriction of instruction set,

6-1

PROTECTION

A protection violation results in an exception. See Chapter 9 for an explanation of the
exception mechanism. This chapter describes the protection violations which lead to
exceptions.

6.2 SEGMENT DESCRIPTORS AND PROTECTION

Figure 6-1 shows the fields of a segment descriptor which are used by the protection
mechanism. Individual bits in the Type field also are referred to by the names of their
functions.

Protection parameters are placed in the descriptor when it is created. In general, appli­
cation programmers do not need to be concerned about protection parameters.

31

BASE 31:24

DATA SEGMENT DESCRIPTOR

21111111111
09876543210987

D
LIMIT P 1 0 EWA
19:16 L

BASE 23:16

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00

31

BASE 31:24

CODE SEGMENT DESCRIPTOR

21111111111
09876543210987

LIMIT
D
P 1 1 C R A

19:16 L
BASE 23:16

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00

A ACCESSED
C CONFORMING
DPL DESCRIPTOR PRIVILEGE LEVEL
E EXPAND·DOWN
R READABLE
LIMIT SEGMENT WRITE
W WRITABLE

o

+4

+0

o

+4

Figure 6-1. Descriptor Fields Used for Protection (Part 1 of 2)

6-2

240486i6-10fl

intel@

31

BASE 31:24

PROTECTION

SYSTEM SEGMENT DESCRIPTOR

21111111111
0987654 3 2 1 0 9 8 7

LIMIT D

19:16 P 0 TYPE
L

BASE 23:16

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00

DPL DESCRIPTOR PRIVILEGE LEVEL
LIMIT SEGMENT LIMIT

o

+4

+0

Figure 6-1. Descriptor Fields Used for Protection (Part 2 of 2)

240486i6-1012

When a program loads a segment selector into a segment register, the processor loads
both the base address of the segment and the protection information. The invisible part
of each segment register has storage for the base, limit, type, and privilege level. While
this information is resident in the segment register, subsequent protection checks on the
same segment can be performed with no performance penalty.

6.2.1 Type Checking

In addition to the descriptors for application code and data segments, the Intel486 pro­
cessor has descriptors for system segments and gates. These are data structures used for
managing tasks (Chapter 7) and exceptions and interrupts (Chapter 9). Table 6-1 lists all
the types defined for system segments and gates. Note that not all descriptors define
segments; gate descriptors hold pointers to procedure entry points.

The Type fields of code and data segment descriptors include bits which further define
the purpose of the segment (see Figure 6-1):

" The Writable bit in a data-segment descriptor controls whether programs can write to
the segment.

• The Readable bit in an executable-segment descriptor specifies whether programs
can read from the segment (e.g., to access constants stored in the code space). A
readable, executable segment may be read in two ways:

1. With the CS register, by using a CS override prefix.

2. By loading a selector for the descriptor into a data-segment register (the DS, ES,
FS, or GS registers).

6-3

intel® PROTECTION

Table 6-1. System Segment and Gate Types

Type Description

0 reserved
1 Available 80286 TSS
2 LOT
3 Busy 80286 TSS
4 Call Gate
5 Task Gate
6 80286 Interrupt Gate
7 80286 Trap Gate
8 reserved
9 Available InteI486'" CPU TSS

10 reserved
11 Busy Intel486 CPU TSS
12 Intel486 CPU Call Gate
13 reserved
14 Intel486 CPU Interrupt Gate
15 Intel486 CPU Trap Gate

Type checking can be used to detect programming errors which would attempt to use
segments in ways not intended by the programmer. The processor examines type infor-
mationon two kinds of occasions: .

1. When a selector for a descriptor is loaded into a segment register. Certain segment
registers can contain only certain descriptor types; for example:

• The CS register only can be loaded with a selector for an executable segment.

• Selectors of executable segments which are not readable cannot be loaded into
data-segment registers.

• Only selectors of writable data segments can be loaded into the SS register.

2. Certain segments can be used by instructions only in certain predefined ways; for
example:

• No instruction may write into an executable segment.

• No instruction may write into a data segment if the writable bit is not set.

• No instruction may read an executable segment unless the readable bit is set.

6.2.2 Limit Checking

Th~ Limit field ofa segment descriptor prevents programs from addressing outside the
segment. The effective value of the limit depends on the setting of the G bit (Granularity
bit). For data segments, the limit also depends on the E bit (Expansion Direction bit).
The E bit is a designation for one bit of the Type field, when referring to data segment
descriptors.

6-4

int'et PROTECTION

When the G bit is clear, the . limit is the value of the 20-bit Limit field in the descriptor.
In this case, the limit ranges from 0 to OFFFFFH (220 - 1 or 1 megabyte). When the
G bit is set, the processor scales the value in the Limit field by a factor of 212. In this case
the limit ranges from OFFFH (212 - 1 or 4K bytes) to OFFFFFFFFH (232 - 1 or
4 gigabytes). Note that when scaling is used, the lower twelve bits of the address are not
checked against the limit; when the G bit is set and the segment limit is 0, valid offsets
within the segment are 0 through 4095.

For all types of segments except expand-down data segments (stack segments), the value
of the limit is one less than the size, in bytes, of the segment. The processor causes a
general-protection exception in any of these cases:

• Attempt to access a memory byte at an address > limit

• Attempt to access a memory word at an address> (limit - 1)

• Attempt to access a memory doubleword at an address > (limit - 3)

For expand-down data segments, the limit has the same function but is interpreted
differently. In these cases the range of valid offsets is from (limit + 1) to 232 -1 if
Bbit = 1 and 216_1 if Bbit = O. An expand-down segment has maximum size when the
segment limit is O.

Limit checking catches programming errors such as runaway subscripts and invalid
pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking, these errors could overwrite critical memory in
another module, and the existence of these errors would not be discovered until the
damaged module crashed, an event which may occur long after the actual error. Protec­
tion can block these errors and report their source.

In addition to limit checking on segments, there is limit checking on the descriptor
tables. The GDTR and IDTR registers contain a 16-bit limit value. It is used by the
processor to prevent programs from selecting a segment descriptor outside the descrip­
tor table. The limit of a descriptor table identifies the last valid byte of the table.
Because each descriptor is eight bytes long, a table which contains up to N descriptors'
should have a limit of 8N - 1.

A descriptor may be given a zero value. This refers to the first descriptor in the GDT,
which is not used. Although this descriptor may be loaded into a segment register, any
attempt to reference memory using this descriptor will generate a general-protection
exception.

6.2.3 Privilege Levels

The protection mechanism recognizes four privilege levels, numbered from 0 to 3. The
greater numbers mean lesser privileges. If all other protection checks are satisfied, a
general-protection exception is generated if a program attempts to access a segment
using a less privileged level (greater privilege number) than that applied to the segment.

6-5

int'et PROTECTION

Although no control register or mode bit is provided for turning off the protection
mechanism, the same effect can be achieved by assigning all privilege levels the value of
O. (The PE bit in the CRO register is not an enabling bit· for the protection mechanism
alone; it is used to enable "protected mode," the mode of program execution in which
the full 32-bit architecture is available. When protected mode is disabled; the processor
operates in "real-address mode," where it appears as a fast, enhanced 8086 processor.)

Privilege levels can be used to improve the reliability of operating systems. By giving the
operating system the highest privilege level, it is protected from damage by bugs in other
programs. If a program crashes, the operating system has a chance to generate a diag~
nostic message and attempt recovery procedures. ..

Another level of privilege can be established for other parts of the system software, such
as the programs which handle peripheral devices, called device drivers. If a device driver
crashes, the operating system should be able to report a diagnostic message, so it makes
sense to protect the operating system against bugs in device drivers. A device driver,
however, may service an important peripheral such asa disk drive. If the application
program crashed, the device driver should not corrupt the directory structure of the disk,
so it makes sense to protect device drivers against bugs in applications. Device drivers
should be given an intermediate privilege level between the operating syst~m and the
application programs. Application programs are given the lowest privilege level.

Figure 6-2 shows how these levels of privilege can be interpreted as rings of protection.
The center is for the segments containing the· most critical software, usmilly the kernel of
an operating system. Outer rings are for less critical software.

The following data structures contain privilege levels:

• The lowest two bits of the CS segment register hold the current privilege level (CPL).
This is the privilege level of the program being run. The . lowest two bits of the SS
register also hold a copy of the CPL. Normally, the CPL is equal to the privilege level
of the code segment from which instructions are being fetched. The CPL changes
when control is transferred to a code segment with· a differe* privilege level.

• Segment descriptors contain a field called the descriptor privilege level (DPL). The
DPL is the privilege level applied to a. segment.

• Segment selectors contain a field called the requestor privilege level(RPL). The RPLis
intended to represent the privilege level of the procedure which created the. selector ..
If the RPL is a less privileged level than the CPL, it overrides the CPL. When a more
privileged program receives a segment selector from a less privileged program, the
RPL causes the memory access to take place at the less privileged level.

Privilege levels are checked when the selector of a descriptor.is loaded into a segment
register. The checks used for data access differ from those used for transfers ofexecu­
tion among executable segments; therefore; the two types of access are considered sep­
arately in the following sections.

6-6

intel® PROTECTION

PROTECTION RINGS

240486i6-2

Figure 6-2. Protection Rings

6.3 RESTRICTING ACCESS TO DATA

To address operands in memory, a segment selector for a data segment must be loaded
into a data-segment register (the OS, ES, FS, GS, or SS registers). The processor checks
the segment's privilege levels. The check is performed when the segment selector is
loaded. As Figure 6-3 shows, three different privilege levels enter into this type of priv­
ilege check.

The three privilege levels which are checked are:

1. The CPL (current privilege level) of the program. This is held in the two least­
significant bit positions of the CS register.

2. The OPL (descriptor privilege level) of the segment descriptor of the segment con­
taining the operand.

3. The RPL (requestor's privilege level) of the selector used to specify the segment
containing the operand. This is held in the two lowest bit positions of the segment
register used to access the operand (the SS, OS, ES, FS, or GS registers). If the
operand is in the stack segment, the RPL is the same as the CPL.

6-7

int:et

I

3
1

CPL
DPL
RPL

PROTECTION

OPERAND SEGMENT DESCRIPTOR

1 1
4 3

D
P

IIII L

I

CURRENT CODE SEGMENT REGISTER

I CPL :

OPERAND SEGMENT SELECTOR

I RPL I

CURRENT PRIVILEGE LEVEL
DESCRIPTOR PRIVILEGE LEVEL
REQUESTOR'S PRIVILEGE LEVEL

7

1
PRIVILEGE

CHECK

Figure .6-3 •. Privilege Check for Data Access

o

+4

240486i6-3

Instructions may load a segment register only if the DPL of the segment is the same or a
less privileged level (greater privilege number) than the less privileged of the CPL and
the selector's RPL.

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data
segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3 are accessible; when the CPL is 3,· only data segments at
privilege level 3 are accessible.

6.3.1 Accessing Data in Code .Segments

It may be desirable to store data in a code segment, for example,when both code and
data are provided in ROM. Code segments may, legitimately hold constants; it is not
possible to write to a segment· defined as a code segment, unless a data segment is

6-8

intel® PROTECTION

mapped to the same address space. The following methods of accessing data in code
segments are possible: .

1. Load a data-segment register with a segment selector for a nonconforming, read­
able, executable segment.

2. Load a data-segment register with a segment selector for a conforming, readable,
executable segment.

3. Use a code-segment override prefix to read a readable, executable segment whose
selector already is loaded in the CS register.

The same rules for access to data segments apply to case 1. Case 2 is always valid
because the privilege level of a code segment with a set Conforming bit is effectively the
same as the CPL, regardless of its DPL. Case 3 is always valid because the DPL of the
code segment selected by the CS register is the CPL.

6.4 RESTRICTING CONTROL TRANSFERS

With the Intel486 processor, control transfers are provided by the JMP, CALL, RET,
INT, and IRET instructions, as well as by the exception and interrupt mechanisms.
Exceptions and interrupts are special cases discussed in Chapter 9. This chapter dis­
cusses only the JMP, CALL, and RET instructions.

The "near" forms of the JMP, CALL, and RET instructions transfer program control
within the current code segment, and therefore are subject only to limit checking. The
processor checks that the destination of the JMP, CALL, or RET instruction does not
exceed the limit of the current code segment. This limit is cached in the CS register, so
protection checks for near transfers require no performance penalty.

The operands of the "far" forms of the JMP and CALL instruction refer to other seg­
ments, so the processor performs privilege checking. There are two ways a JMP or
CALL instruction can refer to another segment:

1. The operand selects the descriptor of another executable segment.

2. The operand selects a call gate descriptor. This gated form of transfer is discussed in
Chapter 7.

As Figure 6-4 shows, two different privilege levels enter into a privilege check for a
control transfer which does not use a call gate:

1. The CPL (current privilege level).

2. The DPL of the descriptor of the destination code segment.

Normally the CPL is equal to the DPL of the segment which the processor is currently
executing. The CPL may, however, be greater (less privileged) than the DPL if the
current code segment is a conforming segment (as indicated by the Type field of its

6-9

31

I

C
CPL
DPL

PROTECTION

DESTINATION CODE SEGMENT DESCRIPTOR

111111
54321 0 987

D TYPE
P

1111CHA L

I I

CURRENT CODE SEGMENT REGISTER

I CPL I

CONFORMING BIT
CURRENT PRIVILEGE LEVEL
DESCRIPTOR PRIVILEGE LEVEL

o

+ 4

+ 0

I
PRIVILEGE

CHECK

Figure 6-4. Privilege Check for Control Transfer Without Gate

240486i6-4

segment descriptor). A conforming segment runs at the privilege level of the calling
procedure. The processor keeps a record of the CPL cached in the CS register; this value
can be different from the DPL in the segment descriptor of the current code segment.

The processor only permits a JMP or CALL instruction directly into another segment if
one of the following privilege rules is satisfied:

• The DPL of the segment is equal to the current CPL.

• The segment is a conforming code segment, and its DPL is less (more privileged) than
the current CPL.

Conforming segments are used for programs, such as math libraries and some kinds of
exception handlers, which support applications but do not require access to protected
system facilities. When control is transferred to a conforming segment, the CPL does not
change, even if the selector used to address the segment has a different RPL. This is the
only condition in which the CPL may be different from the DPL of the current code
segment_

Most code segments are not conforming. For these segments, control can be transferred
without a gate only to other code segments at the same level of privilege. It is sometimes
necessary, however, to transfer control to higher privilege levels. This is accomplished

6-10

infel® PROTECTION

with the CALL instruction using call-gate descriptors, which is explained in Chapter 7.
The JMP instruction may never transfer control to a nonconforming segment whose
DPL does not equal the CPL.

6.5 GATE DESCRIPTORS

To provide protection for control transfers among executable segments at different priv­
ilege levels, the Inte1486 processor uses gate descriptors. There are four kinds of gate
descriptors:

• Call gates

• Trap gates

• Interrupt gates

• Task gates

Task gates are used for task switching and are discussed in Chapter 7. Chapter 9 explains
how trap gates and interrupt gates are used by exceptions and interrupts. This chapter is
concerned only with call gates. Call gates are a form of protected control transfer. They
are used for control transfers between different privilege levels. They only need to be
used in systems in which more than one privilege level is used. Figure 6-5 illustrates the
format of a call gate.

A call gate has two main functions:

1. To define an entry point of a procedure.

2. To specify the privilege level required to enter a procedure.

31

OFFSET IN SEGMENT 31:16

32·SIT CALL GATE

1111111
65432109876543

0
P P o 1 1 0 o 0 000

L

o

DWORD
COUNT

SEGMENT SELECTOR OFFSET IN SEGMENT 15:00

DPL DESCRIPTOR PRIVILEGE LEVEL
P SEGMENT PRESENT

Figure 6-5. Call Gate

6-11

+ 4

+ 0

240486i6·5

PROTECTION

Call gate descriptors are used by CALL and JUMP instructions in the same manner as
code segment descriptors. When the hardware recognizes that the segment selector for
the destination refers to a gate descriptor, the operation of the instruction is determined
by the contents of the call gate. A call gate descriptor may reside in the GDT or in an
LDT, but not in the interrupt descriptor table (IDT).

The selector and offset fields of a gate form a pointer to the entry point of a procedure.
A call gate guarantees. that all. control transfers to other segments go to a valid entry
point, rather than to the middle of a procedure (or worse, to the middle of an instruc­
tion). The operand of the control transfer instruction is not the segment selector and
offset within the segment to the procedure's entry point. Instead, the segment selector
points to a gate descriptor, and the offset is not used. Figure 6-6 shows this form of
addressing.

I •• ------DESTINATION ADDRESS------I.~I

15 o 31 o

I SELECTOR I OFFSET WITHIN SEGMENT

!
NOT USED

DESCRIPTOR TABLE

~
I I

OFFSET DPL I COUNT

SELECTOR OFFSET

I I

~
I I

BASE I DPL I BASE

+'" BASE
,/

I I

PROCEDURE ENTRY POINT

Figure .6-6. Call Gate Mechanism

6-12

GATE
DESCRIPTOR

CODE SEGMENT
DESCRIPTOR

240486i6-6

intel® PROTECTION

As shown in Figure 6-7, four different privilege levels are used to check the validity of a
control transfer through a call gate.

The privilege levels checked during a transfer of execution through a call gate are:

1. The CPL (current privilege level).

2. The RPL (requestor's privilege level) of the segment selector used to specify the call
gate.

3. The DPL (descriptor privilege level) of the gate descriptor.

4. The DPL of the segment descriptor of the destination code segment.

The DPL field of the gate descriptor determines from which privilege levels the gate may
be used. One code segment can have several procedures which are intended for use from
different privilege levels. For example, an operating system may have some services
which are intended to be used by both the operating system and application software,
such as routines to handle character I/O, while other services may be intended only for
use by operating system, such as routines which initialize device drivers.

Gates can be used for control transfers to more privileged levels or to the same privilege
level (though they are not necessary for transfers to the same level). Only CALL instruc­
tions can use gates to transfer to more privileged levels. A JMP instruction may use a
gate only to transfer control to a code segment with the same privilege level, or to a
conforming code segment with the same or a more privileged level.

For a JMP instruction to a nonconforming segment, both of the following privilege rules
must be satisfied; otherwise, a general-protection exception is generated.

MAX (CPL,RPL) :::; gateDPL
destination code segment DPL = CPL

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the
following privilege rules must be satisfied; otherwise, a general-protection exception is
generated.

MAX (CPL,RPL) :::; gate DPL
destination code segment DPL :::; CPL

6.5.1 Stack Switching

A procedure call to a more privileged level does the following:

1. Changes the CPL.

·2. Transfers control (execution).

3. Switches stacks.

6-13

infel®

I

3
1

3
1

CPL
DPL
RPL

PROTECTION

CALL GATE

1
5

D
P
L

I

7

DESTINATION CODE SEGMENT DESCRIPTOR

1
5 7

D
P
L

I

CURRENT CODE SEGMENT REGISTER

I CPL I

CALL GATE SELECTOR

I RPL I
1

CURRENT PRIVILEGE LEVEL PRIVILEGE

DESCRIPTOR PRIVILEGE LEVEL CHECK

REQUESTOR'S PRIVILEGE LEVEL

o

0

Figure 6-7. Privilege Check for Control Transfer with Call.Gate

6-14

+4

+4

24;0486;6-7

intel® PROTECTION

All inner protection rings (privilege levels 0, 1, and 2), have their own stacks for receiv­
ing calls from less privileged levels. If the caller were to provide the stack, and the stack
was too small, the called procedure might crash as a result of insufficient stack space.
Instead, less privileged programs are prevented from crashing more privileged programs
by creating a new stack when a call is made to a more privileged level. The new stack is
created, parameters are copied from the old stack, the contents of registers are saved,
and execution proceeds normally. When the procedure returns, the contents of the saved
registers restore the original stack. A complete description of the task switching mecha­
nism is provided in Chapter 7.

The processor finds the space to create new stacks using the task state segment (TSS), as
shown in Figure 6-8. Each task has its own TSS. The TSS contains initial stack pointers
for tl:J.e inner protection rings. The operating system is responsible for creating each TSS
and initializing its stack pointers. An initial stack pointer consists of a segment selector
and an initial value for the ESP register (an initial offset into the segment). The initial
stack pointers are strictly read-only values. The processor does not change them while
the task runs. These stack pointers are used only to create new stacks when calls are
made to more privileged levels. These stacks disappear when the called procedure
returns. The next time the procedure is called, a new stack is created using the initial
stack pointer.

32·BIT TASK STATE SEGMENT

31 o

64

I SS2 18

ESP2 14

I SSl 10

ESP1 OC

I SSO 8

ESPO 4

J o

NOTE: ADDRESSES ARE IN HEXADECIMAL

240486i6-8

Figure 6-8. Initial Stack Pointers in a TSS

6-15

infel® PROTECTION

When a call gate is used to change privilege levels, a new stack is cr:eated by loading an
address from the TSS. The processor uses the DPL of the destination code segment (the
new CPL) to select the initial stack pointer for privilege level 0, 1, or 2.

The DPL of the new stack segment must equal the new CPL; if not, a stack-fault excep­
tion is generated. It is the responsibility of the operating system to create stacks and
stack-segment descriptors for all privilege levels which are used. The. stacks must be
read/write as specified in the Type field of their segment descriptors. They must. contain
enough space, as specified in the Limit field, to hold the contents of the SS and ESP
registers, the return address, and the parameters and temporary variables required by
the called procedure.

As with calls within a privilege level, parameters for the procedure are placed on the
stack. The parameters are copied to the new stack. The parameters can be accessed
within the called procedure using the same relative addresses which would have been
used if no stack switching had occurred. The count field of a call gate tells the processor
how many doublewords (up to 31) to copy from the caller's stack to the stack of the
called procedure. If the count is 0, no parameters are- copied.

If more than 31 doublewords of data need to be passed to the called procedure, one of
the parameters can be a pointer to a data structure, or the saved contents of the SS and
ESP registers may be used to access parameters in the old stack space.

The processor performs the following stack-related steps in executing a procedure call
between privilege levels.

1. The stack of the called procedure is checked to make certain it is large enough to
hold the parameters and the saved contents of registers; if not, a stack exception is
generated.

2. The old contents of the SS and ESP registers are pushed onto the stack of the called
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the
zero-extended upper word is Intel reserved; do not use).

3. The parameters are copied from the stack of the caller to the stack of the called
procedure.

4. A pointer to the instruction after the CALL instruction (the old contents of the CS
and EIP registers) is pushed onto the new stack. The contents of the SS and ESP
registers after the call point to this return pointer on the stack.

Figure 6-9 illustrates the stack frame before, during, and after a successful interlevel
procedure call and return.

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure
at privilege level 3 cannot be called by a less privileged procedure. The stack for privilege
level 3 is preserved by the contents of the SS and ElP registers which have been saved on
the stack of the privilege level called from level 3.

6-16

intel®

OLD STACK,
BEFORE CAll:

PARM 1

PARM 2

PARM 3 - ESP

PROTECTION

NEW STACK,
AFTER CAll,
BEFORE RETURN:

OlDSS

OLD ESP

PARM 1

PARM 2

PARM 3

OlDCS

OLD EIP :+- ESP

OLD STACK,
AFTER RETURN:

Figure 6·9. Stack Frame During Interlevel Call

i-ESP

240486;6-9

A call using a call gate does not check the values of the words copied onto the new stack.
The called procedure should check each parameter for validity. A later section discusses
how the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check
pointer values.

6.5.2 Returning from a Procedure

The "near" forms of the RET instruction only transfer control within the current code
segment, therefore are subject only to limit checking. The offset to the instruction fol­
lowing the CALL instruction is popped from the stack into the EIP register. The proces­
sor checks that this offset does not exceed the limit of the current code segment.

The "far" form of the RET instruction pops the return address which was pushed onto
the stack by an earlier far CALL instruction. Under normal conditions, the return
pointer is valid, because it was generated by a CALL or INT instruction. Nevertheless,
the processor performs privilege checking because of the possibility that the current
procedure altered the pointer or failed to maintain the stack properly. The RPL of the
code-segment selector popped off the stack by the return instruction should have the
privilege level of the calling procedure.

6-17

intel® PROTECTION

A return to another segment can change privilege levels, but only toward less privileged
levels. When a RET instruction encounters a saved CS value whose RPL is numerically
greater than the CPL (less privileged level), a return across privilege levels occurs. A
return of this kind performs these steps:

1. The checks shown in Table 6-2 are made, and the CS, EIP, SS, and ESP registers
are loaded with their former values, which were saved on the stack.

2. The old contents of the SS and ESP registers (from the top of the current stack) are
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP
value is not checked against the limit of the stack segment. If the ESP value is

Table 6·2. Interlevel Return Checks

Type of Check Exception Type Error Code

top-of-stack + 7 must be within stack seg- stack 0
ment limit,

RPL of return code segment must be protection Return CS
greater than the CPL

Return code segment selector must be protection ' Return CS
non-null

Return code segment descriptor must be protection Return CS
within descriptor table limit

Return segment descriptor must be a protection Return CS
code segment

Return code segment is present segment not present Return CS

DPL of return non-conforming code seg- protection Return CS
ment must equal RPL of return code seg-
ment selector, or DPL of return conforming
;code segment must be less than or equal
to RPL of return code segment selector

ESP + N + 15* must be within the stack stack fault 0
segment limit

segment selector at ESP + N + 12* must protection Return SS
be non-null

segment descriptor at ESP + N + 12* protection Return SS
must be Within descriptor table limit

stack segment descript~r must be read/ protection Return SS
write

stack segment must be present not present Return SS
stack fault

, old stack segment DPL must b,e equal to protection Return SS
RPL of old code segment

old stack segment selector must have an protection Return SS
RPL equal to the DPL of the old stack
segment

*N is the value of the immediate operand supplied with the RET instruction.

6-18

in1:eL PROTECTION

beyond the limit, that fact is not recognized until the next stack operation. (The
contents of the SS and ESP registers for the returning procedure are not preserved;
normally, their values are the same as those contained in the TSS.)

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of
these registers refer to segments whose DPL is less than the new CPL (excluding
conforming code segments), the segment register is loaded with the null selector
(Index = 0, TI = 0). The RET instruction itself does not signal exceptions in these
cases; however, any subsequent memory reference using a segment register contain­
ing the null selector will cause a general-protection exception. This prevents less
privileged code from accessing more privileged segments using selectors left in the
segment registers by a more privileged procedure.

6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM

Instructions which can affect the protection mechanism or influence general system per­
formance can only be executed by trusted procedures. The Intel486 processor has two
classes of such instructions:

1. Privileged instructions - those used for system control.

2. Sensitive instructions - those used for I/O and I/O-related activities.

6.6.1 Privileged Instructions

The instructions which affect protected facilities can be executed only when the CPL is 0
(most privileged). If one of these instructions is executed when the CPL is not 0, a
general-protection exception is generated. These instructions include:

CLTS
HLT
INVD
INVLPG
LGDT
LIDT
LLDT
LMSW
LTR
MOV to/from CRO
MOV to/from DRn
MOV to/from TRn
WBlNVD

6.6.2 Sensitive Instructions

- Clear Task-Switched Flag
- Halt Processor
- Invalidate Cache
- Invalidate TLB Entry
- Load GDT Register
- Load IDT Register
- Load LDT Register
-Load Machine Status Word
- Load Task Register
- Move to Control Register 0
- Move to Debug Register n
- Move to Test Register n
- Write Back and Invalidate Cache

Instructions which deal with I/O need to be protected, but they also need to be used by
procedures executing at privilege levels other than 0 (the most privileged level). The
mechanisms for protection of I/O operations are covered in detail in Chapter 8.

6-19

infel® PROTECTION

6.7 INSTRUCTIONS FOR POINTER VALIDATION

Pointer validation is necessary for maintaining isolation between privilege levels. It con­
sists of the following steps:

1. . Check if the supplier of the pointer is allowed to access the segment.

2. Check if the segment type is compatible with its use.

3. Check if the pointer offset exceeds the segment limit.

Although the Intel486 processor automatically performs checks 2 and 3 during instruc­
tion execution, software must assist in performing the first check. The ARPL instruction
is provided for this purpose. Software also can use steps 2 and 3 to check for potential
violations, rather than waiting for an exception to be generated. The LAR, LSL, VERR,
and VERW instructions are provided for this purpose.

An additional check, the aligmhent check, can be applied in user mode. When both the
AM bit in CRO and the AC flag are set, unaligned memory references generate excep­
tions. This is useful for programs which use the low two bits of pointers to identify the
type of data structure they address. For example, a subroutine in a math library may
accept pointers to numeric data structures. If the type of this structure is assigned a code
of 10 (binary) in the lowest two bits of pointers to this type, math subroutines can correct
for the type code by adding a displacement of -10 (binary). If the subroutine should
ever receive the wrong pointer type, an unaligned reference would be produced, which
would generate an exception .. Alignment checking accelerates the processing of pro­
grams written in symbolic-processing (i.e., Artificial Intelligence) languages such as Lisp,
Prolog, Small talk, and C++. It can be used to speed up pointer tag type checking.

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a
compatible privilege level and type. The LAR instruction has one operand - a segment
selector for a descriptor whose access rights are to be checked. The segment descriptor
must be readable at a privilege level which is numerically greater (less privileged) than
the CPL and the selector's RPL. If the descriptor is readable, the LAR instruction gets
the second doubleword of the descriptor, masks this value with OOFxFFOOH, stores the
result into the specified 32-bit destination register, and sets the ZF flag. (The x indicates
that the corresponding four bits of the stored value are undefined.) Once loaded, the
access rights can be tested. All valid descriptor types can be tested by the LAR instruc­
tion. If the RPL or CPL is greater than the DPL, or if the segment selector would exceed
the limit for the descriptor table, no access rights are returned, and the ZF flag is
cleared. Conforming code segments may be accessed from any privilege level.

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If
the descriptor referenced by the segment selector (in memory or a register) is readable
at the CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte
granular limit calculated from the concatenated limit fields and the G bit of the descrip­
tor. This only can be done for descriptors which describe segments (data, code, task
state, and local descriptor tables); gate descriptors are inaccessible. (Table 6-3 lists in
detail which types are valid and which are not.) Interpreting the limit is a function of the

6-20

int'eL PROTECTION

Table 6-3. Valid Descriptor Types for LSL Instruction

Type Code Descriptor Type Valid?

0 reserved no

1 reserved no

2 LOT yes

3 reserved no

4 reserved no

5 Task Gate no

6 reserved no

7 reserved no

8 reserved no

9 Available InteI486'" CPU TSS yes

A reserved no

B Busy Intel486 CPU TSS yes

C Intel486 CPU Call Gate no

0 reserved no

E Intel486 CPU Interrupt Gate no

F Intel486 CPU Trap Gate no

segment type. For example, downward-expandable data segments (stack segments) treat
the limit differently than other kinds of segments. For both the LAR and LSL instruc­
tions, the ZF flag is set if the load was successful; otherwise, the ZF flag is cleared.

6.7.1 Descriptor Validation

The Intel486 processor has two instructions, VERR and VERW, which determine
whether a segment selector points to a segment which can be read or written using the
CPL. Neither instruction causes a protection fault if the segment cannot be accessed.

VERR (Verify for Reading) verifies a segment for reading and sets the ZF flag if that
segment is readable using the CPL. The VERR instruction checks the following:

• The segment selector points to a segment descriptor within the bounds of the GDT or
an LDT.

• The segment selector indexes to a code or data segment descriptor.

• The segment is readable and has a compatible privilege level.

The privilege check for data segments and nonconforming code segments verifies that
the DPL must be a less privileged level than either the CPL or the selector's RPL.
Conforming segments are not checked for privilege level.

VERW (Verify for Writing) provides the same capability as the VERR instruction for
verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag
if the segment can be written. The instruction verifies the descriptor is within bounds, is

6-21

int'et PROTECTION

a segment descriptor, is writable, and has a DPL which is a less privileged level than
either the CPL or the selector's RPL. Code segments are never writable, whether con­
forming or not.

6.7.2 Pointer Integrity and RPL

The requestor's privilege level (RPL) can prevent accidental use of pointers which crash
more privileged code from a less privileged level.

A common example is a file system procedure, FREAD (fileJd, ILbytes, buffeLptr).
This hypothetical procedure reads data from a disk file into a buffer, overwriting what~
ever is already there. It services requests from programs operating at the application
level, but it must run in a privileged mode in order to read from the system I/O buffer. If
the application program passed this procedure a bad ,buffer pointer, one which pointed
at critical code or data in a privileged address space, the procedure could cause damage
which would crash the system. '

Use of the RPL can avoid this problem. The RPL allows a privilege override to be
assigned to a selector. This privilege override is intended to be the'privilege level of the
code segment which generated the segment selector. In the above example, the RPL
would be the CPL of the application program which called the system level procedure.
The Intel486 processor automatically checks any segment selector loaded into a segment
register to determine whether its RPL allows access.

To take advantage of the processor's checking of the RPL, the called procedure need
only check that all segment selectors passed to it have an RPL for the same or a less
privileged level as the original caller's CPL. This guarantees that the segment selectors
are not more privileged than their source. If a selector is used to access a segment which
the source would not be able to access directly, i.e. the RPL is less privileged than the
segment's DPL, a general-protection exception is generated when the selector is loaded
into a segment register.

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector'to
be the larger (less privileged) of its original value and the value of the RPLfield for a
segment selector stored in a general register. The RPL fields are the two least significant
bits of the segment selector and the register. The latter normally isa copy of the caller's
CS register on the stack. If the adjustment changes the selector's RPL, the ZF flag is set;
otherwise, the ZF flag is cleared; " '

6.8 PAGE~LEVEL PROTECTION

Protection applies to both segments and pages. When .the flat model for memory s'eg­
mentation has been used, page-level protection prevents programs from interfering with
each other. '

6-22

int:et PROTECTION

Each memory reference is checked to verify that it satisfies the protection checks. All
checks are made before the memory cycle is started; any violation prevents the cycle
from starting and results in an exception. Because checks are performed in parallel with
address translation, there is- no performance penalty. There are two page-level protec-­
tion checks:

1. Restriction of addressable domain.

2. Type checking.

A protection violation results in an exception. See Chapter 9 for an explanation of the
exception mechanism. This chapter describes the protection violations which lead to
exceptions.

6.8.1 Page-Tabl~ Entries Hold Protection Parameters

Figure 6-10 highlights the fields of a page table entry which control access to pages. The
protection checks are applied for both first- and second-level page tables.

6.8.1.1 RESTRICTING ADDRESSABLE DOMAIN

Privilege is interpreted differently for pages and segments. With segments, there are four
privilege levels, ranging from 0 (most privileged) to 3 (least privileged). With pages,
there are two levels of privilege: .

1. Supervisor level (U/S=O)-for the operating system, other system software (such as
device drivers), and protected system data (such as page tables).

2. User level (U/S = 1) - for application code and data.

The privilege levels used for segmentation are mapped into the privilege levels used for
paging. If the CPL is 0, 1, or 2, the processor is running at supervisor level. If the CPL is
3, the processor is running at user level.When the processor is running at supervisor
level, all pages are accessible. When the processor is running at user level, only pages
from the user level are accessible. .

31 12 11 0

~gl~I~I~~
RIW READIWRITE
U/S USER/SUPERVISOR

240486i6·10

Figure 6-10. Protection Fields of a Page Table Entry

6-23

intel® PROTECTION

6.8.1.2 TYPE CHECKING

Only two types of pages are recognized by the protection mechanism:

1. Read-only access (R/W = 0).

2. Read/write access (R/W = 1).

When the processor is running at supervisor level with the WP bit in the CRO register
clear (its state following reset initialization), all pages are both readable and writable
(write-protection is ignored). When the processor is running at user level, only pages
which belong to user level and are marked for read/write access are writable. User-level
pages which are read/write or read-only are readable. Pages from the supervisor level are
neither readable nor writable from user level. A general-protection exception is gener­
ated on any attempt to violate the protection rules.

Unlike the Intel386 DX processor, the Intel486 processor allows user-mode pages to be
write-protected against supervisor mode access. Setting the WP bit in the CRO register
enables supervisor~mode sensitivity to user-mode, write-protected pages. This feature is
useful for implementing the copy-on-write strategy used by some operating systems, such
as UNIX, for task creation (also called forking. or spawning).

When a new task is created, it is possible to copy the entire address space of the parent
task. This gives the child task a complete, duplicate set of the parent's segments and
pages. The copy~on-write strategy saves memory space and time by mapping the child's
segments and pages to the same segments and pages used by the parent task. A private
copy of a page gets created only when one of the tasks writes to the page.

6.8.2 Combining Protection of Both Levels of Page Tables

For anyone page, the protection attributes of its page directory entry (first-level page
table) may differ from those of its second-level page table entry. The Intel486 processor
checks the protection for a page by examining the protection specified in both the page
directory (first-level page table) and the second-level page table. Table 6-4 shows the
protection provided by the possible combinations of protecti()n attributes when the WP
bit is clear.

6.8.3 Overrides to Page Protection

Certain accesses are checked as if they are privilege-level 0 accesses, for any value
of CPL:

• Access to segment descriptors (LDT, GDT, TSS and IDT).

• Access to inner stack during a CALL instruction, or exceptions and interrupts, when
a change of privilege level occurs.

6-24

intel® PROTECTION

Table 6-4. Combined Page Directory and Page Table Protection

Page Directory Entry Page Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write
User Read-Only Supervisor Read-Write Supervisor Read/Write
User Read-Write Supervisor Read-Only Supervisor Read/Write.
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write
Supervisor Read-Only User Read-Write Supervisor Read/Write
Supervisor Read-Write User Read-Only Supervisor Read/Write
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

6.9 COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the Intel486 processor first evaluates segment protection, then
evaluates page protection. If the processor detects a protection violation at either the
segment level or the page level, the operation does not go through; an exception occurs
instead. If an exception is generated by segmentation, no paging exception is generated
for the operation.

For example, it is possible to define a large data segment which has some parts which are
read-only and other parts which are read-write. In this case, the page directory (or page
table) entries for the read-only parts would have the U/S and R/W bits specifying no
write access for all the pages described by that directory entry (or for individual pages
specified in the second-level page tables). This technique might be used, for example, to
define a large data segment, part of which is read-only (for shared data or ROMmed
constants). This defines a "flat" data space as one large segment, with "flat" pointers
used to access this "flat" space, while protecting shared data, shared files mapped into
the virtual space, and supervisor areas.

6-25

Multitasking. 7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 7
MULTITASKING

The Intel486 processor provides hardware support for multitasking. A task is a program
which is running, or-waiting to run while another program is running. A task is invoked
by an interrupt, exception, jump, or call. When one of these forms of transferring exe­
cution is used with a destination specified by an entry in one of the descriptor tables, this
descriptor can be a type which causes a new task to begin execution after saving the state
of the current task. There are two types of task-related descriptors which can occur in a
descriptor table: task state segment descriptors and task gates. When execution is passed
to either kind of descriptor, a task switch occurs.

A task switch is like a procedure call, but it saves more processor state information. A
procedure call only saves the contents of the general registers, and it might save the
contents of only one register (the EIP register). A procedure call pushes the contents of
the saved registers on the stack, in order that a procedure may call itself. When a
procedure calls itself, it is said to be re-entrant.

A task switch transfers execution to a completely new environment, the environment of a .
task. This requires saving the contents of nearly all the processor registers, such as the
EFLAGS register. Unlike procedures, tasks are not re-entrant. A task switch does not
push' anything on the stack. The processor state information is saved in a data structure
in memory, called a task state segment.

The registers and data structures which support multitasking are:

• Task state segment.

• Task state segment descriptor.

• Task register.

• Task gate descriptor.

With these structures, the Intel486 processor can switch execution from one task to
another, with the context of the original task saved to allow the task to be restarted. In
addition to the simple task switch, the Intel486 processor offers two other task­
management features:

1. Interrupts and exceptions can cause task switches (if needed in the system design).
The processor not only performs a task switch to handle the interrupt or exception,
but it automatically switches back when the interrupt or exception returns. Inter­
rupts may occur during interrupt tasks.

2. With each switch to another task, the Intel486 processor also can switch to another
LDT. This can be used to give each task a different logical-to-physical address map­
ping. This is an additional protection feature, because tasks can be isolated and
prevented from interfering with one another. The PDBR register also is reloaded.
This allows the paging mechanism to be used to enforce the isolation between tasks.

7-1

MULTITASKING

Use of the multitasking mechanism is optional. In some applications, it may not be the
best way to manage program execution. Where extremely fast response to interrupts is
needed, the time required to save the processor state may be too great. A possible
compromise in these situations is to use the task-related data structures, but perform
task switching in software. This allows a smaller processor state to be saved. This .tech~
nique can be one of the optimizations used to enhance system performance after the
basic functions of a system 'have been implemented.

7.1 TASK STATE SEGMENT

The processor state information needed to restore a task is saved in a type of.segment,
called a task state segment or TSS. Figure 7-1 shows the format of a TSS for an Intel486
CPU task (compatibility with 80286 tasks is provided by a different, kind, of TSS; see
Chapter 21). The fields of a TSS are divided into two main categories:

1. Dynamic fields the processor updates with each task switch. These fields store:

'. The general registers (EAX, ECX, EDX, EBX; ESP, EBP, ESI, and EDI).,

• The segment registers (ES, CS, SS, DS, FS, and OS).
,. The flags register (EFLAOS).

• The instruction pointer (EIP).

• The selector for the TSS of the previous task (updated only when a return is
expected).

2. Static fields the processor reads, but does not change. These fields are set up when
a task is created. These fields store:

• The selector for the task's LDT.
• The logical address of the stacks for privilege levels 0, 1, and 2.

• The T-bit (debug trap bit) which, when set, causes the processor to raise a debug
exception when a task switch occurs. (See Chapter 11 for more information on
debugging.) , ' .

• The base address for the I/O permission bit map~ If present, this map is stored in
the TSS at higher addresses. The base address points to the beginning of the
map. (See Chapter 8 for more information about the I/O permission bit map.)

" '

If paging is used, it is important to avoid placing a page boundary within the part of the
TSS which is read by the processor during a task switch (the first 108bytes), Ifa page
boundary is placed within this part of the TSS, the pages on either side of the boundary
must be present at the same time. In addition, if paging is used, the pages corresponding
to the old task's TSS, the new task's TSS, and the descriptor table entriesior each
should be marked as present and read/write. It is an unrecoverable error to receive a
page fault or general-protection exception after the processor has started to rea.d the
TSS.

7·2

intel® MULTITASKING

31 15

110 MAP BASE ADDRESS 000000000000000

0000000000000000 SELECTOR FOR TASK'S LDT

0000000000000000 GS

0000000000000000 FS

0000000000000000 DS

0000000000000000 SS

0000000000000000 CS

0000000000000000 ES

EDi'

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

RESERVED

0000000000000000 SS2

ESP2

0000000000000000 SS1

ESP1

0000000000000000 SSO

ESPO

0000000000000000 LINK (OLD TSS SELECTOR)

ADDRESSES ARE SHOWN IN HEXADECIMAL.

NOTE: BITS MARKED AS 0 ARE RESERVED. DO NOT USE.

Figure 7-1. Task State Segment

7-3

o

IT 64

60

5C

58

54

50

4C

48

44

40

3C

38

34

30

2C

28

24

20

1C

18

14

10

C

8

4

o

240486i7-1

intel® MULTITASKING

7.2 TSS DESCRIPTOR

The task state segment, like all other segments, is defined by a descriptor. Figure 7-2
shows the format of a TSS descriptor.

The Busy bit in the Type field indicates whether the task is busy. A busy task is currently
running or waiting to run. A Type field with a value of 9 indicates an inactive task; a
value of 11 (decimal) indicates a busy task. Tasks are not recursive. The Intel486 pro­
cessor uses the Busy bit to detect an attempt to call a task whose execution has been
interrupted.

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions
similar to their use in data-segment descriptors. The Limit field must have a value equal
to or greater than 67H, one byte less than the minimum size of a task state. An attempt
to switch to a task whose TSS descriptor has a limit less than 67H generates an excep­
tion. A larger limit is required if an I/O permission map is used. A larger limit also may
be required for the operating system, if the system stores additional data in the TSS.

A procedure with access to a TSS descriptor can cause a task switch. In most systems,
the DPL fields of TSS descriptors should be clear, so only privileged software can per­
form task switching.

Access to a TSS descriptor does not give a procedure the ability to read or modify the
descriptor. Reading and modification only can be done using a data descriptor mapped

3
1

BASE 31:24

TSS DESCRIPTOR

2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
432 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7

A LIMIT D TYPE
GD OV

19:16
P P BASE 23:16

L L o 110lBI1

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

AVL AVAILABLE FOR USE BY SYSTEM SOFTWARE
B BUSY BIT
BASE SEGMENT BASE ADDRESS
DPL DESCRIPTOR PRIVILEGE LEVEL
G GRANULARITY
LIMIT SEGMENT LIMIT
P SEGMENT PRESENT
TYPE SEGMENT TYPE

Figure 7"2. TSS Descriptor

7-4

o

+4

240486i7-2

intel® MULTITASKING

to the same location in memory. Loading a TSS descriptor into a segment register gen­
erates an exception. TSS descriptors only may reside in the GDT. An attempt to access
a TSS using a selector with a set TI bit (which indicates the current LDT) generates an
exception.

7.3 TASK REGISTER

The task register (TR) is used to find the current TSS. Figure 7-3 shows the path by
which the processor accesses the TSS.

The task register has both a "visible" part (i.e., a part which can be read and changed by
software) and an "invisible" part (i.e., a part maintained by the processor and inaccessi­
ble to software). The selector in the visible portion indexes to a TSS descriptor in the
GDT. The processor uses the invisible portion of the TR register to retain the base and
limit values from the TSS descriptor. Keeping these values in a register makes execution
of the task more efficient, because the processor does not need to fetch these values
from memory to reference the TSS of the current task.

The LTR and STR instructions are used to modify and read the visible portion of the
task register. Both instructions take one operand, a 16-bit segment selector located in
memory or a general register.

LTR (Load task register) loads the visible portion of the task register with the operand,
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the
invisible portion with information from the TSS descriptor. The LTR instruction is a
privileged instruction; it may be executed only when the CPL is O. The LTR instruction
generally is used during system initialization to put an initial value in the task register;

. afterwards, the contents of the TR register are changed by events which cause a task
switch.

STR (Store task register) stores the visible portion of the task register in a general
register or memory. The STR instruction is privileged.

7.4 TASK GATE DESCRIPTOR

A task gate descriptor provides an indirect, protected reference to a task. Figure 7-4
illustrates the format of a task gate.

The Selector field of a task gate indexes to a TSS descriptor. The RPL in this selector is
not used.

The DPL of a task gate controls access to the descriptor for a task switch. A procedure
may not select a task gate descriptor unless the selector's RPL and the CPL of the
procedure are numerically less than or equal to the DPL of the descriptor. This prevents
less privileged procedures from causing a task switch. (Note that when a task gate is
used, the DPL of the destination TSS descriptor is not used.)

7-5

intel® MULTITASKING

TASK STATE SEGMENT

Q-

VISIBLE PART INVISIBLE PART

SELECTOR BASE ADDRESS I SEGMENT LIMIT I TR

GLOBAL
•. DESCRIPTOR TABLE

N

TSS DESCRIPTOR

T

0

240486i7-3

Figure 7-3. TR Register

7-6

3
1

RESERVED

MULTITASKING

TASK GATE DESCRIPTOR

1111111
6 5 4 3 2 1 0 9 8 7

D
P P 00101

L
RESERVED

TSS SEGMENT SELECTOR RESERVED

DPL DESCRIPTOR PRIVILEGE LEVEL
P SEGMENT PRESENT

Figure 7-4. Task Gate Descriptor

o

+4

240486;7-4

A procedure with access to a task gate can cause a task switch, as can a procedure with
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy
three needs:

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the
TSS descriptor, each task should have only one such descriptor. There. may, how­
ever, be several task gates which select a single TSS descriptor.

2. The need to provide selective access to tasks. Task gates fill this need, because they
can reside in an LDT and can have a DPL which is different from the TSS descrip­
tor's DPL. A procedure which does not have sufficient privilege to use the TSS
descriptor in the GDT (which usually has a DPL of 0) can still call another task if it
has access to a task gate in its LDT. With task gates, the operating system can limit
task switching to specific tasks.

3. The need for an interrupt or exception to cause a task switch. Task gates also may
reside in the IDT, which allows interrupts and exceptions to cause task switching.
When an interrupt or exception supplies a vector to a task gate, the Intel486 proces­
sor switches to the indicated task.

Figure 7-5 illustrates how both a task gate in an LDT and a task gate in the IDT can
identify the same task.

7-7

intel® MULTITASKING

LOCAL GLOBAL
DESCRIPTOR TABLE DESCRIPTOR TABLE

I I

I I

~ TASK GATE
TSS DES~RIPTOR

I r--
I

I
I

I
I

INTERRUPT
DESCRIPTOR TABLE

I

- TASK GATE

I

I

Figure 7-5. Task Gates Reference Tasks

7.5 TASK SWITCHING

TASK STATE
SEGMENT

The Inte1486 processor transfers execution to another task in any of four cases:

1. The current task executes a JMP or CALL to a TSS descriptor.

2. The current task executes a JMP or CALL to a task gate.

3. An interrupt or exception indexes to a task gate in the lOT.

4. The current task executes an lRET when the NT flag is set.

240486;7-5

The JMP, CALL, and lRET instructions, as well as interrupts and exceptions, are all
ordinary mechanisms of the Inte1486 processor which can be used in circumstances in
which no task switch occurs. The descriptor type (when a task is called) or the NT flag
(when the task returns) make the difference between the standard mechanism and the
form which causes a task switch.

7-8

intel® MULTITASKING

To cause a task switch, a JMP or CALL instruction can transfer execution to either a
TSS descriptor or a task gate. The effect is the same in either case: the Intel486 proces­
sor transfers execution to the specified task.

An exception or interrupt causes a task switch when it indexes to a task gate in the IDT.
If it indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See
Chapter 9 for more information on the interrupt mechanism.

An interrupt service routine always returns execution to the interrupted procedure,
which may be in another task. If the NT flag is clear, a normal return occurs. If the NT
flag is set, a task switch occurs. The task receiving the task switch is specified by the TSS
selector in the TSS of the interrupt service routine.

A task switch has these steps:

1. Check that the current task is allowed to switch to the new task. Data-access privi­
lege rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and
the task gate must be numerically greater (e.g., lower privilege level) than or equal
to both the CPL and the RPL of the gate selector. Exceptions, interrupts, and IRET
instructions are permitted to switch tasks regardless of the DPL of the destination
task gate or TSS descriptor.

2. Errors restore any changes made in the processor state when an attempt is made to
execute the error-generating instruction. This lets the return address for the excep­
tion handler point to the error-generating instruction, rather than the instruction
following the error-generating instruction. The exception handler can fix the condi­
tion which caused the error, and restart the task. The intervention of the exception
handler can be completely transparent to the application program.

3. Save the state of the current task. The processor finds the base address of the
current TSS in the task register. The processor registers are copied into the current
TSS (the EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS,
and EFLAGS registers).

4. Load the TR register with the selector to the new task's TSS descriptor, set the new
task's Busy bit, and set the TS bit in the CRO register. The selector is either the
operand of a JMP or CALL instruction, or it is taken from a task gate.

5. Load the new task's state from its TSS and continue execution. The registers loaded
are the LDTR register; the EFLAGS register; the general registers EIP, EAX,
ECX, ED X, EBX, ESP, EBP, ESI, ED!; and the segment registers ES, CS, SS, DS,
FS, and GS. Any errors detected in this step occur in the context of the new task. To
an exception handler, the first instruction of the new task appears not to have
executed.

Note that the state of the old task is always saved when a task switch occurs. If the task
is resumed, execution starts with the instruction which normally would have been next.
The registers are restored to the values they held when the task stopped running.

7-9

int'eL MULTITASKING

Every task switch sets the TS (task switched) bit in the CRO register. The TS bit is useful
to system software for coordinating the operations of the integer unit with the floating­
point unit or a coprocessor. The TS bit indicates that the context of the floating"point
unit or coprocessor may be different from that of the current task. Chapter 10 discusses
the TS bit and coprocessors in more detail.

Exception service routines for exceptions caused by task switching (exceptions resl,llting
from steps 5 through 17 shown in Table 7-1) may be subject to recursive calls ifthey
attempt to reload the segment selector which generated the exception. The cause of the
exception (or the first of multiple causes) should be fixed before reloading the selector.

The privilege level at which the old task was running has no relation to the privilege level
of the new task. Because the tasks are isolated by their separate address spaces and task
state segments, and because privilege rules control access to a TSS, no privilege checks
are needed to perform a task switch. The new task begins executing at the privilege level
indicated by the RPL of new contents of the CS register, which are loaded from the TSS.

7.6 TASK LINKING

The Link field of the TSS and the NT flag are used to return execution to the previous
task. The NT flag indicates whether the currently executing task is nested within the
execution of another task, and the Link field of the current task's TSS holds the TSS
selector for the higher-level task, if there is one (see Figure 7-6).

When an interrupt, exception,jump, or call ca~ses a task switch, the Intel486 processor
copies the segment selector for the current task state segment into the TSS for the new
task and sets the NT flag. The NT flag indicates the Link field of the TSS has been
loaded with a saved TSS selector. The new task releases control by executing an IRET
instruction. When an IRET instruction is executed, the. NT flag is checked. If it is set,
the processor does a task switch to .the previous task. Table 7:2 summarizes the uses of
the fields in a TSS. which are affected by task switching. .

Note that the NT flag may be modified by software executing at any privilege level. It is
possible for a program to set its NT bit and execute an IRET instruction, which. would
have the effect of invoking the task specified in the Link field of the current task's TSS.
To keep spurious task switches from succeeding, the operating system should initialize
the Link field of every TSS it creates.

7.6.1 Busy Bit Prevents Loops

The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one
saved task context, the context saved in the TSS, therefore a task only may be called
once before it terminates. The chain of suspended tasks may grow to any length, due to
multiple interrupts, exceptions, jumps, and calls. The Busy bit prevents a task frornbeing
called if it is in this chain: A re-entrant task switch would overwrite the old TSS for the
task, which would break the chain.

7-10

MULTITASKING

Table 7-1. Checks Made during a Task Switch

Step Condition Checked Exception1 Error Code Reference

1 TSS descriptor is present in NP New Task's TSS
memory

2 TSS descriptor is not busy GP, IRET, TS, Task's backlink TSS
Jmp callint.

3 Registers are loaded from the values in the TSS

4 TSS segment limit greater TS New Task's TSS
than or equal to 108

5 LDT selector of new task is TS New Task's TSS
valid2

6 Code segment DPL matches TS New Code Segment
selector RPL

7 SS selector is valid2 TS New Stack Segment

8 Stack segment is present in SF New Stack Segment
memory

9 Stack segment DPL matches TS Stack not present
CPL

10 LDT of new task is present in TS New Task's TSS
memory

11 CS selector is valid2 TS New Code Segment

12 Code segment is present in NP New Code Segment
memory

13 Stack segment DPL matches TS New Stack Segment
selector RPL

14 DS, ES, FS, and GS selec- TS New Data Segment
tors are valid2

15 DS, ES, FS, and GS seg- TS New Data Segment
ments are readable

16 OS, ES, FS, and GS seg- NP New Data Segment
ments are present in memory

17 DS, ES, FS, andGS segment TS New Data Segment
DPL greater than or equal to
CPL (unless these are con-
forming segments)

NOTES: Future Intel processors may use a different order of checks.
1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS exception,

SF = Stack exception.
2. A selector is valid if it is in a compatible type of table (e.g., an LDT selector may not be in any table

except the GDT), occupies an address within the table's segment limit, and refers to a compatible type of
descriptor (e.g., a selector in the CS register only is valid when it indexes to a descriptor for a code
segment; the descriptor type is specified in its Type field).

7-11

MULTITASKING

TOP LEVEL NESTED MORE DEEPLY CURRENTLY
TASK TASK NESTED EXECUTING

TASK TASK

, TSS TSS TSS EFLAGS

I NT = 1

NT = 0 NT = 1 NT = 1

24048617-6

Figure 7-6. Nested Tasks

Table 7-2. Effect of a Task Switch on Busy, NT, and Link Fields

Effect of CALL
Effect of IRET

Field Effect of Jump Instruction or
Instruction

Interrupt

Busy bit of new task Bit is set. Must have Bit is set. Must have No change., Must be
been clear before. been clear before. set.

Busy bit of old task Bit is Cleared. No change. Bit is cur- Bit is cleared.
rently set.

NT flag of new task No change. Flag is set. No change.

NT flag of old task No change. No change. Flag is cleared.

Link field of new. task. No change. Loaded with selector No change.
for 91d task's TSS.

Link field of 'old task. No change. No change. No change.

7-12

intel@ MULTITASKING

The processor manages the Busy bit as follows:

1. When switching to a task, the processor sets the Busy bit of the new task.

2. When switching from a task, the processor clears the Busy bit of the old task if that
task is not to be placed in the chain (i.e., the instruction causing the task switch is a
JMP or IRETinstruction). If the task is placed in the chain, its Busy bit remains set.

3. When switching to a task, the processor generates a general-protection exception if
the Busy bit of the new task already is set.

In this way, the processor prevents a task from switching to itself or to any task in the
chain, which prevents re-entrant task switching.

The Busy bit may be used in multiprocessor configurations, because the processor
asserts a bus lock when it sets or clears the Busy bit. This keeps two processors from
invoking the same task at the same time. (See Chapter 13 for more information on
multiprocessing.)

7.6.2 Modifying Task Linkages

Modification of the chain of suspended tasks may be needed to resume an interrupted
task before the task which interrupted it. A reliable way to do this is:

1. Disable interrupts.

2. First change the Link field in the TSS of the interrupting task, then clear the Busy
bit in the TSS descriptor of the task being removed from the chain.

3. Re-enable interrupts.

7.7 TASK ADDRESS SPACE

The LDT selector and PDBR (CR3) field of the TSS can be used to give each task its
own LDT and page tables. Because segment descriptors in the LDTs are the connections
between tasks and segments, separate LDTs for each task can be used to set up individ­
ual control over these connections. Access to any particular segment can be given to any
particular task by placing a segment descriptor for that segment in the LDT for that task.
If paging is enabled; each task can have its own set of page tables for mapping linear
addresses to physical addresses.

It also is possible for tasks to have the same LDT. This is a simple and memory-efficient
way to allow some tasks to communicate with or control each other, without dropping
the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments
accessed through segment descriptors in this table.

7-13

int:et MULTITASKING

7.7.1 Task Linear-to-Physical Space Mapping

The choices for arranging the linear-to-physical mappings of tasks fall into two general
classes:

1. One linear-to-physical mapping shared among all tasks. When paging is not enabled,
this is the only choice. Without paging, all linear addresses map to the same physical
addresses. When paging is enabled, this form of linear-to-physical mapping is
obtained by using one page directory for all tasks. The linear space may exceed the
available physical space if demand-paged virtual memory is supported.

2. Independent linear-to-physical mappings for each task. This form of mapping comes
from using a different page directory for each task. Because the PDBR (page direc­
tory base register) is loaded from the TSS with each task switch, each task may have
a different page directory.

The linear address spaces of different tasks may map to completely distinct physical
addresses. If the entries of different page directories point to different page tables and
the page tables point to different pages of physical memory, then the tasks do not share
any physical addresses.

The task state segments must lie in a space accessible to all tasks so that the mapping of
TSS addresses does not change while the processor is reading and updating the TSSs
during a task switch. The linear space mapped by the GDT also should be mapped to a
shared physical space; otherwise, the purpose of the GDT is defeated. Figure 7-7 shows
how the linear spaces of two tasks can overlap in the physical space by sharing page
tables.

7.7.2 Task Logical Address Space

By itself, an overlapping linear-to-physical space mapping does not allow sharing of data
among tasks. To share data, tasks must also have a common logical-to-linear space map­
ping; i.e., they also must have access to descriptors which point into a shared linear
address space. There are three ways to create shared logical-to-physical address-space
mappings:

1. Through the segment descriptors in the GDT. All tasks have access to the descrip­
tors in the GDT. If those descriptors point into a linear-address space which is
mapped to a common physical-address space for all tasks, then the tasks can share
data and instructions.

2. Through shared LDTs. Two or more tasks can use the same LDT if the LDT selec­
tors in their TSSs select the same LDT for use in address translation. Segment
descriptors in the LDT addressing linear space mapped to overlapping physical
space provide shared physical memory. This method of sharing is more selective
than sharing by the GDT; the sharing can be limited to specific tasks. Other tasks in
the system may have different LDTs which do not give them access to the shared
areas.

7-14

MULTITASKING

3. Through segment descriptors in the LDTs which map to the same linear address
space. If the linear address space is mapped to the same physical space by the page
mapping of the tasks involved, these descriptors permit the tasks to share space.
Such descriptors are commonly called "aliases." This method of sharing is even
more selective than those listed above; other descriptors in the LDTs may point to
independent linear addresses which are not shared.

PAGE FRAMES
TSS·

I TASK A I PAGE PAGE
TASK A TSS DIRECTORIES TABLES PAGE

~ PTE
TASK A J

PTE PAGE

PDBR - POE - PTE

POE -
SHARED PT TASK A I

PAGE

PTE H SHARED I
PAGE - PTE r-

TASK B TSS I SHARED I
PAGE

PDBR I- POE r- PTE W TASK B J
PAGE

POE f---- PTE

TSS· PAGE PAGE TABLES

J TASK B J
DIRECTORIES PAGE

PAGE FRAMES

240486i7-7

Figure 7-7. Overlapping Linear-to-Physical Mappings

7-15

Input/OLltput 8

CHAPTER 8
INPUT/OUTPUT

This chapter expiains the input/output architecture of the Intel486 processor. Input/
output is accomplished through I/O ports, which are registers connected to peripheral
devices. An I/O port can be an input port, an output port, or a bidirectional port. Some
I/O ports are used for carrying data, such as the transmit and receive registers of a serial
interface. Other I/O ports are used to control peripheral devices, such as the control
registers of a disk controller.

The Intel486 processor always synchronizes I/O instruction execution with external bus
activity. All previous instructions are completed before an I/O operation begins. In par­
ticular, all writes held pending in: the intel486 CPU write buffers will be completed
b~fore an I/O read or write is performed.

The input/output architecture is the programmer's model of how these ports are
accessed. The discussion of this model includes:

• Methods of addressing I/O ports.
e Instructions which perform I/O operations.

e The I/O protection mechanism.

8.1 I/O ADDRESSING

The Intel486 processor allows I/O ports to be addressed in either of two ways:

• Through a separate I/O address space accessed using I/O instructions.
• Through memory-mapped I/O, where I/O ports appear in the address space ofphys­

ical memory.

The use of a separate I/O address space is supported by special instructions and a
hardware protection mechanism. When memory-mapped I/O is used, the general­
purpose instruction set can be used to access I/O ports, and protection is provided using
segmentation or paging. Some system designers may prefer to use the I/O facilities built
into the processor, while others may prefer the simplicity of a single physical address
space.

If segmentation or paging is used for protection of the I/O address space, the A VL fields
in segment descriptors or page table entries may be used to mark pages containing I/O
as unrelocatable and unswappable. The A VL fields are provided for this kind. of use,
where a system programmer needs to make an extension to the address translation and
protection mechanisms.

Hardware designers use these ways of mapping I/O ports into the address space when
they design the address decoding circuits of a system. I/O ports can be mapped so that
they appear in the I/O address space or the address space of physical memory (orboth).
System programmers may need to discuss with hardware designers the kind of I/O
addressing they would like to have.

8-1

int:et INPUT/OUTPUT

8.1.1 I/O Address Space

The Intel486 processor provides a separate I/O address space, distinct from the address
space for physical memory, where I/O ports can be placed. The I/O address space con­
sists of21 (64K) individually addressable 8-bit ports; any two consecutive 8-bit ports can
be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port. Extra bus
cycles are required if aport crosses the boundary between two doublewords in physical
memory.

The M/IO# pin on the Intel486 processor indicates when a bus cycle to the I/O address
space occurs. When a separate I/O address space is used, it is the responsibility of the
hardware designer to make use of this signal to select I/O ports rather than memory. In
fact, the use of the separate I/O address space simplifies the hardware design because
these ports can be selected by a single signal; unlike other processors, it is not necessary
to decode a number of upper address lines in order to set up a separate I/O address
space.

A program can specify the address of a port in two ways. With an immediate byte
constant, the program can specify:

.. 256 8-bit ports numbered 0 through 255.

• 128 16-bit ports numbered 0, 2, 4, ... , 252, 254.

• 64 32-bit ports numbered 0, 4, 8, ... , 248, 252.

Using a value in the DX register, the program can specify:

• 8-bit ports numbered 0 through 65535.

• 16-bit ports numbered 0, 2, 4, ... , 65532, 65534.

.. 32-bit ports numbered 0, 4, 8; ... , 65528, 65532.

The Intel486 processor can transfer 8, 16, or 32 bits to a device in the I/O space. Like
words in memory, 16-bit ports should be aligned to even addresses so that all 16 bits can
be transferred in a single bus cycle. Like doublewords in memory, 32-bit ports should be
aligned to addresses which are multiples of four. The processor supports data transfers
to unaligned ports,. but there is a performance penalty because an extra bus cycle must
be used.

The IN and OUT instructions move data between a register and a port in the I/O
address space. The instructions INS and OUTS move strings of data between the mem­
ory address space and ports in the I/O address space.

I/O port addresses OF8H through OFFH are reserved for use by Intel®. Do not assign I/O
ports to these addresses.

The exact order of bus cycles used to access ports which require more than one bus cycle
is undefined. For example, an OUT instruction which loads an unaligned doubleword
port at location 2H accesses the word at 4H before accessing the word at 2H. This
behavior is neither defined, nor guaranteed to remain the same in future Intel products.

8·2

intel® INPUT/OUTPUT

If software needs to produce a particular order of bus cycles, this order must be specified
explicitly. For example, to load a word-length port at 4H followed by loading a word port
at 2H, two word-length instructions must be used, rather than a single doubleword
instruction.

Note that although the Intel486 processor automatically masks parity errors for certain
types of bus cycles, such as interrupt acknowledge cycles, it does not mask parity for bus
cycles to the I/O address space. Programmers may need to be aware of this behavior as a
possible source of spurious parity errors.

8.1.2 Memory-Mapped I/O

I/O devices may be placed in the address space for physical memory. This is called
memory-mapped I/O. As long as the devices respond like memory components, they can
be used with memory-mapped I/O.

Memory-mapped I/O provides additional programming flexibility. Any instruction which
references memory may be used to access an I/O port located in the memory space. For
example, the MOY instruction can transfer data between any register and a port. The
AND, OR, and TEST instructions may be used to manipulate bits in the control and
status registers of peripheral devices (see Figure 8-1). Memory-mapped I/O can use the
full instruction set and the full complement of addressing modes to address I/O ports.

PHYSICAL MEMORY

~---------------------'N

ROM

INPUT/OUTPUT PORT

INPUT/OUTPUT PORT

INPUT/OUTPUT PORT

RAM

~ __________________ ~o

240486i8-1

Figure 8-1. Memory-Mapped I/O

8-3

int'eL INPUT/OUTPUT

To optimize performance, the Intel486 CPU allows reads to be re"ordered ahead of
buffered writes in certain precisely-defined circumstances. (See the Intel486™ Processor
Hardware Reference Manual for further details about the operation of the write buffer.)
Using memory-mapped I/O on the Intel486 CPU therefore creates the possibility that an
I/O read will be performed before the memory write of a previous instruction. To elim­
inate this possibility, use an I/O instruction for the read.

Using an I/O instruction for an I/O write can also be advantageous because it guarantees
that the write will be completed before the next instruction begins execution. If I/O
writes are used to control system hardware, then this sequence of events is desirable,
since it guarantees that the next instruction will be executed in the new state.

If caching is enabled,. either external hardware or the paging mechanism (the PCD bit in
the page table entry) must be used to prevent caching of I/O data.

Memory-mapped I/O, like any other memory reference, is subject to access protection
and control. See Chapter 6 for a discussion of memory protection.

8.2 I/O INSTRUCTIONS

The I/O instructions of the Intel486 processor provide access to the processor's I/O ports
for the transfer of data. These instructions have the address of a port in the I/O address
space as an operand. There are two kinds of I/O instructions:

1. Those which transfer a single item (byte, word, or doubleword) to or from a register.

2. Those which transfer strings of items (strings of bytes, words, or doublewords)
located in memory. These are known as "string I/O instructions" or "block I/O
instructions."

These instructions cause the M/IO# signal to be driven low (logic 0) during a bus cycle,
which indicates to external hardware that access to the I/O address space is taking place.
If memory-mapped I/O is used, there is no reason to use I/O instructions.

8.2.1 Register I/O Instructions

The I/O instructions IN and OUT move data between I/O ports and the EAX register
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The IN and
OUT instructions address I/O ports either directly, with the address of one of 256 port
addresses coded in the instruction, or indirectly using an address in the DX register to
select one of 64K port addresses. These instructions synchronize program execution to
external hardware. The Intel486 processor write buffers are cleared and program execu­
tion delayed until the last ready of the last bus cycle has been returned.

8-4

INPUT/OUTPUT

IN (Input from Port) transfers a byte, word, or doubleword from an input port to the
AL, AX, or EAX registers. A byte IN instruction transfers 8 bits from the selected port
to the AL register. A word IN instruction transfers 16 bits from the port to the AX
register. A doubleword IN instruction transfers 32 bits from the port to the EAX
register.

OUT (Output from Port) transfers a byte, word, or doubleword from the AL, AX, or
EAX registers to an output port. A byte OUT instruction transfers 8 bits from the AL
register to the selected port. A word OUT instruction transfers 16 bits from the AX
register to the port. A doubleword OUT instruction transfers 32 bits from the EAX
register to the port.

8.2.2 Block I/O Instructions

The INS and OUTS instructions move blocks of data between I/O ports and memory.
Block I/O instructions use an address in the DX register to address a port in the I/O
address space. These instructions use the DX register to specify:

• 8-bit ports numbered 0 through 65535.

o 16-bit ports numbered 0, 2, 4, ... , 65532, 65534.

o 32-bit ports numbered 0, 4, 8, ... , 65528, 65532.

Block I/O instructions use either the SI or DI register to address memory. For each
transfer, the SI or DI register is incremented or decremented, as specified by the DF
flag.

The INS and OUTS instructions, when used with repeat prefixes, perform block input or
output operations. The repeat prefix REP modifies the INS and OUTS instructions to
transfer blocks of data between an I/O port and memory. These block I/O instructions
are string instructions (see Chapter 3 for more on string instructions). They simplifY
programming and increase the speed of data transfer by eliminating the need to use a
separate LOOP instruction or an intermediate register to hold the data.

The string I/O instructions operate on byte strings, word strings, or doubleword strings.
After each transfer, the memory address in the ESI or EDI registers is incremented or
decremented by 1 for byte operands, by 2 for word operands, or by 4 for doubleword
operands. The DF flag controls whether the register is incremented (the DF flag is
clear) or decremented (the DF flag is set).

INS (Input String from Port) transfers a byte, word, or doubleword string element from
an input port to memory. The INSB instruction transfers a byte from the selected port to
the memory location addressed by the ES and EDI registers. The INSW instruction
transfers a word. The INSD instruction transfers a doubleword. A segment override
prefix cannot be used to specify an alternate destination segment. Combined with a REP
prefix, an INS instruction makes repeated read cycles to the port, and puts the data into
consecutive locations in memory.

8-5

intet INPUT/OUTPUT

OUTS (Output String from Port) transfers a byte, word, or doubleword string element
from memory to an output port. The OUTSB instruction transfers a byte from the mem­
ory location addressed· by the DS and ESI registers to the selected port.· The OUTSW
instruction transfers a word. The OUTSD instruction transfers a doubleword. A segment
override prefix cannot be used to specify an alternate source segment. Combined with a
REP prefix, an OUTS instruction reads consecutive locations in memory, and writes the
data to an output port.

8.3 PROTECTION AND I/O

The I/O architecture has two protection mechanisms:

1. The 10PL field in the EFLAGS register controls access to the I/O instructions.

2. The I/O permission bit map of a TSS segment controls access to individual ports in
th~ I/O address space.

These protection mechanisms are available only when a separate I/O address space is
used. When memory-mapped I/O is used, protection is provided using segmentation or
paging.

8.3.1 I/O Privilege Level

In systems where I/O protection is used,access to I/O instructions is controlled. by the
IOPL field in the EFLAGS register. This permits the operating system to 'adjust the
privilege level needed to perform I/O. In a typical protection ring model, privilege levels
o .and 1 have access to the I/O instructions. This lets the operating system and the device
drivers perform I/O, but keeps applications and less privileged device drivers from
accessing the I/O address space. Applications access I/O through the operating system.

The following instructions can be executed only if CPL ::::; 10PL:

IN
INS
OUT
OUTS
CLI
STI

-Input
- Input String
-Output
- Output String
-Clear Interrupt-Enable Flag
.-Set Interrupt-Enable Flag

These instructions are called "sensitive" instructions, because they are sensitive to the
10PL field. Invirtual-8086 mode, 10PL is not used; only the I/O permission bit map
limit~ access to.l/O ports (see Chapter 23).

To use sensitive instructions, a procedure must run at a privilege level at least as privi­
leged as that specified by the 10PL field. Any attempt by a less privileged procedure to
use a sensitive instruction results in a general-protection exception. Because each task
has its own copy of the EFLAGS register, each task can have a different 10PL.

8-6

int'eL INPUT/OUTPUT

A task can change 10PL only with the POPF instruction; however, such changes are
privileged. No procedure may change its 10PL unless it is running at privilege level O.
An attempt by a less privileged procedure to change the 10PL does not result in an
exception; .the 10PL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the
CLI and STI instructions); however, changes to the IF flag using the POPF instruction
are 10PL-sensitive. A procedure may change the setting of the IF flag with a POPF
instruction only if it runs with a CPL at least as privileged as the 10PL. An attempt by a
less privileged procedure to change the IF flag does not result in an exception; the IF
flag simply remains unchanged.

8.3.2 I/O Permission Bit Map

The Intel486 processor can generate exceptions for references to specific I/O addresses.
These addresses are specified in the I/O permission bit map in the TSS (see Figure 8-2).
The size of the map and its location in the TSS are variable. The processor finds the I/O

TASK STATE SEGMENT

11111111 I
1/0 PERMISSION

BIT MAP

1/0 MAP BASE I

NOTE: BASE ADDRESS FOR 1/0 BIT MAP
MUST NOT EXCEED DFFF (HEXA·
DECIMAL)

LAST BYTE OF BIT MAP MUST BE
FOLLOWED BY A BYTE WITH ALL
BITS SET.

Figure 8-2. I/O Permission Bit Map

240486i8·2

inteL INPUT/OUTPUT

permission bit map with the I/O map base address in' the TSS. The base address 'is a
16-bit offset into the.TSS;This is an offset to the beginning of the bit map. The limit of
the TSS is the limit on the' size of the I/O permission bit IIlap .. ' '

',,'

Because each task has its own TSS, each task has its own I/O permission bit map. Access
to individuall/O ports:can be granted to. individual tasks.

If CPL ::;;IOPL in prot~cted,mode, then the processor allows I/O operation~. to proceed.
If CPL > 10 PL; or if the· processqr . is. operating. in virtual 8086 mode, then the pro,cessor
checks the 110 permission map. Each bit in the .mapcorrespondsto an I/O . port byte
address; for example, the control bit for address 41 (decima1)in the I/Oaddress:space is
found at bit position 1 of the sixth byte in the bit map. The processor tests all the bits
corresponding to the I/O port being addressed; for example, a doubleword operation
tests four bits corresponding to four adjacent byte addresses; If any tested bit is set, a
general-protection exception is generated. If all tested bits are clear, the I/O operation
proceeds ..

Bec~use'l/O ports which, ar~not alig~~d to 'wQrd anddoublewo~d bound,aries are per~
mitted, it is possible that the processor may need to 'access two bytes in the bit map when
I/O permission is checked. For maximum .speed, the processor has been designed to read
two bytes for every access to an I/O port. To prevent exceptions from being generated
)Vhen the ports with the highest addresses are accessed, an extra byte needs to come
after the table. This byte must have aU ofits bits set, and it must be within the segment'
limit.

it is not necessary for th¢ I/O permission bit map to represent all the I/O addresses. I/O
addresses not spanned by the map are tre.ated as if they had set bits in the map. For:
example, if the TSS segIl?-ent limit is 10 bytes past the bit map base address, the map has
11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O address
space generate exceptions. .

If the I/O bit map base address is greater than or equal to the TSS segment limit, there
is no I/O permission map, an.d aU I/O instructions generate exceptions. The base address
must be less than or equal to ODFFFH. '

" ,," ',I

-,",' .

Exceptions and Interrupts 9

CHAPTIER 9
EXCEPTIONS AND ~NTIERRUPTS

Exceptions and interrupts are forced transfers of execution to a task or a procedure. The
task or procedure is called a handler. Interrupts occur at random times during the exe­
cution of a program, in response to signals from hardware. Exceptions occur when
instructions are executed which provoke exceptions. Usually, the servicing of interrupts
and exceptions is performed in a manner transparent to application programs. Interrupts
are used to handle events external to the processor, such as requests to service periph­
eral devices. Exceptions handle conditions detected by the processor in the course of
executing instructions, such as division by O.

There are two sources for interrupts and two sources for exceptions:

1. Interrupts

a Maskable interrupts, which are received on the INTR input of the Intel486 pro­
cessor. Maskable interrupts do not occur unless the interrupt-enable flag (IF) is
set.

a Nonmaskable interrupts, which are received on the NMI (Non-Maskable Inter­
rupt) input of the processor. The processor does not provide a mechanism to
prevent nonmaskable interrupts.

2. Exceptions

o Processor-detected exceptions. These are further classified as faults, traps, and
aborts.

3. Programmed exceptions. The INTO, INT 3, INT n, and BOUND instructions may
trigger exceptions. These instructions often are called "software interrupts," but the
processor handles them as exceptions.

This chapter explains the features of the Intel486 processor which control and respond
to interrupts.

9.1 EXCEPTION AND INTERRUPT VECTORS

The processor associates an identifying number with each different type of interrupt or
exception. This number is called a vector.

The NMI interrupt and the exceptions are assigned vectors in the range 0 through 31.
Not all of these vectors are currently used by the processor; unassigned vectors in this
range are reserved for possible future uses. Do not use unassigned vectors.

The vectors for maskable interrupts are determined by hardware. External interrupt
controllers (such as Intel's 8259A Programmable Interrupt Controller) putthe vector on
the bus of the Intel486 processor during its interrupt-acknowledge cycle. Any vectors in
the range 32 through 255 can be used. Table 9-1 shows the assignment of exception and
interrupt vectors.

9-1

intel® EXCEPTIONS AND INTERRUPTS

Table 9-1. Exception and Interrupt Vectors

Vector Number Description

0 Divide Error
1 Debug Exception
2 NMI Interrupt
3 Breakpoint
4 INTO-detected Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
8 Double Fault
9 CoProcessor Segment Overrun.

10 Invalid Task State Segment
11 Segment Not Present
12 Stack Fault
13 General Protection
14 Page Fault
15 (Intel reserved. Do not use.)
16 Floating-Point Error
17 Alignment Check

18-31 (Intel reserved. Do not use.)
32-255 Maskable Interrupts

Exceptions are classified as faults, traps, or abarls depending on the way they are
reported and whether restart of the instruction which caused the exception is supported.

Faults -:- A fault is an exception which is reported at the instruction boundary prior to the
instruction in which the exception was detected. The fault is reported with the machine
restored to a state which permits the instruction to be restarted. The return address for
the fault handler points to the instruction which generated the fault, rather than the
instruction following the faulting instruction.

Traps-A trap is an exception which is reported at the instruction boundary immediately
after the instruction in which the exception was detected.

Aborts - An abort is an exception which' does not always report the location of the
instruction causing the exception and does not allow restart of the program which caused
the exception. Aborts are used to report severe errors, such as hardware errors and
inconsistent or illegal values in system tables.

9.2 INSTRUCTION RESTART

For most exceptions and interrupts, transfer of execution does not take place until the
end of the current instruction. This leaves the EIP register pointing at the instruction
which comes after the instruction which was being executed when the exception or inter­
rupt occurred. If the instruction has a repeat prefix, transfer takes place at the end of

9-2

intel® EXCEPTIONS AND INTERRUPTS

the current iteration with the registers set to execute the next iteration. But if the excep­
tion is a fault, the processor registers are restored to the state they held before execution
of the instruction began. This permits instruction restart.

Instruction restart is used to handle exceptions which block access to operands. For
example, an application program could make reference to data in a segment which is not
present in memory. When the exception occurs, the exception handler must load the
segment (probably from a hard disk) and resume execution beginning with the instruc­
tion which caused the exception. At the time the exception occurs, the instruction may
have altered the contents of some of the processor registers. If the instruction read an
operand from the stack, it is necessary to restore the stack pointer to its previous value.
All of these restoring operations are performed by the processor in a manner completely
transparent to the application program.

When a fault occurs, the EIP register is restored to point to the instruction which
received the exception. When the exception handler returns, execution resumes with this
instruction.

9.3 ENABLING AND DISABLING INTERRUPTS

Certain conditions and flag settings cause the processor to inhibit certain kinds of inter­
rupts and exceptions.

9.3.1 NMI Masks Further NMls

While an NMI interrupt handler is executing, the processor disables additional calls to
the procedure or task which handles the interrupt until the next IRET instruction is
executed. This prevents stacking up calls to the interrupt handler. It is recommended
that interrupt gates be used for NMI's in order to disable nested maskable interrupts,
since an IRET instruction from the maskable-interrupt handler would re-enable NMI.

9.3.2 IF Masks INTR

The IF flag can turn off servicing of interrupts received on the INTR pin of the proces­
sor. When the IF flag is clear, INTR interrupts are ignored; when the IF flag is set,
INTR interrupts are serviced. As with the other flag bits, the processor clears the IF flag
in response to a RESET signal. The STI and CLI instructions set and clear the IF flag.

eLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) put the IF flag
(bit 9 in the EFLAGS register) in a known state. These instructions may be executed
only if the CPL is an equal or more privileged level than the IOPL. A general-protection
exception is generated if they are executed with a lesser privileged level.

9-3

EXCEPTIONS AND INTERRUPTS

The IF flag also is affected by the following operations:

• The PUSHF instruction stores all flags on the stac:((, where they can be examined and
modified. The POPF instruction can be used to load the modified form back into the
EFLAGS register.

• Task switches and the POPF and IRET instructions load the EFLAGS register;
therefore, they can be used to modify the setting of the· IF flag.

• Interrupts through interrupt gates automatically clear the IF flag,. which disables
interrupts. (Interrupt gates are explained later in this chapter).

9.3.3 RF Masks Debug Faults

The RF flag in the EFLAGS register can be used to turn off servicing of debug faults. If
it is clear, debug faults are serviced; if it is set, they are ignored. This is used to suppress
multiple calls to the debug exception handler when a breakpoint occurs.

For example·, an instruction breakpoint may have b~en set for an instruction which ref~
erences data in a segment which is not present in memory. When the instruction is
executed for the first time, the breakpoint generates a debug exception. Before the
debug handler returns, it should set the RF. flag in the copy of the EFLAGS register
saved on the stack. This allows the segment-not-present fault to be reported after the
debug exception handler transfers execution back to the instruction. If the flag is not set,
another debug exception occurs after the debug exception handler returns.

The processor sets the RF bit in the saved contents of the EFLAGS register when the
other faults occur, so multiple debug exceptions are not generated when the instruction
is restarted due to the segment~not-present fault. The processor clears its RF flag when
the execution ofthe faulting instruction completes. This allows an instruction breakpoint
to be generated for the following instruction. (See Chapter 11 for more information 011
debugging;) . .

9.3.4 MOV or POP to SS Masks Some Exceptions and Interrupts

Software which needs to change stack segments often uses a pair of instructions; for
example: .

MOV SS, AX
MOV ESP, Stack Top

If an interrupt or exception occurs after the segment selector has been loaded but :before
the. ESP register has been loaded, these two parts of the logical address into the stack
space are inconsistent for the duration of the interrupt or exception handler.

9-4

in1:eL EXCEPTIONS AND INTERRUPTS

To prevent this situation, the Intel486 processor inhibits interrupts, debug exceptions,
and single-step trap exceptions after either a MOV to SS instruction or a POP to SS
instruction, until the instruction boundary following the next instruction is reached.
General-protection faults may still be generated. If the LSS instruction is used to modify
the contents of the SS register, the problem does not occur.

9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the pro­
cessor services them in a predictable order. The priority among classes of exception and
interrupt sources is shown in Table 9-2. The processor first services a pending exception
or interrupt from the class which has the highest priority, transferring execution to the
first instruction of the handler. Lower priority exceptions are discarded; lower priority
interrupts are held pending. Discarded exceptions are re-issued when the interrupt han­
dler returns execution to the point of interruption.

9.5 INTERRUPT DESCRIPTOR TABLE

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a
descriptor for the procedure or task which services the associated event. Like the GDT
and LDTs, the IDT is an array of 8-byte descriptors. Unlike the GDT, the first entry of
the IDT may contain a descriptor. To form an index into the IDT, the processor scales
the exception or interrupt vector by eight, the number of bytes in a descriptor. Because

Table 9-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Descriptions

Highest Debug Trap Exceptions from the last instruction
(TF flag set, T bit in TSS set, or data breakpoint)
Debug Fault Exceptions for the next instruction (code breakpoint)
Faults from fetching next instruction (Segment-Nat-Present Fault or General-
Protection Fault)
Non-Maskable Interrupt
Maskable Interrupt
Faults from instruction decoding (Illegal Opcode, instruction too long, or
privilege violation) if WAIT instruction, Coprocessor-Nat-Available
Exception (TS and .MP bits of CRO set) if ESC instruction, Coprocessor-Not-
Available
Exception (EM or TS bits of CRO set) if WAIT or ESC instruction,
Coprocessor-Error
Exception (Error# pin asserted)
Segment-Nat-Present Faults, Stack Faults, and General-Protection Faults for
memory operands
Alignment Faults for memory operands

Lowest Page Faults for memory operands

9-5

EXCEPTIONS AND INTERRUPTS

there are only 256 vectors, the IDT need not contain more than 256 descriptors. It can
contain fewer than. 256 descriptors; descriptors are required only for the interrupt vec­
tors which may occur.

The IDT may reside anywhere in physical memory. As Figure 9-1 shows, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address
and 16-bit limit for the IDT. The LIDT and SIDT instructions load and store the con­
tents of the IDTR register. Both instructions have one operand, which is the address of
six bytes in memory. .

If a vector references a descriptor beyond the limit, the processor enters shutdown
mode. In this mode, the processor stops executing instructions until an NMI interrupt is
received or reset initialization is invoked. The processor generates a special bus cycle to

IDTR REGISTER

47 16 15 o

I lOT BASE ADDRESS lOT LIMIT

INTERRUPT
DESCRIPTOR TABLE

+'" I
INTERRUPT

INTERRUPT #N

I
GATE FOR

INTERRUPT #3

I
GATE FOR

INTERRUPT #2

. I
GATE FOR

INTERRUPT #1

240486;9-1

Figure 9-1. IOTR Register Locates lOT in Memory

9-6

in~® EXCEPTIONS AND INTERRUPTS

indicate it has entered shutdown mode. Software designers may need to be aware of the
response of hardware to receiving this signal. For example, hardware may turn on an
indicator light on the front panel, generate an NMI interrupt to record diagnostic infor­
mation, or invoke reset initialization.

LIDT (Load IDT register) loads the IDTR register with the base address and limit held
in the memory operand. This instruction can be executed only when the CPL is O. It
normally is used by the initialization code of an operating system when creating an IDT.
An operating system also may use it to change from one IDT to another.

SIDT (Store IDT register) copies the base and limit value stored in IDTR to memory.
This instruction can be executed at any privilege level.

9.6 lOT DESCRIPTORS

The IDT may contain any of three kinds of descriptors:

.. Task gates

o Interrupt gates

.. Trap gates

Figure 9-2 shows the format of task gates, interrupt gates, and trap gates. (The task gate
in an IDT is the same as the task gate in the GDT or an LDT already discussed in
Chapter 7.)

9.7 INTERRUPT TASKS AND INTERRUPT PROCEDURES

Just as a CALL instruction can call either a procedure or a task, so an exception or
interrupt can "call" an interrupt handler as either a procedure or a task. When respond­
ing to an exception or interrupt, the processor uses the exception or interrupt vector to
index to a descriptor in the IDT. If the processor indexes to an interrupt gate or trap
gate, it calls the handler in a manner similar to a CALL to a call gate. If the processor
finds a task gate, it causes a task switch in a manner similar to a CALL to a task gate.

9.7.1 Interrupt Procedures

An interrupt gate or trap gate indirectly references a procedure which runs in the con­
text of the currently executing task, as shown in Figure 9-3. The selector of the gate
points to an executable-segment descriptor in either the GDT or the current LDT. The
offset field of the gate descriptor points to the beginning of the exception or interrupt
handling procedure.

The Intel486 processor calls an exception or interrupt handling procedure in much the
same manner as a procedure call; the differences are explained in the following sections.

9-7

intel®

3
1

3
1

EXCEPTIONS AND INTERRUPTS

RESERVED

TASK GATE

1111111
6 5 4 321 0 9 8 7

D
P P o 0 1 0 1

L
RESERVED

TSS SEGMENT SELECTOR RESERVED

INTERRUPT GATE

2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

D

o

o

OFFSET 31 :16 P P o 1 1, 1 o 0 0 0 RESERVED

SEGMENT SELECTOR

L

OFFSET 15:00

TRAP GATE

1111111 3
1 6 5 432 1 0 9 8 7 6 5 4 o

D
OFFSET 31 :16 P P o 1 1 1 1 000

L

SEGMENT SELECTOR OFFSET 15:00

DPL
OFFSET
P
RESERVED
SELECTOR

DESCRIPTOR PRIVILEGE LEVEL
OFFSET TO PROCEDURE ENTRY POINT
SEGMENT PRESENT BIT
DO NOT USE
SEGMENT SELECTOR FOR DESTINATION
CODE SEGMENT

Figure 9-2. lOT Gate Descriptors

9-8

RESERVED

+4

+4

+4

240486;9-2

intel®

INTERRUP
VECTOR

T __

EXCEPTIONS AND INTERRUPTS

lOT

I

I
OFFSET

+ f-
INTERRUPT OR -TRAP GATE :---

I

I

I

SEGMENT SELECTOR

DESTINATION
CODE SEGMENT

INTERRUPT
PROCEDURE

GOT OR LOT BASE ADDRESS

I

I

I-
SEGMENT -DESCRIPTOR

I

I

I

Figure 9-3. Interrupt Procedure Call

9-9

240486i9-3

EXCEPTIONS AND INTERRUPTS

9.7.1.1 STACK OF INTERRUPT PROCEDURE

Just as with a transfer of execution using a CALL instruction, a transfer to an exception
or interrupt handling procedure uses the stack to store the processor state. As Figure 9-4
shows, an interrupt pushes the contents of the EFLAGS register onto the stack before
pushing the address of the interrupted instruction.

Certain types of exceptions also push an error code on the stack. An exception handler
can use the error code to help diagnose the exception.

NO PRIVILEGE LEVEL
CHANGE, NO ERROR CODE

-
OLD EFLAGS

I OLD CS

OLD EIP -
PRIVILEGE LEVEL

CHANGE, NO ERROR CODE

UNUSED -
I OLD SS

OLD ESP

OLD EFLAGS

I OLD CS

OLD EIP -

OLD ESP

NEW ESP

ESP FROM
TSS

NEW ESP

NO PRIVILEGE LEVEL
CHANGE, WITH ERROR CODE

- OLD ESP

OLD EFLAGS

I OLDCS

OLD EIP

ERROR CODE ;-t- NEW ESP

PRIVILEGE LEVEL
CHANGE, WITH ERROR CODE

UNUSED

I OLD SS

OLD ESP

OLD EFLAGS

I . OLD CS

OLD EIP

ERROR CODE

-

~

ESP FROM
TSS

NEW ESP

240486;9-4

Figure 9-4. Stack Frame After Exception or Interrupt

9,10

intel® EXCEPTIONS AND INTERRUPTS

9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE

An interrupt procedure differs from a normal procedure in the method of leaving the
procedure. The IRET instruction is used to exit from an interrupt procedure. The IRET
instruction is similar to the RET instruction except that it increments the contents of the
ESP register by an extra four bytes and restores the saved flags into the EFLAGS reg­
ister. The IOPL field of the EFLAGS register is restored only if the CPL is O. The IF
flag is changed only if CPL :0; IOPL.

9.7.1.3 FLAG USAGE BY INTERRUPT PROCEDURE

Interrupts using either interrupt gates or trap gates cause the TF flag to be cleared after
its current value is saved on the stack as part of the saved contents of the EFLAGS
register. In so doing, the processor prevents instruction tracing from affecting interrupt
response. A subsequent IRET instruction restores the TF flag to the value in the saved
contents of the EFLAGS register on the stack.

The difference between an interrupt gate and a trap gate is its effect on the IF flag. An
interrupt which uses an interrupt gate clears the IF flag, which prevents other interrupts
from interfering with the current interrupt handler. A subsequent IRET instruction
restores the IF flag to the value in the saved contents of the EFLAGS register on the
stack. An interrupt through a trap gate does not change the IF flag.

9.7.1.4 PROTECTION IN INTERRUPT PROCEDURES

The privilege rule which governs interrupt procedures is similar to that for procedure
calls: the processor does not permit an interrupt to transfer execution to a procedure in
a less privileged segment (numerically greater privilege level). An attempt to violate this
rule results in a general-protection exception.

Because interrupts generally do not occur at predictable times, this privilege rule effec­
. tively imposes restrictions on the privilege levels at which exception and interrupt han­

dling procedures can run. Either of the following techniques cart be used to keep the
privilege rule from being violated.

• The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used by handlers for certain exceptions (divide error, for example).
These handlers must use only the data available on the stack. If the handler needs
data from a data segment, the data segment would have to have privilege level 3,
which would make it unprotected.

• The handler can be placed in a code segment with privilege level O. This handler
would always run, no matter what CPL the program has.

9-11

infel® EXCEPTIONS AND INTERRUPTS

9.7.2 Interrupt Tasks

A taskgate in the IDT indirectly references a task, as Figure 9-5 illustrates. The segment
selector in the task gate addresses a TSS descriptor in the GDT.

INTERRUPT
VECTOR - I--

-

lOT TSS

I

I

TASK IGATE - -
J

I

I

TSS SELECTOR

GOT TSS BASE ADDRESS

I

I

TSS -DESCRIPTOR

I

I

I

240486i9·5

Figure 9-5. Interrupt Task Switch

9-12

intel® EXCEPTIONS AND INTERRUPTS

When an exception or interrupt calls a task gate in the IDT, a task switch results.
Handling an interrupt with a separate task offers two advantages:

• The entire context is saved automatically.

• The interrupt handler can be isolated from other tasks by giving it a separate address
space. This is done by giving it a separate LDT.

A task switch caused by an interrupt operates in the same manner as the other task
switches described in Chapter 7. The interrupt task returns to the interrupted task by
executing an IRET instruction.

Some exceptions return an error code. If the task switch is caused by one of these, the
processor pushes the code onto the stack corresponding to the privilege level of the
interrupt handler.

When interrupt tasks are used in an operating system for the Intel486 processor, there
are actually two mechanisms which can create new tasks: the software scheduler (part of
the operating system) and the hardware scheduler (part of the processor's interrupt
mechanism). The software scheduler needs to accommodate interrupt tasks which may
be generated when interrupts are enabled.

9.8 ERROR CODE

With exceptions related to a specific segment, the processor pushes an error code onto
the stack of the exception handler (whether it is a procedure or task). The error code
has the format shown in Figure 9-6. The error code resembles a segment selector; how­
ever instead of an RPL field, the error code contains two one-bit fields:

1. The processor sets the EXT bit if an event extenial to the program caused the
exception.

2. The processor sets the IDT bit if the index portion of the error code refers to a gate
descriptor in the IDT.

If the IDT bit is not set, the TI bit indicates whether the error code refers to the GDT
(TI bit clear) or to the LDT (TI bit set). The remaining 13 bits are the upper bits of the
selector for the segment. In some cases the error code is null (i.e., all bits in the lower
word are clear).

I
3
1

UNDEFINED
DURING TEST I

1
5

SELECTOR
INDEX

Figure 9-6. Error Code

9-13

321 0

240486;9·6

inteL EXCEPTIONS AND INTERRUPTS

The error code is pushed on the stack as a doubleword. This is done to keep the stack
aligned on addresses which are multiples of four. The upper half of the doubleword is
reserved.

9.9 EXCEPTION CONDITIONS

The following sections describe conditions which generate exceptions. Each description
classifies the exception as a fault, trap, or abort. This classification provides information
needed by system programmers for restarting the procedure in which the exception
occurred:

• Faults - The saved contents of the CS and EIP registers point to the instruction which
generated the fault.

• Traps - The saved contents of the CS and EIP registers stored when the trap occurs
point to the instruction to be executed after the instruction which generated the trap.
If a trap is detected during an instruction which transfers execution, the saved con­
tents of the CS and EIP registers reflect the transfer. For example, if a trap is
detected in a JMP instruction, the saved contents of the CS and EIP registers point to
the destination of the JMP instruction, not to the instruction at the next address
above the JMP instruction.

• Aborts - An abort is an exception which permits neither precise location of the
instruction causing the exception nor restart of the program which caused the excep­
tion. Aborts are used to report severe errors, such as hardware errors and inconsis­
tent or illegal values in system tables.

9.9.1 Interrupt 0 - Divide Error

The divide-error fault occurs during a DIV or an IDIV instruction when the divisor is O.

9.9.2 Interrupt 1 -Debug Exceptions

The processor generates a debug exception for a number of conditions; whether the
exception is a fault or a trap depends on the condition, as shown below: ..

• Instruction address breakpoint fault

• Data address breakpoint trap

• General detect fault

• Single-step trap

• Task-switch breakpoint trap

The processor does not push an error code for this exception. An exception handler can
examine the debug registers to determine which condition caused the exception. See
Chapter 11 for more detailed information about debugging and the debug registers.

9-14

int:et EXCEPTIONS AND INTERRUPTS

9.9.3 Interrupt 3 - Breakpoint

The INT 3 instruction generates a breakpoint trap. The INT 3 instruction is one byte
long, which makes it easy to replace an opcode in a code· segment in RAM with the
breakpoint opcode. The operating system or a debugging tool can use a data segment
mapped to the same physical address space as the code segment to place an INT 3
instruction in places where it is desired to call the debugger. Debuggers use breakpoints
as a way to suspend program execution in order to examine registers, variables, etc.

The saved contents of the CS and EIP registers point to the byte following the break­
point. If a debugger allows the suspended program to resume execution, it replaces the
INT 3 instruction with the original opcode at the location of the breakpoint, and it
decrements the saved contents of the EIP register before returning. See Chapter 11 for
more information on debugging.

9.9.4 Interrupt 4-0verflow

The overflow trap occurs when the processor executes an INTO instruction with the OF
flag set. Because signed and unsigned arithmetic both use some of the same instructions,
the processor cannot determine when overflow actually occurs. Instead, it sets the OF
flag when .the results, if interpreted as signed numbers, would be out of range. When
doing arithmetic on signed operands, the OF flag can be tested directly or the INTO
instruction can be used.

9.9.5 Interrupt 5 - Bounds Check

The bounds-check fault is generated when the processor, while executing a BOUND
instruction, finds that the operand .exceeds the specified limits. A program can use the
BOUND instruction to check a signed array index against signed limits defined in a
block of memory.

9.9.6 Interrupt 6 -Invalid Opcode

The invalid-opcode fault is generated when an invalid opcode is detected by the execu­
tion unit. (The exception is not detected until an attempt is made to execute the invalid
opcode; i.e., prefetching an invalid opcode does not cause this exception.) No error code
is pushed on the stack. The exception can be handled within the same task.

This exception also occurs when the type of operand is invalid for the given opcode.
Examples include an intersegment JMP instruction using a register operand, or an LES
instruction with a register source operand.

9-15

intet EXCEPTIONS AND INTERRUPTS

A third condition which generates this exception is the use of. the LOCK prefix with an
instruction which may not be locked. Only certain instructions may be used with bus
locking, and only forms of these instructions which write to a destination in memory may
be used. All other uses of the LOCK prefix generate an invaJid-opoode exception.

NOTE
Table 9-3 is a list of undefined opcodes that are reserved by Intel. These opcodes
do not generate interrupt 6.

9.9.7 Interrupt 7 - Device Not Available

The device-not-available fault is generated by either of two c()nditions:

• The processor executes an ESC instruction, and the EMbit of the CRO register is set .

• The processor executes a WAIT instruction (with MP=l) or ESC instruction, imd
the TS bit of the CRO register is set.

Interrupt 7 thus occurs when the programmer wants ESC instructions to be handled by
software (EM set), or when a WAIT or ESC instruction is encountered and the context
of the floating-point unit is different from that of the curren.t task.

On the 286 and Intel386 processors, the MP bit in the· CRO register is used with the TS
bit to determine if WAIT instructions should generate exceptions. For programs running
on the Intel486 processor, the MP bit should always be set.

Table 9-3. Intel Reserved Opcodes

Single Byte

82
06
F1

Double Byte

OF 07
OF 10
OF 11
OF 12
OF 13

F6XX
F7XX

CO XX
C1 XX
DO XX
01 XX ,.

02 XX
. 03 XX

9·16

in1:el® EXCEPTIONS AND INTERRUPTS

9.9.8 Interrupt 8 - Double Fault

Normally, when the processor detects an exception while trying to call the handler for a
prior exception, the two exceptions can be handled serially. If, however, the processor
cannot handle them serially, it signals the double-fault exception instead. To determine
when two faults are to be signalled as a double fault, the Intel486 processor divides the
exceptions into three classes: benign exceptions, contributory exceptions, and page
faults. Table 9-4 shows this classification.

When two benign exceptions or interrupts occur, or one benign and one contributory,
the two events can be handled in succession. When two contributory events occur, they
cannot be handled, and a double-fault exception is generated.

If a benign or contributory exception is followed by a page fault, the two events can be
handled in succession. This is also true if a page fault is followed by a benign exception.
However if a page fault is followed by a contributory exception or another page fault, a
double-fault abort is generated.

An initial segment or page fault encountered while prefetching instructions is outside
the domain of Table 9-4. Any further faults generated while the processor is attempting
to transfer control to the appropriate fault handler could stilI lead to a double-fault
sequence.

The processor always pushes an error code onto the stack of the double-fault handler;
however, the error code is always O. The faulting instruction may not be restarted. If any
other exception occurs while attempting to call the double-fault handler, the processor
enters shutdown mode. This mode is similar to the state following execution of a HLT
instruction. No instructions are executed until an NMI interrupt or a RESET signal is

Table 9-4. Interrupt and Exception Classes

Class Vector Number Description

1 Debug Exceptions
2 NMI Interrupt

Benign
3 Breakpoint
4 Overflow

Exceptions
5 Bounds Check

and Interrupts
6 Invalid Opcode
7 Device Not Available

16 Floating-Point Error

0 Divide Error

Contributory
10 Invalid TSS
11 Segment Not Present

Exceptions
12 Stack Fault
13 General Protection

Page Faults 14 Page Fault

9-17

inteL EXCEPTIONS AND INTERRUPTS

received. If the shutdown occurs while the processor is executing an NMI interrupt
handler, then only a RESET can restart the processor. The processor generates a special
bus cycle to indicate it has entered shutdown mode.

9.9.9 Interrupt 9 - (Intel reserved. Do not use.)

Interrupt 9, the coprocessor-segment overrun abort, is generated in Intel386 CPU/
Intel387 math coprocessor systems when the Intel386 CPU detects a page or segment
violation while transferring the middle portion of an Inte1387 math coprocessor operand.
This interrupt is not generated by the Intel486 processor; interrupt 13 occurs instead.

9.9.10 Interrupt 10 -Invalid TSS

An invalid-TSS fault is generated if a task switch to a segment with an invalid TSS is
attempted. A TSS is invalid in the cases shown in Table 9-5. An error code is pushed
onto the stack of the exception handler to help identify the cause of the fault. The EXT
bit indicates whether the exception was caused by a condition outside the control of the
program (e.g., if an external interrupt using a task gate attempted a task switch to an
invalid TSS).

This fault can occur either in the context of the original task or in the context of the new
task. Until the processor has completely verified the presence of the new TSS, the excep­
tion occurs in the context of the original task. Once the existence of the new TSS is
verified, the task switch is considered complete; i.e., the TR register is loaded with a
selector for the new TSS and, if the switch is due to a CALL or interrupt, the Link field
of the new TSS references the old TSS. Any errors discovered by the processor after this
point are handled in the context of the new task. .

To ensure a TSS is available to process the exception, the handler for an invalid-TSS
exception must be a task called using a task gate.

Table 9-5. Invalid TSS Conditions

Error Code Index Description

TSS segment TSS segment limit less than 67H
LOT segment Invalid LOT or LOT not present
Stack segment Stack segment selector exceeds descriptor table limit
Stack segment Stack segment is not writable
Stack segment Stack segment DPL not compatible with CPL
Stack segment Stack segment selector RPL not compatible with CPL
Code segment Code segment selector exceeds descriptor table limit
Code segment Code segment is not executable
Code segment Non-conforming code segment DPL not equal to CPL
Code segment Conforming code segment DPL greater than CPL
Data segment Data segment selector exceeds descriptor table limit
Data segment Data segment not readable

9-18

intel® EXCEPTIONS AND INTERRUPTS

9.9.11 Interrupt 11 - Segment Not Present

The segment-not-present fault is generated when the processor detects that the present
bit of a descriptor is clear. The processor can generate this fault in any of these cases:

• While attempting to load the CS, OS, ES, FS, or GS registers; loading the SS register,
however, causes a stack fault.

• While attempting to load the LOT register using an LLOT instruction; loading the
LOT register during a task switch operation, however, causes an invalid-TSS
exception.

• While attempting to use a gate descriptor which is marked segment-not-present.

This fault is restartable. If the exception handler loads the segment and returns, the
interrupted program resumes execution.

If a segment-not-present exception occurs during a task switch, not all the steps of the
task switch are complete. Ouring a task switch, the processor first loads all the segment
registers, then checks their contents for validity. If a segment-not-present exception is
discovered, the remaining segment registers have not been checked and therefore may
not be usable for referencing memory. The segment-not-present handler should not rely
on being able to use the segment selectors found in the CS, SS, OS, ES, FS, and GS
registers without causing another exception. The exception handler should check all
segment registers before trying to resume the new task; otherwise, general protection
faults may result later under conditions which make diagnosis more difficult. There are
three ways to handle this case:

1. Handle. the segment-not-present fault with a task. The task switch back to the inter­
rupted task causes the processor to check the registers as it loads them from the
TSS.

2. Use the PUSH and POP instructions on all segment registers. Each POP instruction
causes the processor to check the new contents of the segment register.

3. Check the saved contents of each segment register in the TSS, simulating the test
which the processor makes when it loads a segment register.

This exception pushes an error code onto the stack. The EXT bit of the error code is set
if an event external to the program caused an interrupt which subsequently referenced a
not-present segment. The lOT bit is set if the error code refers to an lOT entry (e.g., an
INT instruction referencing a not-present gate).

An operating system typically uses the segment-not-present exception to implement vir­
tual memory at the segment level. A not-present indication in a gate descriptor, however,
usually does not indicate that a segment is not present (because gates do not necessarily
correspond to segments). Not-present gates may be used by an operating system to
trigger exceptions of special significance to the operating system.

9-19

intel® EXCEPTIONS AND INTERRUPTS

9.9.12 Interrupt 12 - Stack Exception

A stack fault is generated under two conditions:

• As a result of a limit violation in any operation which refers to the SS register. This
includes stack-oriented instructions such as POP, PUSH, ENTER, and LEAVE, as
well as other memory references which implicitly use the stack (for example, MOV
AX, [BP + 6]). The ENTER instruction generates this exception when there is too
little space for allocating local variables.

• When attempting to load the SS register with a descriptor which is marked segment­
not-present but is otherwise valid. This can occur in a task switch, a CALL instruction
to a different privilege level, a return to a different privilege level, an LSS instruction,
or aMOV or POP instruction to the SS register.

When the processor detects a stack exception, it pushes an error code onto the stack of
the exception handler. If the exception is due to a not-present stack segment or to
overflow of the new stack during an interlevel CALL, the error code contains a selector
to the segment which caused the exception (the exception handler can test the present
bit in the descriptor to determine which exception occurred); otherwise, the error code
is O.

An instruction generating this fault is restart able in all cases. The return address pushed
onto the exception handler's stack points to the instruction which needs to be restarted.
This instruction usually is the one which caused the exception; however, in the case of a
stack exception from loading a not-present stack-segment descriptor during a task
switch, the indicated instruction is the first instruction of the new task.

When a stack exception occurs during a task switch, the segment registers may not be
usable for addressing memory. During a task switch, the selector values are loaded
before the descriptors are checked. If a stack exception is generated, the remaining
segment registers have not been checked and may cause exceptions if they are used. The
stack fault handler should not expect to use the segment selectors found in the CS, SS,
DS, ES, FS, and GS registers without causing another exception. The exception handler
should check all segment registers before trying to resume the new task; otherwise,
general protection faults may result later under conditions where diagnosis is more
difficult.

9.9.13 Interrupt 13 - General Protection

All protection violations which do not cause another exception cause a general­
protection exception. This includes (but is not limited to):

• Exceeding the segment limit when using the CS, DS, ES, FS, or GS segments.

• Exceeding the segment limit when referencing a descriptor table.

• Transferring execution to a segment which is not executable.

• Writing to a read-only data segment or a code segment.

• Reading from an execute-only code segment.

9-20

intel® EXCEPTIONS AND INTERRUPTS

• Loading the SS register with a selector for a read"only segment (unless the selector
comes from a TSS during a task switch, in which case an invalid-TSS exception
occurs).

• Loading the SS, DS, ES, FS, or GS register with a selector for a system segment.

" Loading the DS, ES, FS, or GS register with a selector for an execute-only code
segment.

" Loading the SS register with the selector of an executable segment.

o Accessing memory using the DS, ES, FS, or GS register when it contains a null
selector.

" Switching to a busy task.

.. Violating privilege rules.

o Exceeding the instruction length limit of 15 bytes (this only can occur when redun­
dant prefixes are placed before an instruction).

o Loading the CRO register with a set PG bit (paging enabled) and a clear PE bit
(protection· disabled).

o Interrupt or exception through an interrupt or trap gate from virtual-8086 mode to a
handler at a privilege level other than O.

The general-protection exception is a fault. In response to a general-protection excep­
tion, the processor pushes an error code onto the exception handler's stack. If loading a
descriptor causes the exception, the error code contains a selector to the descriptor;
otherwise, the error code is null. The source of the selector in an error code may be any

. of the following:

1. An operand of the instruction.

2. A selector from a gate which is the operand of the instruction.

3. A selector from a TSS involved in a task switch.

9.9.14 Interrupt 14 - Page Fault

A page fault occurs when paging is enabled (the PG bit in the CRO register is set) and
the processor detects one of the following conditions while translating a linear address to
a physical address:

" The page-directory or page-table entry needed for the address translation has a clear
Present bit, which indicates that a page table or the page containing the operand is
not present in physical memory.

o The procedure does not have sufficient privilege to aGcess the indicated page.

If a page fault is caused by a page level protection violation, the access bits in both the
page-table and page-directory are set when the faults occur.

9-21

EXCEPTIONS AND INTERRUPTS

The processor provides the page fault handler two items of information which aid m
diagnosing the exception and recovering from it:

• An error code on the stack. The error code for a page fault has a format different
from that for other exceptions (see Figure 9-7). The error code tells the exception
handler three things:

1. Whether the exception was due toa not-present page or to an access rights
violation.

2. Whether the processor was executing at user or supervisor level at the time of the
exception.

3. Whether the memory access which caused the exception was a read or write.

• The contents of the CR2 register. The processor loads the CR2 register with the
32-bit linear address which generated the exception. The exception handler can use
this address to locate the corresponding page directory and page table entries. If
another page fault occurs during execution of the page fault handler, the handler will
push the contents of the CR2 register onto the stack.

FIELD VALUE DESCRIPTION

U/S 0 The access causing the fault originated when
the processor was executing in supervisor mode. ,

I The access causing the fault originated when
the processor was executing In user mode.

W/R 0 The access causing the fault was a read.

1 The access causing the fault was a write.

P 0 The fault was caused by a not·present page.

t The fault was caused by a page-level
protection violation

240486;9-7

Figure 9-7. Page Fault Error Code

9-22

intel® EXCEPTIONS AND INTERRUPTS

9.9.14.1 PAGE FAULT DURING TASK SWITCH

These operations during a task switch cause access to memory:

1. Write the state of the original task in the TSS of that task.

2. Read the GDT to locate the TSS descriptor of the new task.

3. Read the TSS of the new task to check the types of segment descriptors from the
TSS.

4. May read the LDT of the new task in order to verify the segment registers stored in
the new TSS.

A page fault can result from accessing any of these operations. In the last two cases the
exception occurs in the context of the new task. The instruction pointer refers to the next
instruction of the new task, not to the instruction which caused the task switch (or the
last instruction to be executed, in the case of an interrupt). If the design of the operating
system permits page faults to occur during task-switches, the page-fault handler should
be called through a task gate.

9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTER

Special care should be taken to ensure that a page fault does not cause the processor to
use an invalid stack pointer (SS:ESP). Software written for Intel 16-bit processors often
uses a pair of instructions to change to a new stack; for example:

MOV SS, AX
MOV SP, StackTop

With the Intel486 processor, because the second instruction accesses memory, it is pos­
sible to get a page fault after the selector in the SS segment register has been changed
but before the contents of the SP register have received the corresponding change. At
this point, the two parts of the stack pointer SS:SP (or, for 32-bit programs, SS:ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the handling of the page
fault causes a stack switch to a well defined stack (i.e., the handler is a task or a more
privileged procedure). However, if the page fault occurs at the same privilege level and
in the same task as the page fault handler, the processor will attempt to use the stack
indicated by the inconsistent stack pointer.

In systems which use paging and handle page faults within the faulting task (with trap or
interrupt gates), software executing at the same privilege level as the page fault handler
should initialize a new stack by using the LSS instruction rather than an instruction pair
shown above. When the page fault handler is running at privilege level 0 (the normal
case), the problem is limited to programs which run at privilege level 0, typically the
kernel of the operating system.

9-23

EXCEPTIONS AND INTERRUPTS

9.9.15 Interrupt 16 - Floating-Point Error

A floating-paint-error fault signals an error generated by a floating-point arithmetic
instruction. Interrupt 16 can occur only if the NE bit in the CRO register is set. See
Chapter 16 for more information on floating-point error reporting.

9.9.16 Interrupt 17 - Alignment Check

An alignment-check fault can be generated for access to unaligned operands. For exam­
ple, a word stored at an odd byte address, or a doubleword stored at an address which is
not an integer multiple of four. Table 9-6 lists the alignment requirements by data type.
To enable alignment checking, the following conditions must be true:

• AM bit in the CRO register is set

• AC flag is set

• CPL is 3 (user mode)

Alignment checking is useful for programs which use the low two bits of pointers to
identify the type of data structure they address. For example, a subroutine in a math
library may accept pointers to numeric data structures. If the type of this structure is
assigned a code of 10 (binary) in the lowest two bits of pointers to this type, math
subroutines can correct for the type code by adding a displacement of -10 (binary). If
the subroutine should ever receive the wrong pointer type, an unaligned reference would
be produced, which would generate an exception.

Alignment-check faults are generated only in user mode (privilege level 3). Memory
references which default to privilege level 0, such as segment descriptor loads, do not
generate alignment-check faults, even when caused by a memory reference made in user
mode.

Table 9-6. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

WORD 2
DWORD 4
Short REAL 4
Long REAL 8
TEMPREAL 8
Selector 2
48-bit Segmented Pointer 4
32-bit Flat Pointer 4
32,bit Segmented Pointer 2
48-bit "Pseudo-Descriptor" 4
FSTENV/FLDENV save area 4 or 2, depending on operand size
FSAVE/FRSTOR save area 4 or 2, depending on operand size
Bit String 4

9-24

intel® EXCEPTIONS AND INTERRUPTS

Storing a 48-bit pseudo-descriptor (the memory image of the contents of a descriptor
table base register) in user mode can generate an alignment-check fault. Although user­
mode programs do not normally store pseudo-descriptors, the fault can be avoided by
aligning the pseudo-descriptor to an odd word address (i.e., an address which is
2 MOD 4).

FSA VE and FRSTOR instructions generate unaligned references which can cause
alignment-check faults. These instructions are rarely needed by application programs.

9.10 EXCEPTION SUMMARY

Table 9-7 summarizes the exceptions recognized by the Intel486 processor.

9.11 ERROR CODE SUMMARY

Table 9-8 summarizes the error information which is available with each exception.

9-25

intet EXCEPTIONS AND INTERRUPTS

. Table 9-7. Exception Summary
..

. Return Address
Description

Vector
Points to Faulting

Exception Source of the
Number

Instruction?
. Type Exception

Division by Zero 0 Yes FAULT DIV and IDIV instruc·
tions

Debug Exceptions 1 *1 *1. Any code or data refer-
ence

Breakpoint 3 No TRAP INT 3 instruction

Overflow 4 No TRAP INTO instruction

Bounds Check 5 Yes FAULT BOUND instruction

Invalid Opcode 6 Yes FAULT Reserved Opcodes

Device Not 7 Yes FAULT ESC and WAIT instruc-
Available tions

Double Fault 8 Yes ABORT Any instruction

Invalid TSS 10 Yes2 FAULT JMP, CALL, IRET
instructions, interrupts,
and exceptions

Segment Not Present 11 Yes2 FAULT Any instruction which
changes segments

Stack Fault· 12 Yes FAULT Stack operations

General Protection 13 Yes FAULTfTRAp3 Any code or data refer-
ence

Page Fault 14 Yes FAULT Any code or data refer-
ence

Floating-Point Error 16 Yes FAULT4 ESC and WAIT instruc-
tions

Alignment Check 17 Yes FAULT Any data reference

Software Interrupt o to 255 No TRAP INT n instructions

1. Debug exceptions are either traps or faults. The exception handler can distinguish between traps and
faults by examining the contents of the DR6 register.

2. Restartability is conditional during task switches as documented in section 7.5.

3. All general-protection faults are restartable. If the fault occurs while attempting to call the handler, the
interrupted program is restartable, but the interrupt may be lost.

4. Floating-point errors are not reported until the first ESC or WAIT instruction following the ESC instruction
which generated the error.

9-26

intel® EXCEPTIONS AND INTERRUPTS

Table 9-8. Error Code Summary

Description Vector Is an Error
Number Code Generated?

Divide Error 0 No
Debug Exceptions 1 No
Breakpoint 3 No
Overflow 4 No
Bounds Check 5. No
Invalid Opcode 6 No
Device Not Available 7 No
Double Fault 8 Yes (always zero)
Invalid TSS 10 Yes
Segment Not Present 11 Yes
Stack Fault 12 Yes
General Protection 13 Yes
Page Fault 14 Yes
Floating-Point Error 16 No
Alignment Check 17 Yes (always zero)
Software Interrupt 0-255 No

9-27

Initialization 10

CHAPTER 10
INITIALIZATION

The Intel486 processor has an input, called the RESET pin, which invokes reset initial­
ization. After RESET is asserted, some registers of the Intel486 processor are set to
known states. These known states, such as the contents of the EIP register, are sufficient
to allow software to begin execution. Software then can build the data structures in
memory, such as the GDT and IDT tables, which are used by system and application
software.

Hardware asserts the RESET signal at power-up. Hardware may assert this .signal at
other times. For example, a button may be provided for manually invoking reset initial­
ization. Reset also may be the response of hardware to receiving a halt or shutdown
indication.

After reset initialization, the DH register holds a number which identifies the processor
type. Binary object code can be made compatible with other Intel processors by using
this number to select the correct initialization software. Note the Intel486 processor has
several processing modes. It begins execution in a mode which emulates an 8086 proces­
sor, called real-address mode. If protected mode is to be used (the mode in which the
32-bit instruction set is available), the initialization software changes the setting of a
mode bit in the CRO register.

10.1 PROCESSOR STATE AFTER RESET

A self test may be requested at power-up. The self test is requested by asserting the
AHOLD input during the falling edge of the RESET signal. It is the responsibility of the
hardware designer to provide the request for self test, if desired. If the self test is
selected, it takes about 220 clock periods to complete. (Intel reserves the right to change
the exact number of periods without notification.)

The EAX register is clear if the Intel486 processor passed the test. A non-zero value in
the EAX register after self test indicates the processor is faulty. If the self test is not
requested, the contents of the EAX register after reset initialization are undefined (pos­
sibly non-zero). The DX registerholds acomponent identifier and revision number after
reset initialization, as shown in Figure 10-1. The DH register contains the value 4, which
indicates an Intel486 processor. The DL register contains a unique identifier of the
revision level. .

The state of the CRO register following power-up is shown in Figure 10-2. These states
put the processor into real-address mode with paging disabled.

The state of the EBX, ECX, ESI, EDI, EBP, ESP, GDTR, LDTR, TR, debug registers
(other than DR7), and floating~point operand stack is undefined following power-up.
Software should not depend on any undefined states. The state of the flags and other
registers following power-up is shown in Table 10-1.

10-1

intel® INITIALIZATION

� :-------------- EDX REGISTER -------------c~~1

1 :------- DX REGISTER ----.. ~ 1

3
1

1 1
6 5 870

RESERVED 1 DEVICE 10 STEP~NGID 1

Figure 10-1. Contents of the EDX Register After Reset

rrro PAGING DISABLED
. 1 CACHING DISABLED ITO ALIGNMENT CHECK DISABLED 1 r 1 NOT WRITE-THROUGH ro WRITE-PROTECT DISABLED

. DISABLED

3 3 2 1 1
109 8 6 543210

1:1:1:1 1:11:1 I:H:I=I=I:I
o EXTERNAL FLOATING-POINT ERROR REPOR1ING~
1 (NOTUSED)
o NO TASK SWITCH
o ESC INSTRUCTIONS NOT TRAPPED
o WAIT INSTRUCTIONS NOT TRAPPED
o REAL MODE

Figure 1 0-2. Contents of the CRO Register After Reset

240486i 1 0-1

240486i10-2

Note that the invisible parts of the CS and DS segment registers are initialized to values
which allow execution to begin, even though segments have not been defined. The base
address for the code segment is set to 64K below the top of the physical address space,
which allows room for a ROM to hold the initialization software. The base address for
the data segments are set to the bottom of the physical address space (address 0), where
RAM is expected to be. To preserve these addresses, no instruction which loads the
segment registers should be executed until a descriptor table has been defined and its
base address and limit have been loaded into the GDTR register. If CS is reloaded while
in real mode, it will point to the lowest 1 Megabyte of physical memory.

10-2

intel® INITIALIZATION

Table 10-1. Processor State Following Power-Up

Register State (hexadecimal)

EFLAGS 00000002H1

EIP OOOOFFFOH

CS OFOOOH2

DS 0000H3

SS OOOOH
ES 0000H3

FS OOOOH

GS OOOOH
IDTR (base) OOOOOOOOH

IDTR (limit) 03FFH
DR6 FFFFOFFOH

DR? OOOOOOOOH

Floating-Point Unit Registers4

Control Word 03?FH

Status Word OOOOH
Tag Word OFFFFH

IP Offset OOOOOOOOH

Data Operand Offset OOOOOOOOH

CS Selector OOOOH
Operand Selector OOOOH

Opcode OOOH

NOTE: Undefined bits are reserved. Software should not depend on the states of any of these bits.
1. The high fourteen bits of the EFLAGS register are undefined following power-up. All of the flags are clear.
2. The invisible part of the CS register holds a base address of OFFFFOOOOH and a limit of OFFFFH.
3. The invisible parts of the DS and ES registers hold a base address of 0 and a limit of OFFFFH.
4. The registers of the floating-point unit are not initialized unless the built-in self-test is invoked.

10.2 Intel486 SX MICROPROCESSOR/lnteI487 SX MATH
COPROCESSOR INITIALIZATION

This interface is designed for two distinct sockets: one for the Inte1486 SX CPU and one
for end-user/dealer upgrade with Intel487 SX Math CoProcessor. Refer to the Intel486™
SX Microprocessor/lnteI487'" SX Math CoProcessor Data Book for more details. The fol­
lowing should be considered when designing an Inte1486 SX CPU/InteI487 SX MCP
system.

1. The timing loops should be independent of the cpi. One way to attain this is to
implement these loops in hardware and not in software (e.g., BIOS).

2. Initialization routine should check the presence of a math coprocessor (e.g.,
Intel487 SX math coprocessor) and should set the floating point related bits in the
CRO register accordingly. Recommended bit pattern is given in Table 10-2. The
FSTCW instruction will give a value of FFFFh for the Inte1486 SX microprocessor
and 037Fh for the Intel487 SX math coprocessor.

10-3

intel® INITIALIZATION

Table 10-2. Recommended Values of the FP Related Bits for Intel486™ SX
Microprocessor/lntel487™ SX Math CoProcessor System

CRO Bit Inte1486'M SX Microprocessor Inte1487'M SX Math CoProcessor

EM 1 0

MP 0 1

NE 1 0, for DOS systems
1, for user-defined exception handler

Following is an example code to initialize the system and check for the presence of
Intel486 SX microprocessor/Intel487 SX math coprocessor.

fninit
fstcw mem_loc
mov
cmp
jz
jmp

ax, mem_loc
ax, 037fh
Inte1487 SX Math CoProcessor_present
Inte1486 SX microprocessor_present

;ax=037fh
; ax=ffffh

If the Intel487 SX math coprocessor is not present, the following code can be run to set
the eRO register for the Intel486 SX microprocessor.

mov
and
or
mov

eax, cr0
eax, f ff f f ff dh
eax, 0024h
er0, eax

;make MP=0
;make EM=1, NE=1

The above initialization will cause any floating point instruction to generate the inter­
rupt 7. The software emulation will then take control to execute these instructions. This
code is not required if Intel487 SX math coprocessor is present in the system, thereupon
the typical intialization routine for the Intel486 SX microprocessor will be adequate.

The interpretation of different combinations of the EM and MP bits is shown ill

Table 10-3.

Table 10-3. EM and MP Bits Interpretations

EM MP Interpretation

0 0 Numeric instructions are passed to FPU; WAIT ignores TS

0 1 Numeric instructions are passed to FPU; WAIT tests TS

1 0 Numeric instructions trap to emulator; WAIT ignores TS

1 1 Numeric instructions trap to emulator, WAIT tests TS

10-4

in1:el® INITIALIZATION

10.3 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE

After reset initialization, software sets up data structures needed for the processor to
perform basic system functions, such as handling interrupts. If the processor remains in
real-address mode, software sets up data structures in the form used by the 8086 proces­
sor. If the processor is going to operate in protected mode, software sets up data struc­
tures in the form used by the 286 and Intel486 processors, then switches modes. See
Section 10.7 for an example.

10.3.1 System Tables

In real-address mode, no descriptor tables are used. The interrupt vector table, which
starts at address 0, needs to be loaded with pointers to exception and interrupt handlers
before interrupts can be enabled. The NMI interrupt is always enabled. If the interrupt
vector table and the NMI interrupt handler need to be loaded into RAM, there will be a
period of time following reset initialization when an NMI interrupt cannot be handled.

10.3.2 NMI Interrupt

Hardware must provide a.mechanism to prevent an NMI interrupt from being generated
while software is unable to handle it. For example, the interrupt vector table and NMI
interrupt handler can be provided in ROM. This allows an NMI interrupt to be handled
immediately after reset initialization. Another solution would be to provide a mechanism
which passes the NMI signal through an AND gate controlled by a bit in an I/O port.
Hardware can clear the bit when the processor is reset, and software can set the bit
when it is ready to handle NMI interrupts. System software designers should be aware of
the mechanism used by hardware to protect software from NMI interrupts following
reset.

10.3.3 First Instruction

Execution begins with the instruction addressed by the initial contents of the CS and IP
registers. To allow the initialization software to be placed in a ROM at the top of the
address space, the high 12 bits of addresses issued for the code segment are set, until the
first instruction which loads the CS register, such as a far jump or call. As a result,
instruction fetching begins from address OFFFFFFFOH. Because the size of the ROM is
unknown, the first instruction is intended to be a jump to the beginning of the initializa­
tion software. If protected mode will be used and the processor is still in real mode, then
only near jumps should be performed within the ROM-based software. After a far jump
is executed, addresses issued for the code segment are clear in their high 12 bits.

10.3.4 Enabling Caching

The cache is enabled by clearing the CD and NW bits in the CRO register. This enables
caching, write-through, and cache invalidation cycles. Because all cache lines are invalid
following reset initialization, it is unnecessary to flush the cache before enabling caching.

10-5

INITIALIZATION

Under circumstances where cache lines may be marked as valid, the cache may need to
be flushed before enabling caching. This may occur as a result of using the test registers
to run test patterns through the cache memory as part of corifidence testing during
software initialization.

10.4 SWITCHING TO PROTECTED MODE

Before switching to protected mode, a minimum set of system data structures must be
created, and a minimum. number of registers must be initialized.

10.4.1 System Tables

To allow protected mode software to access programs and data, at least one descriptor
table, the GDT, and two descriptors must be created. Descriptors are needed for a code
segment and a data segment. The stack can be be placed in a normal read/write data
segment, so no descriptor for the stack is required. Before the GDT can be used, the
base address and limit for the GDT must be loaded into the GDTR register using an
LGDT instruction.

10.4.2 NMI Interrupt

. If hardware allows NMI· interrupts to' be generated, the IDT. and a· gate for the NMI
interrupt handler need to be created. Before the IDT can be used, the base address and
limit for the IDT must be loaded into theIDTR register using an LIDT instruction.

10.4.3 PE Bit

Protected mode is entered by setting the PE bit in the CRO register. Either an LMSW or
MOV CRO instruction may be used to set this bit (the MSW register is part of the CRO
register). Because the processor overlaps the interpretation of several instructions, it is
necessary to discard the instructions which already have been read into the. processor. A
JMP instruction immediately after the LMSW instruction chariges the flow of execution,
so it has the effect of emptying the processor of instructions which have been fetched or
decoded.

Mter entering protected mode, the segment registers continue to hold the contents they
had in real address mode. Software should reload all the segment registers. Execution in
protected mode begins with a CPL ofO.

10.5 SOFTWARE INITIALIZATION IN PROTECTED MODE

The data structures needed in protected mode are determined by the memory manage­
ment features which are used. The processor supports segmentation models which range
from a single, uniform address space (flat model) to a highly structured model with
several independent, protected address spaces for each task (multi-segmented model);

intel® INITIALIZATION

Paging can be enabled for allowing access to large data structures which are partly in
memory and partly on disk. Both of these forms of address translation require data
structures which are set up by the operating system and used by the memory manage­
ment hardware.

10.5.1 Segmentation

A flat model without paging only requires a GDT with one code and one data segment
descriptor. A flat model with paging requires code and data descriptors for supervisor
mode and another set of code and data descriptors for user mode. In addition, it
requires a page directory and at least one second-level page table.

A multi-segmented model may require additional segments for the operating system, as
well as segments and LDTs for each application program. LDTs require segment
descriptors in the GDT. Most operating systems, such as OS/2, allocate new segments
and LDTs as they are needed. This provides maximum flexibility for handling a dynamic
programming environment, such as an engineering workstation. An embedded system,
such as a process controller, might pre-allocate a fixed number of segments and LDTs
for a fixed number of application programs. This would be a simple and efficient way to
structure the software environment of a system which requires fast real-time
performance.

10.5.2 Paging

Unlike segmentation, paging is controlled by a mode bit. If the PG bit in the CRO
register is clear (its state following reset initialization), the paging mechanism is com­
pletely absent from the processor architecture seen by programmers.

If the PG bit is set, paging is enabled. The bit may be set using a MOV CRO instruction.
Before setting the PG bit, the following conditions must be true:

.. Software has created at least two page tables, the page directory and at least one
second-level page table.

.. The PDBR register (same as the CR3 register) is loaded with the base address of the
page directory.

• The processor is in protected mode (paging is not available in real-address mode). If
all other restrictions are met, the PG and PE bits can be set at the same time.

As with the PE bit, setting the PG bit must be followed immediately with a JMP instruc­
tion. Also, the code which sets the PG bit must come from a page which has the same
physical address after paging is enabled.

10.5.3 Tasks

If the multitasking mechanism is not used, it is unnecessary to initialize the TR register.

10-7

INITIALIZATION

If the multitasking mechanism is used, a TSS and a TSS descriptor for the initialization
software must be created. TSS descriptors must not be marked as busy when they are
created; TSS descriptors should be marked as busy only as a side-effect of performing a
task switch. As with descriptors for LDTs, TSS descriptors reside in the GDT. The LTR
instruction is used to load a selector for the TSS descriptor of the initialization software
into the TR register. This instruction marks the TSS descriptor as busy, but does not
perform a task switch. The selector must be loaded before performing the first task
switch, because a task switch copies the current task state into the TSS. After the LTR
instruction has been used, further operations on the TR register are performed by task
switching. As with segments and LDTs, TSSs and TSS descriptors can be either pre~
allocated or allocated as needed.

10.6 TLB TESTING

The Intel486 processor provides a mechanism for testing the translation lookaside buffer
(TLB), the cache used for translating linear addresses to physical addresses. Although
failure of the TLB hardware is extremely unlikely, users may wish to include TLB con­
fidence tests among other power-up tests for the Intel486 processor.

NOTE

This TLB testing mechanism is unique to the Intel486 processor and may not be
continued in the same way in future processors. Software which uses this mechanism
may be incompatible with future processors.

10.6.1 Structure of the TLB

The TLB is a four-way set-associative memory. Figure 10-3 illustrates its structure. In the
data block, there are eight sets of four data entries each. A data entry in the TLB
consists of the 20 high-order bits of a physical address. These 20 bits can be interpreted
as the base address of a page, which is by definition clear in its 12 low-order bits.

The TLB translates a linear address into a physical address, and so is only concerned
with the high-order 20 bits of either; the low-order 12 bits (these constitute the offset into
the page) are the same in both the linear and the physical address.

Corresponding to the block of data entries is a block of valid, attribute and tag entries.
The tag entry consists of the 17 high-order bits of a linear address. In translating
addresses, the processor uses bits 12, 13, and 14 of the linear address to select one of the
eight sets, and then checks the four tags of that set for a match with the high-order 17
bits of the linear address. If a match is found among the tags of the selected set, and the
corresponding valid bit equals 1, then the linear address is translated by replacing its
high-order 20 bits with the 20 bits of the corresponding data entry.

Three LRU bits are provided with each set; they track the use of the data in the set, and
are checked when a new entry is needed (and none of the entries in the set is invalid). A
pseudo-LRU replacement algorithm is used.

10-8

intel®

LRU
BLOCK

/
/

/
/

/

IVALIDlATT
1 BIT 3

VALID, ATTRIBUTE
AND TAG BLOCK

INITIALIZATION

DATA
BLOCK

WAY 0 WAY 1 WAY 2 WAY 3 WAY 0 WAY 1 WAY 2 WAY 3

SET 0

SET 1

SET 2

SET 3

/ 1////; r-'" SET4
/ SET 5

\ SET 6

\ SET 7

\
RIBUTEr TAG J ISET SELECT I
BITS \ 17 BITS \ I 3 BITS 20 BITS

DATA

\ \ 1
\ 31 15\ 114

I I
LINEAR ADDRESS PHYSICAL ADDRESS

Figure 10·3. TLB Structure

10.6.2 Test Registers

240486;10·3

Two test registers, shown in Figure 10-4, are provided for the purpose of testing. The
TR6 register is the TLB test command register, and the TR7 register is the TLB test
data register. These registers are accessed by forms of the MaV instruction. The MaV
instructions are defined in both real-address mode and protected mode. The test regis­
ters are privileged resources; in protected mode, the MaV instructions which access
them can be executed only at privilege level 0 (most privileged). An attempt to read or
write the test registers from any other privilege level causes a general-protection
exception.

Unlike the TLB of the Intel386 DX processor, the TLB of the Intel486 processor can be
accessed without disabling paging. Also unlike the Intel386 DX processor, the TLB of
the Intel486 processor uses a pseudo-LRU cache replacement algorithm to select entries
for de-allocation when a new entry is needed and the TLB is full.

10-9

intel® INITIALIZATION

1 1 1
31 2 1 098 7 6 5 4 3 2 1 0

P P
o 0 P

R
PHYSICAL ADDRESS CW L R U E o 0

DT
L

P
TR7

LINEAR ADDRESS V 0 o U

U w
~OOOOC TRS

240486i10-4

Figure 10-4. TLB Test Registers

The TLB test command register (TR6) contains a command and an address tag:

• C This is the Command bit. There are two TLB testing commands: write entries into·
the TLB, and perform TLB lookups. To cause a write into the TLB entry, move a
doubleword into the TR6 register which contains a clear C bit. To cause an TLB
lookup (read), move a doubleword into the TR6 register which contains a set C bit.
TLB operations are triggered by writing to the TR6 register.

• Linear Address On a TLB write, a TLB entry is allocated to this linear address; the
rest of that TLB entry is assigned using the value of the TR7 register and the value
just written into the TR6 register. On a TLB lookup, the TLB is interrogated with this
value; if one and only one TLB entry matches, the rest of the fields of the TR6 and
TR7 registers are set from the matching TLB entry.

• V This bit indicates the TLB entry contains valid data. Entries in the TLB which are
not loaded with page table entries have a clear V bit. All V bits are cleared by writing
to the CR3 register, which has the effect of emptying or "flushing" the TLB. The
TLB must be flushed after modifying the page tables, because otherwise unmodified
data might get used for address translation.

• D, D# The D bit (and its complement).

• U, U# The U/S bit (and its complement).

• W, W# The R/W bit (and its complement).

These bits are provided in both true and complement form for extra flexibility during
TLB lookups. The meaning of these pairs of bits is given in Table 10-4.

Table 10-4. Meaning of Bit Pairs in the TR6 Register

Bit Bit# Effect on TLB Lookup Effect on TLB Write

0 0 Do not match undefined

0 1 Match if the bit is clear Clear the bit

1 0 Match if the bit is set Set the bit

1 1 Match if set or clear undefined

10-10

infel® INITIALIZATION

The TLB test data register (TR 7) holds data read from or data to be written to the TLB:

• Physical Address This is the data field of the TLB. On a write to the TLB, the TLB
entry allocated to the linear address in the TR6 register is set to this value. On a TLB
lookup (read), the data field (physical address) from the TLB is loaded into this field.

• peD Corresponds to the PCD bit of a page table entry.

• PWT Corresponds to the PWT bit of a page table entry.

• LRU On a TLB read, corresponds to the bits used in the pseudo-LRU cache replace­
ment algorithm. The states which are reported are the value of these bits before the
TLB lookup. TLB lookups which result in hits and TLB writes can change these bits.

o PL On a TLB write, a set PL bit causes the REP field of the TR 7 register to be used
for selecting which of four associative blocks of the TLB entry is loaded. If the PL bit
is clear, the internal pointer of the paging unit is used to select the block. The internal
pointer is driven by the pseudo-LRU cache replacement algorithm. On a TLB lookup
(read), the PL bit indicates whether the read was a hit (the PL bit is set) or a miss
(the PL bit is clear).

o REP For a TLB write, selects which of four associative blocks of the TLB is to be
written. For a TLB read, if the PL bit is set, REP reports in which of the four
associative blocks the tag was found; if the PL bit is clear, the contents of this field
are undefined.

10.6.3 Test Operations

To write a TLB entry:

1. Move a doubleword to theTR7 register which contains the desired physical address,
PCD, PWT, PL, and REP values. If the PL bit is set, the REP field selects the
associative block in which to place the entry. If the PL bit is clear, the internal
pointer is used.

2. Move a doubleword to the TR6 register which contains the appropriate linear
address, and values for the V, D, U, and W bits. The C bit must be clear.

Do not write duplicate tags; the results of doing so are undefined.

To lookup (read) a TLB entry:

1. Move a doubleword to the TR6 register which contains the appropriate linear
address and attributes. The C bit must be set.

2. Read the TR 7 register. If the PL bit in the TR 7 register is set, then the rest of the
register contents report the TLB contents. If the PL bit is clear, then the other
values in the TR7 register, except the LRU bits, are undefined.

For the purposes of testing, the V bit functions as another bit of address. The V bit for
a lookup request should usually be set, so that uninitialized tags do not match. Lookups
with the V bit clear are unpredictable if any tags are uninitialized.

10-11

intel® INITIALIZATION

10.7 CACHE TESTING

The Intel486 processor provides a mechanism for testing the cache used for instructions
and data. Although failure of the cache hardware is extremely unlikely, users may wish
to include cache confidence tests among other power-up tests for the Intel486 processor.

NOTE

This cache testing mechanism is unique to the Intel486 processor and may not be
continued in the same way in future processors. Software which uses this mechanism
may be incompatible with future processors.

Caching must be disabled while peifonning cache testing.

10.7.1 Structure of the Cache

The cache is a four-way set-associative memory. This means that a data block from a
given location in main memory can b.e stored in any of four locations in the cache.
Four-way association is a compromise between the speed of direct-mapped cache on
cache hits and the high hit ratio of fully associative cache. It permits rapid searches of
the cache to find data while providing a high proportion of cache hits.

The cache· consists of three blocks:

• Data Block-contains up to 8K-bytes of data and instructions. The data block is
divided into four arrays, each containing 128 cache lines. Each cache line holds data
from 16 successive memory addresses, beginning with an address divisible by 16. To
each 7-bit index into the arrays of the data block there correspond four cache lines,
one from each array. Four cache lines with the same index are called a set.

• Tag Block - contains one 21-bit tag for each line of data in the cache. The tag block is
therefore also divided into four arrays, each containing 128 tags. The tag consists of
the high-order 21 bits of the physical address of the data stored in the corresponding
cache line ..

• Valid and LRU Block-contains one 7-bit quantity for each of the 128 sets of cache
lines. Four bits are used to mark the cache lines in the set individually as valid or
invalid. The other three bits track the use of the data in the set, and are checked
when a cache line-fill is needed (and none of the lines in the set is invalid). As in the
TLB, a pseudo-LRU cache replacement algorithm is used.

Cache addressing is performed by splitting the high-order 28 bits of the· physical address
into two parts. The highest-order 21 bits are the tag field, and are used to distinguish the
cached data from any other 16-byte data line that could have been stored in the same
set. The next-highest 7 bits are the index field, and determine the set in which the data
can be stored.

10-12

intel® INITIALIZATION

VALIDI TAG DATA
LRU BLOCK BLOCK

BLOCK
WAY 0 WAY 1 WAY 2 WAY 3 WAY 0 WAY 1 WAY 2 WAY 3

r-r-- SET 0
I-r-- SET 1
l- f--

SET 2
I-r--

~ ~/fi VlIIII f.-~SET N 'fIIIIIJI'
I \ , \

I \ \ \ \ \ \

I \ \ \ \ \
\

\ \ \ \ \

I \ \ \ SET 126 \

\ \ \ SET 127 I'

~
I r .. " -'''ITS I LRU VALID I TAG -21 BITS]

X1XX

.+" LINE IS VALID INDrX IS N Sl:CTS BYTE

31 11 4

I TAG FIELD I INDEX FIELD I XXXX I
PHYSICAL ADDRESS

240486i10-5

Figure 10-5. Cache Structure

10.7.2 Test Registers

Three test registers, shown in Figure 10-6, are provided for the purpose of testing. The
TR3 register is the cache test data register, the TR4 register is the cache test status
register, and the TR5 register is the cache test control register. These registers are
accessed by forms of the MOV instruction. The MOV instructions are defined in both
real-address mode and protected mode. The test registers are privileged resources; in
protected mode, the MOV instructions which access them can be executed only at priv­
ilege level 0 (most privileged). An attempt to read or write the test registers from any
other privilege level causes a general-protection exception.

The cache test data register (TR3) contains a doubleword to write to the cache fill
buffer, or a doubleword read from the cache read buffer. The fill and read buffers each
have storage for four doublewords, which pass through this register one at a time. A
particular doubleword in either buffer is addressed using the 2-bit Entry Select field
(bits 2 and 3) in the TR5 register.

10-13

INITIALIZATION

1 1 1
31 2 109 8 7 6 S 4 3 2 1 0

E C
UNUSED SET SELECT N T TRS

T' l

TAG V lRU VALID UNUSED TR4
(RD) (RD)

DATA, TR3

V VALID
CTl CONTROL
ENT ENTRY

240486i10-6

Figure ,1 0-6. Cache, Test, Registers

The cache test status register (TR4) contains Valid and LRU bits, and a tag:

• Valid (bits 3 .. 6). On a cache lookup, these are the four Valid bits of the set which was
accessed.

• LRU. On a cache lookup, these are the three LRU bits of the set which was accessed.
On a cache write, these bits are ignored; the LRU bits in the cache are updated by
the pseudo-LRU cache replacement algorithm. '

• - Valid(bit 10). ThIS is the Valid bit for the particular entry which was accessed. On a
cache lookup, it is a copy of one of the bits reported in bits 3 .. 6. On a cache write, it
becomes the new valid bit for the entry and set selected.

• Tag Address. On a cache write, this is the address which becomes the tag.

The cache test control register (TR5) contains the 7-bit set select, 2-bit entry select, and
a 2-bit control field:

• Set Select. Selects one of the 128 sets.

• _ Entry Select. During a cache read or write, selects one of the four entries in the set
addressed by the Set Select; during cache-fill-buffer writes or read-buffer reads,
selects one of the four doublewords in a litie. ' . '

• Control. The functions encoded by these bits are shown in Table 10-5.

10-14

INITIALIZATION

Table 10-S. Encoding of Cache Test Control Bits

Control Bits
Description

Bit 1 Bit 0

00 Write to cache fill buffer, or read from cache read buffer.
01 Perform cache write.
10 Perform cache read.
11 Flush the cache (mark all entries as invalid).

Writing to TRS with either bit 0 or bit 1 set causes a cache access. TRS cannot be read .

. 10.7.3 Test Operations

Before cache testing:

1. Disable caching by setting the CD bit in the CRO register.

To write to the cache fill buffer:

1. Load the TRS register with a value in the Entry Select field which addresses one of
the four doublewords in the cache fill buffer; The value of the Control field must be
00 (binary).

2. Load the TR3 register with the data to be written to the cache fill buffer; The wrilt;
to the buffer is triggered by loading this register.

3. Repeat steps 1 and 2 above for each of the remaining three doublewords in the
cache fill buffer;

To write to the cache:

1. Load the cache fill buffer, as described above.

2. Load the TR4 register with the tag (bits 11..31) and a valid bit (bit 10). The other
bits of the TR4 register (bits 0 .. 9) have no effect on the cache write.

3. Load the TRS register with Control, Entry Select, and Set Select values. The value
in the Control field must be 01 (binary). The cache write is triggered by loading this
register.

To read from the cache:

1. Load the TRS register with Control, Entry Select, and Set Select values. The value
in the Control field must be 10 (binary). The cache read is triggered by loading this
register. The cache read loads the TR4 register with the tag for the entry which was
read, and the LRU and Valid bits for the entire set which was read. The cache read
loads the cache read buffer with 128 bits of data. The buffer can be read using the
following procedure.

10-15

INITIALIZATION

To read from the cache read buffer:

1. Load the TRS register with Control and Entry Select values. The Entry Select value
addresses one of the four doublewords in the cache read buffer. TQe valuein the
Control field must be 00 (binary).

2. Read a doubleword from the cache read buffer by unloading the TR3 register. The
read from the buffer is triggered by unloading·this register.

3. Repeat steps 1 and 2 above for each of the remaining three doublewords in the
cache read buffer.

To flush the cache:

1. Load the TRS register with a Control value. The value in the Contr.ol field must be
11 (binary). None of the other fields have any meaning in this case. The cache flllsh
is triggered by loading this register. All of the LRU bits anQ Valid bits are cleared.

10.8 INITIALIZATION EXAMPLE

The following program templates are provided by Intel for your benefit in developing
software for the Intel486 processor.

simpinit.asm
; , Initialization code for simple flat (linear) model example

***,
Version 2.B
Copyright Intel Corp., 1988
This template is intended for your benefit in developing applications/
systems using Intel Intel486 m or Inte1386- family micrbprocessors.
Intel hereby grants you permission to modify and incorporate it,as
needed. '

**
This is an example of initialization code to put either the' i486(TM)
processor, Intel386 DX processor, Intel386 SX processor or 376(TM) processor
into flat mode. All of memory is treated as simple linear RAM.
There are no interrupt routines. The builder creates the GDT .
alias and IDT alias and places them, by default, in GDT[11 and GDT[21. '
After entering protected mode, this code jumps to an ASM386/48~ startup'
routine for a C application. You can change this JMP address to that 'of.
your ,code, or make the label of your code. LSTARTUP· ,

NAME simpstart name of object module
EXTRN c_startup:near this is the label jmped to after init_code

10-16

int:eL

pe-flag
data_selc
CODEMACRO

ENDM

equ 1
equ 20H
opprefx
db bbH

INITIALIZATION

for setting PE bit
offset of _phantom_data_ in GDT (GDT[4Jl
macro to change default operand size

init_code SEGMENT ER PUBLIC
GDT_DESC is a public symbol referred to in the build file. The LOCATION
definition in the TABLE section of the build file points to this label;
the builder stores the base and limit for the named table at this
location in memory.

PUBLIC gdt_desc
gdt_desc dp ?

START is a label that points to the true beginning of our executable
code. The BOOTSTRAP control causes the builder to place a s.hort jump
to the named label in this case,. STARTj at the component reset vector.

PUBLIC start
Since this code initializes either an Inte148b, Inte138b DX, Inte138b SX or 37b
processor into protected mode, the first instructions at START test for component
type. The Inte148b or Inte138b DX or Inte138b SX processor at reset is in real or
compatibility mode: the PE bit is off and the D bit for CS is not set.
Instructions execute in their lb-bit form. The 37b processor at reset
has the PE bit on as well as the D bit, so instructions execute in their
32-bit form.

nop
nop

start:
cld
smsw bx
test bl, 1
jnz pestart

NOPs are for initializing a Inte148b or Inte138b DX
or Inte138b SX processor

clear direction flag
use SMSW rather than MOV for speed
check for pr~cessor type at reset

Loading the GDTR at"REALSTART or PESTART depends on user hardware
returning a READY after a write to.ROM.

realstart: is an Inte148b or Inte138b DX or Inte138b SX processor
opprefx and in lb-bit real mode, use operand prefix to .
mov eax,offset gdt_desc get 32-bit address of GDT pointer
opprefx use operand prefix to
and eax,0ffffh make address relative to reset area
19dtw cs:[eaxl load 24 bits of base into GDTR

mov ax,bx
or al,pe_flag
lmsw ax
jmp next

copy machine status word
set PE bit
load machine status word with PE bit set
flush pre fetch queue

10-17

in1'el®
pestart:
mode

mov eax,offset gdt_desc
and eax,0ffffh
19dt cs:[eax]

next:
xor eax,eax
mov al,data_selc
mov ds,ax
mov sS,ax
mov eS,ax
mov fs,ax
mov gS,ax
test bl,l
jnz pejump

opprefx
pejump:

jmp far ptr c_startup
iniLcode ENDS

END
cstart.asm

INITIALIZATION

is a 376 processor and in 32-bit protected

get 32-bit address of GDT pointer
make address relative to reset area
load 32 bits of base into GDTR

initialize data selectors
GDT[4] is _phantom_data_

use operand prefix for Intel486 or Intel386 DX or
Intel386 SX processor jump
first far jump causes A31-20 to drop low

An ASM386/486 module to initialize the stack and call a C application

Version 2.O
Copyright Intel Corp., 1988
This template is intended for your benefit in developing applications/
systems using Intel486 m or Intel386 m family microprocessors.
Intel hereby grants you permission to modify and incorporate it as
needed.

**

NAME cstart
EXTRN main:near
PUBLIC c_startup

stack STACKSEG 1024

data SEGMENT RW PUBLIC
data ENDS
code32 SEGMENT ER PUBLIC

name of the object module
label of the C application to be called
public symbol used in processor initialization
code

10-18

intel®
c_startup:

mov esp,stackstart stack
call main
hlt

code32 ENDS
1* simple.c

INITIALIZATION

initialize stack pointer
call C application
halt processor

C386/486 application code for simple flat model example

1***

Version 2.0
Copyright Intel Corp., 1988
This template is intended for your benefit in developing applicationsl
systems using Intel486 m or Intel386 m family microprocessors. Intel
hereby grants you permission to modify and incorporate it as needed.

**

*1
char message[l="IT WORKS"

main ()
{

int array_count[101;
aray_count[11 1;
aray_count[21 2;
aray_count[31 3;
aray_count[41 4;
aray_count[51 5;
aray_count[61 6;
aray_count[71 7;
aray_count[81 8;
}

simple.bld
Build file for input to BLD386/486 to create simple flat model example

Version 2.0
Copyright Intel Corp., 1988
This template is intended for your benefit in developing applicationsl
systems using Intel486 m or Intel386 m family microprocessors.
Intel hereby grants you permission to modify and incorporate it as
needed.

**

simple; -- build program id
SEGMENT

10-19

inteL

*segments (DPL 0l,
_phantom_code_ (DPL 0l,
_phantom_data_ (DPL 0l,

INITIALIZATION

Give all user segments a DPL of 0.
These two segments are created by
the builder when the FLAT control is
used.
Their default DPL is 0j they are listed
here for reference only.

iniLcode Put initialization code at reset area.
(BASE 0ffff0300Hlj

TABLE
create GDT

GDT
"simpstart" initialization

(LOCATION = gdt_desc,

BASE = 0ffff0100H
lj end GDT

TASK
main_task

lj
TABLE

(BASE 0ffff0200H,
DATA data,

CODE main,

STACKS = (stackl,

NO INTENABLED

ldtl (NOT CREATEDlj

END

-- GDT_DESC is a public symbol in the
module.

In a buffer starting at GDT_DESC,
BLD386/486 places the GDT base and
GDT limit values. Buffer must be
6 bytes long. The base and limit
values are places in this buffer
as two bytes of limit plus
four bytes of base in the format
required for use by the LGDT
instruction.

Task is for *ICD-486 or ICE m-386
or ICE-376 emulator initialization.

Points to a segment that
indicates initial DS value.
Entry point is main, which
must be a public id.
Segment id points to stack
segment. Sets the initial SS:ESP.
Disable interrupts.

Builder does not place LDT in object
module, but contents appear in listing.

10-20

intel® IN IllALIZA liON

Note: ICD-486 is an in-circuit debugger for the Inte1486 CPU. This product
is scheduled for availability in the fourth quarter of 1989.

echo off
echo simple.bat
echo A DOS batch file for generating a bootloadable simple flat model
echo ***
echo * *
echo
echo
echo
echo
echo
echo
echo

* Version 2.0
* Copyright Intel Corp., 1988
* This template is intended for your benefit in developing
* applications/systems using Inte1486 m or Inte1386 m family
* microprocessors. Intel hereby grants you permission to modify

and incorporate it as needed.
*

*
echo ***
REM
REM The following two invocations of ASM386/486 create object modules
REM "simpinit.obj" and "cstart.obj". The assembler issues warnings with
REM each invocation due to the use of privileged instructions in the files.
REM The "debug" control directs ASM386/486 to include extra information
REM useful in symbolic debugging. The listing files are "simpinit.lst" and
REM "cstart.lst".
echo *echo asm386 simpinit.asm debug mod486
asm386 simpinit.asm debug mod486
echo (1 warning due to use of privileged instructions)
echo *
echo asm386 cstart.asm debug mod486
asm386 cstart·asm debug mod486
echo (1 warning due to use of privileged instructions)
REM
REM The invocation of C-386/486 creates an object module "simple.obj". The
REM "regal locate" control directs the compiler to optimize the allocation of
REM register variables. The "code" control causes placement of a pseudo-
REM assembly language listing at the end of the listing file. "Debug"
REM directs C-386/486 to include extra information useful in symbolic
REM debugging. The listing file is "simple. 1st".
echo *
echo c386 simple.c debug regal locate code mod486
c386 simple.c debug regallocate code mod486
REM
REM BND386/486 combines the input segments and resolves symbolic addressing.
REM The "noload" control directs the binder to create a linkable (rather
REM than loadable) file. The "debug" control indicates that the binder does
REM not purge debug information. "Object" directs the output file to be
REM named "simple.bnd". The listing file is "simple.mp1".
echo *
echo bnd386 simple.obj,simpinit.obj,cstart.obj noload debug object

10-21

intel® INITIALIZATION

(simple.bnd) mod48b
bnd38b simple.obj,simpinit.obj,cstart.obj noload debug object (simple.bnd) mod48b
REM
REM The goal is an absolute bootloadable file (all addresses fixed in
REM memory) suitable for loading into an ICD-48b in-circuit debugger or an ICE-38b
REM or ICE-37b in-circuit emulator. BLD38b/48b creates such an absolute module,
REM necessary descriptor tables, and a task for initializing the emulator. The
REM "buildfile" control identifies "simple.bld" as the build file. The
~EM "bootstrap" control identifies the symbol "start" as the label of the
REM instruction to be jumped to by the bootstrap jump placed at 0fffffff0H.
REM The "flat" control directs the builder to configure the file in a flat
REM model, where all code resides in the _phantom_code_ segment and all data
REM resides in the _phantom_data_ segment. The "mod48b" control causes the
REM builder to issue messages to guide creation of the object module for an
REM Intel48b processor. The "mod37b" control causes the builder to issue
REM messages to guide creation of the object module for a 37b
REM processor. You can remove either control to create an object module for
REM a Intel38b DX processor. The listing file is "simple.mp2". The final system
REM is "simple".
echo *
echo bld38b simple.bnd buildfile (simple.bld) bootstrap (start) flat mod48b
bld38b simple.bnd buildfile (simple.bld) bootstrap (start) ·flat mod48b

10-22

Debugging 11

CHAPTER 11
DEBUGGING

The Intel486 processor has advanced debugging facilities which are particularly impor­
tant for sophisticated software systems, such as multitasking operating systems. The fail­
ure conditions for these software systems can be very complex and time-dependent. The
debugging features of the Intel486 processor give the system programmer valuable tools
for looking at the dynamic state of the processor.

The debugging support is accessed through the debug registers. They hold the addresses .
of memory locations, called breakpoints, which invoke debugging software. An exception
is generated when a memory operation is made to one of these addresses. A breakpoint
is specified for a particular form of memory access, such as an instruction fetch or a
doubleword write operation. The debug registers support both instruction breakpoints
and data breakpoints.

With other processors, instruction breakpoints are set by replacing normal instructions
with breakpoint instructions. When the breakpoint instructi()n is executed, the debugger
is called. But with the debug registers of the Intel486 processor, this is not necessary. By
eliminating the need to write into the code space, the debugging process is simplificd
(there is no need to set up a data segment mapped to the same memory as the emk
segment) and breakpoints can be set in ROM-based software. In addition, breakpoints
can be set on reads and writes to data which allows real-time monitoring of variables.

11.1 DEBUGGING SUPPORT

The features of the architecture which support debugging are:

• Reserved debug interrupt vector-Specifies a procedure or task to be called when an
event for the debugger occurs.

• Debug address registers - Specifies the addresses of up to four breakpoints.

• Debug control register-Specifies the forms of memory access for the breakpoints.

• Debug status register-Reports conditions which were in effeCt at the time of the
exception.

• Trap bit of TSS (T-bit)-Generates a debug exception when an attempt is made to
perform a task switch to a task with this bit set in its TSS.

• Resume flag (RF) - Suppresses multiple exceptions to the same instruction.

• Trap flag (TF) - Generates a debug exception after every execution of an instruction.

• Breakpoint instruction-Calls the debugger (generates a debug exception). This
instruction is an alternative way to set code breakpoints. It is especially useful when
more than four breakpoints are desired, or when breakpoints are being placed in the
source code. .

• Reserved interrupt vector for breakpoint exception - Calls a procedure or task when a
breakpoint instruction is executed.

11-1

int:et DEBUGGING

These features allow a debugger to be called either as a separate task or as a procedure
in the context of the current task. The following conditions can be used to call the
debugger:

• Task switch to a specific task

• Execution of the breakpoint instruction.

• Execution of any instruction.

• Execution of an instruction at a specified address.

• Read or write ()f a byte, word, or doubleword at a specified address.

• Write to a byte, word, or doubleword at a specified address.

• Attempt to change the contents of a debug register.

11.2 DEBUG REGISTERS

Six registers are used to control debugging. These registers are accessed by forms of the
MOV instruction. A debug register may be the source or destination operand for one of
these instructions. The debug registers are privileged resources; the MOV instructions
which access them may be executed only at privilege level O. An attempt to read or write
the debug registers from any other privilege level generates a general~protection excep­
tion. Figure 11-1 shows the format of the debug registers.

11.2.1 Debug Address Registers (DRO-DR3)

Each of these.registers holds the linear address for one of the four breakpoints. That is,
breakpoint comparisons are made before physical address translation occurs. Each
breakpoint condition is specified furt~er by the contents of the DR? register.

11.2.2 Debug Control Register (DR7)

The debug control register shown in Figure 11-1 specifies the sort of memory access
associated with each breakpoint. Each address in registers DRO to DR3 corresponds to a
field RIWO to RlW3. in the DR7 register. The processor interprets these bits as follows:

00 - Break on instruction execution only
01- Break on data writes only
10 - undefined
11-Break on data reads or writes but not instruction fetches

11-2

inteL . DEBUGGING

DEBUG REGISTERS

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 111 111
10987654321098765432109876543210

L R L R L R L R
GOO 1 E I E I E I E I 00 G L G L GL G L G L

N W N W N W N W D E E 3 3 2 2 1 1 o 0
3 3 2 2 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 111 1 B B g 0 1 1 1 1 1 111 BB BB
T S 3 2 1 0

RESERVED

RESERVED

BREAKPOINT 3 LINEAR ADDRESS

BREAKPOINT 2 LINEAR ADDRESS

BREAKPOINT 1 LINEAR ADDRESS

BREAKPOINT 0 LINEAR ADDRESS

HARDWIRED BITS ARE RESERVED. DO NOT DEFINE

Figure 11-1. Debug Registers

DR7

DR6

DRS

DR4

DR3

DR2

DR1

ORO

240486i11·1

The LEND to LEN3 fields in the DR? register specify the size of the breakpointed
location in memory. A size of 1, 2, or 4 bytes may be specified. The length fields are
interpreted as follows: .

00 - one-byte length
01- two-byte length
10 - undefined
11-four-byte length

If RWn is 00 (instruction execution), then LENn should also be 00. The effect of using
any other length is undefined.

11-3

DEBUGGING.

The GD bit enables the debug register protection condition that is flagged by BD of
DR6. Note that GD is cleared at entry to the debug exception handler by the processor.
This allows the handler free access to the debug registers.

The low eight bits of the DR7 register (fields LO to L3 and GO to G3) individually enable
the four address breakpoint conditions. There are two levels of enabling: the local (LO
through L3) and global (GO through G3) levels. The local enable bits are automatically
cleared by the processor on every task switch to avoid unwanted breakpoint conditions in
the new task. They are used to breakpoint conditions in a single task. The global enable
bits are not cleared by a task switch. They are used to enable breakpoint conditions
which apply to all tasks.

The InteI486 processor always uses exact data breakpoint matching in debugging. That
is, if any of the Ln/Gn bits are set, the processor slows execution so that data breakpoints
are reported for the instruction which triggered the breakpoint, rather than the next
instruction to execute. In such a case, one-clock instructions which access memory will
take two clocks to execute. .

hi the Inte1386 DX processor, exact data breakpoint matching will not occur unless it is
enabled by setting either the LE or the GE bit.' The InteI486 processor ignores these
bits.

11.2.3 Debug Status Register (DRS)

The debug status register shown in Figure 11-1 reports conditions sampled at the time
the debug exception was generated. Among other information, it reports which break­
point triggered the exception. Update only occurs if the exception is taken, then all bits
will be updated.

When an enabled breakpoint generates a debug exception, it loads the low four bits of
this register (BO through B3) before entering the debug exception handler. The B bit is
set if the condition described by the DR, LEN, and R/W bits is true, even if the break­
point is not enabled by the Land G bits. The processor sets the B bits for all breakpoints
which match the conditions present at the time the debug exception is generated,
whether or not they are enabled.

The BT bit is associated with theT bit (debug trap bit) of theTSS (see Chapter 6 for the
format of a TSS). The processor sets the BT bit before entering the debug handler if a
task switch has occurred to a task with a set T bit in its TSS. There is no bit in the DR7
register to enable or disable this exception; the T bit of the TSS is the only enabling bit.

The BS bit is associated with the TF flag. The BS bit is set if the debug exception was
triggered by the single-step execution mode (TF flag set). The single-step mode is the
highest-priority debug exception; when the BS bit is set, any of the other debug status
bits also may be set.

The BD bitis set if the next instruction will read or write one of the eight debug registers
while they are being used by in-circuit emulation.

11-4

intel® DEBUGGING

Note that the contents of the DR6 register are never cleared by the processor. To avoid
any confusion in identifying debug exceptions, the debug handler should clear the regis­
ter before returning.

11.2.4 Breakpoint Field Recognition

The address and LEN bits for each of the four breakpoint conditions define a range of
sequential byte addresses for a data breakpoint. The LEN bits permit specification of a
one-, two-, or four-byte range. Two-byte ranges must be aligned on word boundaries
(addresses which are multiples of two) and four-byte ranges must be aligned on double­
word boundaries (addresses which are multiples of four). These requirements are
enforced by the processor; it uses the LEN bits to mask the lower address bits in the
debug registers. Unaligned code or data breakpoint addresses do not yield the expected
results.

A data breakpoint for reading or writing is triggered if any of the bytes participating in.a
memory access is within the range defined by a breakpoint address register and its LEN
bits. Table 11-1 gives some examples of combinations of addresses and fields with mem­
ory references which do and do not cause traps.

A data breakpoint for an unaligned operand can be made from two sets of entries in the
breakpoint registers where each entry is byte-aligned, and the two entries together cover
the operand. This breakpoint generates exceptions only for the operand, not for any
neighboring bytes.

Table 11-1. Breakpointing Examples

Comment Address (hex) Length (in bytes)

Register Contents DRO AOO01 1 (LEND = 00)
Register Contents DR1 AOO02 1 (LENO = 00)
Register Contents DR2 BOO02 2 (LENO = 01)
Register Contents DR3 COOOO 4 (LENO = 11)

AOO01 1
AOO02 1
AOO01 2
AOO02 2

Memory Operations Which Trap 80002 2
80001 4
COOOO 4
COO01 2
COO03 1

AOOOO 1
Memory Operations Which AOO03 4
Don't Trap 80000 2

COO04 4

11-5

intet DEBUGGING

Instruction breakpoint addresses must have a length specification of one byte (LEN =
00); the behavior of code breakpoints for other operand sizes is undefined. The proces­
sor recognizes an instruction breakpoint address only when it points to the first byte of
an instruction. If the instruction has any prefixes, the breakpoint address must point to
the first prefix.

11.3 DEBUG EXCEPTIONS

Two ofthe interrupt vectors of the Intel486 processor are reserved for debug exceptions.
The debug exception is the usual way to invoke debuggers designed for the Intel486
processor; the breakpoint exception is intended for putting breakpoints in debuggers.

11.3.1 Interrupt 1-Debug Exceptions

The· handler for this exception usually is a debugger or part of a debugging system. The
processor generates a debug exception for any of several conditions. The debugger can
check flags in the DR6 and DR7 registers to determine which condition caused the
exception and which other conditions also might apply. Table 11-2 shows the states of
these bits for each kind of breakpoint condition.

Instruction breakpoints are faults; other debug exceptions are traps. The debug excep­
tion may report either or both at one time. The following sections present details for
each class of debug exception. .

11.3.1.1 INSTRUCTION-BREAKPOINT FAULT

The processor reports an instruction breakpoint before it executes the breakpointed
instruction (i.e., a debug exception caused by an instruction breakpoint is a fault).

The RF flag permits the debug exception handler to restart instructions which cause
faults other than debug.faults. When a debug fault occurs,the system software writer
must set the RF bit in the copy of the EFLAGS register which is pushed on the sta.ck in
the· debug exception handler routine. This bit is set in preparation of resuming the

Table 11-2. Debug Exception Conditions

Flags Tested Description

BS = 1 Single-step trap

BO = 1 and (GEO = 1 or LEO = 1) Breakpoint defined by DRO, LENO, and R/WO

B1 = 1 and (GE1 = 1 or LE1 = 1) Breakpoint defined by DR1, LEN1, and R/W1

B2 = 1 and (GE2 = 1 or LE2 = 1) Breakpoint defined by DR2, LEN2, and R/W2

B3 = 1 and (GE3 = 1 or LE3 = 1) Breakpoint defined by DR3, LEN3, and R/W3

BD = 1 Debug registers in use for in-circuit emulation

BT = 1 Task switch

11-6

intel® DEBUGGING

program's execution at the breakpoint address without generating another breakpoint
fault on the same instruction. (Note: The RF bit does not cause breakpoint traps to be
ignored, nor other kinds of faults.)

The processor clears the RF flag at the successful completion of every instruction except
after the IRET instruction, the POPF instruction, POPFD instruction, and JMP, CALL,
or INT instructions which cause a task switch. These instructions set the RF flag to the
value specified by the the saved copy of the EFLAGS register.

The processor sets the RF flag in the copy of the EFLAGS register pushed on the stack
before entry into any fault handler. When the fault handler is entered for instruction
breakpoints, for example, the RF flag is set in the copy of the EFLAGS register pushed
on the stack; therefore, the IRET instruction which returns control from the exception
handler will set the RF flag in the EFLAGS register, and execution will resume at the
breakpointed instruction without generating another breakpoint for the same
instruction.

If, after a debug fault, the RF flag is set and the debug handler retries the faulting
instruction, it is possible that retrying the instruction will generate other faults. The
restart of the instruction after these faults also occurs with the RF flag set, so repeated
debug faults continue to be suppressed. The processor clears the RF flag only after
successful completion of the instruction.

11.3.1.2 DATA-BREAKPOINT TRAP

A data-breakpoint exception is a trap; i.e., the processor generates an exception for a
data breakpoint after executing the instruction which accesses the breakpointed memory
location.

The Intel486 processor always does exact data breakpoint matching, regardless of
GE/LE bit settings. Exact reporting is provided by forcing the Intel486 processor execu­
tion unit to wait for completion of data operand transfers before beginning execution of
the next instruction.

If a debugger needs to save the contents of a write breakpoint location, it should save
the original contents before setting the breakpoint. Because data breakpoints are traps,
the original data is overwritten before the trap exception is generated. The handler can
report the saved value after the breakpoint is triggered. The data in the debug registers
can be used to address the new value stored by the instruction which triggered the
breakpoint.

11.3.1.3 GENERAL-DETECT FAULT

The general-detect fault occurs when an attempt is made to use the debug registers at
the same time they are being used by in-circuit emulation. This additional protection
feature is provided to guarantee emulators can have full control over the debug registers
when required. The exception handler can detect this condition by checking the state of
the BD bit of the DR6 register.

11-7

DEBUGGING

11.3.1.4 SINGLE-STEP TRAP

This trap occurs after an instruction is executed if the TF flag was set before the instruc­
tion was executed. Note the exception does not occur after an instruction which sets the
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step
trap does not occur until after the instruction following the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was
set in a TSS at the time of a task switch, the exception occurs after the first instruction is
executed in the new task.

The single-step flag normally is not cleared by privilege changes inside a task. The INT
instructions, however, do clear the TF flag. Therefore, software debuggers which single­
step code must recognize and emulate INT n or INTO instructions rather than executing
them directly.

To maintain protection, the operating system should check the current execution privi­
lege level after any single-step trap to see if single stepping should continue at the
current privilege level.

The interrupt priorities guarantee that if an external interrupt occurs, single stepping
stops. When both an external interrupt and a single step interrupt occur together, the
single step interrupt is processed first. This clears the TF flag. After saving the return
address or switching tasks, the external interrupt input is examined before the first
instruction of the single step handler executes. If the external interrupt is still pending,
then it is serviced. The external interrupt handler does not run in single-step mode. To
single step an interrupt handler, single step an INTn instruction which calls the interrupt
handler.

11.3.1.STASK-SWITCH TRAP

The debug exception also occurs after a task switch if the T bit of the new task's TSS is
set. The exception occurs after control has passed to the new task, but before the first
instruction of that task is executed. The exception handler can detect this condition by
examining the BT bit of the .DR6 register.

Note that if the debug exception handler is a task, the T bit of its TSS should not be set.
Failure to observe this rule will put the processor in a loop.

11.3.2 Interrupt 3 - Breakpoint Instruction

The breakpoint trap is caused by execution of the INT 3 instruction. Typically, a debug­
ger prepares a breakpoint by replacing the first opcode byte of an instruction with the
opcode for the breakpoint instruction. When execution of the INT 3 instruction calls the
exception handler, the return address points to the first byte of the instruction following
the INT 3 instruction.

11-8

intel® DEBUGGING

With older processors, this feature is used extensively for setting instruction breakpoints.
With the Intel486 processor, this use is more easily handled using the debug registers.
However, the breakpoint exception still is useful for breakpointing debuggers, because
the breakpoint exception can call an exception handler other than itself. The breakpoint
exception also can be useful when it is necessary to set a greater number of breakpoints
than permitted by the debug registers, or when breakpoints are being placed in the
source code of a program under development.

11-9

Caching 12

CHAPTER 12
CACHING

The Intel486 processor has an on-chip internal cache for storing 8K bytes of instructions
and data. The cache raises system performance by satisfying an internal read request
more quickly than a bus cycle to memory. This also reduces the processor's use of the
external bus. The internal cache is transparent to program operation.

The Intel486 processor can use an external second-level cache outside of the processor
chip. An external cache normally improves performance and reduces bus bandwidth
required by the Intel486 processor.

Caches require special consideration in multiprocessor systems. When one processor
accesses data cached in another processor, it must not receive incorrect data. If it mod­
ifies data, all other processors which access that data must receive the modified data.
This property is called cache consistency. The Intel486 processor provides mechanisms
which maintain cache consistency in the presence of multiple processors and external
caches.

The operation of internal and external caches is transparent to application software, but
knowledge of the behavior of these caches may be useful in optimizing software perfor­
mance. In multiprocessor systems, maintenance of cache consistency may require inter­
vention by system software.

The cache is available in all execution modes: real mode, protected mode, and virtual-
8086 mode. For properly designed single-processor systems, the cache can be initially
enabled and not require further control.

12.1 INTRODUCTION TO CACHING

Caches are often implemented as associative memories. An associative memory has extra
storage for each unit of memory, called a tag. When an address is applied to an associa­
tive memory, each tag simultaneously compares itself against the address. If a tag
matches the address, access is provided to the unit of memory associated with the tag.
This is called a cache hit. If no match occurs, the cache signals a cache miss. A cache miss
requires a bus cycle to access main memory.

To gain efficiency in the implementation of the internal cache, storage is allocated in
chunks of 128-bits, called cache lines. External caches are not likely to use cache lines
smaller than those of the internal cache.

The cache of the Intel486 processor does not support partially-filled cache lines, so
caching a single doubleword requires caching four doublewords. This would be an inef­
ficient use of the cache if it were not for the fact that the processor rarely makes access
to random locations in memory. Over any small span of time, the processor usually
accesses a small number of areas in memory, such as the code segment or the stack, and
it usually accesses many neighboring addresses in these areas.

12-1

infel® CACHING

To simplify the hardware implementation, cache lines can only be mapped to aligned
128-bit blocks of main memory. (An aligned 128-bit block begins at an address which is
clear in its low four bits.) When a new cache line is allocated, the processor loads a block
from main memory into the cache line. This operation is called a cache line fill. Allocated
cache lines are said to be valid. Unallocated cache lines are invalid.

Caching can be write-through or write-back. On reads, both forms of caching operate as
described above. On writes, write-through caching updates both cache memory and main
memory; write-back caching updates only . the cache memory. Write-back caching
updates main memory when a write-back operation is performed. Write-back operations
are triggered when cache lines need to be de-allocated, such as when new cache lines are
being allocated in a cache which is already full. Write-back operations also are triggered
by the mechanisms used to maintain cache consistency.

The internal cache of the Intel486 processor is a write-through cache. It can be used with
external caches which are write-through, write-back, or a mixture of both.

12.2 OPERATION OF THE INTERNAL CACHE

Software controls the operating mode of the cache. Caching can be enabled (its state
following reset initialization), caching can be disabled while valid cache lines exist (a
mode in which the cache acts like a fast, internal RAM), or caching can be fully
disabled.

Precautions must be followed when disabling the cache. Whenever CD is set to 1, the
Intel486 processor will not read external memory if a copy is still in the cache. Whenever
NW is set to 1, the Intel486 processor will not write to external memory if the data is in
the cache. This means stale data can develop in the Intel486 CPU cache. This stale data
will not be written to external memory if NW is later set to 0 or that cache line is later
overwritten as a result of a cache miss. In general, the cache should be flushed when
disabled.

It is possible to freeze data in the cache by loading it using test registers while CD and
NW are set. This is useful to provide guaranteed cache hits for time critical interrupt
code and data.

Note that all segments should start on 16 byte boundaries to allow programs to align
code/data in cache lines.

12.2.1 Cache Disabling Bits

Table 12-1 summarizes the modes enabled by the CD and NW bits.

12-2

intel® CACHING

Table 12-1. Cache Operating Modes

CD NW Description

1 1 Caching is disabled, but valid cache lines continue to
respond. To completely disable the cache, enter this
mode and perform a cache flush. To use the cache as a
fast internal RAM, preload the cache with valid cache
lines by careful choice of memory operations or by using
the test registers. In this mode, writes to valid cache lines
update the cache, but do not update main memory.

1 0 No new cache lines are allocated, but valid cache lines
continue to respond.

0 1 Invalid setting. A general-protection exception with an
error code of zero is generated.

0 0 Caching is enabled.

12.2.2 Cache Management Instructions

The INVD and WBINVD instructions are used to invalidate the contents of the internal
and external caches. The INVD instruction flushes the internal cache and generates a
special bus cycle which indicates that external caches also should be flushed. (The
response of hardware to receiving a cache flush bus cycle is implementation dependent;
hardware might use some other mechanism for maintaining cache consistency.)

There is only one difference between the WBINVD and INVD instructions. The
WBINVD instruction generates a special bus cycle which indicates external, write-back
caches should write-back modified data to main memory. This cycle is produced imme­
diately before the cycle to flush the cache.

12.2.3 Self-Modifying Code

A write to an instruction in the cache will modify it in both cache and memory, but if the
instruction was prefetched before the write, the old version of the instruction could be
the one executed. To prevent this, flush the instruction prefetch unit by coding a jump
instruction immediately after any write that modifies an instruction.

12.3 PAGE-LEVEL CACHE MANAGEMENT

The Intel486 processor defines two bits in entries in the page directory and second-level
page tables which are reserved on Intel386 processors. These bits are used to drive
processor output pins. These bits are used to manage the caching of pages.

12-3

infel® CACHING

12.3.1 Cache Management Bits

The PCD and PWT bits control caching on a page-by-page basis. The PCD bit (page­
level cachedisable) affects the operation of the internal cache. Both the PCD bit and the
PWT bit (page-level write-through) drive processor output pins for controlling external
caches. The treatment of these signals by external hardware is implementation­
dependent; for example, some hardware systems may control the caching of pages by
decoding some of the high address bits.

There are three potential sources of the bits used to drive the PCD and PWT outputs of
the processor: the CR3 register, the page directory, and the second-level page tables.
The processor outputs are driven by theCR3 register for bus cycles where paging is not
used to generate the address, such as the loading of an entry in the page directory. The
outputs are driven by a page directory entry when an entry from a second-level page
table is accessed. The outputs are driven by a second-level page table entry when instruc­
tions or data in memory are accessed. When paging is disabled, these .bits are ignored
(CPU assumes PCD=O and PWT=O).

12.3.1.1 peD BIT

When a page table entry has a set PCD bit (bit position 4), caching of the page is
disabled, even if hardware is requesting caching by asserting the KEN# input. When the
PCD bit is clear, caching may be requested by hardware on a cycle-by-cyde basis.

Disabling caching is necessary for pages which contain memory-mapped 110 ports. It
also is useful for pages which do not provide a performance benefit when cached, such as
initialization software.

Regardless of the page-table entries, the Intel486 processor will ignore the PCD output
(assume PCD=O) whenever the CD (Cache Disable) bit in CRO is set.

12.3.1.2 PWT BIT

When a page table entry has a set PWT bit (bit position 3), a write-through caching
policy is specified for data in the corresponding page. Clearing the PWT bit allows the
possibility of using a write-back policy for the page. Since the internal cache of the
Intel486 processor is a write-through cache, it is not affected by the state of the PWT bit.
External caches however may use write-back caching, and so cart use the output signal
driven by thePWT bit to control caching policy on a page-by-page basis.

In multiprocessor systems, enabling write-through may be advantageous for shared mem­
ory, particularly for memory locations written infrequently by one processor, but read
often by many processors.

12-4

Multiprocessing 13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I

CHAPTER 13
MULTIPROCESSING

The Intel486 processor supports multiprocessing on the system bus. Processors on the
system bus can have different bus widths.

Multiprocessors can increase particular aspects of system performance. For example, a
computer graphics system may use an i860 CPU for fast rendering of raster images, while
an Intel486 processor is used to support a standard operating system, such as UNIX or
OS/2. Multiprocessing systems are sensitive to two design issues:

o Maintaining cache consistency - When one processor accesses data cached in another
processor, it must not receive incorrect data. If it modifies data, all other processors
which access that data must receive the modified data.

o Reliable communication - Processors need to be able to communicate with each other
in a way which eliminates interference when more than one processor simultaneously
accesses the same area in memory.· .

Cache consistency was discussed earlier, in Chapter 12. Reliable communication is dis­
cussed in the following section, which describes the mechanism used to "lock" the bus.

13.1 LOCKED AND PSEUDO-LOCKED BUS CYCLES·

While the system architecture of multiprocessor systems varies greatly, they generally
have a need for reliable communication with memory. A processor in the act of updating
the Accessed bit of a segment descriptor, for example, should reject other attempts to
update the descriptor until the operation is complete.

It also is necessary to have reliable communication with other processors. Bus masters
need to exchange data in a reliable way. For example, a bit in memory may be shared by
several bus masters for use as a signal that some resource, such as a peripheral device, is
idle. A bus master may test this bit, see that the resource is free, and change the state of
the bit. The state would indicate to other potential bus masters that the resource is in
us.e. A problem could arise if another bus master reads the bit between the time the first
bus master reads the bit and the time the state of the bit is changed. This condition
would indicate to both potential bus masters that the resource is free. They may inter­
fere with each other as they both, attempt to use the resource. The processor prevents
this problem through support of locked bus cycles; requests for control of the bus are
ignored during locked cycles.

The Intel486 processor protects the integrity of certain critical memory operations by
asserting an output signal called LOCK#. Reads and writes of aligned 64-bit operands
and (128-bit) instruction prefetches are protected by an output called PLOCK#. It is the
responsibility of the hardware. designer to use these signals to control memory access
among processors.

13-1

intel® MULTIPROCESSING

The processor automatically asserts one of these signals during certain critical memory
operations. Software can specify which other memory operations need to have LOCK#
asserted.

The features of the general-purpose multiprocessing interface include:

• The LOCK# signal, which appears on a pin of the processor.

• The PLOCK# signal, which appears on a pin of the processor.

• The LOCK instruction prefix, which allows software to assert LOCK#.

• Automatic assertion of LOCK# for some kinds of memory operations.

• Automatic assertion of PLOCK# for some other kinds of memory operations.

13.1.1 LOCK Prefix and the LOCK# Signal

The LOCK prefix and its bus signal only should be used to prevent other bus masters
from interrupting a data movement operation. The LOCK prefix can be used with the
following Intel486 CPU instructions when they modify memory. An invalid-opcode
exception results from using the LOCK prefix before any other instruction, or with these
instructions when no write operation is made to memory (i.e., when the destination
operand is in a register).

• Bit test and change: the BTS, BTR, and BTC instructions.

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is
needed for the XCHG instruction).

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions.

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and
XOR instructions.

A locked instruction is guaranteed to lock only the area of memory defined by the desti­
nation operand, but may lock a larger memory area. For example, typical 8086 and 80286
configurations lock the entire physical memory space.

Semaphores (shared memory used for signalling between multiple processors) should be
accessed using identical address and length. For example, if one processor accesses a
semaphore using word access, other processors should not access the semaphore using
byte access.

The integrity of the lock is not affected by the alignment of the memory field. The
LOCK# signal is asserted for as many bus cycles as necessary to update the entire
operand.

13-2

MULTIPROCESSING

13.1.2 Automatic Locking

There are some critical memory operations for which the processor automatically asserts
the LOCK# signal. These operations are:

o Acknowledging interrupts.

After an interrupt request, the interrupt controller uses the data bus to send the
interrupt vector of the source of the interrupt to the processor. The processor asserts
LOCK# to ensure no other data appears on the data bus during this time. .

o Setting the Busy bit of a TSS descriptor.

The processor tests and sets. the Busy bit in the Type field of the TSS descriptor when
switching to a task. To ensure two different processors do not switch to the same task
simultaneously, the processor asserts the LOCK# signal while testing and setting
this bit.

o Updating segment descriptors.

When loading a segment descriptor, the processor will set the Accessed bit if the bit is
clear. During this operation, the processor asserts LOCK# so the descriptor will not
be modified by another processor while it is being updated. For this action to be
effective, operating-system procedures which update descriptors should use the fol­
lowing steps:

- Use a locked operation when updating the access-rights byte to mark the
descriptor not-present, and specify a value for the Type field which indicates the
descriptor is being updated.

- Update the fields of the descriptor. (This may require several memory accesses;
therefore, LOCK cannot be used.)

- Use a locked operation when updating the access-rights byte to mark the
descriptor as valid and present.

Note that the Intel386 DX processor always updates the Accessed bit, whether it is
clear or not. The Intel486 processor only updates the Accessed bit if it is not already
set.

a Updating page-directory and page-table entries.

When updating page-directory and page-table entries, the processor uses locked
cycles to set the Accessed and Dirty bits.

o Executing an XCHG instruction.

The Intel486 processor always asserts LOCK# during an XCHG instruction which
references memory (even if the LOCK prefix is not used).

13.1.3 Pseudo-Locking

The PLOCK# pin indicates that the current bus cycle and the following one should be
treated as an atomic transfer. By implementing the pseudo-lock mechanism, system
hardware can guarantee atomic reads and writes of 64-bit operands. The operand must
be aligned to a doubleword boundary, so that the read or write requires no more than
two bus cycles to be completed.

13-3

intel® MULTIPROCESSING

The pseudo-lock mechanism can also be used to protect instruction prefetches and other
transfers of more than 32 bits. For a detailed discussion of the PLOCK# signal, its
timing and its various uses, see the Intel486™ Processor Hardware Reference Manual.

13-4

Part III
Numeric Processing

-' .. . ,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

Introduction to
Numeric Applications

14

CHAPTER 14
INTRODUCTION TO NUMERIC APPLICATIONS

The Intel486 processor contains a high-performance numerics processing element that
provides significant numeric capabilities and direct support for floating-point, extended­
integer, and BCD data types. The Intel486 Floating Point Unit (FPU) easily supports
powerful and accurate numeric applications through its implementation, with radix 2, of
the IEEE Standard 854 for Floating-Point Arithmetic. The Intel486 FPU provides
floating-point performance comparable to that of large minicomputers while offering
compatibility with object code for 8087, Inte1287, Intel387 DX and Inte1387 SX math
coprocessors.

14.1 HISTORY

The Intel486 FPU is compatible with its predecessors, the earlier Intel 8087, Intel287
and Intel387 DX coprocessor. Programs designed to use the 8087, Intel287 or Inte1387
math coprocessor should run unchanged on the Intel486 processor. Refer to Figure 3-23
to identify the floating point unit in your system.

The 8087 NPX was designed for use in 8086-family systems. The 8086 was the first
microprocessor family to partition the processing unit to permit high-performance
numeric capabilities. The 8087 NPX for this processor family implemented a complete
numeric processing environment in compliance with an early proposal for IEEE Stan­
dard 754 for Binary Floating-Point Arithmetic.

With the Intel287 Numeric Processor Extension, high-speed numeric computations were
extended to 286 high-performance multitasking and multiuser systems. Multiple tasks
using the numeric processor extension were afforded the full protection of the 286 mem­
ory management and protection features.

The Intel387 DX and SX math coprocessors are Intel's third generation numerics pro­
cessors. They implement the final IEEE Std 754, adds new trigonometric instructions,
and uses a new design and CHMOS-III process to allow higher clock rates and require
fewer clocks per instruction. Together, the Intel387 math coprocessor with additional
instructions and the improved standard brought even more convenience and reliability to
numerics programming and made this convenience and reliability available to applica­
tions that need the high-speed and large memory capacity of the 32-bit environment of
the Intel386 microprocessor.

The Intel486 FPU is an on-chip equivalent of the Intel387 DX coprocessor conforming
to both IEEE Std 754 and the more recent, generalized IEEE Std 854. Having the FPU
on chip results in a considerable performance improvement in numerics-intensive com­
putation. Figure 14-1 illustrates the relative performance of 5-MHz 8086 CPU/8087
NPX, 8-MHz 286 CPU/InteI287 NPX, 20-MHz Intel386 DX CPU/Inte1387 DX systems,
and a 33-MHz Intel486 processor, in executing numerics-oriented applications.

14-1

intel® INTRODUCTION TO NUMERIC APPLICATIONS

i486'· CPU (33 MHz)
•

80

70

60

RELATIVE 50
PERFORMANCE

40

30

20 - i386'" OX CPUli387'" OX NPX (20 MHz)
•

8086/8087 (5 MHz)
•

80286/80287 (8 MHz)
•

10

1980 1983 1987 1989

240486i14-1

Figure 14-1. Evolution and Performance of Numeric Processors

14.2 PERFORMANCE

Table 14-1 compares the execution times of several Intel486 CPU numeric instructions
with the equivalent operations executed on a 16-MHz Intel387 DX math coprocessor. As
indicated in the table, the 33-MHz Intel486 floating-point processor provides about 5
times the performance of a 16-MHz Inte1387 DX math coprocessor. A 33-MHz Intel486
processor multiplies 32-bit and 64-bit floating-point numbers in about .33 and .42 micro­
seconds, respectively. Of course, the actual performance of the processor in a given
system depends on the characteristics of the individual application.

The Intel486 Integer Unit (IU) and FPU coordinate their activities in a manner trans­
parent to software. Moreover, built-in coordination facilities allow the IU to proceed
with other instructions while the FPU is simultaneously executing numeric instructions.

Table 14-1. Numeric Processing Speed Comparisons

Approximate Performance Ratio:
Floating-Point Instruction 33 MHz InteI486'" +

16 MHz Inte1386'" OX/lnteI387'" OX

FADD 8T,8T(i) Addition 4.2

FDIV dword_var Division 2.0

FYL2X stack(0),(1) assumed Logarithm 2.5

FPATAN stack(O) assumed Arctangent 2.2

F2XMI stack(O) assumed Exponentiation 2.2

FLD 8T(0), 8T(i) Data Transfer 5.5

14-2

intel® INTRODUCTION TO NUMERIC APPLICATIONS

Programs can exploit this concurrency of execution to further increase system perfor­
mance and throughput.

14.3 EASE OF USE

The Intel486 FPU provides more than raw execution speed for computation-intensive
tasks; it brings the functionality and power of accurate numeric computation into the
hands of the general user. These features are available in most high-level languages
available for the Intel486 processor.

Like the 8087, Intel287 and Intel387 DX coprocessor that preceded it, the Intel486 FPU
is explicitly designed to deliver stable, accurate results when programmed using straight­
forward "pencil and paper" algorithms. IEEE Std 754 specifically addresses this issue,
recognizing the fundamental importance of making numeric computations both easy and
safe to use.

For example, most computers can overflow when two single-precision floating-point
numbers are multiplied together and then divided by a third, even if the final result is a
perfectly valid 32-bit number. The Intel486 FPU delivers the correctly rounded resu'lt.
Other typical examples of undesirable machine behavior in straightforward calculations
occur when computing financial rate of return, which involves the expression (1 + i)n or
when solving for roots of a quadratic equation:

-b ± \/b2 - 4ac
2a

If a does not equal 0, the formula is numerically unstable when the roots are nearly
coincident or when their magnitudes are wildly different. The formula is also vulnerable
to spurious over/underflows when the coefficients a, b, and c are all very big or all very
tiny. When single-precision (4-byte) floating-point coefficients are given as data and the
formula is evaluated in the Intel486 FPU's normal way, keeping all intermediate results
in its stack, the FPU produces impeccable single-precision roots. This happens because,
by default and with no effort on the programmer's part, the FPUevaluates all those
subexpressions with so much extra precision and range as to overwhelm any threat to
numerical integrity.

If double-precision data and results were at issue, a better formula would have to be
used, and once again the Intel486 FPU's default evaluation of that formula would pro­
vide substantially enhanced numerical integrity over mere double-precision evaluation.

On most machines, straightforward algorithms will not deliver consistently correct results
(and will not indicate when they are incorrect). To obtain correct results on traditional
machines under all conditions usually requires sophisticated numerical techniques that
are foreign to most programmers. General application programmers using straightfor­
ward algorithms will produce much more reliable programs using the Inte1486 processor.
This simple fact greatly reduces the software investment required to develop safe, accu­
rate computation-based products.

14·3

intel® INTRODUCTION TO NUMERIC APPLICATIONS

Beyond traditional numerics support for scientific applications, the Intel486 processor
has built-in facilities for commercial computing. It can process decimal numbers of up to
18 di~its without round-off errors, performing exact arithmetic on integers as large as 264

or 10 8. Exact arithmetic is vital in accounting applications where rounding errors may
introduce monetary losses that cannot be reconciled.

The Intel486 processor contains a number of optional numerical facilities that can be
invoked by sophisticated users. These advanced features include directed rounding,
gradual underflow, and programmed exception-handling facilities.

These automatic exception-handling facilities permit a high degree of flexibility in
numeric processing software, without burdening the programmer. While performing
numeric calculations, the Intel486 processor automatically detects exception conditions
that can potentially damage a calculation (for example, X -:- 0 or -y!X when X < 0). By
default, on-chip exception logic handles these exceptions so that a reasonable result is
produced and execution may proceed without program interruption. Alternatively, the
processor can invoke a software exception handler to provide special results whenever
various types of exceptions are detected.

14.4 APPLICATIONS

The Intel486 processor's versatility and performance make it appropriate to a broad
array of numeric applications. In general, applications that exhibit any of the following
characteristics can benefit by implementing numeric processing on the Intel486
processor:

• Numeric data vary over a wide range of values, or include nonintegral values.

• Algorithms produce very large or very small intermediate results.

• Computations must be very precise; i.e., a large number of significant digits must be
maintained.

• Performance requirements exceed the capacity of traditional microprocessors.

• Consistently safe, reliable results must be delivered using a programming staff that is
not expert in numerical techniques.

Note also that the Intel486 processor can reduce software development costs and
improve the performance of systems that use not only real numbers, but operate on
multiprecision binary or decimal integer values as well. .

A few examples, which show how the Intel486 processor might be used in specific
numerics applications, are described below. In many cases, these types of systems have
been implemented in the past with minicomputers or sIll(ill mainframe computers.

• Business data processing - The Intel486 FPU's ability to accept decimal operands and
produce exact decimal results of up to 18 digits greatly simplifies accounting program"
mingo Financial calculations that use power functions can take advantage of the
Intel486 processor's exponentiation and logarithmic instructions: Many business soft­
ware packages can benefit from the speed and accuracy of the Intel486 FPU.

14-4

intaL INTRODUCTION TO NUMERIC APPLICATIONS

• Simulation-The large (32-bit) memory space and raw speed of the Intel486 proces­
sor make it suitable for attacking large simulation problems, which heretofore could
only be executed on expensive mini and mainframe computers. For example, complex
electronic circuit simulations using SPICE can be performed on an Intel486 proces­
sor. Simulation of mechanical systems using finite element analysis can employ more
elements, resulting in more detailed analysis or simulation of larger systems.

• Graphics transformations - The Intel486 processor can be used in graphics applica­
tions, with the FPU performing many functions concurrently with the operation of the
IU; these functions include rotation, scaling, and interpolation. By also using an
82786 Graphics Display Controller to perform high-speed drawing and window man­
agement, very powerful and highly self-sufficient terminals can be built from a small
number of parts.

• Process control- The Intel486 FPU solves dynamic range problems automatically,
and its extended precision allows control functions to be fine-tuned for more accurate
and efficient performance. Using the Inte1486 processor to implement control algo­
rithms also contributes to improved reliability and safety, while the processor's speed
can be exploited in real-time operations.

• Computer numerical control (CNC) - The Intel486 processor can move and position
machine tool heads with accuracy in real-time. Axis positioning also benefits from the
hardware trigonometric support provided by the FPU.

o Robotics - Coupling small size and modest power requirements with powerful com­
putational abilities, the Intel486 processor is ideal for on-board six-axis positioning.

• Navigation-Very small, lightweight, and accurate inertial guidance systems can be
implemented with the Intel486 processor. Its built-in trigonometric functions can
speed and simplify the calculation of position from bearing data.

• Data acquisition - The Intel486 processor can be used to scan, scale, and reduce large
quantities of data as it is collected, thereby lowering storage requirements and time
required to process the data for analysis.

The preceding examples are oriented toward traditional numerics applications. There
are, in addition, many other types of systems that do not appear to the end user as
computational, but can employ the Intel486 processor's numerical capabilities to advan­
tage. The imaginative system designer has an opportunity similar to that created by the
introduction of the microprocessor itself. Many applications can be viewed as
numerically-based if sufficient computational power is available to support this view
(e.g., character generation for a laser printer). This is analogous to the thousands of
successful products that have been built around "buried" microprocessors, even though
the products themselves bear little resemblance to computers.

14.5 PROGRAMMING INTERFACE

The Intel486 processor has a class of instructions known as ESCAPE instructions, all
having a common format. These ESC instructions are numeric instructions for the FPU.
These numeric instructions are part of a single integrated instruction set.

Numeric processing in the Intel486 processor centers around the floating-point register
stack. Programmers can treat these eight 80-bit registers either as a fixed register set,

14-5

infel® INTRODUCTION TO NUMERIC APPLICATIONS

with instructions operating on explicitly-designated registers, or as a classical stack, with
instructions operating on the top· one or two stack elements.

Internally, the Inte1486 FPU holds all numbers in a uniform 80-bit extended format.
Operands that may be represented in memory as 16c, 32-, or 64"bit integers, 32-, 64-, or
80-bit floating-point numbers, or 18-digit packed BCD numbers, are automatically con­
verted into extended format as they· are loaded· into the FPU registers. Computation
results are subsequently converted back into one of these destination data formats when
they are stored into memory from the FPU registers.

Table 14-2 lists each of the seven numeric data types supported by the Inte1486 FPU,
showing the data format for each type. The table also shows the approximate range of
normalized values that can be represented with each type. Denormal values are also
supported in each of the real types, as required by IEEE Std 854. Denormals are dis­
cussed in Chapter 16.

All operands are stored in memory with the least significant digits starting at the initial
(lowest) memory address. Numeric instructions access and store memory operands using
only this initial address. For maximum system performance, every operand should start
at a memory address divisible by the smallest power of two greater than the operand's
length (in bytes). . .

Table 14-3 lists the numeric instructions by class. No special programming tools are
necessary to use the numerical capabilities of the Inte1486 processor, because all of the
numeric instructions and data types are directly supported by the ASM386/486 Assem­
bler, by high-level languages from Intel, and by assemblers and compilers produced by
many independent software vendors. Numeric routines for the Inte1486 processor can be
written in ASM386/486 Assembler or any of the following higher-level languages from
Intel:

PL/M-386/486
C-386/486
FORTRAN-386/486
ADA-386/486

Data Type Bits

Word integer 16
Short integer 32
Long integer 64
Packed decimal 80
Single real 32
Double real 64
Extended real* 80

Table 14-2. Numeric Data Types

Significant
Approximate Normalized

Digits
Range (Decimal)

(Decimal)

4 -32,768 ~ x ~ + 32,767
9 -2 x 109 ~ X ~ + 2 X 109

18 - 9 x.1 018 ~ x ~ + 9 x 1018

18 - 99 ... 99 ~ x ~. + 99 ... 99 (18 digits)
7 1.18 x 10-38 < I x I < 3.40 x 1038

15-16 2.23 x 10-308 < I x I < 1.79 X 10308

19 3.37 x 10-4932 < I x I < 1.18 x 104932

*Equivalent to double extended format of IEEE Std 854.

14-6

intel® INTRODUCTION TO NUMERIC APPLICATIONS

Table 14-3. Principal Numeric Instructions

Class Instruction Types

Data Transfer Load (all data types). Store (all data types), Exchange

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide
Reversed, Square Root, Scale, Extract, Remainder, Integer Part,
Change Sign, Absolute Value

Comparison Compare, Examine, Test

Transcendental Tangent, Arctangent, Sine, Cosine, Sine and Cosine, 2X -1,
Y ·Log2 (X). Y . Log2 (X + 1)

Constants 0, 1, 'IT, Log 102, Log.,2, Log210, Log2e

Processor Control Load Control Word, Store Control Word, Store Status Word, Load
Environment, Store Environment, Save, Restore, Clear Excep-
tions, Initialize

In addition, all of the development tools supporting the 8086/8087, 80286/80287 and
80386 DX/80387 DX NPX can also be used to develop numerical software for the
Intel486 processor.

All of these high-level languages provide programmers with access to the computational
power and speed of the Intel486 processor without requiring an understanding of its
architecture. Such architectural considerations as concurrency and synchronization are
handled automatically by these high-level languages. For the ASM386/486 programmer,
specific rules for handling these issues are discussed in a later section of this manual.

14-7

Architecture of 15
the Floating-Point Unit

CHAPTER 15
ARCHITECTURE OF THE FLOATING-POINT UNIT

To the programmer, the Intel486 FPU appears as a set of additional registers, data
types, and instructions. Refer to Chapter 26 for detailed explanations of the numerical
instruction set. This chapter explains the numerical registers and data types of the
Intel486 architecture.

15.1 NUMERICAL REGISTERS

The Intel486 numerical registers consist of

• Eight individually-addressable 80-bit numeric registers, organized as a register stack.

o Three 16-bit registers containing:

The FPU status word.
The FPU control word.
The tag word.

• Error pointers, consisting of:

Two 16-bit registers containing selectors for the last instruction and operand.
Two 32-bit registers containing offsets for the last instruction and operand.
One ll-bit register containing the opcode of the last non-control FPU instruction.

All of the Intel486 numeric instructions focus on the contents of these FPU registers.

15.1.1 The FPU Register Stack

The Intel486 FPU register stack is shown in Figure 15-1. Each of the eight numeric
registers in the stack is 80 bits wide and is divided into fields corresponding to the
Intel486 processor's extended real data type.

Numeric instructions address the data registers relative to the register on the top of the
stack. At any point in time, this top-of-stack register is indicated by the TOP (stack
TOP) field in the FPU status word. Load or push operations decrement TOP by one and
load a value into the new top register. A store-and-pop operation stores the value from
the current TOP register and then increments TOP by one. Like stacks in memory, the
FPU register stack grows down toward lower-addressed registers.

Many numeric instructions have several addressing modes that permit the programmer
to implicitly operate on the top of the stack, or to explicitly operate on specific registers
relative to the TOP. The ASM386/486 Assembler supports these register addressing
modes, using the expression ST(O), or simply ST, to represent the current Stack Top and
ST(i) to specify the ith register from TOP in the stack (0 :5 i :5 7). For example, if TOP
contains 011B (register 3 is the top of the stack), the following statement would add the
contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2)

15-1

intel® ARCHITECTURE OF THE FLOATING-POINT UNIT

RO

R1

R2

R3

R4

R5

R6

R7

79 78 64 63

SIGN EXPONENT

15

CONTROL REGISTER

STATUS REGISTER

TAG WORD

FPU DATA REGISTERS

SIGNIFICAND

INSTRUCTION POINTER

DATA POINTER

Figure 15-1. Inte1486'M FPU Register Set

TAG
FIELD

o 1 0 -
-
-
-
-
-
-
-
-

240486i15-1

The stack organization and top-relative addressing of the numeric registers simplify sub­
routine prbgramming by allowing routines to pass parameters on the register stack. By
using the stack to pass parameters rather than using "dedicated" registers, calling rou­
tines gain more flexibility in how they use the stack. As long as the stack is not full, each
routine simply loads the parameters onto the stack before calling a particular subroutine
to perform a numeric calculation. The subroutine then addresses its parameters as ST,
ST(l), etc., even though TOP may, for example, refer to physical register 3 in one invo­
cation and physical register 5 in another.

15.1.2 The FPU Status Word

The 16-bit status word shown in Figure 15-2 reflects the overall state of the FPU. This
status word may be stored into memory using the FSTSW/FNSTSW, FSTENV/
FNSTENV, and FSA VE/FNSA VE· instructions, and can be transferred into the AX
register with the FSTSW AX/FNSTSW AX instructions, allowing the FPU status to be
inspected by the Integer Unit.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the
ESbit (bit 7 of the status word).

The four FPU condition code bits (C3-CO) are similar to the flags in a CPU: the Intel486
processor updates these bits to ·reflect the outcome of arithmetic operations. The effect
of these instructions on the condition code bits is summarized in Table 15-1. These
condition code bits are used principally for conditional branching. The FSTSW AX
instruction stores the FPU status word directly into the AX register, allowing these

15-2

in1'el® ARCHITECTURE OF THE FLOATING-POINT UNIT

r-----------------------~-FPUBUSY

r---l--r-----------TOP OF STACK POINTER

rl-I-I---.--r--rr r r-'CONDITION CODE

7

ERROR SUMMARY STATUS~
STACK FAULT'---------------'

EXCEPTION FLAGS

PRECISION----------------'

UNDERFLO'W-----------------'

OVERFLOW--------------------'

o

ZERO DIVIDE--------------------'

DENORMALIZED OPERAND--------------'

INVALID OPERATION-------------------'

ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET; CLEARED OTHERWISE.
SEE TABLE 15·1 FOR INTERPRETATION OF CONDITION CODE.

TOP VALUES:
000 = REGISTER 0 IS TOP OF STACK
001 = REGISTER 1 IS TOP OF STACK

111 = REGISTER 7 IS TOP OF STACK

FOR DEFINITIONS OF EXCEPTIONS, REFER TO CHAPTER 3.

Figure 15-2. Intel486™ FPU Status Word

240486;15-2

condition codes to be inspected efficiently by Intel486 code. The SAHF instruction can
copy C3-CO directly to Intel486 flag bits to simplify conditional branching. Table 15-2
shows the mapping of these bits to the Intel486 flag bits.

Bits 11-13 of the status word point to the FPU register that is the current Top of Stack
(TOP). The significance of the stack top has been described in the prior section on the
register stack.

Figure 15-2 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the
exception summary status (ES) bit. ES is set if any unmasked exception bits are set, and
is cleared otherwise. Bits 0-5 indicate whether the FPU has detected one of six possible

15-3

intel® ARCHITECTURE OF THE FLOATING-POINT UNIT

Table 15-1. Condition Code Interpretation

Instruction CO J C3 C2 C1

FCOM, FCOMP,
FCOMPP, FTST,

Operand is not Zero
FUCOM, FUCOMP, Result of comparison

comparable or O/U#
FUCOMPP, FICOM,
FICOMP

FXAM Operand .class
Sign
or O/U#

FPREM, FRREM1 02 J 01
0= reduction complete 00
1 = reduction incomplete or O/U#

FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD,
FMUL, FDIV,

Roundup
FDIVR, FSUB, UNDEFINED
FSUBR, FSCALE,

or O/U#

FSORT, FPATAN,
F2XM1, FYL2X,
FYL2XP1

Roundup
FPTAN, FSIN,

UNDEFINED
0= reduction complete or O/U#

FCOS, FSINCOS 1 = reduction incomplete (UNDEFINED
if C2= 1)

FCHS, FABS,
FXCH, FINCSTP,
FDECSTP, Con-

Zero
stant Loads, UNDEFINED

or O/U#
FXTRACT, FLO,
FILD, FBLD, FSTP
(ext. real)

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX

FINIT, FSAVE Zero I Zero Zero Zero

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 =1) and underflow (C1 =0).

Reduction If FPREM and FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup v.(hen the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

15-4

intel® ARCHITECTURE OF THE FLOATING-POINT UNIT

Table 15-2. Correspondence Between FPU and IU Flag Bits

FPU Flag IU Flag

Co GF

C1 (none)

C2 PF

C3 ZF

exception conditions since these status bits were last cleared or reset. They are "sticky"
bits, and can only be cleared by the instructions FINIT, FCLEX, FLDENV, FSAVE,
and FRSTOR.

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack
overflow or underflow from other kinds of invalid operations. When SF is set, bit 9 (C l)

distinguishes between stack overflow (C l = 1) and underflow (C l = 0).

15.1.3 Control Word

The FPU provides the programmer with several processing options, which are selected
by loading a word from memory into the control word. Figure 15-3 shows the format and
encoding of the fields in the control word.

The low-order byte of this control word configures the numerical exception masking. Bits
0-5 of the control word contain individual masks for each of the six floating-point excep­
tion conditions recognized by the Inte1486 processor. The high-order byte of the control
word configures the FPU processing options, including

C) Precision control

.. Rounding control

The precision-control bits (bits 8-9) can be used to set the FPU internal operating
precision at less than the default precision (64-bit significand). These control bits can be
used to provide compatibility with the earlier-generation arithmetic processors having
less precision than the Inte1486 processor or Inte1387 math coprocessor. The precision­
control bits affect the results of only the following five arithmetic instructions: ADD,
SUBeR), MUL, DIV(R), and SORT. No other operations are affected by Pc.

The rounding-control bits (bits 10-11) provide for the common round-to-nearest mode,
as well as directed rounding and true chop. Rounding control affects the arithmetic
instructions (refer to Chapter 16 for lists of arithmetic and non arithmetic instructions)
and certain non arthimetic instructions, namely (FLD constant) and (FST(P)mem)
instructions.

15-5

intel® ARCHITECTURE OF THE FLOATING-POINT UNIT

,.............,,.....------------ RESERVED

r---------- (INFINITY CONTROL)

1 r" .. r------- ROUNDING CONTROL l! !""""-l - PRECISION CONTROL

1:;x:+1 + 1 + 1::xl:I*I*I~1
RESERVED

EXCEPTION MASKS HJ
PRECISION ------------'

UNDERFLOW-------------'

.OVERFLOW ---------------1
ZERO DIVIDE -------------......

DENORMALIZED OPERAND -----------1
INVALID OPERATION ---------------1

ROUNDING CONTROL
DO-ROUND TO NEAREST OR EVEN
01-ROUND DOWN (TOWARD -~)
10-ROUND UP (TOWARD +~)
11-CHOP (TRUNCATE TOWARD ZERO)

PRECISION CONTROL
00-24 BITS (SINGLE PRECISION)
01-(RESERVED)
10-53 BITS (DOUBLE PRECISION)
11-64 BITS (EXTENDED PRECISION)

*This "infinity control" bit is not meaningful to the i486'" PROCESSOR.
To maintain compatibility with Intel287 Math CoProcessor this bit can be programmed;
however, regardless of its value, the i486'" FPU treats infinity in the affine
sense (- ~ < + ~).

Figure 15-3. Intel486™ FPU Control Word Format

15.1.4 The FPU Tag Word

240486i15·3

The tag word indicates the contents of each register in the register stack, as shown in
Figure 15-4. The tag word is used by the FPU itself to distinguish between empty and
nonempty register locations. Programmers of exception handlers may use this tag infor­
mation to check the contents of a numeric register without performing complex decoding
of the actual data in the register. The tag values from the tag word correspond to phys­
ical registers 0-7. Programmers must use the current top-of-stack (TOP) pointer stored
in the FPU status word to associate these tag values with the relative stack registers
ST(O) through ST(7).

15-6

infel® ARCHITECTURE OF THE FLOATING-POINT UNIT

TAG VALUES:
00 ~ VALID
01 ~ ZERO
10 ~ SPECIAL:INVALlD(NaN, UNSUPPORTED), INFINITY, OR DENORMAL
11 ~ EMPTY

Figure 15-4. Tag Word Format

240486i15·4

The exact values of the tags are generated during execution of the FSTENV and FSA VE
instructions according to the actual contents of the nonempty stack locations. During
execution of other instructions, the Intel486 processor updates the TW only to indicate
whether a stack location is empty or nonempty.

15.1.5 Opcode Field of Last Instruction

The opcode field in Figure 15-5 describes the ll-bit format of the last non-control FPU
instruction executed. The first and second instruction bytes (after all prefixes) are com­
bined to form the opcode field. Since all floating-point instructions share the same 5
upper bits in the first instruction byte (following prefixes), they are not stored in the
opcode field. Note that the second instruction byte is actually located in the low-order
byte of the stored opcode field.

7 o 7 o

115 114 113 112 111 110 19 18 17 16 15 14 13 12 11 10

2ND INSTRUCTION BYTE ,STINSTRUCTION BYTE Y
'I

I

~ * 10 8 7 0

12 11 10 115 114 113 112 111 110 19 18

OPCODE FIELD

240486i15·5

Figure 15-5. Opcode Field

15-7

inteL ARCHITECTURE OF THE FLOATING-POINT UNIT

15.1.6 The Numeric Instruction and Data Pointers

The instruction and data pointers provide support for programmed exception-handlers.
These registers are accessed by the ESC instructions FLDENV, FSTENV, FSAVE, and
FRSTOR. Whenever the Intel486 processor decodes an ESC instruction, it saves the
instruction address, the operand address (if present), and the instruction opcode.

When stored in memory, the instruction and data pointers appear in one of four formats,
depending on the operating mode of the processor (protected mode or real-address
mode) and depending on the operand-size attribute in effect (32-bit operand or 16-bit
operand). In virtual-8086 mode, the real-address mode formats are used.

Figures 15-6 through 15-9 show these pointers as they are stored following an FSTENV
instruction.

The FSTENV and FSA VE instructions store this data into memory, allowing exception
handlers to determine the precise nature of any numeric exceptions that may be
encountered.

The instruction address saved points to any prefixes that preceded the instruction, as in
the Intel387 and Intel287 math coprocessors. This is different from the 8087, for which
the instruction address points only to the ESC instruction opcode.

Note that the processor control instructions FINIT, FLDCW, FSTCW, FSTSW,
FCLEX, FSTENV, FLDENV, FSA VE, and FRS TOR do not affect the data pointer.
Note also that, except for the instructions just mentioned, the value of the data pointer is
undefined if the prior ESC instruction did not have a memory operand.

3
1

o 0 0 0 01

32-BIT PROTECTED MODE FORMAT

2
3

RESERVED

RESERVED

RESERVED

OPCODE 10 ... 00

1
5

IPOFFSET

7

CONTROL WORD

STATUS WORD

TAG WORD

CSSELECTOR

DATA OPERAND OFFSET

RESERVED OPERAND SELECTOR

o
OH

4H

8H

CH

10H

14H

18H

240486;15-6

Figure 15-6. Protected Mode Numeric Instruction and Data Pointer Image in Memory,
32-Bit Format

15-8

intel®

3
1

o 0 0 01

o 0 0 01

ARCHITECTURE OF THE FLOATING·POINT UNIT

32-BIT REAL-ADDRESS MODE FORMAT

2
3

RESERVED

RESERVED

RESERVED

1
5 7

CONTROL WORD

STATUS WORD

TAG WORD

RESERVED INSTRUCTION POINTER 10 ... 00

INSTRUCTION POINTER 10 •.• 00 10 1
OPCODE 10 ... 00

RESERVED OPERAND POINTER 10 ••. 00

o

OPERAND POINTER 10 ... 00 10 0 0 0 0 0 0 0 0 0 0 0

OH

4H

8H

CH

10H

14H

16H

Figure 15·7. Real Mode Numeric Instruction and Data Pointer Image in Memory,
32·Bit Format

15

16·BIT PROTECTED MODE FORMAT

7

CONTROL WORD

STATUS WORD

TAG WORD

IP OFFSET

CS SELECTOR

OPERAND OFFSET

OPERAND SELECTOR

o

OH

2H

4H

6H

8H

AH

CH

240486i15·7

240486i15·8

Figure 15-8. Protected Mode Numeric Instruction and Data Pointer Image in Memory,
16·Bit Format

15.2 COMPUTATION FUNDAMENTALS

This section covers numeric programming concepts that are common to all applications.
It describes the Intel486 FPU's internal number system and the various types of numbers
that can be employed in numeric programs. The most commonly used options for round­
ing and precision (selected by fields in the control word) are described, with exhaustive
coverage of less frequently used facilities deferred to later sections. Exception conditions
that may arise during execution of floating-point instructions are also described along
with the options that are available for responding to these exceptions.

15-9

intel® ARCHITECTURE OF THE FLOATING-POINT UNIT

15

16-BIT REAL·ADDRESS MODE AND
VIRTUAL-BOB6 MODE FORMAT

7

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER " .. 0

IP 1 •. '. 101 OPCODE '0 .. 0

OPERAND POINTER " .. 0

o

DP , •. " 1 0 1 0 0 0 0 0 0 0 0 0 0 0

OH

2H

4H

6H

6H

AH

CH

Figure 15-9. Real Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit Format

15.2.1 Number System

240486;15-9

The system of real numbers that people use for pencil and paper calculations is concep­
tually infinite and continuous. There is no upper or lower limit to the magnitude of the
numbers one can employ in a calculation, or to the precision (number of significant
digits) that may be required to represent them. For any given real number, there are
always arbitrarily many numbers both larger and smaller. There are also arbitrarily many
numbers between any two real numbers. For example, between 2.5 and 2.6 are 2.51,
2.5897, 2.500001, etc.

While ideally it would be desirable for a computer to be able to operate on the entire
real number system, in practice this is not possible. Computers, no matter how large,
ultimately have fixed-size registers and memories that limit the system of numbers that
can be accommodated. These limitations determine both the range and the precision of
numbers. The result is a set of numbers that is finite and discrete, rather than infinite
and continuous. This sequence is a subset of the real numbers that is designed to form a
useful approximation of the real number system.

Figure 15-10 superimposes the basic Intel486 floating-point number system on a real
number line (decimal numbers are shown for clarity, although the Intel486 processor
actually represents numbers in binary). The dots indicate the subset of real numbers the
Intel486 processor can represent as data and final results of calculations. The range of
double-precision, normalized numbers is approximately ±2.23 x 10-308 to ±1.79 x
10308• Applications that are required to deal with data and final results outside this range
are rare. For reference, the range of the IBM System 370* is about ±0.54 x 10-78 to
±0.72 x 1076• ..

15-10

intel® ARCHITECTURE OF THE FLOATING-POINT UNIT

I
!--. NEGATIVE RANGE I
:~ (NORMALIZED) ~
: -5 -4 -3 -2 -1 :

55. 1 .1 11 '1- ft. I I I J 0

t- 1.79 X 10'" -2.23 X 10-'"

I
~
I
I
I

POSITIVE RANGE
(NORMALIZED)

+2
• • •

, , J
1.79X 10'·'

I- [L_oooooooo
(NOT REPRESENTABLE)

1.999999999999999

PRECISION 1-16 DIGITS-J

240486;15-10

Figure 15-10. Double-Precision Number System

The finite spacing in Figure 15-10 illustrates that the Inte1486 processor can represent a
great many, but not all, of the real numbers in its range. There is always a gap between
two adjacent floating-point numbers, and it is possible for the result of a calculation to
fall in this space. When this occurs, the FPU rounds the true result to a number that it
can represent. Thus, a real number that requires more digits than the FPU can accom­
modate (e.g., a 20-digit number) is represented with some loss of accuracy. Notice also
that the representable numbers are not distributed evenly along the real number line. In
fact, the same number of representable numbers exists between any two successive pow­
ers of 2 (i.e., as many representable numbers exist between 2 and 4 as between 65,536
and 131,072). Therefore, the gaps between representable numbers are larger as the
numbers increase in magnitude. All integers in the range ±264 (approximately ±1019),
however, are exactly representable.

In its internal operations, the FPU actually employs a number system that is a substan­
tial superset of that shown in Figure 15-10. The internal format (called extended real)
extends the representable (normalized) range to about ±3.37 x 10-4932 to ±1.18 x
104932, and its precision to about 19 (equivalent decimal) digits. This format is designed
to provide extra range and precision for constants and intermediate results, and is not
normally intended for data or final results.

From a practical standpoint, the Inte1486 processor's set of real numbers is sufficiently
large and dense so as not to limit the vast majority of applications. Compared to most
computers, including mainframes, the Inte1486 processor provides a very good approxi­
mation of the real number system. It is important to remember, however, that it is not an
exact representation, and that computer arithmetic on real numbers is inherently
approximate.

15-11

intel® ARCHITECTURE OF THE FLOATING-POINT UNIT

15.2.2 Data Types and Formats

The Intel486 processor recognizes seven numeric data types for memory-based values,
divided into three classes: binary integers, packed decimal integers, and binary reals. A
later section describes how these formats are stored in memory (the sign is always
located in the highest-addressed byte).

Figure 15-11 summarizes the format of each data type. In the figure, the most significant
digits of all numbers (and fields within numbers) are the leftmost digits.

I MOST SIGNIFICANT BYTE HIGHEST ADDRESSED BYTE
DATA

FORMATS RANGE PRECISION

01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7

WORD INTEGER 10' 16 BITS J~TWO'S
COMPLEMENT)

15 0

SHORT INTEGER 10' 32 BITS
WWO'S
COMPLEMENT)

31 0

LONG INTEGER 10'8 64 BITS
WWO'S

C;:OMPLEMENT)

63 0'

PACKED BCD 101~ 18 DIGITS sl X Id l1 d ,s 'd '5 d'4 d13 d12 d'1 d'0Ma~Nrd':Ed1 ds ds d" d3 d2 d, do

79 72 0 .. '

SINGLE PRECISION 10±38 24BITS ,I .,ASED I G I S EXPONENT SI NIFICAND

31 23 0

DOUBLE
PRECISION

10±30B 53 BITS st BIASED I
EXPONENT SIGNIFICAND I

63 52 0

EXTENDED 10±4932 64 BITS sl BIASED tTl SIGNIFICAND EXPONENT PRECISION
79

(1) S ~ SIGN BIT (0 ~ positive, 1 ~ negative)
(2) do ~ DECIMAL DIGIT (TWO PER TYPE)

6463.11

(3) X ~ BITS HAVE NO SIGNIFICANCE; 387 MATH COPROCESSOR IGNORES WHEN LOADING, ZEROS WHEN
. STORING '

(4) <l ~ POSITION OF IMPLICIT BINARY POINT
(5) I ~ INTEGER BIT OF SIGNIFICAND; STORED IN TEMPORARY REAL, IMPLICIT IN

SINGLE AND DOUBLE PRECISION
(6) EXPONENT BIAS (NORMALIZED VALUES):

SINGLE: 127 (7FH)
DOUBLE: 1023 (3FFH)
EXTENDED REAL: 16383 (3FFFH)

(7) PACKED BCD: (-.1)' (D" ... Do)
(8) REAL: (-1)' (2""AS) (FoF, ...)

Figure 15-11. Numerical Data Formats

15-12

0

240486;15-11

intel® ARCHITECTURE OF THE FLOATING·POINT UNIT

15.2.2.1 BINARY INTEGERS

The three binary integer formats are identical except for length, which governs the range
that can be accommodated in each format. The leftmost bit is interpreted as thenum­
ber's sign: 0 = positive and 1 = negative. Negative numbers are represented in standard
two's complement notation (the binary integers are the only Intel486 processor format to
use two's complement). The quantity zero is represented with a positive sign (all bits are
0). The Intel486 processor word integer format is identical to the 16-bit signed integer
data type; the short integer format is identical to the 32-bit signed integer data type.

The binary integer formats exist in memory only. When used by the Intel486 FPU, they
are automatically converted to the 80-bit extended real format. All binary integers are
exactly representable in the extended real format.

15.2.2.2 DECIMAL INTEGERS

Decimal integers are stored in packed decimal notation, with two decimal digits
. "packed" into each byte, except the leftmost byte, which carries the sign bit (0 = positive,
1 = negative). Negative numbers are not stored in two's complement form and are distin­
guished from positive numbers only by the sign bit. The most significant digit of the
number is the leftmost digit. All digits must be in the range 0-9.

The decimal integer format exists in memory only. When used by the Intel486 FPU,it is
automatically converted to the 80-bit extended real format. All decimal integers are
exactly representable in the extended real format.

15.2.2.3 REAL NUMBERS

The Intel486 processor represents real numbers of the form:

where:

s = 0 or 1
E = any integer between Emin and Emax, inclusive
bi = 0 or 1
p = number of bits of precision

Table 15-3 summarizes the parameters for each of the three real-number formats.

The Intel486 processor stores real numbers in a three-field binary format that resembles
scientific, or exponential, notation. Theformat consists of the following fields:

• The number's significant digits are held in the significand field, bOAblb2b3 .. bp-l' (The
term "significand" is analogous to the term "mantissa" used to describe floating point
numbers on some computers.)

15-13

inteL ARCHITECTURE OF THE FLOATING-POINT UNIT

• The exponent field, e = E + bias, locates the binary point within the significant digits
(and therefore determines the number's magnitude). (The term "exponent" is analo­
gous to the term "characteristic" used to describe floating point numbers on some
computers.)

• The 1-bit sign field indicates whether the number is positive or negative. Negative
numbers differ from positive numbers only in the sign bits of their significands.

Table 15-4 shows how the real number 178.125 (decimal) is stored in the single real
format. The table lists a progression of equivalent notations that express the same value
to show how a number can be converted from one form to another. (The ASM386/486
and PL/M-386/486 language translators perform a similar process when they encounter
programmer-defined real number constants.) Note that not every decimal fraction has
an exact binary equivalent. The decimal number 1/10, for example, cannot be expressed
exactly in binary Gust as the number 1/3 cannot be expressed exactly in decimal). When
a translator encounters such a value, it produces a rounded binary approximation of the
decimal value.

Table 15-3. Summary of Format Parameters

Format
Parameter

Single Double Extended

Format width in bits 32 64 80

P (bits of precision) 24 53 64

Exponent width in bits 8 11 15

Emax +127 +1023 +16383

Emin -126 -1022 -16382

Exponent bias +127 +1023 +16383

Table 15-4. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1c.78125E2

Scientific Binary 1c.0110010001E111

Scientific Binary 1c.0110010001E10000110
(Biased Exponent)

Sign Biased Exponent Significand

Single Format (Normalized)
0 10000110 01100100010000000000000

1 c.(implicit)

15-14

· ARCHITECTURE OF THE FLOATING-POINT UNIT

The Intel486 processor usually carries the digits of the significand in normalized form.
This means that, except for the value zero, the significand contains an integer bit and
fraction bits as follows:

where t. indicates an assumed binary point. The number of fraction bits varies according
to the real format: 23 for single, 52 for double, and 63 for extended real. By normalizing
real numbers so that their integer bit is always a 1, the Intel486 processor eliminates
leading zeros in small values (I X 1 < 1). This technique maximizes the number of
significant digits that can be accommodated in a significand of a given width. Note that,
in the single and double formats, the integer bit is implicit and is not actually stored; the
integer bit is physically present in the extended format only.

If one were to examine only the significand with its assumed binary point, all normalized
real numbers would have values greater than or equal to 1 and less than 2. The exponent
field locates the actual binary point in the significant digits. Just as in decimal scientific
notation, a positive exponent has the effect of moving the binary point to the right, and
a negative exponent effectively moves the binary point to the left, inserting leading zeros
as necessary. An unbiased exponent of zero indicates that the position ofthe assumed
binary point is also the position of the actual binary point. The exponent field, then,
determines a real number's magnitude.

In order to simplify comparing real numbers (e.g., for sorting), the Intel486 processor
stores exponents in a biased form. This means that a constant is added to the true
exponent described above. As Table 15-3 shows, the value of this bias is different for each
real format. It has been chosen so as to force the biased exponent to be a positive value.
This allows two real numbers (of the same format and sign) to be compared as if they
are unsigned binary integers. That is, when comparing them bitwise from left to right
(beginning with the leftmost exponent bit), the first bit position that differs orders the
numbers; there is no need to proceed further with the comparison. A number's true
exponent can be determined simply by subtracting the bias value of its format.

The single and double real formats exist in memory only. If a number in one of these
formats is loaded into an FPU register, it is automatically converted to extended format,
the format used for all internal operations. Likewise, data in registers can be converted
to single or double real for storage in memory. The extended real format may be used in
memory also, typically to store intermediate results that cannot be held in registers.

Most applications .should use the double format to store real-number data and results; it
provides sufficient range and precision to return correct results with a minimum of pro­
grammer attention. The single real format is appropriate for applications that are con­
strained by memory, but it should be recognized that this format provides a smaller
margin of safety. It is also useful for the debugging of algorithms, because roundoff
problems will manifest themselves more quickly in this format. The extended real format
should normally be reserved for holding intermediate results, loop accumulations, and
constants. Its extra length is designed to shield final results from the effects of rounding
and overflow/underflow in intermediate calculations. However, the range and precision
of the double format are adequate for most microcomputer applications.

15-15

intel® ARCHITECTURE OF THE FLOATING-POINT UNIT

15.2.3 Rounding Control

Internally, the Intel486 FPU employs three extra bits (guard, round, and sticky bits) that
enable it to round numbers in accord with the infinitely precise true result of a compu­
tation; these bits are not accessible to programmers. Whenever the destination can rep­
resent the infinitely precise true result, the FPU delivers it. Rounding occurs in
arithmetic and store operations when the format of the destination cannot exactly rep­
resent the infinitely precise true result. For example, a real number may be rounded ifit
is stored in a shorter real format, or in an integer format. Or, the infinitely precise true
result may be rounded when it is returned to a register.

The Intel486 FPU has four rounding modes, selectable by the RC field in the control
word (see Figure 15-3). Given a true result b that cannot be represented by the target
data type, the FPU determines the two representable numbers a and c that most closely
bracket b in value (a < b < c). The processor then rounds (changes) b to a or to c
according to the mode selected by the RC field as shown in Table 15-5. Rounding
introduces an error in a result that is less than one unit in the last place to which the
result is rounded.

• "Round to nearest" is the default mode and is suitable for most applications; it
provides the most accurate and statistically unbiased estimate of the true result.

• The "chop" or "round toward zero" mode is provided for integer arithmetic
applications.

• "Round up" and "round down" are termed directed rounding and can be used to
implement interval arithmetic. Interval arithmetic is used to determine upper and
lower bounds for the true result of a multi-step computation, when the intermediate
results of the computation are subject to rounding.

Rounding control affects only the arithmetic instructions (refer to Chapter 16 for lists of
arithmetic and non arithmetic instructions).

Table 15-5. Rounding Modes

RC Field Rounding Mode Rounding Action

00 Round to nearest Closer to b of a or c; if equally close, select
even number (the one whose least significant
bit is zero).

01 Round down (toward -(0). a

10 Round up (toward + (0) c

11 Chop (toward 0) Smaller in magnitude of a or c.

NOTE: a < b < c; a and c are successive representable numbers; b is not representable.

15·16

int:eL ARCHITECTURE OF THE FLOATING-POINT UNIT

15.2.4 Precision Control

The Intel486 FPU allows results to be calculated with either 64, 53, or 24 bits of preci­
sion in the significand as selected by the precision control (PC) field of the control word.
The default setting, and the one that is best suited for most applications, is the full 64
bits of significance provided by the extended real format. The other settings are required
by the IEEE standard and are provided to obtain compatibility with the specifications of
certain existing programming languages. Specifying less precision nullifies the advan­
tages of the extended format's extended fraction length. When reduced precision is
specified, the rounding of the fractional value clears the unused bits on the right to
zeros. Precision Control affects only the instructions FADD, FSUB, FMUL, FDIV, and
FSQRT.

15-17

Special Computational 16
Situations

CHAPTER 16
SPECIAL COMPUTATIONAL SITUATIONS

Besides being able to represent positive and negative numbers, the numerical data for­
mats may be used to describe other entities. These special values provide extra flexibility,
but most users will not need to understand them in order to use the numerics capabili­
ties of the Intel486 processor successfully. This section describes the special values that
may occur in certain cases and the significance of each. The numeric exceptions are also
described, for writers of exception handlers and for those interested in probing the limits
of numeric computation using the Intel486 processor.

The material presented in this section is mainly of interest to programmers concerned
with writing exception handlers. Many readers will only need to skim this section.

When discussing these special computational situations, it is useful to distinguish
between arithmetic instructions and nonarithmetic instructions. Nonarithmetic instructions
are those that have no operands or transfer their operands without substantial change;
arithmetic instructions .are those that make significant changes to their operands:
Table 16-1 defines these two classes of instructions.

16.1 SP.ECIAL NUMERIC VALUES

The numerical data formats of the Intel486 processor encompass encodings for a variety
of special values in addition to the typical real or integer data values that result from
normal calculations. These special values have significance and can express relevant
information about the computations or operations that produced them. The various
types of special values are

• Denormal real numbers,

• Zeros
• Positive and negative infinity

• NaN (Not-a-Number)

• Indefinite

• Unsupported formats

The following sections explain the origins and significance of each qf these special val­
ues. Tables 16-6 through 16-9 at the end of this section show how each of these special
values is encoded for each of the numeric data types.

16.1.1 Denormal Real Numbers

The Intel486 processor generally stores, nonzero real numbers in normalized floating­
point form; that is, the integer (leading) bit of the significand is always a one. (Refer to
Chapter 15 for a review of operand formats.) This bit is explicitly stored in the extended

16-1

intel® SPECIAL COMPUTATIONAL SITUATIONS

Table 16-1. Arithmetic and Nonarithmetic Instructions

Nonarithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FAOO (P)

FCLEX FBLO

FOECSTP FBSTP

FFREE FCOMP(P)(P)

FINCSTP FCOS

FINIT FOIV(R)(P)

FLD (register·to-register) FIAOO

FLO (extended format from memory) FICOM(P)

FLO constant FIOIV(R)

FLOCW FILO

FLOENV FIMUL

FNOP FIST(P)

FRSTOR FISUB(R)

FSAVE FLO (conversion)

FST(P) (register-to-register) FMUL(P)

FSTP (extended format to memory) FPATAN

FSTCW FPREM

FSTENV FPREM1

FSTSW FPTAN

FWAIT FRNOINT

FXAM FSCALE

FXCH FSIN
FSINCOS
FSQRT
FST(P) (conversion)
FSUB(R)(P)
FTST
FUCOM(P)(P)
FXTRACT
FYL2X
FYL2XP1

format, and is implicitly assumed to be a one (1a) in the single and double formats. Since
leading zeros are eliminated, normalized storage allows the maximum number of signif­
icant digits to be held in a significand of a given width.

When a numeric value becomes very close to zero, normalized floating-point storage
cannot be used to express the value accurately. The term tiny is used here to precise~y
define what values require special handling. A number R is said to be tiny when - 2Emm

< R < 0 or 0 < R < + 2Emin• (As defined in Chapter 15, Emin is -126 for single format,
-1022 for double format, and -16382 for extended format.) In other words, a nonzero
number is tiny if its exponent would be too negative to store in the destination format.

16-2

infel® SPECIAL COMPUTATIONAL SITUATIONS

To accommodate these instances, the Intel486 processor can store and operate on reals
that are not normalized, i.e., whose significands contain one or more leading zeros.
Denormals typically arise when the result of a calculation yields a value that is tiny.

Denormal values have the following properties:

• The biased floating-point exponent is stored at its smallest value (zero)

• The integer bit of the significand (whether explicit or implicit) is zero

The leading zeros of denormals permit smaller numbers to be represented, at the possi­
ble cost of some lost precision (the number of significant bits is reduced by the leading
zeros). In typical algorithms, extremely small values are most likely to be generated as
intermediate, rather than final, results. By using the extended real format for holding
intermediate values, quantities as small as ±3.37 x 10-4932 can be represented; this
makes the occurrence of denormal numbers a rare phenomenon in Intel486 numerical
applications. Nevertheless, the Intel486 processor can load, store, and operate on denor­
malized real numbers when they do occur.

Denormals receive special treatment by the Intel486 processor in three respects:

o The Intel486 processor avoids creating denormals whenever possible. In other words,
it always normalizes real numbers except in the case of tiny numbers.

o The Intel486 processor provides the unmasked underflow exception to permit pro­
grammers to detect cases when denormals would be created.

• The Intel486 processor provides the denormal exception to permit programmers to
detect cases when denormals enter into further calculations.

Denormalizing means incrementing the true result's exponent and inserting a corre­
sponding leading zero in the significand, shifting the rest of the significand one place to
the right. Denormal values may occur in any of the single, double, or extended formats.
Table 16-2 shows the range of denormalized values in each format.

Denormalization produces either a denormal or .a zero. Denormals are readily identified
by their exponents, which are always the minimum for their formats; in biased form, this
is always the bit string: 00 .. 00. This same exponent value is also assigned to the zeros, but
a denormal has a nonzero significand. A denormal in a register is tagged special.
Tables 16-8 and 16-9 later in this chapter show how denormal values are encoded in
each of the real data formats.

Table 16-2. Denormalized Values

Smallest Magnitude Largest Magnitude
Format

(Exact) (Approx.) (Exact) (Approx.)

Single Precision 2_ 150 10-46 2-126_2-150 10-38

Double Precision 2-1075 10-324 2-1022_2-1075 10-308

Extended 2-16461 10-4956 2-16382_2-16461 10-4932

16-3

intel~ SPECIAL COMPUTATIONAL SITUATIONS

The denormalization process causes loss of significance if low-order one-bits bits are
shifted off the right of the significand. In a severe case, all the significand bits of the true
result are shifted out and replaced by the leading zeros. In this case, the result of denor­
malization is a true zero, and, if the value is in a register, it is tagged as a zero.

Denormals are rarely encountered in most applications. Typical debugged algorithms
generate extremely small results during the evaluation of intermediate subexpressions;
the final result is usually of an appropriate magnitude for its single or double format real
destination. If intermediate results are held in temporary real, as is recommended, the
great range of this format makes underflow very unlikely. Denormals are likely to arise
only when an application generates a great many intermediates, so many that they can­
not be held on the register stack or in extended format memory variables. If storage
limitations force the use of single or double format reals for intermediates, and small
values are produced, underflow may occur, and, if masked, may generate denormals.

When a denormal number in single or double format is used as a source operand and
the denormal exception is masked, the Intel486 FPU automatically normalizes the num­
ber when it is converted to extended format.

16.1.1.1 DENORMALS AND GRADUAL UNDERFLOW

Floating-point arithmetic cannot carry out all operations exactly for all operands;
approximation is unavoidable when the exact result is not representable as a floating­
point variable. To keep the approximation mathematically tractable, the hardware is
made to conform to accuracy standards that can be modeled by certain inequalities
instead of equations. Let the assignment

X-Y@Z (where @ is some operation)

represent a typical operation. In the default rounding mode (round to nearest), each
operation is carried out with an absolute error no larger than half the separation
between the two floating-point numbers closest to the exact results. Let x be the value
stored for the variable whose name in the program is X, and similarly y for Y, and Z for
Z. Normally y and Z will differ by accumulated errors from what is desired and from what
would have been obtained in the absence of error. For the calculation of x we assume
that y and z are the best approximations available, and we· seek to compute x as well as
we can. If y@z is representable exactly, then we expect x = y@z, and that is what we get
for every algebraic operation on the Intel486 processor FPU (i.e., when Y@z is one of
y+z,y-z,yxz,y+z, sqrt z). But ify@z must be approximated, as is usually the case, then
x must differ from y@z by no more than half the difference between the two represent­
able numbers that straddle y@z. That difference depends on two factors:

1. The precision to which the calculation is carried out, as determined either by the
precision control bits or by the format used in memory. On the Intel486 processor,
the precisions are single (24 significant bits), double (53 significant bits), and
extended (64 significant bits).

16-4

intel® SPECIAL COMPUTATIONAL SITUATIONS

2. How close y@z is to zero. In this respect the existence of denormal numbers on the
Intel486 processor provides a distinct advantage over systems that do not admit
denormal numbers.

In any floating-point number system, the density of representable numbers is greater
near zero than near the largest representable magnitudes. However, machines that do
not use denormal numbers suffer from an enormous gap between zero and its closest
neighbors. Figures 16-1 and 16-2 show what happens near zero in two kinds of floating-
point number systems. .

Figure 16-1 shows a floating-point number system that (like the Intel486 processor)
admits denorinal numbers. For simplicity, only the non-negative numbers appear and the
figure illustrates a number system that carries just four significant bits instead of the 24,
53, or 64 significant bits that the Intel486 processor offers.

Each vertical tick mark stands for a number representable in four significant bits, and
the longer verticals stand for powers. of 2. The horizontal marks are evenly spaced; those
uncrossed by vertical tick marks stand for numbers unrepresentable at this precision.
The denormal numbers lie between 0 and the nearest normal power of 2. They are no
less dense than the remaining nonzero numbers.

Figure 16-2 shows a floating-point number system that (unlike the Intel486 or Inte1387
FPUs) does not admit denormal numbers. There are two large gaps, one on the positive
side of zero (as illustrated) and one on the negative side of zero (not illustrated). The
gap between zero and the nearest neighbor of zero differs from the gap between that
neighbor and the next bigger number by a factor of about 8.4 X 106 for single, 4.5 x 1015

for double, and 9.2 X 1018 for extended format. Those gaps would complicate error
analysis.

o • + +.1 t t .. 1- .. -+ - t - .. - ... + - + -1- -- .. ---+ - • - + • - - ... - •• - - - .. - _. + - • ·1 -.. ---- t - _. - - - -. - - - - - - - •

Denormala

240486i16·1

Figure 16-1. Floating-Point System with Denormals

J .. + + .. + + + 1- .. -+ - + - + - + - .. - .. - 1- --+ - - - + - - - + - - - + - - - t - - - + - - - .. - - -I ------- .. -. -----+ - - - - • - - I

----Hormal Humbers-----ot

240486i16·2

Figure 16·2. Floating·Point System without Denormals

16-5

intel® SPECIAL COMPUTATIONAL SITUATIONS

The advantage of denormal numbers is apparent when one considers what happens in
either case when the underflow exception is masked and y@z falls into the space
between zero and the smallest normal magnitude. The Intel486 processor returns the
nearest denormal number. This action might be called "gradual underflow." The effect
is no different from the rounding that can occur when y@z falls in the normal range.

On the other hand, the system that does not have denormal numbers returns zero as the
result, an action that can be much more inaccurate than rounding. This action could be
called "abrupt underflow." The Intel486 FPU and Intel387 math coprocessor handle
denormal values differently than the 8087/Inte1287 math coprocessors. See Section 16.2.4
for more· details.

16.1.2 Zeros

The value zero in the real and decimal integer formats may be signecl either positive or
negative, although the sign of a binary integer zero is always positive. For computational
purposes, the value of zero always behaves identically, regardless of sign, and typically
the fact that a zero may be signed is transparent to the programmer. If necessary, the
FXAM instruction may be used to determine a zero's sign.

A programmer can code a zero, or it can be created by the FPU as its masked response
to an underflow exception. If a zero is loaded or generated in a register, the register is
tagged zero. Table 16-3 lists the results of instructions executed with zero operands and
also shows how a zero may be created from nonzero operands.

Table 16-3. Zero Operands and Results

Operation Operands Result

FLD,FBLD ±O *0
FILD +0 +0
FST,FSTP,FRNDINT ±O *0

+X +0'
-X _0'

FBSTP ±O *0
FIST,FISTP ±O *0

+X +03

-X -04

FCHS +0 -0
-0 +0

FABS ±O +0
Addition +0 plus +0 +0

-0 plus -0 -0
+0 plus -0, -0 plus +0 ±02
-X plus +X, +X plus -X ±02
±O plus ±X, ±X plus ±O #X

16-6

intel® SPECIAL COMPUTATIONAL SITUATIONS

Table 16-3. Zero Operands and Results

Operation Operands Result

Subtraction +0 minus -0 +0
-0 minus +0 -0
+0 minus +0, -0 minus ±02

-0 ±02

+X minus +X, -X minus -#X
-x #X
±O minus ±X
±X minus ±O

Multiplication ±O x ±o 0
±o x±X, ±X x ±O 0
+X x +Y, -X x -y +01

+x X -V, -X x +y -01

Division ±O.;- ±o Invalid Operation
±X.;- ±o 00 (Zero Divide)
±X.;- ±oo 0
+0.;- +X, -0 .;- -X +0
+0.;- -X, -0 .;- +X -0
-X.;- -V, +X.;- +y +01

-X.;- +Y, +X.;- -y _01

FPREM, FPREM1 ±O rem ±o Invalid Operation
±X rem ±O Invalid Operation
+0 rem ±X +0
-0 rem ±X -0
+X rem ±Y + 0 Y exactly divides X
-X rem ±Y -0 Y exactly divides X

FSQRT ±o *0
Compare ±o: +X ±o < +X

±o: ±o ±o = ±o
±O:-X ±o> -X

FTST ±o ±o = 0
FXAM +0 C3 = 1; C2 = C1 = Co = 0

-0 C3 = C1 = 1; C2 = Co = 0
FSCALE ±o scaled by -00 *0

±o scaled by +00 Invalid Operation
±o scaled by X *0

FXTRACT +0 ST= +O,ST(l)=-oo,
-0 Zero divide

ST = -O,ST(l) = -00,
Zero divide

FPTAN ±o *0
FSIN (or SIN ±o *0

result of FSINCOS)
FCOS (or COS ±O +1

result of FSINCOS)

16-7

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-3. Zero Operands and Results

Operation Operands Result

FPATAN

F2XM1

FYL2X

FYL2XP1

X and Y
1

±O -7 +X
±O -7 -X
±X -7 ±O
±O -7 +0
±O -7 -0
+00 -7 ±O
-00 -7 ±O
±O -7 +00
±O -7 -00
+0
-0
±Y x 10g(±0)
±O x 10g(±0)
+Y x log(±0+1)
-Y x log(±0+1)·

denote nonzero positive operands.
When extreme underflow denormalizes the result to zero.

*0
*'11"
#'11"/2
*0
*'11"
+'11"/2
-'11"/2
*0
*'11"
+0
-0
Zero Divide
Invalid Operation
*0
-*0

2
3

Sign deterrnined by rounding mode: + for nearest, up, or chop, - for down.
When 0 < X < 1 and rounding mode is not up.

4
. *

-#

When -'-1 < x < 0 and rounding mode is not down.
Sign of original zero operand .
Sign of original X operand.
Complement of sign of original X operand.
Exclusive OR of the signs of the operands.

16.1.3 Infinity

The real formats support signed representations of infinities. These values are encoded
with a biased exponent of all ones and a significand of 1LlOO .. OO; if the infinity is in a
register, it is tagged special.

A programmer can code an infinity, or it can be created by the FPU as its masked
response to an overflow or a zero divide exception. Note that depending on rounding
mode, the masked response may create the largest valid value representable in the des­
tination rather than infinity.

The signs of the infinities are observed, and comparisons are possible. Infinities are
always interpreted in the affine sense; that is, -00 < (any finite number) < + 00. Arith­
metic on infinities is always exact and, therefore, signals no exceptions, except for the
invalid operations specified in Table 16-4.

16.1.4 NaN (Not-a-Number)

A NaN (Not a Number) is a member of a class of special values that exists in the real
formats only. A NaN has an exponent of 11..11B, may have either sign, and may have
any significand except 1LlOO .. OOB, which is assigned to the infinities. A NaN in a register
is tagged special.

intel® SPECIAL COMPUTATIONAL SITUATIONS

Table 16·4. Infinity Operands and Results

Operation Operands Result

FLD,FBLD ±oo *00
FST,FSTP,FRNDINT ±oo *00
FCHS +00 -00

-00 +00
FABS ±oo +00
Addition +00 plus +00 +00

-00 plus -00 -00
+00 plus -00 Invalid Operation
-00 plus +00 Invalid Operation
±oo plus ±X *00
±X plus ±oo *00

Subtraction +00 minus -00 +00
-00 minus +00 -00
+00 minus +00 Invalid Operation
-00 minus-oo Invalid Operation
±oo minus ±X *00
±X minus ±oo -*00

Multiplication ±oo x ±oo 00
±oo X ±Y, ±Yx ±oo 00
±O x ±oo, ±oo X ±O Invalid Operation

Division ±oo -;- ±oo Invalid Operation
±oo -;- ±X 00
±X -;- ±oo 0
±oo -;- ±O 00

FPREM,FPREM1 ±oo rem ±oo Invalid Operation
±oo rem ±X Invalid Operation
±X rem ±oo $X, Q = 0

FSQRT -00 Invalid Operation
+00 +00

Compare +00: +00 +00 = +00
-00 : -00 -00 = -00

+00:-00 +00>-00
-00 : +00 -00 < +00
+00: ±X +00 > X
-00: ±X -00 < X
±X: +00 X < +00
±X: -00 X> +00
+00 +00 >0

FTST -00 -00 <0
FSCALE ±oo scaled by -00 Invalid Operation

±oo scaled by + 00 *00
±oo scaled by ±X *00
±o scaled by -00 ±01
±O scaled by 00 Invalid Operation
±Yscaled by +00 #00
±Y scaled by -00 #0

FXTRACT ±oo ST = *00, ST(1) = +00
FXAM +00 CO=C2=1;C1 =C3=0

-00 CO=C1 =C2=1; C3=0

16-9

x
Y
*

$

1

*

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-4. Infinity Operands and Results

Operation Operands

FPATAN ±oo + ±X
±Y + +00
±Y + -00
±oo + +00
±OO+ -00
±oo + ±o
+0 + +00
+0 + -00
-0 + +00
-0 + -00

F2XM1 +00
-00

FYL2X ±oo x log (1J
±oo X log (X>1)
±oo x log (0 <X<1)
±Y x log (+00)
±O x log (+00)
±Y x log (-00)

FYL2XP1 ±oo x log (1)
±oo X log (X>O)
±oo X log
(-1 <X<O)
±Y X log (+00)
±o x log (+00)
±Y x log (-00)

Zero or nonzero positive operand.
Nonzero positive operand.
Sign of original infinity operand.
Complement of sign of original infinity operand.
Sign of original operand.
Exclusive OR of signs of operands.
Sign of the original Y operand.
Sign of original zero operand.

Result

*Tr/2
#0
#Tr
*Tr/4
*3Tr/4
*Tr/2
+0
+Tr
-0
-Tr
+00
-1
Invalid Operation
*00
-*00
#00
Invalid Operation
Invalid Operation
Invalid Operation
*00
-*00
#00
Invalid Operation
Invalid Operation

There are two classes of NaNs: signaling (SNaN) and quiet (ONaN). Among the
QNaNs, the value real indefinite is of special interest.

16.1.4.1 SIGNALING NaNs

A signaling NaN is a NaN that has a zero as· the most significant bit of its significand.
The rest of the significand may be set to any value. The FPU never generates a signaling
NaN as a result; however, it recognizes signaling NaNs when they appear as operands.
Arithmetic operations (as defined at the beginning of this chapter) on a signaling NaN
cause an invalid-operation exception (except fot load operations from the stack, FXCH,
FCHS, and FABS).

16-10

iniaL SPECIAL COMPUTATIONAL SITUATIONS

By unmasking the invalid operation exception, the programmer can use signaling NaNs
to trap to the exception handler. The generality of this approach and the large number
of NaN values that are available provide the sophisticated programmer with a tool that
can be applied to a variety of special situations.

For example, a compiler could use signaling NaNs as references to uninitialized (real)
array elements. The compiler could preinitialize each array element with a signaling
NaN whose significand contained the index (relative position) of the element. If an
application program attempted to access an element that it had not initialized, it would
use the NaN placed there by the compiler. If the invalid operation exception were
unmasked, an interrupt would occur, and the exception handler would be invoked. The
exception handler could determine which element had been accessed, since the operand
address field of the exception pointers would point to the NaN, and the NaN would
contain the index number of the array element.

16.1.4.2 QUIET NaNs

A quiet NaN is a NaN that has a one as the most significant bit of its significand. The
Intel486 processor creates the quiet NaN real indefinite (defined below) as its default
response to certain exceptional conditions. The Intel486 processor may derive other
QNaNs by converting an SNaN. The Intel486 processor converts a SNaN by setting the
most significant bit of its significand to one, thereby generating an QNaN. The remain­
ing bits of the significand are not changed; therefore, diagnostic information that may be
stored in these bits of the SNaN is propagated into the QNaN.

The Intel486 processor will generate the special QNaN, real indefinite, as its masked
response to an invalid operation exception. This NaN is signed negative; its significand is
encoded 1Ll100 .. 00. All other NaNs represent values created by programmers or derived
from values created by programmers.

Both quiet and signaling NaNs are supported in all operations. A QNaN is generated as
the masked response for invalid-operation exceptions and as the result of an operation
in which at least one of the operands is a QNaN. The Intel486 processor applies the
rules shown in Table 16-5 when generating a QNaN.

Note that handling of a QNaN operand has greater priority than all exceptions except
certain invalid-operation exceptions (refer to the section "Exception Priority" in this
chapter).

Quiet NaNs could be used, for example, to speed up debugging. In its early testing
phase, a program often contains multiple errors .. An exception handler could be written
to save diagnostic information in memory whenever it was invoked. After storing the
diagnostic data, it could supply a quiet NaN as the result of the erroneous instruction,
and that NaN could point to its associated diagnostic area in memory. The program
would then continue, creating a different NaN for each error. When the program ended,
the NaN results could be used to access the diagnostic data saved at the time the errors
occurred. Many errors could thus be diagnosed and corrected in one test run.

16-11

infel® SPECIAL COMPUTATIONAL SITUATIONS

Table 16-5. Rules for Generating QNaNs

Operation Action

Real operation on an SNaN and a QNaN. Deliver the QNaN operand.

Real operation on two SNaNs. Deliver the QNaN that results from converting
the SNaN that has the larger significand.

Real operation on two QNaNs. Deliver the QNaN that has the larger
significand.

Real operation on an SNaN and another Deliver the QNaN that results from converting
number. the SNaN.

Real operation on a QNaN and another Deliver the QNaN.
number.

Invalid operation that does not involve NaNs. Deliver the default QNaN real indefinite.

In embedded applications which use computed results in further computations, an unde­
tected QNaN can invalidate all subsequent results. Such applications should therefore
periodically check for QNaNs and provide a recovery mechanism to be used if a QNaN
result is detected.

16.1.5 Indefinite

For each numeric data type, one unique encoding is reserved for representing the special
value indefinite. The Intel486 processor produces this encoding as its response to a
masked invalid-operation exception.

In the case of reals, the indefinite value is a QNaN as discussed in the prior section.

Packed decimal indefinite may be stored with a FBSTP instruction; attempting to use this
encoding in a FBLD instruction, however, will have an undefined result; thus indefinite
cannot be loaded from a packed decimal integer.

In the binary integers, the same encoding may represent either indefinite or the largest
negative number supported by the format (_215, -23\ or_263). The Intel486 processor
will store this encoding as its masked response to an invalid operation,or when the value
in a source register represents or rounds to the largest negative integer representable by
the destination. In situations where its origin may be ambiguous, the invalid-operation
exception flag can be examined to see if the value was produced by an exception
response. When this encoding is loaded or used by an integer arithmetic or compare
operation, it is always interpreted as a negative number; thus indefinite cannot be loaded
from a binary integer.

16-12

inteL SPECIAL COMPUTATIONAL SITUATIONS

16.1.6 Encoding of Data Types

Tables 16-6 through 16-9 show how each of the special values just described is encoded
for each of the numeric data types. In these tables, the least-significant bits are shown to
the right and are stored in the lowest memory addresses. The sign bit is always the
left-most bit of the highest-addressed byte.

16.1.7 Unsupported Formats

The extended format permits many bit patterns that do not fall into any of the previously
mentioned categories. Table 16-10 shows these unsupported formats. Some of these
encodings were supported by the Intel287 math coprocessor; however, most of them are
not supported by the Intel387 and Intel486 FPUs. These changes are required due to
changes made in the final version of IEEE Std 754 that eliminated these data types.

The categories of encodings formerly known as pseudo-NaNs, pseudoinfinities, and
unnormal numbers are not supported. The Intel486 processor raises the invalid­
operation exception when they are encountered as operands.

The encodings formerly known as pseudodenormal numbers are not generated by the
Intel486 processor; however, they are correctly utilized when encountered as operands.
The exponent is treated as if it were 00 .. 01 and the mantissa is unchanged. The denor­
mal exception is raised.

16-13

SPECIAL COMPUTATIONAL SITUATIONS

Table 16-6. Binary Integer Encodings

Class Sign Magnitude

(Largest) 0 11 .. 11

III
CII

~
·iii
0
D..

(Smallest) 0 00 .. 01

Zero 0 00 .. 00

(Smallest) 1 1.1..11

III
CII

.i2:
m
Cl
CII z

1 00 .. 00 (Largest/lndefinite*)

Word: 15 bits
Short: 31 bits
Long: 63 bits

"If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the
FPU interprets it as the largest negative number representable in the format... _2'5, _231 , or _263. The
FPU delivers this encoding to an integer destination in two cases:

1. If the result is the largest negative number.
2. As the response to a masked invalid operation exception, in which case it represents the special value

integer indefinite.

16-14

infel® SPECIAL COMPUTATIONAL SITUATIONS

Table 16-7. Packed Decimal Encodings

Magnitude
Class Sign

digit 1 1 1 1· .. 1 digit digit digit digit

(Largest) a 0000000 1 a a 1 1 a 01 1 a a 1 1 a 01 ... 1 a 01

III
GI

~
'iii (Smallest) a 0000000 0000 0000 0000 0000 ... 0601
0

D..
Zero a 0000000 0000 0000 0000 0000 ... 0000

Zero 1 0000000 0000 0000 0000 0000 ... 0000

(Smallest) 1 0000000 0000 0000 0000 0000 ... 0000
III
GI
>
i
Cl
GI z

(Largest) 1 0000000 1 a 01 1 a a 1 1 a 01 1 a 01 ... 1 a a 1

Indefinite* 1 1111111 1 1 1 1 1 1 1 1 U U U U** UUUU ... UUUU

- 1 byte - - 9 bytes-

*The packed decimal indefinite is stored by FBSTP in response to a masked invalid operation exception.
Attempting to load this value via FBLD produces an undefined result.

**UUUU means bit values are undefined and may contain any value.

16-15

inteL SPECIAL COMPUTATIONAL SITUATIONS

Table 16-8. Single and Double Real Encodings

Class Sign
Biased Significand

Exponent ff-ff*

0 11..11 11 .. 11

Quiet

I/) 0 11 .. 11 10 .. 00
z
IU 0 11 .. 11 01 .. 11 z

Signaling

0 11 .. 11 00 .. 01

I/) Infinity 0 11 .. 11 00 .. 00
CII

:E: 0 11 .. 10 11 .. 11
·iii
0 Normals Il.

0 00 .. 01 00 .. 00
I/)

0 00 .. 00 11 .. 11 iii
CII
II: Denormals

0 00 .. 00 00 .. 01

Zero 0 00 .. 00 00 .. 00

Zero 1 00 .. 00 00.00

1 00 .. 00 00 .. 01

Denormals
I/)

1 00 .. 00 11 .. 11 iii
CII
II:

1 00 .. 01 00 .. 00

Normals

I/) 1 11 .. 10 11 .. 11
CII
> Infinity 1 11 .. 11 00 .. 00 ~
Cl
CII 1 11 .. 11 00 .. 01 z

Signaling

I/) 1 11 .. 11 01 .. 11
z
IU Indefinite 1 11 .. 11 10 .. 00 z

Quiet

1 11 .. 11 11 .. 11

Single: - 8 bits - - 23 bits -
Double: - 11 bits - - 52 bits -

*Integer bit is implied and not stored.

16-16

intel® SPECIAL COMPUTATIONAL SITUATIONS

Table 16-9. Extended Real Encodings

Class Sign
Biased Significand

Exponent I.ff-ff

0 11 .. 11 1 11 .. 11

Quiet

III 0 11 .. 11 1 10 .. 00
z
co 0 11 .. 11 1 01 .. 11 z

Signaling

0 11 .. 11 1 00 .. 01

Infinity 0 11 .. 11 1 00 .. 00

0 11 .. 10 1 11 .. 11
III
G.I

Normals ~
'iii

0 00 .. 01 1 00 .. 00 0
c..

0 00 .. 00 1 11 .. 11
III Pseudodenormals
iii 0 00 .. 00 1 00 .. 00 G.I
a:

0 00 .. 00 011 .. 11

Denormals

0 00 .. 00 000 .. 01

Zero 0 00 .. 00 000 .. 00

Zero 1 00 .. 00 000 .. 00

1 00 .. 00 000 .. 01

Denormals

1 00 .. 00 011 .. 11
III 0 00 .. 00 1 11 .. 11
iii
G.I Pseudodenormals a:

0 00 .. 00 1 00 .. 00

1 00 .. 01 1 00 .. 00

III Normals
G.I
>
~ 1 11 .. 10 111 .. 11
Cl

Infinity 1 11 .. 11 1 00 .. 00 G.I
Z

1 11..11 1 00 .. 01

Signaling

III 1 11 .. 11 1 01 .. 11
z
co Indefinite 1 11 .. 11 1 10 .. 00 z

Quiet

1 11 .. 11 1 11 .. 11

- 15 bits - - 64 bits -

16-17

inteL SPECIAL COMPUTATIONAL SITUATIONS

Table 16-10. Unsupported Formats

Class Sign
Biased Significand

Exponent f.ff--ff

0 11 .. 11 011 .. 11
Quiet

o II)
0 11 .. 11 010 .. 00

"t:JZ
;:, lIS 0 11 .. 11 o 01 .. 11
lJlZ

Signaling II) 0-
CII 0 11 .. 11 000 .. 01
f;
'iii Pseudoinfinity 0 11 .. 11 000 .. 00 0
0-

0 11 .. 10 011 .. 11
II)

Unnormals (;j
CII 0 00 .. 01 000 .. 00 a:

1 11 .. 10 011 .. 11
..!!l Unnormals lIS
CII 1 00 .. 01 000 .. 00 a:

Pseudoinfinity 1 11 .. 11 000 .. 00

II) 1 11 .. 11 o 01 .. 11 CII
> Signaling i

.g~
1 11 .. 11 000 .. 01

CII
Z ;:, lIS 1 11 .. 11 011 .. 11

lJlZ
0- Quiet

1 11 .. 11 010 .. 00

- 15 bits - - 64 bits -

16.2 NUMERIC EXCEPTIONS

The Intel486 processor can recognize six classes of numeric exception conditions while
executing numeric instructions:

1. I - Invalid operation

• Stack fault

• IEEE standard invalid operation

2. Z - Divide-by-zero

3. D - Denormalized operand

4. a - Numeric overflow

5. U -' Numeric underflow

6. p- Inexact result (precision)

16-18

int:eL SPECIAL COMPUTATIONAL SITUATIONS

16.2.1 Handling Numeric Exceptions

When numeric exceptions occur, the Intel486 processor takes one of two possible
courses of action:

• The FPU can itself handle the exception, producing the most reasonable result and
allowing numeric program execution to continue undisturbed.

• A software exception handler can be invoked to handle the exception.

Each of the six exception conditions described above has a corresponding flag bit in the
FPU status word and a mask bit in the FPU control word. If an exception is masked (the
corresponding mask bit in the control word = 1), the Intel486 processor takes an appro­
priate default action and continues with the computation. If the exception is unmasked
(mask = 0), a software exception handler is invoked immediately before execution of the
next WAIT or non-control floating-point instruction. Depending on the value of the NE
bit of the CRO control register, the exception handler is invoked either (NE = 1)
through interrupt vector 16 or (NE = 0) through an external interrupt.

Note that when exceptions are masked, the FPU may detect multiple exceptions in a
single instruction, because it continues executing the instruction after performing its
masked response. For example, the FPU could detect a denormalized operand, perform
its masked response to this exception, and then detect an underflow.

16.2.1.1 AUTOMATIC EXCEPTION HANDLING

The Intel486 processor has a default fix-up activity for every possible exception condition
it may encounter. These masked-exception responses are designed to be safe and are
generally acceptable for most numeric applications.

As an example of how even severe exceptions can be handled safely and automatically
using the default exception responses, consider a calculation of the parallel resistance of
several values using only the standard formula (Figure 16-3). If R1 becomes zero, the
circuit resistance becomes zero. With the divide-by-zero and precision exceptions
masked, the Intel486 processor will produce the correct result.

By masking or unmasking specific numeric exceptions in the FPU control word, pro­
grammers can delegate responsibility for most exceptions to the Intel486 processor,
reserving the most severe exceptions for programmed exception handlers. Exception­
handling software is often difficult to write, and the masked responses have been tai­
lored to deliver the most reasonable result for each condition. For the majority of
applications, masking all exceptions yields satisfactory results with the least program­
ming effort. Certain exceptions can usefully be left unmasked during the debugging
phase of software development, and then masked when the clean software is actually
run. An invalid-operation exception for example, typically indicates a program error that
must be corrected.

The exception flags in the FPU status word provide a cumulative record of exceptions
that have occurred since these flags were last cleared. Once set, these flags can be
cleared only by executing the FCLEX (clear exceptions) instruction, by reinitializing the

16-19

in1:el® SPECIAL COMPUTATIONAL SITUATIONS

R, ~ R.

EQUIVALENT RESISTANCE =

R,

R3

+
R.

+ 1
R3

Figure 16-3. Arithmetic Example Using Infinity

240486i16·3

FPU, or by overwriting the flags with an FRSTOR or FLDENV instruction. This allows
a programmer to mask all exceptions, run a calculation, and then inspect the status word
to see if any exceptions were detected at any point in the calculation.

16.2.1.2 SOFTWARE EXCEPTION HANDLING

If the FPU encounters an unmasked exception condition, a software exception handler is
invoked immediately before execution of the next WAIT or non-control floating-point
instruction. The exception handler is invoked either through interrupt vector 16 or
through an external interrupt, depending on the value of the NE bit of the CRO control
register.

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately
before the execution of the next non-control floating-point or WAIT instruction. Inter­
rupt 16 is an operating-system call that invokes the exception handler. Chapter 9 con­
tains a general discussion of exceptions and interrupts on the Intel486 processor.

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception
causes the processor to freeze immediately before executing the next non-control
floating-point or WAIT instruction. The frozen processor waits for an external interrupt,
which must be supplied by external hardware in response to the FERR# output of the
processor. (Regardless of the value of NE, an unmasked numerical exception causes the
FERR# output to be activated.) In this case, the external interrupt invokes the
exception-handling routine. If NE =0 but the IGNNE# input is active, the processor
disregards the exception and continues. Error reporting via external interrupt is sup­
ported for DOS compatibility. Chapter 25 contains further discussion of compatibility
issues.

16-20

intel® SPECIAL COMPUTATIONAL SITUATIONS

The exception-handling routine is normally a part of the systems software. Typical
exception responses may include:

• Incrementing an exception counter for later display or printing

• Printing or displaying diagnostic information (e.g., the FPU environment and
registers)

• Aborting further execution, or using the exception pointers to build an instruction
that will run without exception and executing it

Applications programmers should consult their operating system's reference manuals for
the appropriate system response to numerical exceptions. For systems programmers,
some details on writing software exception handlers are provided in Chapter 19.

16.2.2 Invalid Operation

This exception may occur in response to two general classes of operations:

1. Stack operations

2. Arithmetic operations

The stack flag (SF) of the status word indicates which class of operation caused the
exception. When SF is 1 a stack operation has resulted in stack overflow or underflow;
when SF is 0, an arithmetic instruction has encountered an invalid operand.

16.2.2.1 STACK EXCEPTION

When SF is 1, indicating a stack operation, the 01U# bit of the condition code (bit C1)
distinguishes between stack overflow and underflow as follows: .

O/U # = 1 Stack overflow - an instruction attempted to push down a non empty stack
location.

01U# = ° Stack underflow-an instruction attempted to read an operand from an
empty stack location.

When the invalid-operation exception is masked, theFPU returns the QNaN indefinite.
This value overwrites the destination register, destroying its original contents.

When the invalid-operation exception is not masked, an exception handler is invoked.
TOP is not changed, and the source operands remain unaffected.

16-21

intel® SPECIAL COMPUTATIONAL SITUATIONS

16.2.2.2 INVALID ARITHMETIC OPERATION

This class includes the invalid operations defined in IEEE Std 854. The FPU reports an
invalid operation in any of the cases shown in Table 16-11. Also shown in this table are
the FPU's responses when the invalid exception is masked. When unmasked, an excep­
tion handler is invoked, and the operands remain unaltered. An invalid operation gen­
erally indicates a program error.

16.2.3 Division by Zero

If an instruction attempts to divide a finite nonzero operand by zero, the FPU will report
a zero-divide exception. This is possible for F(I)DIV(R)(P) as well as the other instruc­
tions that perform division internally: FYL2X and FXTRACT. The masked response for
FDIV is to return an infinity signed with the exclusive OR of the sign of the operand.

Table 16-11. Masked Responses to Invalid Operations

Condition Masked Response

Any arithmetic operation on an unsupported Return the QNaN indefinite.
format.

Any arithmetic operation on a signaling NaN. Return a QNaN (refer to the section "Rules for
Generating QNaNs").

. Compare and test operations: one or both oper- Set condition codes "not comparable."
ands is a NaN.

Addition of opposite-signed infinities or subtrac- Return the QNaN indefinite.
tion of like-signed infinities.

Multiplication: 00 x 0; or 0 x 00. Return theQNaN indefinite. .

Division: 00 7 00; or 0 7 O. Return the QNaN indefinite.

Remainder instructions FPREM, FPREM1 when Return the QNaN indefinite; set C2 = O.
modulus (divisor) is zero or dividend is 00.

Trigonometric instructions FCOS, FPTAN, FSIN, Return theQNaN indefinite; set C2 = O.
FSINCOS when argument is 00.

FSQRT of negative operand (except FSQRT (-0) Return the QNaN indefinite.
= -0), FYL2X of negative operand (except
FYL2X (-0) = -(0), FYL2XP1 of operand more
negative than ~ 1 .

FIST(P) instructions when source register is Store integer indefinite.
empty, a NaN, 00, or exceeds representable
range of destination.

FBSTP instruction when source register is Store packed decimal indefinite.
empty, a NaN, 00, or exceeds 18 decimal digits.

FXCH instruction when one or both registers are Change empty registers to the QNaN indefinite
tagged empty. and then perform exchange. .

16-22

intel® SPECIAL COMPUTATIONAL SITUATIONS

FYL2X returns an infinity signed with the opposite sign of the non-zero operand. For
FXTRACT, ST(l) is set to -00; ST is set to zero with the same sign as the original
operand. If the divide-by-zero exception is unmasked, an exception handler is invoked;
the operands remain unaltered.

16.2.4 Denormal Operand

If an arithmetic instruction attempts to operate on a denormal operand, the FPU reports
the denormal-operand exception. Denormal operands may have reduced significance
due to lost low-order bits, therefore it may be advisable in certain applications to pre­
clude operations on these operands. This can be accomplished by an exception handler
that responds to unmasked denormal exceptions. Most users will mask this exception so
that computation may proceed; any loss of accuracy will be analyzed by the user ·when
the final result is delivered.

When this exception is masked, the FPU sets the D-bit in the status word, then proceeds
with the instruction. Gradual underflow and denormal numbers as handled on the
Intel486 processor will produce results at least as good as, and often better than what
could be obtained from a machine that flushes underflows to zero. In fact, a denormal
operand in single- or double-precision format will be normalized to the extended-real
format when loaded into the FPU. Subsequent operations will benefit from the· addi­
tional precision of the extended-real format used internally.

When this exception is not masked, the D-bit is set and the exception handler is invoked.
The operands are not changed by the instruction and are available for inspection by the
exception handler.

The Intel486 FPU and Intel387 math coprocessors handle denormal values differently
than the 8087 and Intel287 math coprocessors. This change is due to revisions in the
IEEE standard before being approved. The difference in operation occurs when the
denormal exception is masked. The Intel486 FPU and Intel387 math coprocessors will
automatically normalize denormals. The 8087 and Intel287 math coprocessors will gen­
erate a denormal result.

The difference in denormal handling is usually not an issue. The denormal exception is
normally masked for the Inte1387 and Intel486 FPUs. For programs that also run on an
Intel287 math coprocessor, the denormal exception is often unmasked and an exception
handler is provided to normalize any denormal values. Such an exception handler is
redundant for the Intel486 and Intel387 DX FPUs. The default exception handler
should be used~

A program can detect at run-time whether it is running on an Inte1387 or Intel486 FPU
or the older 8087/Inte1287 math coprocessors. The code sequence in Figure 16-4 is rec­
ommended to recognize 8087/Inte1287 math coprocessors. Refer to Figure 3-23 to iden­
tify an Intel387 or Intel486 CPU. The example in Figure 16-4 can be used to selectively
mask the denormal exception for an Intel387 DX or Intel486 FPU. A denormal excep­
tion handler should also be provided to support 8087/Inte1287 math coprocessors. This
code example can also be used to set a flag to allow use of new instructions added to the
Intel387 and Intel486 FPUs beyond the instructions of the 8087/Inte1287 math
coprocessors.

16-23

intel®

FINIT

FLDl
FLDZ
FDIV
FLD
FCHS
FCOMPP
FSTSW
MOV
SAHF

ST

temp
AX, temp

SPECIAL COMPUTATIONAL SITUATIONS

Use default infinity mode:
projective for 8387/Inte1287 math coprocessors,
affine for Inte1387 DX and Inte1486 FPU

Generate infinity

Form negative infinity

Compare +infinity with -infinity
8387/Inte1287 math coprocessors will say they are equal

JZ Using_8387

Figure 16-4. Coprocessor Detection Code

16.2.5 Numeric Overflow and Underflow

If the exponent of a numeric result is too large for the destination real format, the FPU
signals a numeric-overflow. Conversely, if the exponent of a result is too small to be
represented in the destination format, a numeric underflow is signaled. If either of these
exceptions occur, the result of the operation is outside the range of the destination real
format.

Typical algorithms are most likely to produce extremely large and small numbers.in the
calculation of intermediate, rather than final, results. Because of the great range of toe
extended-precision format, overflow and underflow are relatively rare events in most
numerical applications for the Intel486 processor.

16.2.5.1 OVERFLOW

The overflow exception can occur whenever the rounded true result would exceed in
magnitude the largest finite number in the destination format. The exception can occur
in the execution of most of the arithmetic instructions and ,in some of the conversion
instructions; namely, FST(P), F(I)ADD(P), F(I)SUB(R)(P), F(I)MUL(P), FDIV(R)(P),
FSCALE, FYL2X, and FYL2XPl.

16-24

intel® SPECIAL COMPUTATIONAL SITUATIONS

The response to an overflow condition depends on whether the overflow exception is
masked:

• Overflow exception masked. The value returned depends on the rounding mode as
Table 16-12 illustrates.

• Overflow exception not masked. The unmasked response depends on whether the
instruction is supposed to store the result on the stack or in memory:

If the destination is the stack, then true result is divided by 224,576 and rounded.
(The bias 24,576 is equal to 3 x 213.) The significand is rounded to the appro­
priate precision (according to the precision control (PC) bit of the control word,
for those instructions controlled by PC, otherwise to extended precision). The
roundup bit (C1) of the status word is set if the significand was rounded upward.

The biasing of the exponent by 24,576 normally translates the number as nearly
as possible to the middle of the exponent range so that, if desired, it can be used
in subsequent scaled operations with less risk of causing further exceptions. With
the instruction FSCALE, however, it can happen that the result is too large and
overflows even after biasing. In this case, .the unmasked response is exactly the
same as the masked round-to-nearest response, namely ±. infinity. The intention
of this feature is to ensure the trap handler will discover that a translation of the
exponent by -24574 would not work correctly without obliging the programmer
of Decimal-to-Binary or Exponential functions to determine which trap handier,
if any, should be invoked.

If the destination is memory (this can occur only with the store instructions),
then no result is stored in memory. Instead, the operand is left intact in the
stack. Because the data in the stack is in extended-precision format, the excep­
tion handler has the option either of reexecuting the store instruction after
proper adjustment of the operand or of rounding the significand on the stack to
the destination's precision as the standard requires. The exception handler
should ultimately store a value into the destination location in memory if the
program is to continue.

Table 16-12. Masked Overflow Results

Rounding Sign of
Result

Mode True Result

To nearest + +00
- -00

Toward -00 + Largest finite positive number
- -00

Toward +00 + +00
- Largest finite negative number

Toward zero + Largest finite positive number
- Largest finite negative number

16-25

inteL SPECIAL COMPUTATIONAL SITUATIONS

16.2.5.2 UNDERFLOW

Underflow can occur in the execution of the instructions FST(P), FADD(P),
FSUB(RP), FMUL(P), F(I)DIV(RP), FSCALE, FPREM(l), FPTAN, FSIN, FCOS,
FSINCOS, FPATAN, F2XMl, FYL2X, and FYL2XP1.

Two related events contribute to underflow:

1. Creation of a tiny result which, because it is so small, may cause some other excep­
tion later (such as overflow upon division).

2. Creation of an inexact result; i.e. the delivered result differs from what would have
been computed were both the exponent range and precision unbounded.

Which of these events triggers the underflow exception depends on whether the under­
flow exception is masked:

1. Underflow exception masked. The underflow exception is signaled when the result is
both tiny and inexact.

2. Underflow exception not masked. The underflow exception is signaled when the
result is tiny, regardless of inexactness.

The response to an underflow exception also depends on whether the exception is
masked:

1. Masked response. The result is denormal or zero. The precision exception is also
triggered.

2. Unmasked response. The unmasked response depends on whether the instruction is
supposed to store the result on the stack or in memory:

• If the destination is the stack, then the true result is multiplied by 224,576 and
rounded. (The bias 24,576 is equal to 3 x 213.) The significand is rounded to the
appropriate precision (according to the precision control (PC) bit of the control
word, for those instructions controlled by PC, otherwise to extended precision).
The roundup bit (C1) of the status word is set if the significand was rounded
upward.

The biasing of the exponent by 24,576 normally translates the number as nearly
as possible to the middle of the exponent range so that, if desired,it can be used
in subsequent scaled operations with less risk of causing further exceptions. With
the instruction FSCALE, however, it can happen that the result is too tiny and
underflows even after biasing. In this case, the unmasked response is exactly the
same as the masked round-to-nearest response, namely ±O. The intention of this
feature is to ensure the trap handler will discover that a translation by + 24576
would not work correctly without obliging the programmer of Decimal-to-Binary
or Exponential functions to determine which trap handler, if any, should be
invoked.

• If the destination is memory (this can occur only with the store instructions), then
no result is stored in memory. Instead, the operand is left intact in the stack.

16-26

SPECIAL COMPUTATIONAL SITUATIONS

Because the data in the stack is in extended-precision format, the exception han­
dIer has the option either of reexecuting the store instruction after proper adjust­
ment of the operand or of rounding the significand on the stack to the
destination's precision as the standard requires. The exception handler should
ultimately store a value into the destination location in memory if the program is
to continue.

16.2~6 Inexact (Precision)

This exception condition occurs if the result of an operation is not exactly representable
in the destination format. For example, the fraction 1/3 cannot be precisely represented
in binary form. This exception occurs frequently and indicates that some (generaIIy
acceptable) accuracy has been lost.

By their nature, the. transcendental instructions typicaIIy cause the inexact exception.

The C1 (roundup) bit of the status word indicates whether the inexact result was
rounded up (C1 = 1) or chopped (C1 = 0).

The inexact exception accompanies the underflow exception when there is also a loss of
accuracy. When underflow is masked, the underflow exception is signaled only whcn
there is a loss of accuracy; therefore the precision flag is always set as well. Whcn
underflow is unmasked, there mayor may not have been a loss of accuracy; the precision
bit indicates which is the case.

This exception is provided for applications that need to perform exact arithmetic only.
Most applications will mask this exception. The FPU delivers the rounded or over/
underflowed result to the destination, regardless of whether a trap occurs.

16.2.7 1E}{ception Priority

The Intel486 processor deals with exceptions according to a predetermined precedence.
Precedence in exception handling means that higher-priority exceptions are flagged and
results are delivered according to the requirements of that exception. Lower-priority
exceptions may not be flagged even if they occur. For example, dividing an SNaN by zero
causes an invalid-operand exception (due to the SNaN) and not a zero-divide exception;
the masked result is the QNaN real indefinite, not co. A denormal or inexact (precision)
exception, however, can accompany a numeric underflow or overflow exception.

The precedence among numeric exceptions is as follows:

1. Invalid operation exception, subdivided as foIIows:

a. Stack underflow.

b. Stack overflow.

c. Operand of unsupported format.

d. SNaN operand.

16·27

infe!® SPECIAL COMPUTATIONAL SITUATIONS

2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing
with it has precedence over lower"priority exceptions. For example, a QNaN divided
by zero results ina QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or zero divide.

4. Denormal operand. If masked, then instruction execution continues, and a lower­
priority exception can occur as well.

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well.

6. Inexact result (precision).

16.2.8 Standard Underflow/Overflow Exception Handler

As long as the underflow and overflow exceptions are masked, no additional software is
required to cause the output of the Intel486 processor to conform to the requirements of
IEEE Std 854. When unmasked, these exceptions give the exception handler an addi­
tional option in the case of store instructions. No result is stored in memory; instead, the
operand is left intact on the stack. The handler may round the significand of the operand
on the stack to the destination's precision as the standard requires, or it may adjust the
operand and reexecute the faulting instruction.

16-28

Floating-Point Instruction Set 1 7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

CHAPTER 17
FLOATING-POINT INSTRUCTION SET

The floating-point instructions available on the Intel486 processor can be grouped into
six functional classes:

• Data Transfer Instructions

• Nontranscendental Instructions

• Comparison Instructions

• Transcendental Instructions

o Constant Instructions

o Control Instructions

In this chapter, the instruction classes are described as a collection of resources available
to ASM386/Inte1486 programmers. For details of format, encoding, and execution times,
see the instruction reference pages in Chapter 26.

The Intel387 math coprocessors and Intel486 FPU have more instructions than the HOH7/
Intel287 math coprocessors. Some Intel386 DX microprocessor systems use an Intcl2H7
math coprocessor. See Figures 3-23 and 16-4 for examples of how to detect whether an
8087/Intel287 math coprocessor is present to use the new instructions when available.

17.1 SOURCE AND DESTINATION OPERANDS

The typical floating-point instruction takes one or two operands, which can come from
the FPU register stack or from memory. Many instructions, such as FSIN, automatically
operate on the top FPU stack element. Others allow, or require, the programmer to
code the operand(s) explicitly along with the instruction mnemonic. Still others accept
one explicit operand and one implicit operand (usually the top FPU stack element).

Whether specified by the programmer or supplied by default, floating-point operands
are of two basic types, sources and destinations. A source operand provides an input to an
instruction, but is not altered by its execution. Even when an instruction converts the
source operand from one format to another (e.g., real to integer), the conversion is
performed in an internal 'work area to avoid altering the source operand. A destination
operand may also provide an input to an instruction; on execution, however, the instruc­
tion returns a result to the destination, overwriting its previous contents.

Many instructions allow their operands to be coded in more than one way. For example,
FADD (add real) may be written without operands, with only a source, or with a desti­
nation and a source. When both destination and source operands are specified, the
destination must precede the source on the command line, and both must come from the
FPU stack.

17-1

in1'el® FLOATING-POINT INSTRUCTION SET

Memory operands can be coded with any of the memory-addressing methods provided
by the ModR/M byte. To review these methods (BASE = (INDEX X SCALE) +
DISPLACEMENT), refer to Chapter 2. Floating-point instructions with memory oper­
ands either read from memory or write to it; no floating-point instruction does both.For
a detailed description of each instruction, including its range of possible encodings, see
the reference pages in Chapter 26.

17.2 DATA TRANSFER INSTRUCTIONS

These instructions (summarized in Table 17-1) move operands among elements of the
register stack, and between the stack top and memory. Any of the seven data types can
be converted to extended-real and loaded (pushed) onto the stackin a single operation;
they can be stored to memory in the same manner. The data transfer instructions auto­
matically update the FPU tag word to reflect. whether the register is empty or full fol­
lowing the instruction.

17.3 NONTRANSCENDENTAl INSTRUCTIONS

The nontranscendental instruction set provides a wealth of variations on the basic add,
subtract, multiply, and divide operations, and a number of other useful functions. These
range from a simple absolute value instruction to instructions which perform exact mod­
ulo division, round real numbers to integers, and scale values by powers of two.
Table 17 -2 shows the nontranscendental operations provided, apart from basic
arithmetic.

The basic arithmetic instructions (addition, subtraction, multiplication and division) are
designed to encourage the development of very efficient algorithms. In particular, they
allow the programmer to reference memory as easily as the FPU register stack.
Table 17-3 summarizes the available operation/operand forms that are provided for basic
arithmetic. In addition to the four normal operations, there are "reversed" subtraction

Table 17-1 .. Data Transfer Instructions
..

Real Integer Packed Decimal

FLD Load Real FILD Load Integer FBLD Load Packed Decimal

FST Store Real FIST Store Integer

FSTP Store Real and Pop FISTP Store Integer and FBSTP Load Packed Decimal
Pop and Pop

FXCH Exchange registers

17-2

int:et FLOATING-POINT INSTRUCTION SET

Table 17-2. Nontranscendentallnstructions (Besides Basic Arithmetic)

. Mnemonic Operation

FSQRT Square Root
FSCALE Scale
FXTRACT· Extract Exponent and Significand
FPREM Partial Remainder
FPREM1* IEEE Standard Partial Remainder
FRNDINT Round to Integer
FABS Absolute Value
FCHS Change Sign

*Not available on 8087/lnteI287'M math coprocessor.

Table 17-3. Basic Arithmetic Instructions and Operands

Instruction Form
Mnemonic Operand Forms:

Form Destination, Source

Classical Stack Fop {ST(1), ST}
Classical Stack, extra pop FopP {ST(1), ST}
Register Fop ST(i), ST or ST, ST(i)
Register, pop FopP ST(i), ST
Real Memory Fop {ST} single-real/double-real
Integer Memory Flop {ST} word-integer/short-integer

NOTES:

Braces ({}) surround implicit operands; these are not coded, but are supplied by the assembler.

op= ADD· DEST <- DEST + SRC
SUB DEST <- ST - Other Operand
SUBR DEST <- Other Operand - ST
MUL DEST <- DEST x SRC
DIV DEST <- DEST + SRC
DIVR DEST <- SRC + DEST

and division instructions which eliminate the need for many' exchanges between ST(O)
and ST(l). The variety of instruction and operand forms give' the programmer unusual
flexibility:

• Operands can. be located in registers or memory.

• Results can be deposited in a choice of registers.

• Operands can be a variety of numerical data types: extended real, double real, single
real, short integer or word integer, with automatic conversion to extended real per­
formed by the FPU.

Five basic instruction forms can be used across all six operations, as shown in Table 17-3.
The classical stack form can be used to 'make the FPU operate like a classical stack
machine. No operands are coded ih this form, only the instruction mnemonic. The FPU
picks the source operand from the stack top (ST) and the destination from the next stack
element (ST(l». After performing its calculation, it returns the result to ST(l)and then
pops ST, effectively replacing the operands by the. result ...

17-3

FLOATING-POINT INSTRUCTION SET

The register form is a generalization of the classical stack form; the programmer speci­
fies the stack top as one operand and any register on the stack· as the other operand.
Coding the stack top as the destination provides a convenient way to. access a constant,
held elsewhere in the stack, from the top stack. The destination need not always be ST,
however. The basic two-operand instructions allow the use of another register as the
destination. Using ST as the source allows, for example, adding the stack top into a
register used as an accumulator.

Often the operand in the stack top is needed for one operation but then is of no further
use in the computation. The register pop form can be used to pick up the stack top as
the source operand, and then discard it by popping the stack. Coding operands of ST(1),
ST with a register pop mnemonic is equivalent toa classical stack operation: the top is
popped and the result is left at the new top.

The two memory forms increase the flexibility of the non transcendental ihstructions.
They permit .~ real number or a binary integer in memory to be used directly as a source
operand. This is useful in situations where operands are not used frequently enough to
justify holding them in registers. Note that any memory-addressing method can be used
to define these operands, so they c,an be elements in arrays, structures, or other data
organizations, as well as simple scalars.

17.4 COMPARISON INSTRUCTIONS

The instruCtions 'of this class allow numbers of all supported real and integer data types
to be compared. Each of these instructions (Table 17-4) analyzes the top stack element,
often in relationship to another operand, and reports the result as a condition code
(flags CO, C2, and C3) in the status word.

The basic operations are compare, test (compare with· zero), and examine (report type,
sign, and normalization). Special forms of the compare operation are provided to opti­
mize algorithms by allowing direct comparisons with binary integers and real numbers in
memory, as well as popping the stack after a comparison.

Table 17-4. Comparison Instructions

Mnemonic Operation

FCOM Compare Real
FCOMP Compare Real and Pop
FCOMPP Com'pare Real and Pop Twice
FICOM Compare Integer
FICOMP Compare Integer and Pop
FTST Test
FUCOM* Unqrdered Compare Real
FUCOMP* Unordered Compare Realand Pop
FUCOMPP" Unordered CompareRei:iI and PopTwice
FXAM Examine

*Not available on 8087/lnteI287'" math coprocessor.

17-4

intel® FLOATING-POINT INSTRUCTION SET

The FSTSW AX (store status word) instruction can be used after a comparison to trans­
fer the condition code to the AX register for inspection. The TEST instruction is recom­
mended for using the FPU flags (once they are in the AX register) to control conditional
branching. First check to see if the comparison resulted in unordered. This can happen,
for instance, if one of the operands is a NaN. TEST the contents of the AX register
against the constant 0400H; this will clear ZF (the Zero Flag of the EFLAGS register) if
the original comparison was unordered, and set ZF otherwise. The JNZ instruction can
now be used to transfer control (if necessary) to code which handles the case of unor­
dered operands. With the unordered case now filtered out, TEST the contents of the
AX register against the appropriate constant from Table 17-5, and then use the corre­
sponding conditional branch.

It is not always necessary to filter out the unordered case when using this algorithm for
conditional jumps. If the software has been thoroughly tested, and incorporates periodic
checks for QNaN results (as recommended in Chapter 16), then it is not necessary to
check for unordered every time a comparison is made.

Instructions other than those in the comparison group can update the condition code. To
ensure that the status word is not altered inadvertently, store it immediately following a
comparison operation.

17.5 TRANSCENDENTAL INSTRUCTIONS

The instructions in this group (Table 17-6) perform the time-consuming core calcula­
tions for all common trigonometric, inverse trigonometric, hyperbolic, inverse hyper­
bolic, logarithmic, and exponential functions. The transcendentals operate on the top
one or two stack elements, and they return their results to the stack. The trigonometric
operations assume their arguments are expressed in radians. The logarithmic and expo­
nential operations work in base 2.

The results of transcendental instructions are highly accurate. The absolute value of the
relative error of the transcendental instructions is guaranteed to be less than 2-62. (Rel­
ative error is the ratio between the absolute error and the exact value.)

The trigonometric functions accept a practically unrestricted range of operands, whereas
the other transcendental instructions require that arguments be more restricted in range.
FPREM or FPREM1 can be used to bring the otherwise valid operand of a periodic
function into range. Prologue and epilogue software can be used to reduce arguments

Table 17-5. TEST Constants for Conditional Branching

Order Constant Branch

ST> Operand 4500H JZ
ST < Operand 0100H JNZ
ST = Operand 4000H JNZ
Unordered 0400H JNZ

17-5

intel® FLOATING-POINT INSTRUCTION SET

Table 17-6. Transcendental Instructions

Mnemonic Operation

FSIN* Sine
FCOS* Cosine
FSINCOS* Sine and. Cosine
FPTAN** Tangent
FPATAN Arctangent of ST(1) 7 ST
F2XM1** 2X - 1; X is in ST
FYL2X Y x IOg2X; Y is in ST(1), X is in ST
FYL2XP1 Y x IOg2(X + 1); Y is in ST(1), X is in ST

*Not available on 8087/lnteI287'M math coprocessor.
**Operand range extended over 8087/lnte1287 math coprocessor.

for other instructions to the expected range and to adjust the result to correspond to the
original arguments if necessary. The instruction descriptions in the reference pages of
Chapter 26 document the allowed operand range for each instruction.

When the argument of a trigonometric function is in range, it is automatically reduced
by the appropriate multiple of 21T (in 66-bit precision), by means of the same mechanism
used in the FPREM and FPREM1 instructions. The value of 1T used in the automatic
reduction has been chosen so as to guarantee no loss of significance in the operand,
provided it is within the specified range. The internal value of 1T is:

4 * O.C90FDAA2 2168C234 C H .

A program may use an explicit value for 1T in computations whose results later appear as
arguments to trigonometric functions. In such a case (in explicit reduction of a trigono­
metric operand outside the specified range, for example), the value used for 1T should be
the same as the full 66-bit internal1T. This will insure that the results are consistent with
the automatic argument reduction performed by the trigonometric functions. The 66-bit
1T cannot be represented as an extended-real value, so it must be encoded as two or more
numbers. A common solution is to represent 1T as the sum of a high1T which contains the
33 most-significant bits and a 10w1T which contains the 33 least-significant bits. When
using this two-part 1T, all computations should be performed separately on each part,
with the results added only at the end.

The complications of maintaining a consistent value of 1T for argument reduction can be
avoided, either by applying the trigonometric functions only to arguments within the
range of the automatic reduction mechanism, or by performing all argument reductions
(down to a magnitude less than 1T/4) explicitly in software.

17.6 CONSTANT INSTRUCTIONS

Each of these instructions (Table 17-7) pushes a commonly used constant onto the stack.
(ST(7) must be empty to avoid an invalid exception.) The values have full extended real
precision (64 bits) and are accurate to approximately 19 decimal digits. Because an

17-6

intel® FLOATING·POINT INSTRUCTION SET

Table 17-7. Constant Instructions

Mnemonic Operation

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load 'IT

FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log'02
FLDLN2 Load log.2

external real constant occupies 10 memory bytes, the constant instructions, which are
only two bytes long, save storage and improve execution speed, in addition to simplifying
programming.

The constants used by these instructions are stored internally in a format more precise
than extended real. When loading the constant, the FPU rounds the more precise inter­
nal constant according the RC (rounding control) bit of the control word. However, in
spite of this rounding, the precision exception is not raised (to maintain compatibility).
When the rounding control is set to round to nearest, the FPU produces the same
constant that is produced by the 8087 and Intel287 numeric coprocessors.

17.7 CONTROL INSTRUCTIONS

The FPU control instructions are shown in Table 17-8. The FSTSW instruction is com­
monly used for conditional branching. The remaining instructions are not typically used
in calculations; they provide control over the FPU for system-level activities. These activ­
ities include initialization of the FPU, numeric exception handling, and task switching.

Table 17·8. Control Instructions

Mnemonic Operation

FINIT / FNINIT Initialize FPU
FLDCW Load Control Word
FSTCW / FNSTCW Store Control Word
FSTSW / FNSTSW Store Status Word
FSTSW AX / FNSTSW AX* Store Status Word to AX Register
FCLEX / FNCLEX Clear Exceptions
FSTENV / FNSTENV Store Environment
FLDENV Load Environment
FSAVE / FNSAVE Save State
FRSTOR Restore State
FINCSTP Increment Stack-Top Pointer
FDECSTP Decrement Stack-Top Pointer
FFREE Free Register
FNOP No Operation
FWAIT Report FPU Error

*Not available on 8087 math coprocessor.

17-7

inteL FLOATING·POINT INSTRUCTION SET

As shown in Table 17-8, certain instructions have alternative mnemonics. The instruc­
tions which initialize the FPU, clear exceptions, or store (all or part of) the FPU envi­
ronment come in two forms:

• Wait-the mnemonic is prefixed only with an F, such as FSTSW. This form checks for
unmasked numeric exceptions.

41 No-wait-the mnemonic is prefixed with an FN, such as FNSTSW. This form ignores
unmasked numeric exceptions.

When the control instruction is coded using the no-wait form of the mnemonic, the
ASM386/486 assembler does not precede the ESC instruction with a WAIT instruction,
and the processor does not test for a floating-point error condition before executing the
control instruction.

The only no-wait instructions are those shown in Table 17-8. All other floatiI1g-point
instructions are automatically synchronized by the processor; all operands are trans­
ferred before the next instruction is initiated. Because of this automatic synchronization,
non-control floating-point instructions need not be preceded by a WAIT instruction in
order to execute correctly. .

Exception synchronization relies on the WAIT instruction. Since the Integer Unit and
the FPU operate in parallel, it is possible in the case of a floating-point exception for the
processor to disturb information vital to exception recovery before the exception-handler
can be invoked. Coding a WAIT or FW AIT instruction in the proper place can prevent
this. See Chapter 18 for details.

It should also be noted that the 8087 instructions FENI and FDISI and the Intel287
instruction FSETPM perform no function in the Intel486 processor. If these opcodes are
detected in the instruction stream, the Intel486 processor performs no specific operation
and no internal states are affected. Chapter 25 contain a more complete description of
the differences between floating-point operations on the Intel486 processor and on 8087,
Inte1287, and Intel387 DX numeric coprocessors.

17-8

Numeric Applications 18

CHAPTER 18
NUMERIC APPLICATIONS

18.1 PROGRAMMING FACILITIES

This section describes how programmers in ASM386/486 and in a variety of higher-level
languages can make use of the Inte1486 processor's numerics capabilities .

. The level of detail in this section is intended to give programmers a basic understanding
of the software tools that can be used for numeric programming, but this information
does not document the full capabilities of these facilities. Complete documentation is
available with each program development product.

18.1.1 High-Level Languages

A variety of Intel high-level languages are available that automatically make lise of the
numeric instruction set when appropriate. These lilnguagesinclude C-386/486 and
PL/M-386/486. In addition many high-level language compilers are available from inde-
pendent software vendors. .

Each of these high-level languages has special numeric libraries allowing programs to
take advantage of the capabilities of the FPU. No special programming conventions are
necessary to make use of the' FPU when programming numeric applications in any of
these languages. ,.

Programmers in PL/M-386/486 and ASM386/486 can also make use of many of these
library routines by using routines contained in the Support Library. These libraries
implement many of the functions provided by higher-level languages, including exception
handlers, ASCII-to-floating-point conversions,and a more complete set of transcenden­
tal functions than that provided by the Intel486 numeric instruction set.

18.1.2 C Programs

C programmers automatically cause the C compiler to generate Intel486 numeric
instructions when they use the double and float data types. The float type corresponds to
the single reaUormat; the double type corresponds to the double real format. The state­
ment #include (math.h) causes mathematical functions such as sin and sqrt to return
values of type double. Figure 18-1 illustrates the ease with which C programs can make
use of the Intel486 processor's numerics capabilities.

18-1

int:et NUMERIC APPLICATIONS

1**

*
*
*

SAMPLE C PROGRAM
*
*
*

**/

/** Include /usr/include/stdio.h if necessary **/
/** Include math declarations for transcendenatals and others **/

#include </usr/include/math.h>
#define P13.1415926535897943

mainO
(

double
double
int

sin_result, cos_result;
angle_deg = 0.0, angle_rad;
i, no_of_trial = 4;

fore i = 1; i <= no_of_trial; i++){
angle_rad = angle_deg * PI / 180.0;
sin_result = sin (angle_rad);
cos result = cos (angle rad);
pri~tf(IIsine of %f degr;es equals %f\n", angle_deg, sinJesult);
printf("cosine of %f degrees equals %f\n\n", angle_deg, cosJesult);.
angle_deg = angle_deg + 30.0;
}

/** etc. **/
}

Figure 18-1. Sample C-386/486 Program

18.1.3 PL/M-386/486

240486i 18-1

Programmers in PL/M-386/486 can access a very useful subset of the Intel486 processor's
numeric capabilities. The PL/M-386/486 REAL data type corresponds to the single real
(32-bit) format. This data type provides a range of about 8.43 X 10-37 ::;; I X I ::;; 3.38 X

1038, with about seven significant decimal digits. This representation is adequate for the
data manipulated by many microcomputer applications.

The utility of the REAL data type is extended by the PL/M-386/486 compiler's practice
of holding intermediate results in the extended real format. This means that the full
range and precision of the processor are utilized for intermediate results. Underflow,
overflow, and rounding exceptions are most likely to occur during intermediate compu­
tations rather than during calculation of an expression's final result. Holding intermedi­
ate results in extended-precision real format greatly reduces the likelihood of overflow
and underflow and eliminates roundoff as a serious source of error until the final assign­
ment of the result is performed.

18·2

NUMERIC APPLICATIONS

The compiler generates floating-point instructions to evaluate expressions that contain
REAL data types, whether variables or constants or both. This means that addition,
subtraction, multiplication, division, comparison, and assignment of REALs will be per­
formed by the FPU. INTEGER expressions, on the other hand, are evaluated by the
Integer Unit.

Five built-in procedures (Table 18-1) give the PL/M-386/486 programmer access to FPU
control instructions. Prior to any arithmetic operations, a typical PL/M-386/486 program
will set up the FPU using the INIT$REAL$MATH$UNIT procedure and then issue
SET$REAL$MODE to configure the FPo. SET$REAL$MODE loads the FPU control
word, and its 16-bit parameter has the format shown for the control word in Chapter 14.
The recommended value of this parameter is 033EH (round to nearest, 64-bit precision,
all exceptions masked except invalid operation). Other settings may be used at the pro­
grammer's discretion.

If any exceptions are unmasked, an exception handler must be- provided in the form of
an interrupt procedure that is designated to be invoked via interrupt vector number 16.
The exception handler can use the GET$REAL$ERROR procedure to obtain the low­
order byte of the FPU status word and to then clear the exception flags. Thc bytc
returned by GET$REAL$ERROR contains the exception flags; these can be examilled
to determine the source of the exception.

The SA VE$REAL$STATUS and RESTORE$REAL$STATUS procedures are pro­
vided for multitasking environments where a running task that uses the FPU may be
preempted by another task that also uses the FPU. It is the responsibility of the operat­
ing system to issue SA VE$REAL$ST ATUS before it executes any statements that affect
the FPU; these include the INIT$REAL$MATH$UNIT and SET$REAL$MODE pro­
cedures as well as arithmetic expressions. SA VE$REAL$ST ATUS saves the FPU state
(registers, status, and control words, etc.) on the memory stack. RESTORE$REAL­
$STATUS reloads the state information; the preempting task must invoke this proce­
dure before terminating in order to restore the FPU to its state at the time the running
task was preempted. This enables the preempted task to resume execution from the
point of its preemption.

Table 18-1. PL/M-386/486 Built-In Procedures

Procedure
FPU Control

Description
Instruction

INIT$REAL$MATH$UNIT FINIT Initialize FPU

SET$REAL$MODE FLDCW Set exception masks, rounding precision, and
infinity controls.

GET$REAL$ERROR FNSTSW Store, then clear, exception flags.
& FNCLEX

SAVE$REAL$STATUS FNSAVE Save FPU state.

RESTORE$REAL$STATUS FRSTOR Restore FPU state.

18-3

iniaL NUMERIC APPLICATIONS

18.1.4 ASM386/486

The ASM386/486 assembly language provides programmers with complete access to all
of the facilities of the processor.

18.1.4.1 DEFINING DATA

The ASM386/486 directives shown in Table 18-2 allocate storage for numeric variables
and constants. As with other storage allocation directives, the assembler associates a
type with any variable defined with these directives. The type value is equal to the length
of the storage unit in bytes (10 for DT, 8 for DQ, etc.). The assembler checks the type of
any variable coded in an instruction to be certain that it is compatible with the instruc­
tion. For example, the coding FIADD ALPHA will be flagged as an error if ALPHA's
type is not 2 or 4, because integer addition is only available for word and short integer
(doubleword) data types. The operand's type also tells the assembler which machine
instruction to produce; although to the programmer there is only an FIADD instruction,
a different machine instruction is required for each operand type.

On occasion it is desirable to use an instruction with an operand that has no declared
type. For example, if register BX points to a short integer variable, a programmer may
want to code FIADD [BX]. This can be done by informing the assembler of the oper­
and's type in the instruction, coding FIADD DWORD PTR [BX]. The corresponding
overrides for the other storage allocations are WORD PTR, QWORD PTR, and
TBYTE PTR.

The assembler does not, however, check the types of operands used in processor control
instructions. Coding FRSTOR [BP] implies that the programmer has set up register BP
to point to the location (probably in the stack) where the processor's 94-byte state record
has been previously saved.

The initial values for numeric constants may be coded in several different ways. Binary
integer constants may be specified as bit strings, decimal integers, octal integers, or
hexadecimal strings. Packed decimal values are normally written as decimal integers,
although the assembler will accept and convert other representations of integers. Real
values may be written as ordinary decimal real numbers (decimal point required), as
decimal numbers in scientific notation, or as hexadecimal strings. Using hexadecimal
strings is primarily intended for defining special values such as infinities, NaNs, and
denormalized numbers. Most programmers will find that ordinary decimal and scientific
decimal provide the simplest way to initialize numeric constants. Figure 18-2 compares
several ways of setting the various numeric data types to the same initial value.

Table 18-2. ASM386/486 Storage Allocation Directives

Directives Interpretation Data Types

DW Define Word Word integer
DD Define Doubleword Short integer, short real
DQ Define Quadword Long integer, long real
DT Define Tenbyte Packed decimal, temporary real

18-4

infei® NUMERIC APPLICATIONS

THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126
NOTE TWO'S COMPLETE STORAGE OF NEGATIVE BINARY INTEGERS.

; EVE N FORCE WORD ALIGNMENT
WORD_INTEGER DW 1 1 1 1 1 1 1 1 1 0 0 0 0 1 OB BIT STRING
SHORT_I NTEGER DD OFFFFFFB2H HEX STRING MUST START

WITH DIGIT
LONG_INTEGER DQ - 1 26 ORDINARY DECIMAL
SINGLE_REAL DD - 1 26 • 0 NOTE PRESENCE OF , ,
DOUBLE_REAL DD -1.26E2 "SCIENTIFIC"
PACKED_DECIMAL DT - 1 26 ORDINARY DECIMAL INTEGER

IN THE FOLLOWING, SIGN AND EXPONENT IS 'COOS'
SIGNIFICAND IS '7EOO ... OO', 'R' INFORMS ASSEMBLER THAT
THE STRING REPRESENTS A REAL DATA TYPE.

DT OCOOS7EOOOOOOOOOOOOOOR ; HEX STRING

240486i18·2

Figure 18-2. Sample Numeric Constants

Note that preceding numeric variables and constants with the ASM386/486 EVEN direc­
tive ensures that the operands will be word-aligned in memory. The best performance is
obtained when data transfers are double-word aligned. All numeric data types occupy
integral numbers of words so that no storage is "wasted" if blocks of variables are
defined together and preceded by a single EVEN declarative.

18.1.4.2 RECORDS AND STRUCTURES

The ASM386/486 RECORD and STRUC (structure) declaratives can be very useful in
numeric programming. The record facility can be used to define the bit fields of the
control, status, and tag words. Figure 18-3 shows one definition of the status word and
how it might be used in a routine that polls the FPU until it has completed an
instruction.

Because structures allow different but related data types to be grouped together, they
often provide a natural way to represent "real world" data organizations. The fact that
the structure template may be "moved" about in memory adds to its flexibility.
Figure 18-4 shows a simple structure that might be used to represent data consisting of a
series of test score samples. This sample structure can be reorganized, if necessary, for
the sake of more efficient execution. If the two double real fields were listed before the
integer fields, then (provided that the structure is instantiated only at addresses divisible
by eight) all the fields would be optimally aligned for efficient memory access and cach­
ing. A structure could also be used to define the organization of the information stored
and loaded by the FSTENV and FLDENV instructions.

18-5

intel® NUMERIC APPLICATIONS

; RESERVE SPACE FOR STATUS WORD
STATUS_WORD
; LAY OUT STATUS WORD FIELDS
STATUS RECORD

BUSY:
CONLCODE3 :
STACCTOP:
COND_CODE2:
CONLCODE1:
COND_CODEO:
INT_REQ:
LF L AG: .
P_FLAG:
LF L AG:
LF LAG:
LF L AG:
D_FL A G:
I_FLAG:

; REDUCE UNTIL
REDUCE: FPREMl

FNSTSW
TE S T
JNZ

1,
1,
3 ,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1

COMPLETE

STATUS_WORD
STATUS_WORD, MASK_COND_CODE2
REDUCE

Figure 18-3. Status Word Record Definition

SAMPLE STRUC
N_OBS DD SHORT INTEGER
MEAN DQ DOUBLE REAL
MODE DW WORD INTEGER
STD_DEV DQ DOUBLE REAL
i ARRAY OF OBSERVATIONS -- WORD INTEGER
TEST_SCORES DW 1000 DUP (?)

SAMPLE ENDS

Figure 18-4. Structure Definition

18.1.4.3. Addressing Methods

240486i18-3

240486i18-4

Numeric data in memory can be accessed with any of the memory addressing methods
provided by the ModR/M byte and (optionally) the SIB byte. This means that numeric
data types can be incorporated in data aggregates ranging from simple to complex
according to the needs of the application; The addressing methods and the ASM386/486
notation used to specify them in instructions make the accessing of structures, arrays,
arrays of structures, and other organizations direct and straightforward. Table 18-3 gives
several examples of numeric instructions coded with operands that illustrate different
addressing methods.

18-6

intel® NUMERIC APPLICATIONS

Table 18·3. Addressing Method Examples

Coding Interpretation

FIAOO ALPHA ALPHA is a simple scalar (mode is direct).

FOIVR ALPHA. BETA BETA is a field in a structure that is "overlaid" on ALPHA
(mode is direct).

FMUL aWORO PTR [BX] BX contains the address of a long real variable (mode is
register indirect).

FSUB ALPHA [SI] ALPHA is an array and SI contains the offset of an array
element from the start of the array (mode is indexed).

FILO [BP].BETA BP contains the address of a structure on the CPU stack
and BETA is a field in the structure (mode is based).

FBLO TBYTE PTR [BX] [01] BX contains the address of a packed decimal array and 01
contains the offset of an array element (mode is based
indexed).

18.1.5 Comparative Programming Example

Figures 18-5 and 18-6 show the PL/M-386/486 and ASM386/486 code for a simple
numeric program, called ARRSUM. The program references an array (X$ARRA Y),
which contains 0-100 single real values; the integer variable NOFX indicates the num­
ber of array elements the program is to consider. ARRSUM steps through X$ARRA Y
accumulating three sums:

o SUM$X, the sum of the array values

o SUM$INDEXES, the sum of each array value times its index, where the index of the
first element is 1, the second is 2, etc.

o SUM$SQUARES, the sum of each array element squared

(A true program, of course, would go beyond these steps to store and use the results of
these calculations.) The control word is set with the recommended values: round to
nearest, 64-bit precision, interrupts enabled, and all exceptions masked except invalid
operation. It is assumed that an exception handler has been written to field the invalid
operation if it occurs, and that it is invoked by interrupt pointer 16.

The PL/M-386/486 version of ARRSUM (Figure 18-5) is very straightforward and illus­
trates how easily the numerics capabilities of the Intel486 processor can be used in this
language. After declaring variables, the program calls built-in procedures to initialize the
FPU and to load to the control word. The program clears the sum variables and then
steps through X$ARRA Y with a DO-loop. The loop control takes into account
PL/M-386/486's practice of considering the index of the first element of an array to be O.
In the computation of SUM$INDEXES, the built-in procedure FLOAT converts 1+1
from integer to real because the language does not support "mixed mode" arithmetic.
One of the strengths of the Intel486 FPU, of course, is that it does support arithmetic on
mixed data types (because all values are converted internally to the 80-bit extended-
precision real format). .

18-7

int'et NUMERIC APPLICATIONS

/***

* *
*
*

ARRAY SUM MODDULE *
*

.*** /

array$sum: do;

declare (sumx, sumindexes, sum$squares) real;
declare x$array(100) real;
declare (l1ofx,'i) integer;
dec l are control $ FPU.l i tera II y I 033eh I ;

/* Assume x$array and n$of$x are initialized */
call init$real$math$unit;
call set$real$mode(control $ FPU);

/* Clear sums */
sumx, sum;ndexes, sum$squares = 0.0;

./* Loop through array, accumulating sums */
do i = 0 to nofx· . 1;

end;

sum$x = sum$x + x$array(i);
sum$indexes = sum$indexes + (x$array(i)*float(i+1»;
sum$squares = sum$squares + (x$array(i)*x$array(i»;

/*etc. */

end array$sum;

. Figure 18-5. Sample PL/M-386/486 Program

240486i18-5

The ASM386/486 version (Figure 18-6) defines the external procedure INITFPU, which
makes the different initialization requirements of the processor and its emulator trans­
parent to the source code. After defining the data and setting up the segment registers
and stack pointer, the program calls INITFPU and loads the control word. The compu­
tation begins with the next three instructions, which clear three registers by . loading
(pushing) zeros onto the stack. As shown in Figure 18-7,these registers remain at the
bottom of the stack throughout the. computation while temporary values are pushed on
and popped off the stack above them.

The program uses the LOOP instruction to control its iteration through XARRAY;
register ECX, which LOOP automatically decrements, is loaded with N_OF.JC, the num­
ber of array elements to be summed. Register ESI is used to select (index) the array
elements. The program steps through XARRA Y from back to front, so ESI is initialized
to point at the element just beyond the first element to be processed. The ASM386/486

18-8

infel ® NUMERIC APPLICATIONS

name arraysum

; Define initialization routine

extrn initFPU:far

; Allocate space for data

data segment rw public
control FPU dw 033eh

dd ?
dd 100 dup (?)

sum_squares
sum_indexes

ends

dd ?
dd ?
dd ?

; Allocate CPU stack space

stack stackseg 400

; Begin code

code segment er public

assume ds:data, ss:stack

start:
rnov ax, data
rnov ds, ax
rnov ax, stack
rnov eax, Dh
rnov SS, ax
rnov esp, stacks tart stack

Assume x_array and n_of_x have
been initialized

Prepare the FPU or its emulator

call initFPU
fldcw control_FPU

Clear three registers to hold
running sums

fldz
fldz
fldz

Figure 18·6. Sample ASM386/486 Program

18-9

240486i 18-6011

intet NUMERIC APPLICATIONS

Setup ECX as loop counter and ESI
as index into x_array

mav ecx, n~of_x

inul ecx
mav esi, eax

ESI now contains index of last
element .j. 1
Loop through x_array and
accunulate SI.ll1

sl.ll1_next:
backup one element and push on
the stack

sub esi, type x_array
fld x_array[esi]

add to the sUm and duplicate x
on the stack '

fadd st(3), st
fld st

square it and add into the sum of
(index+1) and discard

fnul
faddp

st, st
st(2), st

'; reduce index for next iteration

dec n_of_x
loop sl.ll1_next

Pop SI.ll1S into memory

poPJesults:
fstp sl.ll1_squares
fstp' sum_indexes
fstp sI.ll1_x .

. fwait

Etc.

code ends
end start, ds:data, ss:stack

Figure 18·6. 'Sample ASM386/486 Program (Contd.)

18-10

240486i18-6012

Intel,., NUMERIC APPLICATIONS

FLDZ FLDZ FLDZ FLD X ARRA YISI] , -
ST(O)

ST(l)

ST(2)

0.0

0.0

0.0

SU

SU

SU

M_saUARES

M_INDEXES

M_X

ST(O)

ST(l)

ST(2)

ST(3) --FADD ST(3) ST _ - . - ,
2.5 ST(O) lLARRAY (19) ST(O)

ST(l) UM_SaUARES 0.0 S ST(l)

ST(2) U~INDEXES 0.0 S ST(2)

ST(3) UM.-X 2.5 S ST(3)

ST(4)

2.5

0.0

0.0

FLD ST -

2.5

2.5

0.0

0.0

2.5

FMULST ST , --_ - FADDP ST(2), ST -

ST(O)

ST(1)

ST(2)

ST(3)

ST(4)

ST(O)

ST(l)

ST(2)

ST(3)

6.25

2.5

0.0

0.0

2.5

FIMUL tLol.-X

50.0

6.25

0.0

2.5

X

SU

SU

..-ARRAY(19);

lLARRAY (19)

M_SaUARES

~INDEXES

SU

lLA RRAY (19)"20

_SaUARES

~INDEXES

_x

SUM

SU

SUM

S T(O)

ST(l)

T(2) S

S T(3)

......

ST(O)

ST(l)

ST(2)

2.5

6.25

0.0

2.5

FADDP ST(2), ST -
6.25

50.0

2.5

X_ARRAY (19)

SUM_SaUARES

SUM_INDEXES

X_ARRAY (19)

X_ARRAY(19)

SU~SaUARES

SUM_INDEXES

SUM.-X

X_ARRAY (19)

SUM_SaUARES

SUM_INDEXES

SUM.-X

SUM_saUARES

SU~INDEXES

SU~X

Figure 18-7. Instructions and Register Stack

240486i18-7

TYPE operator is used to determine the number of bytes in each array element. This
permits changing XARRA Y to a double-precision real array by simply changing its
definition (DD to DQ) and reassembling.

Figure 18-7 shows the effect of the instructions in the program loop on the FPU register
stack. The figure assumes that the program is in its first iteration, that N_OF..x is 20, and
that XARRA Y(19) (the 20th element) contains the value 2.5. When the loop termi­
nates, the three sums are left as the top stack elements so that the program ends by
simply popping them into memory variables.

18-11

intel® NUMERIC APPLICATIONS

18.2 CONCURRENT PROCESSING

Because the Intel486 Integer Unit and FPU are separate execution units, it is possible
for the FPU to execute numeric instructions in parallel with instructions executed by the
IV. This simultaneous execution of different instructions is called concurrency.

No special programming techniques are required to gain the advantages of concurrent
execution; numeric instructions for the FPU are simply placed in line with the instruc­
tions for the IV. Integer and numeric instructions are initiated in the same order as they
are encountered in the instruction stream. However, because numeric operations per­
formed by the FPU generally require more time than integer operations, the IU can
often execute several of its instructions before the FPU completes a numeric instruction
previously initiated.

This concurrency offers obvious advantages in terms of execution performance, but con­
currency also imposes several rules that must be observed in order to assure proper
synchronization of the IU and FPV.

All Intel high-level languages automatically provide for and manage concurrency in the
FPU. Assembly-language programmers, however, must understand and manage some
areas of concurrency in exchange for the flexibility and performance of programming in
assembly language. This section is for the assembly-language programmer or well­
informed high-level-language programmer.

18.2.1 Managing Concurrency

The activities of numeric programs can be split into. two major areas: program control
and arithmetic. The program control part performs activities such as deciding what func­
tions to perform, calculating addresses of numeric operands, and loop control. The arith­
metic part simply adds, subtracts, multiplies, and performs other operations on the
numeric operands. The Intel486 processor is designed to handle these two parts sepa­
rately and effiCiently.

Concurrency management is required to check for an exception before letting the pro­
cessor change a value just used by the FPU. Almost any numeric instruction can, under
the wrong circumstances, produce a numeric exception. For programmers in higher-level
languages, all required synchronization is automatically provided by the appropriate
compiler. For assembly-language programmers exception synchronization remains the
responsibility of the programmer.

A complication is that a programmer may not expect his numeric program to cause
numeric exceptions, but in some systems, they may regularly happen. To better under­
stand these points, consider what can happen when the FPU detects an exception.

18-12

intet NUMERIC APPLICATIONS

Depending on options determined by the software system designer, the Intel4S6 proces­
sor can perform one of two things when a numeric exception occurs:

• The FPU can provide a default fix-up for selected numeric exceptions. Programs can
mask individual exception types to indicate that the FPU should generate a safe,
reasonable result whenever that exception occurs. The default exception fix-up activ­
ity is treated by the FPU as part of the instruction causing the exception; no external
indication of the exception is given. When exceptions are detected, a flag is set in the
numeric status register, but no information regarding where or when is available. If
the FPU performs its default action for all exceptions, then the need for exception
synchronization is not manifest. However, as will be shown later, this is not sufficient
reason to ignore exception synchronization when designing programs that use the
FPU.

• As an alternative to the default fix-up of numeric exceptions, the IU can be notified
whenever an exception occurs. When a numeric exception is unmasked and the
exception occurs, the FPU stops further execution of the numeric instruction and
signals this event. On the next occurrence of an ESC or WAIT instruction, the pro­
cessor traps to a software exception handler. The exception handler can then imple­
ment any sort of recovery procedures desired for any numeric exception detectable by
the FPU. Some ESC instructions do not check for exceptions. These are the nonwait­
ing forms FNINIT, FNSTENY, FNSA YE, FNSTSW, FNSTCW, and FNCLEX.

When the FPU signals an unmasked exception condition, it is requesting help. The fact
that the exception was unmasked indicates that further numeric program execution
under the arithmetic and programming rules of the FPU is unreasonable.

If concurrent execution is allowed, the state of the processor when it recognizes the
exception is undefined. It may have changed many of its internal registers and be exe­
cuting a totally different program by the time the exception occurs. To handle this situ­
ation, the FPU has special registers updated at the start of each numeric instruction to
describe the state of the numeric program when the failed instruction was attempted.

Exception synchronization ensures that the FPU is in a well-defined state after an
unmasked numeric exception occurs. Without a well-defined state, it would be impossi­
ble for exception recovery routines to determine why the numeric exception occurred, or
to recover successfully from the exception.

The following two sections illustrate the need to always consider exception synchroniza­
tion when writing numeric code, even when the code is initially intended for exeGution
with exceptions masked. If the code is later moved to an environment where exceptions
are unmasked, the same code may not work correctly. An example of how some instruc­
tions written without exception synchronization will work initially, but fail when moved
into a new environment, is shown in Figure IS-S.

18.2.1.1 INCORRECT EXCEPTION SYNCHRONIZATION

In Figure IS-S, three instructions are shown to load an integer, calculate its square root,
then increment the integer. The synchronous execution of the FPU will allow this pro­
gram to execute correctly when no exceptions occur on the FILD instruction.

18-13

intei®

FILD COUNT
INC COUNT
FSQRT

FILD COUNT
FSQRT

INC COUNT

NUMERIC APPLICATIONS

INCORRECT ERROR SYNCHRONIZATION

FPU In~tructlon
integer Instruction elten operand
subsequent FPU Instruction -- error from

previous FPU instruction detected here

PROPER ERROR SYNCHRONIZATION

FPU instruction
subsequent FPU instruction -- error from

previous FPU instruction detected here
integer instruction alters operand

Figure 18-8. Exception Synchronization Examples

240486i18-8

This situation changes if the numeric register stack is extended to memory. To extend
the FPU stack to memory, the invalid exception is unmasked. A push to a full register or
pop from an empty register sets SF and causes an invalid exception.

The recovery routine for the exception must recognize this situation, fix up the stack,
then perform the original operation. The recovery routine will not work correctly in the
first example shown in the figure. The problem is that the value of COUNT is incre­
mented before the exception handler is invoked, so that the recovery routine will load an
incorrect value of COUNT, causing the program to fail or behave unreliably.

18.2.1.2 PROPER EXCEPTION SYNCHRONIZATION

Exception synchronization relies on the WAIT instruction. Whenever an unmasked
numerical exception occurs, the FPU asserts an error-condition signal internal to the
processor. When the next WAIT instruction (or non-control ESC instruction) is encoun­
tered, the error-condition signal is .. acknowledged and a software exception handler is
invoked. (See Chapter 16 for a more detailed discussion of the various floating-point
error-reporting mechanisms.) If this WAIT or ESC instruction is properly placed, the
processor will not yet have disturbed any information vital to recovery from the
exception.

18-14

System-Level Considerations 19

CHAPTER 19
SYSTEM-LEVEL CONSIDERATIONS

System programming for Intel486 processor systems requires a more detailed under­
standing of the FPU than does application programming. Such things as initialization,
exception handling, and data and error synchronization are all the responsibility of the
systems programmer. These topics are covered in detail in the sections that follow.

19.1 ARCHITECTURE

On a software level, the FPU appears as an extension of the Integer Unit. On the
hardware level, however, the mechanisms by which the FPU and IU interact are more
complex. This section describes this interaction and points out features that are of inter­
est to systems programmers.

19.1.1 Independent of Addressing Mode

Unlike the Intel287 NPX (but like the Inte1387 NPX), the FPU of the Intel486 proces­
sor operates the same regardless of whether the processor is operating in real-address
mode, in protected mode, or in virtual 8086 mode.

Numeric instructions can utilize any memory location accessible by the task currently
executing. When operating in protected mode, all references to memory operands are
automatically verified by the memory management and protection mechanisms as for any
other memory references by the currently-executing task. Protection violations associ­
ated with numeric instructions automatically cause the processor to trap to an appropri­
ate exception handler.

To the numerics programmer, the operating mode affects only the manner in which the
FPU instruction and data pointers are represented in memory following an FSA VE or
FSTENV instruction. Each of these instructions produces one of four formats depending
on both the operating mode and on the operand-size attribute in effect for the instruc­
tion. The differences are detailed in the discussion of the FSA VE and FSTENV instruc­
tions in Chapter 26.

19.2 PROCESSOR INITIALIZATION AND CONTROL

One of the principal responsibilities of systems software is the initialization, monitoring,
and control of the hardware and software resources of the system, induding the FPU. In
this section, issues related to system initialization and control are described, induding
the handling of exceptions that may occur during the execution of numeric instructions.

19-1

intel® SYSTEM-LEVEL CONSIDERATIONS

19.2.1 System Initialization

During initialization of an Intel486 processor system, systems software must initialize the
FPU and set flags in CRO to reflect the state of the numeric environment. Refer to
Section 3.11 (Figure 3-23) to determine the presence of an 1nte1486 FPU. These activi­
ties can be quickly and easily performed as 'part of the overall system initialization.

19.2.2 Configuring the Numerics Environment·

System software must load the appropriate values into the MP, EM, and NE bits of the
CRO control register.

The MP (Monitor coProcessor) bit determines whether WAIT instructions trap when
the context ofthe FPU is different·from that of the currently executing task. If MP = 1
and TS = 1, then a WAIT instruction will cause a Device Not Available fault (interrupt
vector 7). The MP bit was used on the 286 and Intel386 DX microprocessors to support
the use of a WAIT instruction to wait on a device other than a numeric coprocessor. The
device would report its status through the BUSY # pin. It should be set for processors
with integrated FPD, and reset in the Intel486 SX Cpu.

The EM (EMulate coprocessor) bit determines whether ESC instructions are executed
by the FPU (EM = 0) or trap via interrupt vector 7 to be handled by software (EM =
1). The EM bit was used on the Intel386 DX microprocessor so that numeric applica­
tions written for an Intel386 DX CPU/InteI387 DX system could be run in the absence
of an Intel387 DX coprocessor with a software Intel387 DX emulator. For normal oper­
ation of the Intel486 FPU, the EM bit should be cleared to O. The EM bit must be set in
the Intel486 SX Cpu.

The NE(Numeric Exception) bit determines whether unmasked floating-point excep­
tions are handled through interrupt vector 16 (NE = 1) or through external interrupt
(NE =0). In systems using an external interrupt controller to invoke numeric exception
handlers, the NE bit should be cleared to O. Other systems can make use of the auto­
matic error reporting through interrupt 16, and should set the NE bit to 1. See Section
19.2.4 for a discussion of numeric exception handling.

19.2.3 Initializing the FPU

Initializing the FPU simply means placing the FPU in a known state unaffected by any
activity performed earlier. A single FNINIT instruction performs this initialization. All
the error masks are set, all registers are tagged empty, TOP is set to zero, and default
rounding and precision controls are set. Table 19-1 shows the state of the FPU following
FINIT or FNINIT.

The FNINIT instruction leaves the FPU in the same state as that which results from a
hardware RESET signal with Built-In Self-Test. When the Built-In Self-Test is not
requested, a hardware RESET leaves theFPU state unchanged. An FNINIT instruction
should be executed after reset.

19-2

SYSTEM-LEVEL CONSIDERATIONS

Table 19-1. FPU State Following Initialization

Field Value Interpretation

Control Word 037FH
(Infinity Control)* 0 Affine
Rounding Control 00 Round to nearest
Precision Control 11 64 bits
Exception Masks 111111 All exceptions masked

Status Word OOOOH
(Busy) 0 -
Condition Code 0000 -
Stack Top 000 Register 0 is stack top
Exception Summary 0 No exceptions
Stack Flag 0 -
Exception Flags 000000 No exceptions

Tag Word FFFFH
Tags 11 Empty

Registers N.C. Not changed

Exception Pointers
Instruction Code Cleared
Instruction Address Cleared
Operand Address Cleared

*The InteI486'· processor does not have infinity control. This value is listed to emphasize that programs
written for the Intel287 math coprocessor may not behave the same on the Intel486 processor if they
depend on this bit.

19.2.3.1 Intel486 OX CPU SOFTWARE EMULATION

Setting the EM bit to 1 will cause the Intel486 processor to trap via interrupt vector 7
(Device Not Available) to a software exception handler whenever it encounters an ESC
instruction. The EM bit was used to run numeric applications on an Intel386 processor
with a software Inte1387 emulator. Numeric applications designed to be run with a non­
standard Intel387 emulator may not run successfully on the Intel486 processor without
the emulator. Setting the EM bit to 1 makes it possible to run such applications, or
programs which use non-standard floating-point arithmetic, on the Intel486 processor.

19.2.3.2 Intel486 SX CPU SOFTWARE EMULATION PROCEDURE

If the Intel487 SX math coprocessor is not present in the Intel486 SX system, floating
point instructions can be emulated. The system is set up for software emulation
accordingly:

CRO bit
EM 1
MP 0
NE 1

19·3

in1:el® SYSTEM-LEVEL CONSIDERATIONS

The EM bit must be set in order for the Intel486 SX to function properly. Setting the
EM bit to 1 will cause. the Intel486 processor to trap via interrupt vector 7 (Device Not
Available) to a software exception handler whenever it encounters an ESC instruction. If
the EM bit is set and no coprocessor or emulator is present, the system will hang.

The MP bit is used in conjunction with the TS bit to determine if WAIT instructions
should trap when the context of the FPU is different from that of the currently executing
task. When no FPU is present, this information is irrelevent and therefore the bit should
be set to O. .

Regardless of the value of the NE bit, the Intel486 SX processor will generate an inter­
rupt vector 7 upon encountering any floating point instruction. It is recommended that
NE be set to 1 for normal operation. If a Floating Point Unit is present, this bit follows
the description described in Section 19.2.4.

19.2.4 Handling Numerics Exceptions

Once the FPU has been initialized and normal execution of applications has been com­
menced, the FPU may occasionally require attention in order to recover from numeric
processing exceptions. This section provides details for writing software exception han­
dlers for numeric exceptions. Numeric processing exceptions have already been intro­
duced in Chapter 16.

If the FPU encounters an unmasked exception condition, a software exception handler is
invoked immediately before execution of the next WAIT or non-control floating-point
instruction. The exception handler is invoked either through interrupt vector 16 or
through an external interrupt, depending on the value of the NE bit of the CRO control
register.

If NE = 1, an uIimaskedfloating-point exception results in interrupt 16, immediately
before the execution of the next non-control floating-point or WAIT instruction. Inter­
rupt 16' is an operating-system call that invokes the exception handler. Chapter 9 con­
tains a general discussion of exceptions and interrupts on the Intel486 processor.

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception
causes the processor to freeze immediately before executing the next non-control
floating-point or W AITinstruction. The frozen processor waits for an external interrupt,
which must be supplied by external hardware in response to the FERR# output of the
processor. (Regardless of the value of NE, an unmasked numerical exception causes the
FERR# output to be activated.) In this case, the external interrupt invokes the
exception-handling routine. If NE = 0 but the IGNNE# input is active, the processor
disregards the exception and continues. Error reporting via external interrupt is sup­
ported for DOS compatibility. Chapter 25 contains further discussion of compatibility
issues.

19-4

intel® SYSTEM-LEVEL CONSIDERATIONS

When handling numeric errors, the processor has two responsibilities:

• It must not disturb the numeric context when an error is detected.

• It must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from
one implementation to the next, most exception handlers will include these basic steps:

• Store the FPU environment (control, status, and tag words, operand and instruction
pointers) as it existed at the time of the exception.

• Clear the exception bits in the status word.

• Enable interrupts.

• Identify the exception by examining the status and control words in the saved
environment.

• Take some system-dependent action to rectify the exception.

• Return to the interrupted program and resume normal execution.

19.2.5 Simultaneous Exception Response

In cases where multiple exceptions arise simultaneously, the FPU signals one exception
according to the precedence shown at the end of Chapter 16. This means, for example,
that an SNaN divided by zero results in an invalid operation, not in a zero divide
exception.

19.2.6 Exception Recovery Examples

Recovery routines for numeric exceptions can take a variety of forms. They can change
the arithmetic and programming rules of the FPU. These changes may redefine the
default fix-up for an error, change the appearance of the FPU to the programmer, or
change how arithmetic is defined on the FPU.

A change to an exception response might be to perform denormal arithmetic on denor­
mals loaded from memory. A change in appearance might be extending the register stack
into meinory to provide an "infinite" number of numeric registers. The arithmetic of the
FPU can be changed to automatically extend the precision and range of variables when
exceeded. All these functions can be implemented on the Intel486 processor via numeric
exceptions and associated recovery routines in a manner transparent to the application
programmer.

Some other possible application-dependent actions might include:

• Incrementing an exception counter for later display or printing

• Printing or displaying diagnostic information (e.g.,' the FPU environment and
registers)

• Aborting further execution

• Storing a diagnostic value (a NaN) in the result and continuing with the computation

19-5

intet SYSTEM-LEVEL CONSIDERATIONS

Notice that an exception mayor may not constitute an error, depending on the applica­
tion. Once the exception handler corrects the condition causing the exception, the
floating-point instruction that caused the exception can be restarted, if appropriate. This
cannot be accomplished using the IRET instruction; however, because the trap occurs at
the ESC or WAIT instruction following the offending ESC instruction. The exception
handler must obtain (using FSAVE or FSTENV) the address of the offending instruc­
tion in the task that initiated it, make a copy of it, execute the copy in the context of the
offending task, and then return via IRET to the current instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must
recognize the precise state of the FPU at the time the exception handler was invoked,
and be able to reconstruct the state of the FPU when the exception initially occurred. To
reconstruct the state of the FPU, programmers must understand when, during the exe­
cution of a numeric instruction, exceptions are actually recognized.

Invalid operation, zero divide, and denormalized exceptions are detected before an
operation begins, whereas overflow, underflow, and precision exceptions are not raised
until a true result has been computed. When a before exception is detected, the FPU
register stack and memory have not yet been updated, and appear as if the offending
instructions has not been executed.

When an after exception is detected, the register stack and memory appear as if the
instruction has run to completion; i.e., they may be updated. (However, in a store or
store-and-pop operation, unmasked over/underflow is handled like a before exception;
memory is not updated and the stack is not popped.) The programming examples con­
tained in Chapter 20 include an outline of several exception handlers to process numeric
exceptions.

19-6

Numeric Programming 20
Examples

CHAPTER 20
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs for the Intel486 processor
written in ASM386/486. These examples are intended to illustrate some of the tech­
niques useful for programming Intel486 processor systems for numeric applications.

20.1 CONDITIONAL BRANCHING EXAMPLE

As discussed in Chapter 15, several numeric instructions post their results to the condi­
tion code bits of the FPU status word. Although there are many ways to implement
conditional branching following a comparison, the basic approach is as follows:

• Execute the comparison.

• Store the status word. (The FPU status word can be stored directly into AX register.)

• Inspect the condition code bits.

• Jump on the result.

Figure 20-1 is a code fragment that illustrates how two memory-resident double-format
real numbers might be compared (similar code could be used with the FTST instruc­
tion). The numbers are called A and B, and the comparison is A to B.

The comparison itself requires loading A onto the top of the FPU register stack and
then comparing it to B, while popping the stack with the same instruction. The status
word is then written into the AX register.

A and B have four possible orderings, and bits C3, C2, and CO of the condition code
indicate which ordering holds. These bits are positioned in the upper byte of the FPU
status word so as to correspond to the zero, parity, and carry flags (ZF, PF, and CF),
when the byte is written into the flags. The code fragment sets ZF, PF, and CF of the
EFLAGS register to the values of C3, C2, and CO of the FPU status word, and then uses
the conditional jump instructions to test the flags. The resulting code is extremely com­
pact, requiring only seven instructions.

The FXAM instruction updates all four condition code bits. Figure 20-2 shows how a
jump table can be used to determine the characteristics of the value examined. The jump
table (FXAM_TBL) is initialized to contain the 32-bit displacement of 16 labels, one for
each possible condition code setting. Note that four of the table entries contain the same
value, "EMPTY." The first two condition code settings correspond to "EMPTY." The
two other table entries that contain "EMPTY" will never be used on the Intel486 pro­
cessor or the Intel387 math coprocessors, but may be used if the code is executed with
an Intel287 math coprocessor.

The program fragment performs the FXAM and stores the status word. It then manip­
ulates the condition code bits to finally produce a number in register AX that equals the
condition code times 2. This involves zeroing the unused bits in the byte that contains
the code, shifting C3to the right so that it is adjacent to C2, and then shifting the code

infel® NUMERIC PROGRAMMING EXAMPLES

A D Q

B DQ

F L D A
FCOMP B
FSTSW AX

LOAD A ONTO TOP OF FPU STACK
COMPARE A:B, POPA
STORE RESULT TO AX REGISTER

CPU AX REGISTER CONTAINS CONDITION conES
(RESULTS OF COMPARE)

LOAD CONDITION CODES INTO FLAGS

SA H F

USE CONDITIONAL JUMPS TO DETERMINE ORDERING OF A TO B

J P A B UNORDERED ; TEST C2 (P F)
JB LLESS TEST CO (C Fl
JE LEQUAL TEST C3 (ZF)

LGREATER: CO (C F) , o , C 3 (Z F) ,

A_EQUAL: CO (C F) o , C3 (Z F) ,

LESS: CO (CF)
"

C3 (Z F)

A B UNORDERED: C2 (P F)

Figure 20-1. Conditional Branching for Compares

.

240486i20-1

to multiply it by 2. The resulting value is used as an index that selects one of the dis­
placements from F~TBL (the multiplication of the condition code is required
because of the 2-byte length of each value in FXAM~TBL). The unconditional JMP
instruction effectively vectors through the jump table to the labeled routine that contains
code (not shown in the example) to process each possible result of the FXAM
instruction.

20.2 EXCEPTION HANDLING EXAMPLES

There are many approaches to writing exception hand,lers. One useful technique. is to
consider the exception handler procedure as consisting of "prologue," "body," and "epi­
logue" sections of code. This procedure is invoked via interrupt number 16.

20-2

NUMERIC PROGRAMMING EXAMPLES

; JUMP TABLE FOR EXAMINE ROUTINE

DD POS_UNNORM, POS NAN, NEG_UNNORM, NEG_NAN,
POS_NORM, POS_INFINITY, NEG_NORM,
NEG_INFINITY, POS_ZERO, EMPTY, NEG_ZERO,
EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY

EXAMINE ST AND STORE RESULT (CONDITION CODES)

F X A M
XOR EAX,EAX ; CLEAR EAX
FSTSW AX

CALCULATE OFFSET INTO JUMP TABLE

AND AX,0100011100000000B ; CLEAR ALL BITS
SHR EAX,6 SHIFT C2-CO INTO PLACE
SAL AH,S POSITION C3

.OR AL,AH DROP C3 IN ADJACENT TO C2
XOR AH,AH CLEAR OUT THE OLD COPY OF

EXCEPT C3,
(OOOXXXOO)
(OOXOOOOO)
(OOXXXXOO)
C3

JU~IP TO THE ROUTINE 'ADDRESSED' BY CONDITION CODE

JMP FXAM_TBLIEAXI

HERE ARE THE JUMP TARGETS, ONE TO HANDLE
EACH POSSIBLE RESULT OF FXAM

POLUNNORM:

POS_NAN:

NELUNNORM:

NELNAN:

POLINFINITY:

NELN ORM:

NELINFINITY:

PO LZ E R 0 :

EMPTY:

N E LZ E R 0 :

POLDENORM:

NEG_DENORM:

Figure 20-2. Conditional Branching for FXAM

20-3

C 2 - C 0

240486;20-2

NUMERIC PROGRAMMING EXAMPLES

In the transfer of control to the exception handler, interrupts have been disabled by
hardware. The prologue performs all functions that must be protected from possible
interruption by higher-priority sources. Typically, this involves saving registers and trans­
ferring diagnostic information from the FPU to memory. When the critical processing
has been completed, the prologue may re-enable interrupts to allow higher-priority
interrupt handlers to preempt the exception handler.

The body of the exception handler examines the diagnostic information and makes a
response that is necessarily application-dependent. This response may range from halt­
ing execution, to displaying a message, to attempting to repair the problem and proceed
with normal execution.

The epilogue essentially reverses the actions of the prologue, restoring the prbcessor so
that normal execution can be resumed. The epilogue must not load an unmasked excep­
tion flag into the FPU or another exception will be requested immediately.

Figures 20-3. through 20-5 show the ASM386/486 coding of three skeleton exception
handlers. They show how prologues and epilogues can be written for various situations,
but provide comments indicating only where the application dependent exception han­
dling body should be placed.

PRO C

SAVE REGISTERS, ALLOCATE STACK SPACE
FOR WU STATE IMAGE

PUSH EBP
MOV EBP,ESP
SUB ESP,10B

S A V E F U L L FPU S TATE, E NAB LEI N TE R R U P T S
FNSAVE IEBP-10BI
S T I

APPLICATION-DEPENDENT EXCEPTION HANDLING
CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY>

RESTORE MODIFIED STATE IMAGE
MOV BYTE PTR IEBP-1041, OH
FRSTOR IEBP-10BI

DEALLOCATE STACK SPACE, RESTORE REGISTERS
MOVE ESP,EBP

PDP EBP

RETURN TO INTERRUPTED CALCULATION
IRE T

SAVE_ALL ENDP

Figure 20-3. Full-State Exception Handler

20-4

240486i20·3

infel® NUMERIC PROGRAMMING EXAMPLES

SAVE_ENVIRONMENT PRoC

SAVE REGISTERS, ALLOCATE STACK SPACE
FOR FPU E N V I RON MEN T

PUSH EBP

MoV EBP,ESP
SUB ESP,28

SAVE ENVIRONMENT, ENABLE INTERRUPTS
FNSTENV IEBP-281
S T I

APPLICATION EXCEPTION-HANDLING CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY)

RESTORE MODIFIED ENVIRONMENT IMAGE
MoV BYTE PTR IEBP-241, OH
FLDENV IEBP-281

DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MoV ESP,EBP
POP EBP

RETURN TO INTERRUPTED CALCULATION
IRE T

SAVE_ENVIRONMENT ENDP

240486;20-4

Figure 20-4. Reduced-Latency Exception Handler

Figures 20-3 and 20-4 are very similar; their only substantial difference is their choice of
instructions to save and restore the FPU. The tradeoff here is between the increased
diagnostic information provided by FNSAVE and. the. faster execution of FNSTENV.
For applications that are sensitive to interrupt latency or that do not need to examine
register contents, FNSTENV reduces the duration of the "critical region," during which
the processor does not recognize another interrupt request.

After the exception handler body, the epilogues prepare the processor to resume execu­
tion from the point of interruption (i.e., the instruction following the one that generated
the unmasked exception). Notice that the exception flags in the memory image ~hat is
loaded into the FPU are cleared to zero prior to reloading (in fact, in these examples,
the entire status word image is cleared).

The examples in Figures 20-3 and 20-4 assume that the exception himdler itself will not
cause an unmasked exception. Where this is a possibility, the general approach shown in
Figure 20-5 can be employed. The basic technique is to save the full FPU state and then

20-5

infel® NUMERIC PROGRAMMING EXAMPLES

LOCAL CONTROL DW ASSUME INITIALIZED

REENTRANT PROC

SAVE REGISTERS, ALLOCATE STACK SPACE FOR
FPU STATE IMAGE

PUSH EEP

MOV EEP,ESP
SUE ESP,10B

SAVE STATE, LOAD NEW CONTROL WORD,
ENAELE INTERRUPTS

FNSAVE IEEP-10BJ
FLDCW LOCAL_CONTROL
S T I

APPLICATION EXCEPTION HANDLING CODE GOES HERE.
AN UNMASKED EXCEPTJON GENERATED HERE WILL
CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
IF LOCAL STORAGE IS NEEDED, IT MUST EE
ALLOCATED ON THE STACK.

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY)
RESTORE MODIF.IED STATE IMABE

MOV BYTE PTR[EBP-104J, OH
FRSTOR IEBP-10BJ

DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP,EBP

POP EBP
RETURN TO POINT OF INTERRUPTION

IRE T
REENTRANT ENDP

Figure 20-5. Reentrant Exception Handler

20-6

240486;20-5

NUMERIC PROGRAMMING EXAMPLES

to load a new control word in the prologue. Note that considerable care should be taken
when designing an exception handler of this type to prevent the handler from being
reentered endlessly.

20.3 FLOATING-POINT TO ASCII CONVERSION EXAMPLES

Numeric programs must typically format their results at some point for presentation and
inspection by the program user. In many cases, numeric results are formatted as ASCII
strings for printing or display. This example shows how floating-point values can be
converted to decimal ASCII character strings. The function shown in Figure 20-6 can be
invoked from PL/M-386/486, Pascal-386/486, FORTRAN-386/486, or ASM386/486
routines.

Shortness, speed, and accuracy were chosen rather than providing the maximum number
of significant digits possible. An attempt is made to keep integers in their own domain to
avoid unnecessary conversion errors.

Using the extended precision real number format, this routine achieves a worst case
accuracy of three units in the 16th decimal position for a noninteger value or integers
greater than 1018. This is double precision accuracy. With values having decimal expo­
nents less than 100 in magnitude, the accuracy is one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size,
and lower performance. .

20.3.1 Function Partitioning

Three separate modules implement the conversion. Most of the work of the conversion
is done in the module FLOATING_TO-.ASCII. The other modules are provided sepa­
rately, because they have a more general use. One of them, GET_POWER_10, is also
used by the ASCII to floating-point conversion routine. The other small module,
TOS_STATUS, identifies what, if anything, is in the top of the numeric register stack.

20.3.2 Exception Considerations

Care is taken inside the function to avoid generating exceptions. Any possible numeric
value is accepted. The only possible exception is insufficient space on the numeric reg­
ister stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity),
and status (denormal, zero, sign). The string size is tested for a minimum and maximum
value. If the top of the register stack is empty, or the string size is too small, the function
returns with an error code.

Overflow and underflow is avoided inside the function for very large or very small
numbers.

20-7

intaL NUMERIC PROGRAMMING EXAMPLES

SOURCE

+1 $title('Convert a floating point number to ASCII 'J

name

publ ic
extrn

floating_to~ascii
get_power_10:near,tos_status:near

This subroutine will convert the floating point
number in the' top' of the NPX stack to an ASCII
string and separate power of 10 scaling value
(in binary). The maximum width of the ASCII string
formed is controlled by a parameter which must be
>1. Unnormal values, denormal values, and psuedo
zeroes will be correctly converted. However, unnormals
and pseudo zeros are no longer supported formats on the i486 processor
(in conformance with the IEEE floating point
standard) and hence not generated internally. A
returned value will indicate how many binary bits
of precision were lost inan unnormal or denormal
value. The magnitude (in terms of binary power)
of a pseudo zero will also be indicated. Integers
less than 10**18 in magnitude are accurately converted
if the destination ASCII string field is wide enough
to hold all the digits. Otherwise the value is converted
to scientific notation.

The status of the conversion is identified by the
return value, it can be:

o conversion complete, string_size is defined
1 inval id arguments
2 exact integer conversion, string_size is defined
3 indefinite
4 + NAN (Not A Number)
5 NAN
6 + Infini ty
7 Infinity
8 pseudo zero found, string_size is defined

The PLM-386/486 calling convention is:

floating_to_ascii:
procedure (number,denormal_ptr,string_ptr,size_ptr,
field_size, power_ptr) word external;
declare (denormal_ptr,string_ptr,power_ptr,size_ptr)
,pointer;
declare field_size word,
string_size based size_ptr word;
declare number real;
declare denormal integer based denormal_ptr;

Figure 20-6. Floating-Point to ASCII Conversion Routine

20-8

240486i20-6011

int:et

;\/

NUMERIC PROGRAMMING EXAMPLES

declare power integer based power_ptri
end floating_to_asciii

The floating point value is expected to be
on the top of the FPU stack. This subroutine
expects 3 free entries on the FPU stack and
will pop the passed value 6ff when done. The
generated ASCII string will have a leading
character either ,-, or '+' indicating the sign
of the value. The ASCII decimal digits will
immediately follow. The numeric value of the
ASCII string is (ASCII STRING.)*10**POWER. If
the given number was zero, the ASCII string will
contain a sign and a single zero chacter. The
value string size indicates the total length of
the ASCII string including the sign character.
String(O) will always hold the sign. It .is
possible for string_size to be less than
field_size. This occurs for zeroes or integer
values. A pseudo zero will return a special
return code. The denormal count will indicate

the power of two originally associated .with the
value. The power of ten and ASCII string will
be as if the value was an ordinary zero. .

This subroutine is accurate up to a maximum. of .
18 decimal digits for integers. Integer values
will have a decimal power of zero associated
with them. For non integers, the result will be
accurate to within 2 decimal digits of the 16th
decimal place(double precision). The exponentiate
instruction is also used for scaling,the value into
the range acceptable for the BCD data type. The
rounding mode in effect on entry to the
subroutine is used for the conversion_

The following registers are not transparent:

eax ebx ecx edx esi edi eflags

Define the stack layout.

ebp_save
es_save
returnJltr
power_ptr
fie.ld_size
s;ze_ptr
stringJltr
denormalJltr

equ
equ
equ
equ
equ
equ
equ
equ

dword pt r [ebpl
ebp_save + size ebp_save
es_save + size es_save
return_ptr + size returnJltr
powerJPtr + size power_ptr
field_size + size field_size
size_ptr + size size_ptr
stringJltr + size string_ptr

equ size powerJltr + size field_size +
size size_ptr + size string_ptr +
size denormalJltr

Figure 20-6. Floating-Point to ASCII Conversion Routine' (Contd.)

20-9

240486;20-6012

NUMERIC PROGRAMMING EXAMPLES

Define constants used

BCD_DIGITS equ 18 Number of digits in bcd_value
WORD_SIZE eql! 4
BCD_SIZE equ 10
MINUS Eiqu 1 Define return values
NAN equ 4 The exact values chosen
INFINITY equ 6 here are important. They niust
INDEFINITE equ :5 correspond to the possible return
PSEUDO_ZERO equ 8 values and be in the 'same numeric

order as tested by the program. INVALID
ZERO
DENORMAL
UN NORMAL
NORMAL
EXACT

power two
bcd_value
bcd_byte
fraction

equ ·2
equ ·4
equ ·6
equ -8
equ 0
equ 2

Define layout of temporary storage area_

equ
equ
equ
equ

equ

word ptr [ebp - WORD_SIZE]
tby~e ptr power_two BCD_SIZE
byte' ptr bcd_value
bcd_value

size power_two + size bcd_value

Allocate stack space for the temporaries so
the stack will be big enough

stack stacks'eg (local_size+6) Allocate stack
space for locals

+1 Seject

Figure 20-6. ,FIQating-Point to ASCII Conversion Routine (Contd.)

20-10

240486i20-6013

infel® NUMERIC PROGRAMMING EXAMPLES

code

const10

segment public er
extrn power_table:qword

Constants used by this function.

even
dw 10

; too big BCD

Optimize for 16 bits
Adjustment value for

Convert the C3,C2,C1,CO encoding from tos_status
into meaningful bit flags and values.

;
status_table db UNNORMAL, NAN, UN NORMAL + MINUS,
& NAN + MINUS, NORMAL, INFINITY,
& NORMAL + MINUS, 'INFINITY + MINUS,
& ZERO, INVALID, ZERO + MINUS, INVALID,
& DENORMAL, INVALID, DENORMAL + MINUS, INVALID

floating_to_ascii proc

call Look at status of ST(O)

Get descriptor from table
'movzx eax, status_table[eaxl
cmp al,INVALlD Look for empty sT(0)
jne not_empty

ST(O) is empty! Return the status value.

ret parms_size

Remove infinity from stack and exit.

found_infinity:
fstp st(O) OK to leave fstp running
jmp short exit_proc

String space is too small!
Return invalid code.

,
small_string:

mov al,INVALID
exit_proc:

leave ; Restore stack setup

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-11

240486;20-6014

intel® NUMERIC PROGRAMMING EXAMPLES

pop es
ret parms_size

ST(O) is NAN or indefinite. Store the
value in memory and look at the fraction
field to separate indefinite from an ordinary NAN.

i
NAN_or_indefinite:

fstp fraction

test al,MINUS
fwait
jz exityroc

i Remove valu~ from stack
for examination '

Look at sign bit
Insure store is done

i Can't be indefinite if
i positive

mov ebx,OCOOOOOOOH i Match against upper 32
ibits of fraction

Compare bits 63-32
sub ebx, dword ptr fraction + 4

Bits 31-0 must be zero
or ebx, dword ptr fraction
jnz exit_proc

Set return value for indefinite value
mov al,INDEFINITE

jmp exit_proc

Ailocate stack space for local variables
and establish parameter addressibility.

not_empty:
push es
enter local_size, 0

Save working register
Setup stack addressing

Check for enough string space
mov ecx,field_size
cmp ecx,2
j l small_string

dec ecx i Adjust for sign character

See if string is too large for BCD
cmp ecx,BCD_DIGITS
jbe size_ok

Else set maximum string size
mov ecx,BCD_DIGITS

size_ok:
cmp al,INFINITY i Look for infinity

Return status value for + or inf
jge found_infinity

Figure 20-6. Floating-Point to ,ASCII Conversion Routine, (Contd.)

20-12

240486i20-6015

intet NUMERIC PROGRAMMING EXAMPLES

cmp al,NAN ; Look for NAN or INDEFINITE
jge NAN_or_indefinite

Set default return values and check that
the number is normalized.

fabs ; Use positive value only
; sign bit in al has true sign of value

xor edx,edx ; Form a constant
mav edi,denormal_ptr; Zero denormal count
mav [edil, dx
mav ebx,power_ptr Zero power of ten value
mov [ebxl, dx
mov dl, al
and dl, 1

add dl, EXACT
cmp al,ZERO ; Test for zero
jae convert_integer Skip power code if value

fstp fraction
fwait
mov al, bcd_byte + 7
or byte ptr bcd_byte + 7, Bah
fld fraction
fxtract
test al, Bah
jnz normal value

fld1
fsub
ftst
fstsw ax
sahf
jnz set_unnormal_count

Found a pseudo zero

; is zero

fldlg2 ; Develop power of ten estimate
add dl, PSEUDO_ZERO· EXACT
fmulp st(2), st
fxch Get power of ten
fistp word ptr [ebxl Set power of ten
jmp convert_integer

set_unnormal_count:
fxtract

fxch
fchs
fistp word ptr [edil

Get original fraction,
now normalized
Get unnormal count

Set unnormal count

Calculate the decimal magnitude associated
with this number to within one order. This

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-13

240486;20-60f6

in1'el® NUMERIC PROGRAMMING EXAMPLES

error will always be inevitable due to
rounding and lost precision. As a result,
we will deliberately fail to consider the
LOG10 of the fraction value in calculating
the order. Since the fraction will always
be 1 <= F < 2, its LOG10 will not change
the basic accuracy of the function. To
get the decimal order of magnitude, simply
multiply the power of two by LOG10(2) and
truncate the result to an integer.

normal_value:
fstp fraction

fist power two
fldlg2

Save the fraction field
for later use

Save power of two
; Get LOG10(2)
; Power_two is now safe to use

fmul ; Form LOG10(of exponent of number)
fistp word ptr [ebx) ; Any rounding mode

; wi II work here

Check if the magnitude of the number rules
out treating it as an integer.

CX has the maximum number of decimal digits
allowed.

fwait ; Wait for power_ten to be valid

Get power of ten of value
movsx si, word ptr [ebx)
sub esi ,ecx ; Form scaling factor

necessary in ax
ja adjust_result Jump if number will not fit

The number is between and 10**(field_size).
Test if it is an integer.

fild power_two Restore original number
sub dl,NORMAL·EXACT Convert to exact return

; value
fld fraction
fscale ; Form full value, this

is safe here .
fst st(l) Copy va lye for compare
frndint Test if its an integer
fcomp Compare values
fstsw ax Save status
sahf C3=1 implies it was

; an i~teger

jnz convert _integer

fstp st(O) Remove non integer value
add dl,NORMAL:EXACT Restore ori ghml return value

Figure 20-6. Floating"Point to ASCILConversion Routine (Contd.)

20-14

240486i20-6of7

intel® NUMERIC PROGRAMMING EXAMPLES

Scale the number to within the range allowed
by the BCD format.The scaling operation should
produce a number within one decimal order of
magnitude of the largest decimal number
representable within the given string width.

The scaling power of ten value is in si.

adjust_result:
mov
mov

eax,esi
word ptr [ebx],ax

; Setup for pow10
; Se.t initial power

of ten return value
neg eax Subtract one for each order of

magnitude the value is scaled by
call get_power_10 Scaling factor is

returned as
exponent and fraction

fld fraction ; Get fraction
fmul ; Combine fractions
mov esi,ecx Form power of ten of

the maximum
shl esi ,3 ; BCD value to fit

the string
fild power two Combine powers of two

st(2),st faddp
fscale Form full value,

exponent was safe
fstp st(1) Remove exponent

Test the adjusted value against a table
of exact powers of ten. The combined errors
of the magnitude estimate and power function
can result in a value one order of magnitude
too small or too large to fit correctly in
the BCD field. To handle this problem, pretest
the adjusted value, if it is too small or
large, then adjust it by ten and adjust the
power of ten value.

Compare against exact power entry. Use the next
entry since ex has been decremented by one

fcom power_table[esi]+type power_table
fstsw ax ;. No wait is necessary
sahf ; If C3 = CO= 0 then
jb test_for _small too big

fidiv
and
inc
jmp

test_for_small:
fcom

const10 Else adjust value
dl,not EXACT Remove exact flag
word ptr [ebx] Adjust power of ten value
short in_range Convert the value to a BCD

; integer

power_table[esi] Test relative size

in

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-15

240486i20-6018

NUMERIC PROGRAMMING EXAMPLES

fstsw ax No wait is necess
ary

sBhf [f co = o then
st(O) >= lower bound

jc inJange ; Convert
to a

; BCD integer

fimul const1D Adjust value into range
dec word ptr [ebx] Adjust power of ten value

in_range:
frndint ; Form integer value

Assert: 0 <= TOS <= 999,999,999,999,999,999
The TOS number will be exactly representable

in 18 digit BCD format.

convert_integer:
fbstp bcd_value ; Store as BCD format number

While the store BCD runs, setup registers
for the convers ion to ASC[[•

Initial BCD index value

the value

mov
mov
mov

esi ,BCD_S[ZE-2
cX,Of04h
ebx,1

Set shift count and mask
Set initial size of ASC[I

; field for sign
mov edi,string_ptr; Get address of start·of

; ASC[[string
mov aX,ds Copy ds to es
mov
cld
mov
test
jz

eS,ax

al,I+'
dl,M[NUS
positiveJesult

mov al,'·'
positive result:

stosb

Set autoincrement mode
1 Clear sign field

Look for negative value

; Bump string pointer
past sign

and dl,not M[NUS ; Turn off sign bit
fwait ; Wait for fbstp to finish

Register usage:
ah: BCD byte value in use
al: ASC[[character value
dx: Return value
ch: BCD mask = Ofh
cl: BCD shift count = 4
bx: ASC[[string field width
esi: BCD field index
di: ASCII string field pointer
ds,es: . ASC[[string segment base

Remove leading zeroes from the number.

Figure.20.S:Floating-Point to ASCII Conversion Routine (Contd.)

20·16

240486i20-6019

intet® NUMERIC PROGRAMMING EXAMPLES

skip_leading_zeroes:
mov ah,bcd_byte[esiJ
mov al,ah
shr al,cl
and al,Ofh
jnz enter_odd

non zero

mov al,ah
and al,Ofh
jnz enter_even

; Get BCD byte
Copy value
Get high order digit
Set zero flag
Exit loop .if leading

found

Get BCD byte again
Get low order digit
Exit loop if non zero

digit found

dec esi Decrement BCD index
jns skip_leading_zeroes

The significand was all zeroes.

mov al,'O' Set initial zero
stosb
inc ebx ; Bump string length
jmp short exit_with_value

Now expand the BCD string into digit
per, byte values 0·9.

digit_loop:
mov
mov
shr

enter_odd:
add
stosb

mov
and
inc

enter_even:
add
stosb
inc
dec
jns

ah,bcd_byte[esiJ
al,ah
al,cl

al, '0'

Get BCD byte

Get high order digit

Convert to ASCII
Put digit into ASCII

string area
al,ah
al,Ofh
ebx

al, '0'

ebx
esi
digit_loop

Get low order digit

Bump field size counter

Convert to ASCII
Put digit into ASCII area

Bump field size counter
; Go to next BCD byte

Conversion complete. Set the string
size and remainder.

mov
mov
mov
j~

edi,size_ptr
'word pt r [ediJ I bx
eax,edx
exit_proc

endp
code

Set return value

ends
end

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-17

240486i20-60110

infel® NUMERIC PROGRAMMING EXAMPLES

+1 Stitle(Ca'lculate the value of 10**ax)

stack

code

This sUbroutine will calculate the
value of 10""eax. For values of
o <= eax < 19, the resul t will exact.
All registers are transparent
and the va l ue is returned on the TOS
as two nunbers, exponent in ST(1) and
fraction in ST(O). The exponent value
can be larger than the largest

, exponent of an extended real format
nunber. Three stack entries are used.

name
public

stackseg

get _power _10
get_power _10, power _table

S

segment publ i c' er

Use exact values from 1.0 to lelS.

cmp
ja

even
dq

; Optimize 16 bit access
1.0,lel,le2,l';3

dq le4,1e5,1e6,le7

dq 1eS,le9,1e10,1e11

dq 1e12,le13,1e14,1e15

dq 1e16,1e17,1e18

eax,18 Test for 0 <= ax < 19
out _of _range

fld power_table [eax"S] ; Get exact value
fxtract ; . Separate power

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-18

240486i20·60111

in~® NUMERIC PROGRAMMING EXAMPLES

; and fraction
ret OK to leave fxtract running

Calculate the value using the
exponentiate instruction. lhe following
relations are used:

10**x = 2**(log2(10)*x)
2**(I+F) = 2**1 * 2**F

if st(1) = I and st(O) = 2**F then
fscale produces 2**(I+F)

fldl2t
enter 4,0

save power of 10 value, P

105 LOG2(1 0)

mov [ebp·4],eax

code

10S,X
fimul
fld1

LOG2(10)*P = LOG2(10**P)
dword ptr [ebp·4]

fchs
fld st(1)

frndint

fxch st(2)

fsub st,st(2)

Set 105 = ·1.0

Copy power value
in base two
105 = I: ·inf < I <= X
where I is an integer
Rounding mode does
not matter
105 = X, 51(1) = ·1.0

ST(2) = I
10S,F = X·I:
·1.0 < 105 <= 1.0

; Restore orignal rounding control
pop eax
f2xm1 105 = 2**(F) 1.0
leave
fsubr
ret

endp

ends
end

Restore stack
Form 2**(F)
OK to leave fsubr running

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.)

20-19

240486;20-60112

intel® NUMERIC PROGRAMMING EXAMPLES

+1 $title(Determine TOS register contents)

stack

code

This subroutine will return a value
from 0-15 ineax corresponding

to the contents of FPU TOS _ All
registers are transparent and no

errors are possible_ The return
value corresponds to c3,c2,c1,cO

of FXAM instruction_

name
public

tos_status
tos_status

stackseg 6

segment public er

fxam
fstsw
mov
and
shr
or
mov
ret

proc

ax ; Get
al,ah
eax,4007h
ah, 3
al,ah
ah,O

; Get status of TOS register
current status

Put bit 10-8 into bits 2-0
Mask out bits c3,c2,c1,cO
Put bit c3 into bit 11
Put c3 into bit 3
Clear return value

tos_status endp

code ends
end

Figure 20-6. Floating-Point to ASCJI Conversion Routine (Contd.)

20-20

240486;20-60f13

NUMERIC PROGRAMMING EXAMPLES

20.3.3 Special Instructions

The functions demonstrate the operation of several numeric instructions, different data
types, and precision control. Shown are instructions for automatic conversion to BCD,
calculating the value of 10 raised to an integer value, establishing and maintaining con­
currency, data synchronization, and use of directed rounding on the FPU.

Without the extended precision data type and built-in exponential function, the double
precision accuracy of this function could not be attained with the size and speed of the
shown example.

The function relies on the numeric BCD data type for conversion from binary floating­
point to decimal. It is not difficult to unpack the BCD digits into separate ASCII deci­
mal digits. The major work involves scaling the floating-point value to the comparatively
limited range of BCD values. To print a 9-digit result requires accurately scaling the
given value to an integer between 108 and 109. For example, the number +0.123456789
requires a scaling factor of 109 to produce the value + 123456789.0, which can be stored
in 9 BCD digits. The scale factor must be an exact power of 10 to avoid changing any of
the printed digit values.

These routines should exactly convert all values exactly representable in decimal in the
field size given. Integer values that fit in the given string size are not be scaled, but
directly stored into the BCD form. Noninteger values exactly representable in decimal
within the string size limits are also exactly converted. For example, 0.125 is exactly
representable in binary or decimal. To convert this floating-point value to decimal, the
scaling factor is 1000, resulting in 125. When scaling a value, the function must keep
track of where the decimal point lies in the final decimal value.

20.3.4 Description of Operation

Converting a floating-point number to decimal ASCII takes three major steps: identify­
ing the magnitude of the number, scaling it for the BCD data type, and converting the
BCD data type to a decimal ASCII string.

Identifying the magnitude of the result requires finding the value X such that the num­
ber is represented by I x lOx, where 1.0 :::; I < 10.0. Scaling the number requires
multiplying it by a scaling factor lOs, so that the result is an integer requiring no more
decimal digits than provided for in the ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a
form easy to convert to decimal ASCII by host software.

Implementing each of these three steps requires attention to detail. To begin with, not
all floating-point values have a numeric meaning. Values such as infinity, indefinite, or
NaN may be encountered by the conversion routine. The conversion routine should
recognize these values and identify them uniquely.

20-21

intel® NUMERIC PROGRAMMING EXAMPLES

Special cases of numeric values also exist. Denormals have numeric values, but should be
recognized because they indicate that precision was lost during some earlier calculations.

Once it has been determined that the number has a numeric value, and it is normalized
(setting appropriate de normal flags, if necessary, to indicate this to the calling program),
the value must be scaled to the BCD ran!Se.

20.3.5 Scaling the Value

To scale the number, its magnitude must be determined. It is sufficient to calculate the
magnitude to an accuracy of 1 unit, or within a factor of 10 of the required value. After
scaling the number, a check is made to see if the result falls in the range expected. If not,
the result can be adjusted one decimal order of magnitude up or down. The adjustment
test after the scaling is necessary due to inevitable inaccuracies in the scaling value.

Because the magnitude estimate for the scale factor need only be close, a fast technique
is used. The magnitude is estimated by multiplying the power of 2, the unbiased floating­
point exponent, associated with the number by IOg102. Rounding the result to an integer
produces an estimate of sufficient accuracy. Ignoring the fraction value can introduce a
maximum error of 0.32 in the result.

Using the magnitude of the value and size of the number string, the scaling factor can be
calculated. Calculating the scaling factor is the most inaccurate operation of the conver­
sion process. The relation lOX = 2(X*logzlO) is used for this function. The exponentiate
instruction F2XM1 is used.

Due to restrictions on the range of values allowed by the F2XM1 instruction, the power
of 2 value is split into integer and fraction components. The relation 2(1 + F) = 2 X 2F
allows using the FSCALE instruction to recombine the 2F value, calculated through
F2XM1, and the 21 part.

20.3.5.1 INACCURACY IN SCALING

The inaccuracy in calculating the scale factor arises because of the trailing zeros placed
into the fraction value of the power of two when stripping off the integer valued bits. For
each integer valued bit in the power of 2 value separated from the fraction bits, one bit
of precision is lost in the fraction field due to the zero fill occurring in the least signifi­
cant bits.

Up to 14 bits may be lost in the fraction because the largest allowed floating point
exponent value is 214 -1. These bits directly reduce the accuracy of the calculated scale
factor, thereby reducing the accuracy of the scaled value. For numbers in the range of
10±3o, a maximum of 8 bits of precision are lost in the scaling process.

20-22

intel® NUMERIC PROGRAMMING EXAMPLES

20.3.5.2 AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are separated to avoid underflow and
overflow in calculatinJ6 the scaling values. For example~ to scale 10-4932 . to 108 requires a
scaling factor of 1049 ,which cannot be represented by the Intel486 processor.

By separating the exponent and fraction, the scaling operation involves adding the expo­
nents separate from multiplying the fractions. The exponent arithmetic involves small
integers, all easily represented by the Intel486 processor.

20.3.5.3 FINAL ADJUSTMENTS

It is po~sible that the power function (GeLPoweL10) could produce a scaling value such
that it forms a scaled result lar~er than the ASCII field could allow. For example, scaling
9.9999999999999999 x 104 00 by 1.00000000000000010 X 10-4883 produces

. 1.00000000000000009 x 1018• The scale factor is within the accuracy of the FPU and the
result is within the conversion accuracy, but it cannot be represented in BCD format.
This is why there is a post-scaling test on the magnitude of the result. The result can be
multiplied or divided by 10, depending on whether the result was too small or too large,
respectively.

20.3.6 Output Format

For maximum flexibility in output formats, the position of the decimal point is indicated
by a binary integer called the power value. If the power value is zero, then the decimal
point is assumed to be at the right of the rightmost digit. Power values greater than zero
indicate how many trailing zeros are not shown. For each unit below zero, move the
decimal point to the left in the string.

The last step of the conversion is storing the result in BCD and indicating where the
decimal point lies. The BCD string is then unpacked into ASCII decimal characters. The
ASCII sign is set corresponding to the sign of the original value.

20.4 TRIGONOMETRIC CALCULATION EXAMPLES

In this example, the kinematics of a robot arm is modeled with the 4 x 4 homogeneous
transformation matrices proposed by Denavit and Hartenberg1,2. The translational and
rotational relationships between adjacent links are described with these matrices using
the D-H matrix method. For each link, there is a 4 x 4 homogeneous transformation

1. J. Denavit and R.S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,"
J. Applied Mechanics, June 1955, pp. 215-221.

2. C.S. George Lee, "Robert Arm Kinematics, Dynamics, and Control," IEEE Computer, Dec. 1982.

20-23

intel® NUMERIC PROGRAMMING EXAMPLES

matrix that represents the link's coordinate system (Li) at the joint (Ji) with respect to
the previous link's coordinate system (Ji- 1, Li- 1). The following four geometric quanti­
ties completely describe the. motion of any rigid joint/link pair (Ji, Li), as Figure 20-7
illustrates.

8i The angular displacement of the Xi axis from the Xi_l axis by rotating around the
Zi_l axis (anticlockwise).

di The distance from the origin of the (i_1)th coordinate system along the Zi-l axis
to the Xi axis.

ai The distance of the origin of the ith coordinate system from the Zi_l axis along
the -Xi axis.

(Xi The angular displacement of the Zi axis from the Zi-l about the Xi axis
(an ticlockwise).

Zl-l

240486;20-7

Figure 20-7. Relationships Between Adjacent Joints

20-24

intel® NUMERIC PROGRAMMING EXAMPLES

The D-H transformation matrix ALI for adjacent coordinate frames (from jointi _l to
jointi is calculated as follows: 1

ALI = Tzd X Tz8 X Txa x Tx~ I ' • , ,

where:

Tz•d represents a translation along the Zi-l axis

TZ •8 represents a rotation of angle S about the Zi-l axis

Tx•a represents a translation along the Xi axis

Tx.c< represents a rotation of angle (X about the Xi axis

A;-l
-cos (Xi SIN Si

COS (Xi COS Si

SIN (Xi

o

SIN (Xi SIN Si

-SIN (Xi COS Si

COS (Xi
0'

COS Si

SIN Si

di

1

The composite homogeneous matrix T which represents the position and orientation of
the joint/link pair with respect to the base system is obtained by successively multiplying
the D-H transformation matrices for adjacent coordinate frames.

i I 2 i
T;; = A(j x Al x ... x A;-l

This example in Figure 20-8 illustrates how the transformation process can be accom­
plished using the floating-point capabilities of the Intel486 processor. The program con­
sists of two major procedures. The first procedure TRANS_PROC is used to calculate
the elements in each D-H matrix, A~-l' The second procedure MATRIXMULPROC
finds the product of two successive D-H matrices. ,

20-25

intel® NUMERIC PROGRAMMING EXAMPLES

Name ROT_MATRIX_CAL

This example illustrates the use
of the i4B6 floating point
instructions, in particular, the
FSINCOS function which gives both
the SIN and COS values.
The program calculates the
composite matrix for base to end·
effector transformation.

Only the kinematics is considered in
this example.

If the composite matrix mentioned above
is given by:
T1n =,A1 x A2 x .•. x An
T1n is found by successively calling
trans_proc and matrixmul_pro until
all matrices have been exhausted.

trans-proc calculates entries in each
A(A1, ••• ,An) while matrixmul_proc
performs the matrix multiplication for
Ai and Ai+1. matrixmul_proc in turn
calls matrix_row and matrix_elem to
do the multiplication.

; Define stack space

trans_stack stackseg 400

Define the matrix structure for
4X4 transformational matrices

a_matrix struc
a11 dq ?
a12 dq ?
a13 dq ?
a14 dq ?
a21 dq ?
a22 dq ?
a23 dq ?
a24 dq ?
a31 dq Oh
a32 dq ?
a33 dq ?
a34 dq ?
a41 dq Oh
a42 dq Oh
a43 dq Oh
a44 dq 1h

Figure 20-8. Robot Arm Kinematics Example

20-26

240486;20-8011

intel® NUMERIC PROGRAMMING EXAMPLES

Assume One joint in the storage
allocation and hence for
two sets of parameters; however,
more joints are possible

alp_deg struc
alpha_deg1 dd ?
alpha_deg2 dd ?

alp_deg ends

tht deg struc
- theta_deg1 dd ?

theta_deg2 dd ?

tht_deg ends

A_array stru~
A1 dq ?

A2. dq ?
A_array ends

O_array struc
01 dq ?
02 dq ?

O_array ends

trans_data is the data segment

trans_data segment rw pUblic

AmX a_matrix<>

Brnx a_matrix<>

Trnx a_matrix<>

ALPHA_OEG alp_deg<>

THETA_OEG tht_deg<>

A_VECTOR A_array<>

O_VECTOR O_array<>

ZERO dd
d180 dd
NUM_JOINT equ
NUM_ROII equ
NUM_COL equ
REVERSE db

trans_data ends

0
180

1
4
4
lh

assune ds:trans_data, es:trans_data

Figure 20-8. Robot Arm Kinematics. Example (Contd.)

20-27

240486;20-8012

NUMERIC PROGRAMMING EXAMPLES

trans code contains the procedures
for c;lculating matrix elements and
matrix multiplications

segment er public
transJProc proc far

Calculate alpha and theta in radians
from their values in degrees

fldpi
fdiv dlS0

Duplicate pi/1S0
fld st

fmul qword ptr ALPHA_DEG[ecx*S]
fxch st(1)
fmul qword ptr THETA_DEG[ecx*S]

theta(radians) in ST and
alpha(radians) in ST(1)

Calculate matrix elements
all = cos theta
a12 = - cos alpha * sin thet
a13 = sin alpha * sin theta
a14 = A * cos theta
a21 = sin theta
a22 = cos alpha * cos .theta
a23 = -sin alpha * cos theta
a24 = A * sin theta
a32 = sin alpha
a33 = cos alpha
a34 = D
a31 = a41 = a42 = a43 = 0.0
a44 =1

ebx contains the offset for the matrix

fsincos . ;cos theta in ST
;sin theta in ST(1)

fld st ;dupl icate cos theta
fst [ebx].all ;cos theta in all
fmul qword ptr A_VECTOR[ecx*S]
fstp [ebx].a14;A * cos thetain a14
fxch st(1) ;sin theta inST
fst [ebx].a21 ;sin theta in a21
fld st ;duplicate sin theta
fmul qword ptr A_VECTOR [ecx*S]
fstp [ebx].a24;A * sin theta in a24
fld st(2) ;alpha in ST
fsincos;cos alpha in ST

Figure 20-S .. Robot Arm Kinematics Example (Contd.)

20-28

240486i20-80f3

intel® NUMERIC PROGRAMMING EXAMPLES

isin alpha in ST(1)
;sin theta in ST(2)
iCOS theta in ST(3)

. fst [ebx] .a33 ;cos alpha in a33
fxch st(1) isin alpha in ST
fst [ebx] .a32 isin alpha in a32
fld ST(2) isin theta in ST

isin alpha in ST(1)
flWl st,st(1) isin alpha * sin theta
fstp [ebx] .a13 istored in a13
flWl st,st(3) ;cos theta * sin alpha
fchs i·COS theta * sin alpha
fstp [ebx] .a23 istored in a23
fld st(2) iCOS theta in ST

;cos alpha in ST(1)
isin theta in ST(2)
iCOS theta in ST(3)

flWl st,st(1) iCOS theta * cos alpha
fstp [ebx] .a22 istored in a22
flWl st,st(1) iCOS alpha * sin theta

To take advantage of parallel operations
between the IU and FPU

push eax i save eax

also move 0 into a34 in a faster way
mov eax, dword ptr O_VECTOR[ecx*8]
mov dword ptr [ebx + 88], eax
mov eax, dword ptr O_VECTOR[ecx*8 + 4]
mov dword ptr [ebx + 92], eax
pop eax i restore eax
fchs i ·cos alpha * sin theta
fstp [ebx].a12 istored in a12

ret

transJlroc endp

matrlx_elem proc far

iand all nonzero elements
ihave been calculated

This procedure calculate the dot product
of the ith row of the first matrix and
the jth column of the second matrix:

Tij where Tij = sum of Aik x Bkj over k

parameters passed from the calling routine,
matrixJow:
ESI = (i·1)*8
EOI = 0·1)*8
local register,EBP = (k·1)*8

Figure 20-8; Robot Arm Kinematics Example (Contd.)

20-29

240486i20-8of4

NXT_k:

NUMERIC. PROGRAMMING EXAMPLES

push " ebp save ebp
push ecx" ecx to be used as a tmp reg
mov ecx, esi; save it for later indexing

locating the element in the first matrix, A
imul ecx, NUM_COL ecx contains offset due

to preceding rows; the
offset is from the
beginning of the matrix

xor ebp, ebp; clear ebp, which wit [be
used a temp reg to i ndex(k)
across the ith row of the first
matrix as well as down the jth
column of the second matrix

clear Tij for accumulating Aik*Bkj
mov dword'ptr [edx] [edi],ebp
mov dword ptr [edx][ed i +4] , ebp

push ecx save on stack: esi * hum_col
the offset of the beginnging
of "the ith row from the
t>eginning of the A matrix

add ecx, ebp get to the kth column entry
of the ith row of theA matrix

load Aik into FPU
fld qword ptr [eax] [ecx]

locating Bkj
mov ecx, ebp
imul ecx, 'NUM_ROW ; ecx contains the offset

add

fmul
pop

push', ,

ecx, edi

of the beginning of the
kth row from the
beginning of theB matrix
get to the jth column

of the kth row of the B
; matrix

qword ptr [ebx] [ecx];' Aik *Bkj
ecx esi * nurn_col

'in ecxagain
ecx also at top' of program

stack

add to the result in the output matrix,Tij
add ecx, edi

accumulating the surn of Aik * Bkj
fadd qword ptr [edx] [ecx]
fstp qword ptr [edx] [ecx]
increment k by 1, i.e., ebp by 8
add ebp, 8

Figure 20"8. Robot Arm Kinematics Examp,le (Contc;t.)

20-30

240486;20-8015

intel® NUMERIC PROGRAMMING EXAMPLES

Has k reached the width of the matrix yet?
cmp ebp, NUM_COL*8
j l NXT_k

Restore registers
pop ecx clear esi*num_col from stack
pop ecx restore ecx
pop ebp restore ebp
ret

matrix_row proc far

xor edi, edi
scan across a row

NXT_COL:
call matrix_elem
add edi, 8
cmp edi, NUM_COL*8
jl NXT_COL
ret

matrixJow endp

matrixmul-proc proc far

This procedure does the matrix
multiplication by calling matrix_row
to calculate entries in each row

The matrix multiplication is
performed in the following manner,

Tij = Aik x Skj
where i and j denote the row and column
respectively and k is the index for
scanning across the ith row of the
first matrix and the jth column of the
second matrix.

mov ebp. esp
mov edx. dword ptr [ebp+4)
mov ebx. dword ptr [ebp+8j
mov eax, dword plr [ebp=12)

setupesi and edi
edi points to the column
es i poi nts to. the row

xor esi, esi ; clear eSi.

NXT_ROW:
call matrix_row

;use base pointer for indexing
;offset Tmx In edx
;0115et Bmx in ebx
;o11sel Amx in eax

Figure 20-8, Robot Arm Kinematics Example (Contd.)

20-31

240486;20-8016

intel® NUMERIC PROGRAMMING EXAMPLES

acid ;es,i, .8
c~ esi, NUM_R0II*8
jl NXT_ROW
ret 12 ;pop off matrix pOinterS

.*************************************** ,

Main program

; ;
;***************************************

main_code segment er

START:

mov esp, stacks tart trans_stack
save all registers

pushad

ECX denotes the number of joints
where no of matrices = NUM_JOINT+
Find t~efirst matrix(from the base
of the system to the ,fi rst joint)
and call it Bmx ., ,
xor ecx, ecx
mov ebx,off~et anix
call transJlroc
inc ecx

1st matrix

isBmx

NXT_MATRIX:
From the' ~ndmatrix and on, it
will be stored In ArnX.
The result from the first matrix multo
isst~red in Tmx but will be accessed

'as Bmxi~the next multiplication. "
Asarilatter of fact, the rolesofBmx
'a~ l'mx alternate in successive
mul tipl ications. This, is achieved by
reversing the order Of the BrnX'and Trnx
pointers being passed onto the program
stack. Thus, this is invisible to the
matrix mul tipl ication' 'procedure. '
REVERSE serves as the indicator;
REVERSE = 0 means that the result

is to placedln Tmx.

Figure 20-8. RobotArm Kinematics. Example. (Contd;)

20-32

240486i20-8017

intel® NUMERIC PROGRAMMING EXAMPLES

mov ebx, offset Arnx ifind Arnx
call transyroc
inc ecx
xor REVERSE, 1h
jnz Brnx_as_Trnx

no reversing. Brnx as the second input
matrix while Trnx as the output matrix.
push offset Arnx
push offset Brnx
push offset Trnx
jmp CONTINUE

reversing. Trnx as the second input
matrix while Brnx as the output matrix.

offset Arnx
Brnx_as_Trnx:

push
push
push

offset Trnx ireversing the
offset Brnx ipointers passed

CONTINUE:
call
cmp
jle

matrixmulyroc
ecx, NUM_JOINT
NXT_MATRIX

if REVERSE = 1 then the final answer
will be in Brnx otherwise, in Trnx.

popad

e~ START, ds:trans_data, ss:trans_stack

Figure 20-8. Robot Arm Kinematics Example (Contd.)

20·33

240486;20-80f8

Part IV
Compatibility

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Executing 286 and 21
Intel386 ox or SX CPU .
Programs

CHAPTER 21
EXECUTING 286 AND

Intel386 DX OR SX CPU PROGRAMS

In general, programs written for protected mode on a 286 processor run without modi­
fication on the Inte1486 processor. The features of the 286 processor are an object-code
compatible subset of those of the Inte1486 processor. The Default bit in segment descrip­
tors indicates whether the processor is to treat a code, data, or stack segment as a 286 or
Inte1386/Inte1486 CPU segment.

To software, the features of the Inte1386 DX or SX processors are virtually identical to
the Inte1486 processor. For the most part, the differences are in the underlying hardware
implementation.

The segment descriptors used by the 286 processor are supported by the Inte1486 pro­
cessor if the Intel-reserved word (highest word) of the descriptor is clear. On the
Inte1486 processor, this word includes the upper bits of the base address and the seg­
ment limit.

The segment descriptors for data segments, code segments, local descriptor tables (there
are no descriptors for global descriptor tables), and task gates are the same for the 286,
Inte1386, and Inte1486 processors. Other 286 CPU descriptors (TSS segment, call gate,
interrupt gate, and trap gate) are supported by the Inte1486 processor. The Inte1486
processor also has descriptors for TSS segments, call gates, interrupt gates, and trap
gates which support the 32-bit architecture of the Inte1486 processor. Both kinds of
descriptors can be used in the same system.

For those segment descriptors common to both the 286 and Inte1486 processors, clear
bits in the reserved word cause the Inte1486 processor to interpret these descriptors
exactly as a 286 processor does; for example:

Base Address- The upper eight bits of the 32-bit base address are clear, which limits
base addresses to 24 bits.

Limit - The upper four bits of the limit field are clear, restricting the value of the limit
field to 64K bytes.

Granularity bit- The Granularity bit is clear, indicating the value of the 16-bit limit is
interpreted in units of 1 byte.

Big bit-In a data-segment descriptor, the B bit is clear, indicating the segment is no
larger than 64 Kbytes.

Default bit - In an code-segment descriptor, the D bit is clear, indicating 16-bit address­
ing and operands are the default. In a stack-segment descriptor, the D bit is clear,
indicating use of the SP register (instead of the ESP register) and a 64K byte maximum
segment limit.

21-1

intet EXECUTING 286 AND Intel386 DX OR SX CPU PROGRAMS

For formats of these descriptors and documentation of their use see the iAPX 286 Pro­
grammer's Reference Manual.

21.1 TWO WAYS TO RUN 286 CPU TASKS
. ", ,', ,

When porting 286 programs to the Intel486 processor, there are two approaches to
consider: ..

1. Porting an entire 286 software system to the Intel486 processor, complete with the
old operating system, loader, and system builder .

. In this case, all tasks will have 286 TSSs. The Intel486 processor is being used as if it
were a faster version ofthe 286 processor.

2. Porting selected 286 applications to run in an Intel486 CPU processor environment
with an Intel486 CPU operating system, loader, and system builder. .

In this case, the TSSs used to represent 286 tasks should be changed to Intel486
CPU TSSs. It is possible to mix 286 and Intel486 CPU TSSs, but the benefits are
small and the problems are great. All tasks in an Intel486 CPU software system
should have Intel486 CPU TSSs. It is not necessary to change the 286 object mod­
ulesthemselves; TSSs are usually constructed by the operating system,by the loader,
or· by the system builder. See Chapter 24 for more discussion of the interface
between: 16"bit and 32-bit code.

21.2 DIFFERENCES FROM 286 CPU

The few. differences between the 286 and Intel486 processors affect operating systems
more, than application programs. .

2t.2.1 Wraparound of 286 Processor 24-Bit Physical Address Space

With the 286 processor, any base and offset combination which addresses beyond
16, megabytes wraps around to the first megabyte of the address space. With the Intel486
processor, because it has a greater physical address space, any such address maps to the
17th megabyte. In the unlikely event that any software depends on address wraparound,
the same effect can be simulated on the Intel486 processor by using paging to map the
first 64K bytes past the top of the 16-megabyte address space to the bottom 64K bytes of
the segment.

21.2.2 Reserved Word of Segment Descriptor

Because the Intel486 processor uses the contents of the reserved word of 286 segment
descriptors, 286 programs which place values in this word may not run correctly on the
Intel486 processor.

21-2

in1:el® EXECUTING 286 AND Intel386 DX OR SX CPU PROGRAMS

21.2.3 New Segment Descriptor Type Codes

Operating-system code which manages space in descriptor tables often uses an invalid
value in the access-rights field of descriptor-table entries to identify unused entries.
Access rights values of 80H and OOH remain invalid for both the 286 and Intel486 pro­
cessors. Other values which were invalid on the 286 processor may be valid on the
Intel486 processor because uses for these bits are defined for the Intel486 processor.

21.2.4 Restricted Semantics of LOCK Prefix

The 286 processor performs the bus lock function differently than the Intel486 proces­
sor. Programs which use forms of memory locking specific to the 286 processor may not
run properly when run on the Intel486 processor.

The LOCK prefix and its bus signal only should be used to prevent other bus masters
from interrupting a data movement operation. The LOCK prefix only may be used with
the following Intel486 instructions when they modify memory~ An invalid-opcode excep­
tion results from using the LOCK prefix before any other instruction, or with these
instructions when no write operation is made to memory (i.e., when the destination
operand is in a register).

• Bit test and change: the BTS, BTR, and BTC instructions.

" Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is
needed for the XCHG instruction).

" One-operand arithmetic and logical: the INC, DEC, NOT, NEG Instructions.

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and
XOR instructions.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may lock a larger memory area. For example, typical 8086 and
286 configurations lock the entire physical memory space.

On the 286 processor, the LOCK prefix is sensitive to IOPL; if CPL is less privileged
than the IOPL, a general protection exception is generated. On the Intel386 DX and
Intel486 processors, no check against IOPL is performed.

21.2.5 Additional Exceptions

The Intel386 and Inte1486 processors have new exceptions which can occur even in
systems designed for the 286 processor.

• Exception #6 - invalid opcode
This exception can result from improper use of the LOCK instruction prefix.

• Exception #14-page fault

This exception may occur in a 286 program if the operating system enables paging.
Paging can be used in a system with 286 tasks if all tasks use the same page directory.

21-3

intel® EXECUTING 286 AND Intel386 OX OR SX CPU PROGRAMS

Because there is no place in a 286 TSS to store the PDBR register, switching to a 286
task does not change the value of the PDBR register. Tasks ported from the 286
processor should be given Intel486 CPU TSSs so they can make full use of paging.

21.3 DIFFERENCES FROM Intel386 CPU

Very few differences exist between the programming models of the Intel386 DX or SX
and Intel486 processors. The Intel486 processor defines new bits in the EFLAGS, CRO,
and CR3 registers, and in entries in the first- and second-level page tables. On the
Inte1386. processors, these bits were reserved,so the new architectural features should
not be a compatibility issue.

21.3.1 New Flag

The AC flag (bit position 18), in conjunction with the AM bit in the CRO register,
controls alignment checking.

21.3.2 New Exception

The alignment-check exception (exception vector 17) reports unaligned memory refer­
ences when alignment checking is being performed.

21.3.3 New Instructions

There are three new application instructions:

• BSW AP instruction

• XADD instruction

• CMPXCHG instruction

There are three new system instructions, used for managing the cache and TLB:

• INVD instruction

• WBINVD instruction

• INVLPG instruction

The form of the MOV instruction used to access the test registers has changed. New test
registers have been defined for the cache, and the model of the TLB accessed through
the test registers has changed.

21-4

intel® EXECUTING 286 AND Intel386 OX OR S)(CPU PROGRAMS

21.3.4 New Control Register Bits

Five new bits have been defined in the CRO register:

• NE bit
o WP bit

• AM bit
o NW bit

• CD bit

Two new bits have been defined in the CR3 register:

co PCD bit

.. PWT bit

21.3.5 New Page-Table Entry Bits

Two bits have been defined in page table entries for controlling caching of pages:

.. PCD bit

.. PWT bit

21.3.6 Changes in Segment Descriptor Loads

On the Intel386 processors, loading a segment descriptor would always cause a locked
read and write to set the accessed bit of the descriptor. On the Intel486 processor, the
locked read and write occur only if the bit is not already set.

21-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Real-Address Mode 22

CHAPTER 22
REAL-ADDRESS MODE

The real-address mode of the Intel486 processor runs programs written for the 8086,
8088, 80186, or 80188 processors, or for the real-address mode of a 286 or Intel386
processor.

The architecture of the Intel486 processor in this mode is almost identical to that of the
8086, 8088, 80186, and 80188 processors. To a programmer, an Intel486 processor in
real-address mode appears as a high-speed 8086 processor with extensions to the instruc­
tion set and registers. The principal features of this architecture are defined in Chapters
2 and 3.

This chapter discusses certain additional topics which complete the system programmer's
view of the Intel486 processor in real-address mode:

• Address formation.

• Extensions to registers and instructions.

• Interrupt and exception handling.

• Entering and leaving real-address mode.

I) Real-address mode exceptions.

C) Differences from 8086 processor.

• Differences from 286 processor in real-address mode.

• Differences from Intel386 processors in real-address mode.

• Processor detection code

22.1 ADDRESS TRANSLATION

In real-address mode, the Intel486 processor does not interpret 8086 selectors by refer­
ring to descriptors; instead, it forms linear addresses as an 8086 processor would. It shifts
the selector left by four bits to form a 20-bit base address. The effective address is
extended with four clear bits in the upper bit positions and added to the base address to
create a linear address, as shown in Figure 22-1.

Because of the possibility of a carry, the resulting linear address may have as many as 21
significant bits. An 8086 program may generate linear addresses anywhere in the range 0
to lOFFEFH (1 megabyte plus approximately 64K bytes) of the linear address space.
Because paging is not available in real-address mode, the linear address is used as the
physical address.

Unlike the 8086 and 286 processors, but like the Inte1386 processors, the Intel486 pro­
cessor can generate 32-bit effective addresses using an address override prefix; however
in real-address mode, the value of a 32-bit address may not exceed 65,535 without

22-1

intet

BASE

+

OFFSET

,-

LINEAR
ADDRESS

REAL·ADDRESS MODE

,19

I
3 0 ,

16·BIT SEGMENT SELECTOR, " I 0 0 0 0 ,I '
19 15 o
I 0 0 0 0 I 16-BIT EFFECTIVE ADDRESS

20 '; , , 0

I X X X X X X X X X X X, X X X X X, X X X X Xl '

240486i22·1
" ,

Figure 22·1. 8086 Address Translation

causing an exception. For full compatibility with 286 real-address mode, pseudo­
protection faults (interrupt 12 or 13 with no error code) occur if an effective address is
generated outside the range 0 through 65,535.

22.2 REGISTERS AND INSTRUCTIONS

The register set available in real-address mode includes all the registers defined for the
8086 processor plus the new registers introduced with the Intel386 processor and
Intel387 coprocessor: FS, GS, debug registers, control registers, test registers, and
floating-point unit registers. New instructions which explicitly operate on the segment
registers FS and GS are available, and the new segment-override prefixes can be used to
cause instructions to use the FS and GS registers for address calculations.

The. instruction codes which generate invalid-opcode exceptions include instructions
from protected mode which move or test Intel486 CPU segment selectors and segment
descriptors,i.e., the VERR, VERW, LAR:, LSL, LTR, STR, LLDT; and SLDT instruc­
tions. Programs executing in: real-address mode are able to take advantage of the new
application-oriented instructions added to the architecture with the introduction of the
80186, 80188; 80286, Inte1386DX; SX and Intel486 processors:

• New instructions introduced on the 80186, 80188, and 286 processors.'

PUSH iIm,ne,diflte data

Push all and pop all (PU~HA andPOPA)

Multiply immediate data:

Shift and rotate by immediate count

String I/O

ENTER and LEAVE instructions

, BOUND instruction

22-2

in1:el" REAL-ADDRESS MODE

• New instructions introduced on the Intel386 DX processor.

LSS, LFS, LGS instructions

Long-displacement conditional jumps

Single-bit instructions

Bit scan instructions

Double-shift instructions

Byte set on condition instruction

Move with sign/zero extension

Generalized multiply instruction

MOV to and from control registers

MOV to and from test registers

MOV to and from debug registers

• New instructions introduced on the Intel486 processor.

BSW AP instruction

XADD instruction

CMPXCHG instruction

INVD instruction (privileged)

WBINVD instruction (privileged)

INVLPG instruction (privileged).

22.3 INTERRUPT AND EXCEPTION HANDLING

Interrupts and exceptions in Intel486 CPU real-address mode work much as they do on
an 8086 processor. Interrupts and exceptions call interrupt procedures through an inter­
rupt table. The processor scales the interrupt or exception identifier by four to obtain an
index into the interrupt table. The entries of the interrupt table are far pointers to the
entry points of interrupt or exception handler procedures. When an interrupt occurs, the
processor pushes the current values of the CS and IP'registers onto the stack, disables
interrupts, clears the TF flag, and transfers control to the location specified in the inter­
rupt table. An IRET instruction at the end of the handler procedure reverses these steps
before returning control to the interrupted procedure. Exceptions do not return error
codes in real-address mode.

The primary difference in the interrupt handling of the Intel486 processor compared to
the 8086 processor is the location and size of the interrupt table depend on the contents
of the IDTR register. Ordinarily, this fact is not apparent to programmers, because, after
reset initialization, the IDTR register contains a base address of 0 and a limit of 3FFH,
which is compatible with the 8086 processor. However, the LIDT instruction.can be used
in real-address mode to change the base and limit values in the IDTR register. See
Chapter 9 for details on the IDTR register, and the LIDT and SIDT instructions. If an
interrupt occurs and its entry in the interrupt table is beyond the limit stored in the
IDTR register, a double-fault exception is generated.

22-3

intel® REAL-ADDRESS MODE

22.4 ENTERING AND LEAVING REAL-ADDRESS MODE

Real-address mode is in effect after reset initialization. Even if the system is going to run
in protected mode, the start-up program runs in real-address mode while preparing to
switch to protected mode.

22.4.1 Switching to Protected Mode

The only way to leave real-address mode is to switch to protected mode. The processor
enters protected mode when a MOV to CRO instruction sets the PE (protection enable)
bit in the CRO register. (For compatibility with the 286 processor, the LMSW instruction
also may be used to set the PE bit.)

See Chapter 10 "Initialization" for other aspects of switching to protected mode.

22.5 SWITCHING BACK TO REAL-ADDRESS MODE

The processor re-enters real-address mode if software clears the PE bit in the CRO
register with a MOV CRO instruction (for compatibility with the 286 processor, the
LMSW instruction can set the PE bit, but cannot clear it). A procedure which re-enters
real-address mode should proceed as follows:

1. If paging is enabled, perform the following sequence:

• Transfer control to linear addresses which have an identity mapping; i.e., linear
addresses equal physical addresses. Ensure GDT and IDT are in identity maps.

• Clear the PG bit in the CRO register.

• Move a 0 into the CR3 register to flush the TLB.

2. Transfer control to a segment which has a limit of 64K (OFFFFH). This loads the CS
register with the segment limit it needs to have in real mode. Ensure GOT and IDT
are in real memory.

3. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor
containing the following values, which are appropriate for real mode:

• Limit = 64K (OFFFFH)

• Byte granular (G == 0)
• Expand up (E = 0)

• Writable (W = 1)

• Present (P = 1)

• Base = any value

Note that if the segment registers are not reloaded, execution continues using the
descriptors loaded during protected mode.

4. Disable interrupts. A CLI instruction disables INTR interrupts. NMI interrupts can
be disabled with external circuitry.

5. Clear the PE bit in the CRO register.

22-4

REAL-ADDRESS MODE

6. Jump to the real mode program using a far JMP instruction. This flushes the instruc­
tion queue and puts appropriate values in the access rights of the CS register.

7. Use the LIDT instruction to load the base and limit of the real-mode interrupt
vector table.

8. Enable interrupts.

9. Load the segment registers as needed by the real-mode code.

22.6 REAL-ADDRESS MODE EXCEPTIONS

The Intel486 processor reports some exceptions differently when executing in real­
address mode than when executing in protected mode. Table 22-1 details the real­
address-mode exceptions.

22.7 DIFFERENCES FROM 8086 CPU

In general, the Intel486 processor in real-address mode will correctly run ROM-based
software designed for the 8086, 8088, 80186, and 80188 processors. Following is a list of
the minor differences between program execution on the 8086 and Intel486 processors.

1. Instruction clock counts.

The Intel486 processor takes fewer clocks for most instructions than the 8086 pro­
cessor. The areas most likely to be affected are:

o Delays required by I/O devices between I/O operations.

o Assumed delays with 8086 processor operating in parallel with an 8087.

2. Divide-error exceptions point to the DIV instruction.

Divide-error exceptions on the Intel486 processor always leave the saved CS:IP
value pointing to the instruction which failed. On the 8086 processor, the CS:IP
value points to the next instruction.

3. Undefined 8086 processor opcodes.

Opcodes which were not defined for the 8086 processor generate an invalid-opcode
exception or execute one of the new instructions introduced with the 286, Intel386
DX or Intel486 processors.

4. Value written by PUSH SP.

The Intel486 processor pushes a different value on the stack for a PUSH SP instruc­
tion than the 8086 processor. The Intel486 processor pushes the value of the SP
register before it is decremented as part of the push operation; the 8086 processor
pushes the value of the SP register after it is decremented. If the value pushed is
important, replace PUSH SP instructions with the following three instructions:
PUSH BP
MOV BP, SP
XCHG BP, [BPl
This code functions as the 8086 processor PUSH SP instruction on the Intel486
processor.

22-5

intel® REAL-ADDRESS MODE

Table 22-1. Exceptions and Interrupts

Does the Return Address

Description Vector
Source of the Point to the

Exception Instruction Which Caused
the Exception?

Divide Error 0 DIV and IDIV instructions yes

Debug 1 any . *1

Breakpoint 3 INT iristruction no

Overflow 4 INTO instruction no

Bounds Check 5 BOUND instruction yes

Invalid Opcode 6 reserved opcodes and yes
improper use of LOCK prefix

Device not 7 ESC or WAIT instructions yes
available

Double Fault 8 Interrupt table limit too small, yes
fault occurring while handling
another fault

Reserved 9

Invalid Task State 10 JMP, CALL, IRET yes
Segment3 instructions, interrupts and

exceptions

Segment not 11 any instruction which yes
present3 changes segments

Stack Exception 12 stack operation crosses yes
address limit (beyond offset
OFFFFH)

CS, OS, ES, FS, 13 Word memory reference yes
GS beyond offset OFFFFH. An
Segment Overrun attempt to execute past the

end of CS segment.

Page Fault3 14 any instruction that yes.
references memory

Reserved 15

Floating-Point Error 16 ESC or WAIT instructions yes2

Alignment Check 17 Any data reference no

Intel Reserved 18-31

Software Interrupt o to 255 INT n instructions no

NOTES:
1. Some debug exceptions point to the faulting instruction, others point to the following instruction. The

exception handler can test the DR6 register to determine which has occurred.
2. Floating-point errors are reported on the first ESC or WAIT instruction after the ESC instruction which

generated the error.
3. Exceptions 10, 11, 14 and 17 will not occur in Real Mode, but are possible in VM86 mode.

22-6

intel® REAL-ADDRESS MODE

5. Shift or rotate by more than 31 bits.

The Intel486 processor masks all shift and rotate counts to the lowest five bits. This
MOD 32 operation limits the count to a maximum of 31 bits, which limits the
amount of time that interrupt response may be delayed while the instruction is
executing.

6. Redundant prefixes.

The Intel486 processor sets a limit of 15 bytes on instruction length. The only way to
violate this limit is by putting redundant prefixes before an instruction. A general­
protection exception is generated if the limit on instruction length is violated. The
8086 processor has no instruction length limit.

7. Operand crossing offset 0 or 65,535.

On the 8086 processor, an attempt to access a memory operand which crosses offset
65,535 (e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when SP
= 1) causes the offset to wrap around modulo 65,536. The Intel486 processor gen­
erates an exception in these cases: a general-protection exception if the segment is a
data segment (i.e. if the CS, DS, ES, FS, or GS register is being used to address the
segment) or a stack exception if the segment is a stack segment (i.e., if the SS
register is being used).

8. Sequential execution across offset 65,535.

On the 8086 processor, if sequential execution of instructions proceeds past offset
65,535, the processor fetches the next instruction byte from offset 0 of the same
segment. On the Intel486 processor, the processor generates a general-protection
exception in such a case.

9. LOCK is restricted to certain instructions.

The LOCK prefix and its output signal should only be used to prevent other bus
masters from interrupting a data movement operation. The LOCK prefix only may
be used with the following Intel486 CPU instructions when they modify memory. An
invalid-opcode exception results from using LOCK before any other instruction, or
with these instructions when no write operation is made to memory.

• Bit test and change: the BTS, BTR, and BTC instructions.

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is
needed for the XCHG instruction).

II One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions.

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and
XOR instructions.

10. Single-stepping external interrupt handlers.

The priority of the Intel486 CPU single-step exception is different from the 8086
processor. The change prevents an external interrupt handler from being single­
stepped if the interrupt occurs while a program is being single-stepped. The Intel486
CPU single-step exception has higher priority than any external interrupt. The
Intel486 processor still may single-step through an interrupt handler called by the
INT instructions or by an exception.

22-7

infel® REAL-ADDRESS MODE

11. IDIV exceptions for quotients of 80H or 8000H.

The Intel486 processor can generate the largest negative number as a quotient for
the IDIV instruction. The 8086 processor generates a divide-error exception instead.

12. Flags in stack.

The setting of the flags stored by the PUSHF instruction, by interrupts, and by
exceptions is different from that stored by the 8086 processor in bit positions 12
through 15. On the 8086 processor these bits are set, but in the Intel486 CPU
real-address mode, bit 15 is always clear, and bits 14 through 12 have the last value
loaded into them.

13. NMI interrupting NMI handlers.

After an NMI interrupt is recognized by the Intel486 processor, the NMI interrupt
is masked until an IRET instruction is executed.

14. Floating-point errors call the floating-point error exception.

Floating-point exceptions on the Intel486 processor call the floating-point error
exception handler. If an 8086 processor uses another exception for the 8087 inter­
rupt, both exception vectors should call the floating-point error exception handler.
The Intel486 processor has signals which, with the addition of external logic, support
usercdefined error reporting for emulation of the interrupt mechanism used in many
personal computers.

15. Numeric exception handlers should allow prefixes.

On the Intel486 processor, the value of the CS and IP registers saved for floating­
point exceptions points at any prefixes which come before the ESC instruction. On
the 8086 processor, the saved CS:IP points to the ESC instruction.

16. Floating-Point Unit does not use interrupt controller.

The floating-point error signal to the Intel486 processor does not pass through an
interrupt controller (an INT signal from 8087 coprocessor does).Sorne instructions
in a floating-point error exception handler may need to be deleted if they use the
interrupt controller. The Intel486 processor has signals which, with the addition of
external logic, support user-defined error reporting for emulation of the interrupt
mechanism used in many personal computers. .

17. Seven new interrupt vectors.

The Intel486 processor adds seven exceptions which are generated on an 8086 pro­
cessor only by program bugs. Exception handlers should be added which treat these
exceptions as invalid. operations. This additional software does not significantly
affect the existing 8086 processor software, because these interrupts do not occur
normally. These interrupt identifiers should not already have been used by the 8086
processor software, because they are reserved by Intel. Table 22-2 describes the new
Intel486 processor exceptions.

18. The denormal exception of the Intel486 FPU is handled differently than on the 8087
math coprocessor. See Section 16.2.4 for more details.

22-8

intel® REAL-ADDRESS MODE

Table 22-2. New Intel486™ CPU Exceptions

Vector Description

5 A BOUND instruction was executed with a register value outside the limit
values.

6 A reserved opcode was encountered, or a LOCK prefix was used
improperly.

7 The EM bit in the CRO register was set when an ESC instruction executed,
or the TS bit was set when a WAIT instruction was executed.

8 A vector indexes to an entry in the lOT which is beyond the segment limit
for the lOT. This can only occur if the default limit has been changed.

12 A stack operation crossed the address limit.

13 An operation (other than a stack operation) exceeds the base or bounds of
a segment, instruction execution is crossing the address limit (OFFFFH), or
an instruction exceeds 15 bytes.

17 Alignment-check. Cannot occur without setting previously reserved bits.

19. One megabyte wraparound.

The address space of the Intel486 processor may not wraparound at 1 megabyte in
real-address mode. An external pin A20M# forces wraparound if enabled. On mem­
bers of the 8086 family, it is possible to specify addresses greater than 1 megabyte.
For example, with a selector value OFFFFH and an offset of OFFFFH, the effective
address would be 10FFEFH (1 megabyte + 65519 bytes). The 8086 processor, which
can form addresses up to 20 bits long, truncates the uppermost bit, which "wraps"
this address to OFFEFH. However, the Intel486 processor does not truncate this bit
if A20M# is not enabled.

20. Response to bus hold.

Unlike the 8086 and 286 processors, but like the Inte1386 processors, the Intel486
processor responds to requests for control of the bus from other potential bus mas­
ters, such as DMA controllers, between transfers of parts of an unaligned operand,
such as two words which form a doubleword. Unlike the Inte1386 processors, the
Intel486 processor responds to bus hold during reset initialization.

21. Interrupt vector table limit.

The LIDT instruction can be used to set a limit on the size of the interrupt vector
table. Shutdown occurs if an interrupt or exception attempts to read a vector beyond
the limit. (The 8086 processor does not have a shutdown mode.)

22. If a stack operation wraps around the address limit, shutdown occurs. (The 8086
processor does not have a shutdown mode.)

22.8 DIFFERENCES FROM 286 CPU IN REAL-ADDRESS MODE

The few differences which exist between Intel486 CPU real-address mode and 286 CPU
real-address mode are not likely to affect any existing 286 CPU programs except possibly
the system initialization procedures.

22-9

inteL REAL-ADDRESS MODE

22.8.1 Bus Lock

The 286 processor implements the bus lock function differently than the Intel486 pro­
cessor. Programs which use forms of memory locking specific to the 286 processor may
not run properly if transported to a specific application of the Intel486 processor.·

The LOCK prefix and its bus signal only should be used to prevent other bus masters
from interrupting a data movement operation. The LOCK prefix only may be used with
the following Intel486 CPU instructions when they modify memory. An invalid-opcode
exception results from using the LOCK prefix before any other instruction, or with these
instructions when no write operation is made to memory (i.e., when the destination
operand is in a register).

• Bit lest and change: the BTS, BTR, and BTC instructions.

.. Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is
needed for the XCHG instruction) .

.. One-operand arithmetic and logical: theINC, DEC, NOT, NEG instructions.

.. Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and
XOR instructions.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may lock a larger memory area. For example; typical 8086 and
80286 CPU configurations lock the entire physical memory space.

22.8.2 Location of First Instruction

, <,",

The starting location is OFFFFFFFOH (16 bytes from end of the 32-bit address space) on
the Intel486 processor rather than OFFFFFOH (16 bytes from end of the 24-bit address
space) as on the 286 processor. Many 286 ROM initialization programs will work cor­
rectly in this new environment. Others can be made to work correctly with external
hardware. to interpret the signals on the address signals A31-20• .

22.8.3 Initial Values of General Registers

On the Intel486 processor, certain general registers may contain different values after
reset initialization than on the 286 processor. This should not cause compatibility prob­
lems, because the contents of 8086 registers after reset initialization are undefined. If
self-test is requested during the reset sequence and errors are detected in the Intel486
processor, the EAX register will contain a non-zero value. The EDX register contains
the component and revision identifier. See Chapter 10 for more information.

22-10

intel® REAL-ADDRESS MODE

22.8.4 Bus Hold

Unlike the 8086 and 286 processors, the Intel386 and Intel486 processors respond to
requests for control of the bus from other potential bus masters, such as DMA control­
lers, between transfers of parts of an unaligned operand, such as two words which form
a doubleword.

22.8.5 Math Coprocessor Differences

The Intel486 FPU denormal exception works differently than on the Intel287 math
coprocessor. See Section 16.2.4 for more details.

Exception 9 cannot occur on Intel486 microprocessors.

22.9 DIFFERENCES FROM Intel386 DX CPU IN REAL-ADDRESS MODE

The instructions and architectural features which are new with the Intel486 processor
can be accessed in real-address mode. This should not affect most software, because the
new opcodes previously generated the invalid-opcode exception. The new flag and reg­
ister bits were previolisly reserved, so there should be no software which uses them
improperly.

Caching can be enabled in real-address mpde. For maximum performance, initialization
software must enable caching.

22.10 PROCESSOR DETECTION CODE

The following code sequence (see Figure 22-2) can be used to distinguish between 8086,
286 and Intel386 processors. This code is intended for application programs executing in
real-address mode. Refer to Figure 3-23 for complete CPU and coprocessor identifica­
tion code.

22-11

intel® REAL-ADDRESS MODE

proc near

Returns the processor type in the AX register.

pushf
pop bx
and bx,Offfh
push bx
popf
pushf
pop ax

and ax,OfOOOh
cmp ax,OfOOOh
jz is_8086

or bx,OfOOOh
push bx
popf
pushf
pop ax

and ax,OfOOOh
jz is_80286

is 80386:
mov ax,386h
jmp done

is 80286:
mov ax,286h
jmp done

is 8086:
mov ax,86h

done:
popf
ret

is 386 endp

save FLAG register
store FLAGs in BX
clear bits 12-15
store on stack
pop word into the FLAG register
store FLAGs on stack
recover FLAG word

if bits 12-15 are set, then the
processor is an 8086

try to set FLAG bits 12-15
store on stack
pop word into the FLAG register
store FLAGs on stack
recover FLAG word

if bits 12-15 are cleared, then
the processor is an 80286

else the processor is a 386 OX CPU
set the 386 OX CPU indicator

set the 80286 indicator

set the 8086 indicator

recover FLAG register

240486i22-2

Figure 22-2. Real-Address Detection Code

22-12

Virtua/-8086· Mode 23

CHAPTER 23
VIRTUAL~8086 MODE

The Intel486 processor supports execution of one or more 8086, 8088, 80186, or 80188
programs in an Intel486 protected-mode environment. An 8086 program runs in this
environment as part of a virtual-8086 task. Virtual-8086 tasks take advantage of the
hardware support of multitasking offered by the protected mode. Not only can there be
multiple virtual-8086 tasks, each one running an 8086 program, but virtual-8086 tasks can
run in multitasking with other Intel486 tasks.

The purpose of a virtual-8086 task is to form a "virtual machine" for ruIming programs
written for the 8086 processor. A complete virtual machine consists of Intel486 hardware
and system software. The emulation of an 8086 processor is the result of software using
hardware in the following ways:

• The hardware provides a virtual set of registers (through the TSS), a virtual memory
space (the first megabyte of the linear address space of the task), and directly exe­
cutes all instructions. which deal with these registers and with this address space.

• The software controls the external interfaces of the virtual machine (I/O, interrupts,
and exceptions) in a manner .consistent with the larger environment in which it runs.
In the case of I/O, software can choose either to emulate I/O instructions or to let the
hardware execute them directly without software intervention.

Software which supports virtual 8086 machines is called a virtual-8086 monitor.

23.1 EXECUTING 8086 CPU CODE

The processor runs in virtual-8086 mode when the VM (virtual machine) bit in the
EFLAGS register is set. The processor tests this flag under two general conditions:

1. When loading segment registers, to know whether to use 8086-style address
translation.

2. When decoding instructions, to determine which instructions are sensitive to 10PL,
and which instructions are not supported (as in real mode).

23.1.1 Registers and Instructions

The register set available in virtual-8086 mode includes all the registers defined for the
8086 processor plus the new registers introduced by the Intel486 processor: FS, GS,
debug registers, control registers, and test registers. New instructions, which explicitly
operate on the segment registers FS and GS, are available. The new segment-override
prefixes can be used to cause instructions to use the FS and GS registers for address
calculations. Instructions can use 32-bit operands through the use of the operand size
prefix.

23-1

int:eL VIRTUAL-SOS6 MODE

Programs running as virtual-8086 tasks can take advantage of the new application­
oriented instructions added to the architecture by the introduction of the 80186, 80188,
286, Intel386 DX, SX and Intel486 processors:

• New instructions introduced on the 80186, 80188, and 286 processors.

PUSH immediate data

Push all and pop all (PUSHA and POPA)

Multiply immediate data

Shift and rotate by immediate count

String I/O

ENTER and LEAVE instructions

BOUND instruction

• New instructions introduced on the Intel386 DX and SX processors.

LSS, LFS, LGS instructions

Long-displacement conditional jumps

Single-bit instructions

Bit scan instructions

Double-shift instructions

Byte set on condition instruction

Move with sign/zero extension

Generalized multiply instruction

• New instructions introduced on the Intel486 processor.

BSW AP instruction

XADD instruction

CMPXCHG instruction

23.1.2 Address Translation

In virtual-8086 mode, the Intel486 processor does not interpret 8086 selectors by refer­
ring to descriptors; instead, it forms linear addresses as an 8086 processor would. It shifts
the selector left by four bits to form a 20-bit base address. The effective address is
extended with four clear bits in the upper bit positions and added to the base address to
create a linear address, as shown in Figure 23-1.

Because of the possibility of a carry, the resulting linear address may have as many as 21
significant bits. An 8086 program may generate linear addresses anywhere in the range 0
to 10FFEFH (1 megabyte plus approximately 64K bytes) of the task's linear address
space.

Virtual-8086 tasks generate 32-bit linear addresses. While an 8086 program only can use
the lowest 21 bits of a linear address, the linear address can be mapped using paging to
any 32-bit physical address.

23-2

BASE

+

OFFSET

LINEAR
ADDRESS

VIRTUAL-SOS6 MODE

19 3 0

1 16·81T SEGMENT SELECTOR 10 0 001
19 15 0

10 0 0 01 16·81T EFFECTIVE ADDRESS 1

~ 0

Ixxxxxxxxxxxxxxxxxxxxxi

Figure 23-1. SOS6 Address Translation

240486i23·1

Unlike the 8086 and 286 processors, but like the Inte1386 processors, the Intel486 pro­
cessor can generate 32-bit effective addresses using an address override prefix; however
in virtual-8086 mode, the value of a 32-bit address may not exceed 65,535 without caus­
ing an exception. For full compatibility with 286 real-address mode, pseudo-protection
faults (interrupt 12 or 13 with no error code) occur if an effective address is generated
outside the range 0 through 65,535.

23.2 STRUCTURE OF A VIRTUAL-BOBS TASK

A virtual-8086 task consists of the 8086 program to be run and the Intel486 CPU "native
mode" code which serves as the virtual-machine monitor. The task must be represented
by an Intel486 CPU TSS (not a 286 TSS). The processor enters virtual-8086 mode to run·
the 8086 program and returns to protected mode to run the monitor or other Intel486
CPU tasks.

To run in virtual-8086 mode, an existing 8086 processor program needs the following:

G A virtuaHm86 monitor.

o Operating-system services.

The virtual-8086 monitor is Intel486 CPU protected-mode code which runs at privilege­
level 0 (most privileged). The monitor mostly consists of initialization and exception­
handling procedures. As with any other Intel486 CPU program, code-segment
descriptors for the monitor must exist in the GDT or in the task's LDT. The linear
addresses above lOFFEFH are available for the virtual-8086 monitor, the operating sys­
tem, and other system software. The monitor also may need data-segment descriptors so
it can examine the interrupt vector table or other parts of the 8086 program in the first
megabyte of the address space.

23-3

inteL VIRTUAL~8086 MODE

In general, there are two options for implementing the 8086 operating system:

1. The 8086 operating system may run as part of the 8086 program. This approach is
desirable for either of the following reasons:

• The 8086 application code modifies the operating system.

• There is not sufficient development time to reimplement the 8086 operating sys­
tem as an Intel486 CPU operating system.

2. The 8086 operating system may be implemented or emulated in the virtual-8086
monitor. This approach is desirable for any of the following reasons:

• Operating system functions can be more easily coordinated among several virtual-
8086 tasks.

• The functions of the 8086 operating system can be easily emulated by calls to the
Intel486 CPU operating system.

Note that the approach chosen for implementing the 8086 processor operating system
may have different virtual-8086 tasks using different 8086 operating systems.

23 .. 2.1 Paging for Virt~al-8086 Tasks, .'

Paging is not necessary for a single virtual-8086 task, but paging is useful or necessary for
any of the following reasons:

• Creating multiple virtual-8086 tasks. Each task ~ust map the lower megabyte of lin­
. ear addresses to different physical locations.

• Emulating the address wraparound which occurs at 1 megabyte. With members of the
8086 family, it is possible to specify addresses larger than 1 megabyte. For example,
with a selector value of OFFFFH and an offset of OFFFFH, the effective address
would be lOFFEFH (1 megabyte plus 65519 bytes). The 8086 processor, which can
form addresses only up to 20 bits long, truncates the high-order bit, thereby "wrap­
ping" this address to OFFEFH. The Intel486 processor, however, does not truncate
such an address. If any 8086 processor programs depend on address wraparound, the
same effect can be achieved in a virtual-8086 task by mapping linear addresses
between 100000H and 1l0000H and linear addresses between 0 and 10000H to the
same physical addresses.

• Creating a virtual address space larger than the physical address space.

• Snaring 8086 operating system or ROM code which.is common to' several 8086 pro­
grams running in multitasking .

• ' Redirecting or trapping references to memory-mapped I/O devices.

23-4

InteL VIRTUAL·SOS6 MODE

23.2.2 Protection within a Virtual-BOB6 Task

Protection is not enforced between the segments of an 8086 program. To protect the
system software running in a virtual-8086 task from the 8086 application program, soft­
ware designers may follow either of these approaches:

• Reserve the first megabyte (plus 64K bytes) of each task's linear address space for the
8086 processor program. An 8086 processor task cannot generate addresses outside
this range.

• Use the U/S bit of page-table entries to protect the virtual-machine monitor and
other system software in each virtual-8086 task's space. When the processor is in
virtual-8086 mode, the CPL is 3 (least privileged). Therefore, an 8086 processor pro­
gram has only user privileges. If the pages of the virtual-machine monitor have super­
visor privilege, they cannot be accessed by the 8086 program.

23.3 ENTERING AND LEAVING VIRTUAL-BOB6 Mode

Figure 23-2 summarizes the ways to enter and leave an 8086 program. Virtual-8086
mode is entered by setting the VM flag. There are two ways to do this:

1. A task switch to an Intel486 processor task loads the image of the EFLAGS register
from the new TSS. The TSS of the new task must be an Intel486 CPU TSS, not an
80286 TSS, because the 80286 TSS does not load the high word of the EFLAGS
register, which contains the VM flag. A set VM flag in the new contents of the
EFLAGS register indicates that the new task is executing 8086 instructions; there­
fore, while loading the segment registers from the TSS, the Intel486 processor forms
base addresses in the 8086 style.

2. An IRET instruction from a procedure of an Intel486 CPU task loads the EFLAGS
register from the stack. A set VM flag indicates the procedure to which control is
being returned to be an 8086 procedure. The CPL at the time the IRET instruction
is executed must be 0, otherwise the processor does not change the state of the VM
flag.

MODE TRANSITION DIAGRAM

TASK SWITCH
ORIRET

INTERRUPT, EXCEPTION

IRET

c.....;:=-:..:.=..:.~ OTHER i486N CPU TASKS I-+"'-!!..!.!.~-'

(PROTECTED MODE)

Figure 23·2. Entering and Leaving Virtual·SOS6 Mode

23-5

240486;23-2

intel® VIRTUAL-SOSS MODE

When a task switch is used to enter virtual-8086 mode, the segment registers are loaded
from a TSS. But when an IRET instruction is used to set the VM flag, the segment
registers keep the contents loaded during protected mode. Software should then reload
these registers with segment selectors appropriate for virtual-8086 mode.

The processor leaves virtual-8086 mode when an interrupt or exception occurs. There
are two cases:

1. The interrupt or exception causes a task switch. A task switch from a virtual-8086
task to any other task loads the EFLAGS register from the TSS of the new task. If
the new TSS is an Intel486 TSS and the VM flag in the new contents of the
EFLAGS register is clear or if the new TSS is an 80286 TSS, the processor clears the
VM flag of the EFLAGS register, loads the segment registers from the new TSS
using Intel486 CPU-style address formation, and begins executing the instructions of
the new task in Intel486 CPU protected mode.

2. The interrupt or exception calls a privilege-level 0 procedure (most privileged). The
processor stores the current contents of the EFLAGS register on the stack, then
clears the VM flag. The interrupt or exception handler, therefore, runs as "native"
Intel486 CPU protected-mode code. If an interrupt or exception calls a procedure in
a conforming segment or in a segment at a privilege level other than 0 (most privi­
leged), the processor generates a general-protection exception; the error code is the
selector of the code segment to which a call was attempted.

System software does not change the state oUhe VM flag directly, but instead changes
states in the image of the EFLAGS register stored on the stack or in the TSS. The
virtual-8086 monitor sets the VM flag in the EFLAGS image on the stack or in the TSS
when first creating a virtual-8086 task. Exception and interrupt handlers can examine the
VM flag on the stack. If the interrupted procedure was running in virtual-8086 mode, the
handler may need to call the virtual-8086 monitor.

23.3.1 Transitions Through Task Switches

A task switch to or from a virtual-8086 task may come from any of three causes:

1. An interrupt which calls a task gate.

2. An action of the scheduler of the Intel486 CPU operating system.

3. Executing an IRET instruction when the NT flag is set.

In any of these cases, the processor changes the VM flag in the EFLAGS register
according to the image in the new TSS. If the new TSS is an 80286 TSS, the upper word
of the EFLAGS register is not in the TSS; the processor clears the VM flag in this case.
The processor updates the VM flag prior to loading the segment registers from their
images in the new TSS. The new setting of the VM flag determines whether the proces­
sor interprets the new segment-register images as 8086 selectors or 80286 and Intel486
CPU selectors.

23-6

VIRTUAL-SOS6 MODE

23.3.2 Transitions Through Trap Gates and Interrupt Gates

The Intel486 processor leaves virtual-8086 mode as the result of an exception or inter­
rupt which calls a trap or interrupt gate. The exception or interrupt handler returns to
the 8086 program by executing an IRET instruction.

Because it was designed to run on an 8086 processor, an 8086 program in a virtual-8086
task will have an 8086-style interrupt table, which starts at linear address O. However, the
Intel486 processor does not use this table directly. For all exceptions and interrupts
which occur virtual-8086 mode, the processor calls handlers through the lOT. The lOT
entry for an interrupt or exception in a virtual-8086 task must contain either:

o A task gate.

• An Intel486 CPU trap gate (descriptor type 14) or Intel486 CPU interrupt gate
(descriptor type 15), which must point to a nonconforming, privilege-level 0 (most
privileged), code segment.

Interrupts and exceptions which call Intel486 CPU trap or interrupt gates use privilege­
level O. The contents of the segment registers are stored on the stack for this privilege
level. Figure 23-3 shows the format of this stack after an exception or interrupt which
occurs while a virtual-8086 task is running an 8086 program.

WITHOUT ERROR CODE

UNUSED

OLD GS

OLD FS

OLD DS

OLD ES

OLD SS

OLD ESP

OLD EFLAGS

OLD CS

OLD EIP

-ESP FROM
TSS

--NEW ESP

WITH ERROR CODE

UNUSED

OLD GS

OLD FS

OLD DS

OLD ES

OLD SS

OLD ESP

OLD EFLAGS

OLD CS

OLD EIP

ERROR CODE

-ESP FROM
TSS

-NEW ESP

240486;23-3

Figure 23-3. Privilege Level 0 Stack After Interrupt in Virtual-SOS6 Mode

23-7

VIRTUAL-BOB6 MODE

After the processor saves the 8086 segment registers on the stack for privilege level 0, it
clears the segment registers before running the handler procedure. This lets the inter­
rupt handler safely save and restore the DS, ES, FS, and GS registers as though they
were Intel486 CPU selectors. Interrupt handlers, which may be called in the context of
either a regular task or a virtual-8086 task, can use the same code sequences for saving
and restoring the registers for any task. Clearing these registers before execution of the
IRET instruction does not cause a trap in the interrupt handler. Interrupt procedures
which expect values in the segmerit registers or which return values in the segment
registers must use the register images saved on the stack for privilege level O. Interrupt
handlers which need to know whether the interrupt occurred in virtual-8086 mode can
examine the VM flag in the stored contents of the EFLAGS register. .

An interrupt handler passes control to the virtual-8086 monitor if the VM flag is set in
the EFLAGS image stored on the stack and the interrupt or exception is one which the
monitor needs to handle. The virtual-8086 monitor may either:

o Handle the interrupt within the virtual-8086 monitor.

o Call the 8086 program's interrupt handler.

Sending an interrupt or exception back to the 8086 program involves the following steps:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure.

2. Store the state of the 8086 program on the privilege-level 3 stack (least privileged).

3. Change the return link on the privilege-level 3 stack to point to the privilege-level 3
handler procedure ..

4. Execute an IRET instruction to pass control to the handler.

5. When the IRET instruction from the privilege-level 3 handler again calls the virtual-
8086 monitor, restore the return link on the privilege-level a stack to point to the
original, interrupted, privilege-level 3 procedure.

6. Execute an IRET instruction to pass control back to the interrupted procedure.

23.4 ADDITIONAL SENSITIVE INSTRUCTIONS

When the Intel486 processor is running in virtual-8086 mode, the PUSHF, POPF, INT n
and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS instruc­
tions, which are sensitive to IOPL in protected mode, are not sensitive in virtual-8086
mode. Following is a complete list of instructions which are sensitive in virtual-8086
mode:

eLI
STI
PUSHF
POPF
INTn
IRET

- Clear interrupt-Eimble Flag
- Set Interrupt-Enable Flag
- Push Flags
- Pop Flags
- Software Interrupt
- Interrupt Return

23-8

VIRTUAL-8086 MODE

The CPL is always 3 while running in virtual-8086 mode; if the 10PL is less than 3, an
attempt to use the instructions listed above will trigger a general-protection exception.
These instructions are sensitive to the 10PL to give the virtual-8086 monitor a chance to
emulate the facilities they affect.

23.4.1 IEmul@'i:ing 31OS6 Oper@iiUlg Sys'~em Calls

The INT n instruction is sensitive to 10PL so a virtual-8086 monitor can intercept calls
to the 8086 operating system. Many 8086 operating systems are called by pushing param­
eters onto the stack, then executing an INT n instruction. If the 10PL is less than 3,
INT n instructions are intercepted by the virtual-8086 monitor. The virtual-8086 monitor
then can emulate the function of the 8086 operating system or send the interrupt back to
the 8086 operating system.

When the Intel486 processor is running an 8086 program in a virtual-8086 task, the
PUSHF, POPF, and IRET instructions are sensitive to the 10PL. This lets the virtual-
8086 monitor protect the interrupt-enable flag (IF). Other instructions which affect the
IF flag (such as the STI and CLI instructions) are sensitive to the 10PL in both 8086 and
Intel486 CPU programs.

Many 8086 programs written for non-multitasking systems set and clear the IF flag to
control interrupts. This may cause problems in a multitasking environment. If the 10PL
is less than 3, all instructions which change or test the IF flag generate an exception. The
virtual-8086 monitor then can control the IF flag in a manner compatible with the
Intel486 CPU environment and transparent to 8086 programs.

23.5 VmmJAl ~/O

Many 8086 programs written for non-multitasking systems directly access I/O ports. This
may cause problems in a multitasking environment. If more than one program accesses
the same port, they may interfere with each other. Most multitasking systems require
application programs to access I/O ports through the operating system. This results in
simplified, centralized control.

The Intel486 processor provides I/O protection for creating I/O which is compatible with
the Intel486 CPU environment and transparent to 8086 programs. Designers may take
any of several possible approaches to protecting I/O ports:

o Protect the I/O address space and generate exceptions for all attempts to perform I/O
directly.

o Let the 8086 processor program perform I/O directly.

o Generate exceptions on attempts to access specific I/O ports.

o Generate exceptions on attempts to access specific memory-mapped I/O ports.

23-9

infel~ VIRTUAL-SOSS MODE

The method of controlling access to I/O ports depends upon whether they are 1/0-
mapped or memory-mapped.

23.5.1 I/O-Mapped I/O

The I/O address space in virtual-8086 mode differs from protected mode only because
the 10PL is not checked. Only the I/O permission bit map is checked when virtual-8086
tasks access the I/O address space.

The I/O permission bit map can be used to generate exceptions on attempts to access
specific I/O addresses. The I/O permission bit map of each virtual-8086 task determines
which I/O addresses generate exceptions for that task. Because each task may have a
different I/O permission bit map, the addresses which generate exceptions for one task
may be different from the addresses for another task. See Chapter 8 for more informa­
tion about the I/O permission bit map.

23.5.2 Memory-Mapped 1/0

In systems which use memory-mapped I/O, the paging facilities of the Intel486 processor
can be used to generate exceptions for attempts to access I/O ports. The virtual-8086
monitor may use paging to control memory-mapped I/O in these ways:

• . Map part of the linear address space of each task which needs to perform I/O to the
physical address space where I/O ports are placed. By putting the I/O ports at differ­
ent addresses (in different pages), the paging mechanism can enforce isolation·
between tasks.

• Map part of the linear address space to pages which are not-present. This generates
an exception whenever a task attempts to perform I/O to those pages. System soft­
ware then can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system interven­
tion under some conditions. In these cases, it may be possible to generate an exception
for only the first attempt to access I/O. The system software then may determine
whether a program can be given exclusive control of I/O temporarily, the protection of
the I/O space may be lifted, and the program allowed to run at full speed.

23.5.3 Special I/O Buffers

Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be
emulated using page mapping. The linear space for the buffer can be mapped to a
different physical space for each virtual-8086 task. The virtual-8086 monitor then can
control which virtual buffer to copy onto the real buffer in the physical address space.

23-10

. int:eL VIRTUAL-SOS6 MODE

23.6 DIFFERENCES FROM 8086 CPU

In general, virtual-8086 mode will run software written for the 8086, 8088, 80186, and
80188 processors. The following list shows the minor differences between the 8086 pro­
cessor and the virtual-8086 mode of the Intel486 processor.

1. Instruction clock counts.

The Intel486 processor takes fewer clocks for most instructions than the 8086 pro­
cessor. The areas most likely to be affected are:

• Delays required by I/O devices between I/O operations.

• Assumed delays with 8086 processor operating in parallel with an 8087.

2. Divide exceptions point to the DIV instruction.

Divide exceptions on the Intel486 processor always leave the saved CS:IP value
pointing to the instruction which failed. On the 8086 processor, the CS:IP value
points to the next instruction.

3. Undefined 8086 processor opcodes.

Opcodes which were not defined for the 8086 processor generate an invalid-opcode
or execute as one of the new instructions defined for the Intel486 processor.

4. Value written by PUSH SP.

The Intel486 processor pushes a different value on the stack for PUSH SP than the
8086 processor. The Intel486 processor pushes the value in the SP register before it
is decremented as part of the push operation; the 8086 processor pushes the value of
the SP register after it is decremented. If the pushed value is important, replace
PUSH SP instructions with the following three instructions:

PUSH BP
MOV BP, SP
XCHG BP, [BPl

This code functions as the 8086 PUSH SP instruction on the Intel486 processor.

5. Shift or rotate by more than 31 bits.

The Intel486 processor masks all shift and rotate counts to the lowest five bits. This
limits the count to a maximum of 31 bit positions, thereby limiting the time that
interrupt response is delayed while the instruction executes.

6. Redundant prefixes.

The Intel486 processor limits instructions to 15 bytes. The only way to violate this
limit is with redundant prefixes before an instruction. A general-protection excep­
tion is generated if the limit on instruction length is violated. The 8086 processor has
no instruction length limit.

7. Operand crossing offset 0 or 65,535.

On the 8086 processor, an attempt to access a memory operand which crosses offset
65,535 (e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when the
contents of the SP register are 1) causes the offset to wrap around modulo 65,536.
The Intel486 processor generates an exception in these cases, a general-protection

23-11

intel® VIRTUAL-SOSS MODE

exception if the segment is a data segment (i.e., if the CS, DS, ES, FS, or GS register
is being used to address the segment), or a stack exception if the segment is a stack

. segment (i.e., if the SS register is being used).

8. Sequential execution across offset 65,535.

On the 8086 processor, if sequential execution of instructions proceeds past offset
65,535, the processor fetches the next instruction byte from offset 0 of the same
segment. On the Intel486 processor, the processor generates a general-protection
exception.

9. LOCK is restricted to certain instructions.

The LOCK prefix and its output signal should only be used to prevent other bus
masters from interrupting a data movement operation. The LOCK prefix only may
be used with the following Intel486 CPU instructions when they modify memory. An
invalid-opcode exception results from using LOCK before any other instruction, or
with these instructions when no write operation is made to memory.

c> Bit test and change: the BTS, BTR, and. BTC instructions .

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is
needed for the XCHG instruction).

o One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions .

• Two-operand arithmetic and logical: the ADD, ADC, SUB,SBB, AND, OR, and
XOR instructions.

10. Single-stepping external interrupt handlers.

The priority of the Intel486 processor single-step exception is different from that of
the 8086 processor. This change prevents an external interrupt handler from being
single-stepped if the interrupt occurs while a program is being single-stepped. The
Intel486 processor single-step exception has higher priority than any external inter­
rupt. The Intel486 processor will still single-step through an interrupt handler called
by the INT instruction or by an exception.

11. IDlY exceptions for quotients of 80H or 8000H.

The Intel486 proces.sor can generate the largest negative number as a quotient from
the IDlY instruction. The 8086 processor generates a divide-error exception instead.

12. Flags in stack.

The contents of the EFLAGS register stored by the PUSHF instruction, by inter­
rupts, and by exceptions is different from that stored by the 8086 processor in bit
positions ·12 through 15. On the 8086 processor these bits are stored as though they
were set, but in virtual-8086 mode bit 15 is always clear, and bits 14 through 12 have
the last value loaded into them.

13 .. NMI interrupting NMI handlers.

After an NMI interrupt is accepted by the Intel486 processor, the NMI interrupt is
masked until an IRET instruction is executed.

23-12

intel® VIRTUAL-SOS6 MODE

14. Floating-point errors call the floating-point-error exception.

Floating-point exceptions on the Intel486 processor call the floating-point error
exception handler. If an 8086 processor uses another exception for the 8087 inter­
rupt, both exception vectors should call the floating-point error exception handler.
The Intel486 processor has signals which, with the addition of external logic, support
user-defined error reporting for emulation of the interrupt mechanism used in many
personal computers. .

15. Numeric exception handlers should allow prefixes.

On the Intel486 processor, the value of the CS and IP registers .saved for floating­
point exceptions points at any prefixes which come before the ESC instruction. On
the 8086 processor, the saved CS:IP points to the ESC instruction.

16. Floating-Point Unit does not use interrupt controller.

The floating-point error signal to the Intel486 processor does not pass through an
interrupt controller (an INT signal from 8087 coprocessor does). Some instructions
in a coprocessor-error exception handler may need to be deleted if they use the
interrupt controller. The Intel486 processor has signals which, with the addition of
external logic, support user-defined error reporting for emulation of the interrupt
mechan'ism used in many personal computers.

17. Response to bus hold.

Unlike the 8086 and 286 processors, the Intel486 processor responds to requests for
control of the bus from other potential bus masters, such as DMA controllers,
between transfers of parts of an unaligned operand, such as two words which form a
doubleword.

18. CPL is 3 in virtual-8086 mode.

The 8086 processor does not support protection, so it has no CPL. Virtual-8086
mode uses a CPL of 3, which prevents the execution of privileged instructions.
These are:

• LIDT instruction

• LGDT instruction

• LMSW instruction

• special forms of the MOV instruction for loading and storing the control registers

• CLTS instruction

• HLT instruction

• INVD instruction

• WBINVD instruction

• INVLPG instruction
These instructions may be executed while the processor is in real-address mode
following reset initialization. They allow system data structures, such as descriptor
tables, to be set up before entering protected mode. Virtual-8086 mode is entered
from protected mode, so it has no need for these instructions.

19. Denormal exception handling is different. See Section 16.2.4.

23-13

VIRTUAL-SOS6 MODE

23.7 DIFFERENCES FROM 286 CPU IN REAL-ADDRESS MODE

The differences between virtual-8086 mode and 286 real-address mode affect the inter­
face. between applications and the operating system. The application . runs at privilege
level 3 (user mode), so all attempts to use privilege-protected instructions and architec­
tural features generate calls to the virtual-machine monitor. The monitor examines these
calls and emulates them.

23.7.1 Privilege Level

Programs running in virtual-8086 mode have a privilege level of 3 (user mode), which
prevents the execution of privileged instructions. These are:

• LIDT instruction

• LGDT instruction

• LMSW instruction

• special forms of the MOV instruction for loading and storing the control registers

• CLTS instruction

• HL T instruction

• INVD instruction

• WBINVD instruction

• INVLPG instruction

Virtual-8086 mode is entered from protected mode, so it has no need for these instruc­
tions. These instructions can be executed in real-address mode.

23.7.2 Bus Lock

The 286 processor implements the bus lock function differently than the Intel386 DX
and Intel486 processors. This fact may or may not be apparent to 8086 programs,
depending on how the virtual-8086 monitor handles the LOCK prefix. Instructions with
the LOCK prefix are sensitive to the IOPL; software designers can choose to emulate its
function. If, however, 8086 programs are allowed to execute LOCK directly, programs
which use forms of memory locking specific to the 8086 processor may not run properly
when run on the Intel486 processor.

The LOCK prefix and its bus signal only should be· used to prevent other bus masters
from interrupting a data movement operation. The LOCK prefix only may be used with
the following Intel486 CPU· instructions when they modify memory. An invalid-opcode

23-14

VIRTUAL-8086 MODE

exception results from using the LOCK prefix before any other instruction, or with these
instructions when no write operation is made to memory (i.e., when the destination
operand is in a register).

o Bit test and change: the BTS, BTR, and BTC instructions.

o Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is
needed for the XCHG instruction).

o One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions.

o Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and
XOR instructions.

A locked instruction is guaranteed to lock only the area of memOlY defined by the
destination operand, but may lock a larger memory area. For example, typical 8086 and
80286 configurations lock the entire physical memory space.

Unlike the 8086 and 286 processors, the Intel386 and Intel486 processors respond to
requests for control of the bus from other potential bus masters, such as DMA control­
lers, between transfers of parts of an unaligned operand, such as two words which form
a doubleword.

23.8 DIFFERENCES FROM Intel386 0)(AND S){ CPUs

Real-address mode and virtual-8086 mode are implemented in the same way on the
Intel486 processor as on the Intel386 processors. For maximum performance, programs
ported to the Intel486 processor should be run with the cache enabled.

23·15

Mixing 16-Bit
and 32-Bit Code

24

CHAPTER 24
Mi}(~NG i 6Q ranr Au~D 32 Q BIT CODE

The Intel486 processor running in protected mode, like the Intel386 processors is a
complete 32-bit architecture, but it supports programs written for the 16-bit architecture
of earlier Intel processors. There are three levels of this support:

1. Running 8086 and 80286 code with complete compatibility.

2. Mixing 16-bit modules with 32-bit modules.

3. Mixing 16-bit and 32-bit addresses and data within one module.

The first level is discussed in Chapter 21, Chapter 22, and Chapter 23. This chapter
shows how 16-bit and 32-bit modules can cooperate with one another, and how one
module can use both 16-bit and 32-bit operands and addressing.

The Intd486 processor functions most efficiently when it is possible to distinguish
between pure 16-bit modules and pure 32-bit modules. A pure 16-bit module has these
characteristics:

o All segments occupy 64K bytes or less.

o Data items are either 8 bits or 16 bits wide.

o Pointers to code and data have 16-bit offsets.

o Control is transferred only among 16-bit segments.

A pure 32-bit module has these characteristics:

o Segments may occupy more than 64K bytes (0 bytes to 4 gigabytes).

o Data items are either 8 bits or 32 bits wide.

o Pointers to code and data have 32-bit offsets.

o Control is transferred only among 32-bit segments.

A program written for 16-bit processor would be pure 16-bit code. A new program
written for the protected mode of the Intel486 processor would be pure 32-bit code. As
applications move from 16-bit processors to the 32-bit Intel486 processor, there will be
cases where 16-bit and 32-bit code will need to be mixed. Reasons for mixing code are:

.. Modules will be converted one-by-one from 16-bit environments to 32-bit
environments.

o Older, 16-bit compilers and software-development tools will be used in the new 32-bit
operating environment until new 32-bit tools are available.

o The source code of 16-bit modules is not available for modification.

o The specific data structures used by a given module are fixed at 16-bit word size.

o The native word size of the source language is 16 bits.

24-1

inteL MIXING 16-BIT AND 32-BIT CODE

24.1 USING 16-81T AND 32-81T ENVIRONMENTS

The features of the architecture which permit the Intel486 processor to mix 16-bit and
32-bit address and operand size include:

• The D-bit (default bit) of code-segment descriptors, which determines the default
choice of operand-size and address-size for the instructions of a code segment. (In
real-address mode and virtual-8086 mode, which do not use descriptors, the default is
16 bits.) A code segment whose D-bit is set is a 32-bit segment; a code segment whose
D-bit is clear is a 16-bit segment. The D-bit eliminates the need to put the operand
size and address size in instructions when all instructions use operands and effective
addresses of the same size.

• Instruction prefixes to override the default choice of operand size and address size
(available in protected mode as well as in real-address mode and virtual-8086 mode).

• Separate 32-bit and 16-bit gates for intersegment control transfers (including call
gates, interrupt gates, and trap gates). The operand size for the control transfer is
determined by the type of gate, not by the D-bit or prefix of the transfer instruction.

• Registers which can be used both for 16-bit and 32-bit operands and effective-address
calculations.

• The B bit (Big bit) of the stack segment descriptor, which specifies the size of stack
pointer (the 32-bit ESP register or the 16-bit SP register) used by the processor for
implicit stack references. The B bit for all data descriptors also controls upper ADD
range for expanded down.

24.2 MIXING 16-81T AND 32-81T OPERATIONS

The Intel486 processor has two instruction prefixes which allow mixing of 32-bit and
16-bit operations within one segment:

• The operand-size prefix (66H)

<II The address-size prefix (67H)

These prefixes reverse the default size selected by the Default bit. For example, the
processor can interpret the MOV mem, reg instruction in any of four ways:

• In a 32-bit segment:

1. Moves 32 bits from a 32-bit register to memory using a 32-bit effective address.

2. If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to
memory using a 32-bit effective address.

3. If preceded by an address-size prefix, moves 32 bits from a 32~bit register to
memory using a 16-bit effective address.

4. If preceded by both an address-size prefix and an operand-size prefix, moves
16 bits from a 16-bit register to memory using a 16-bit effective address.

24-2

infel® MIXING 16-BIT AND 32-BIT CODE

• In a 16-bit segment:

1. Moves 16 bits from a 16-bit register to memory using a 16-bit effective address.

2. If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to
memory using a 16-bit effective address.

3. If preceded by an address-size prefix, moves 16 bits from .a 16-bit register to
memory using a 32-bit effective address.

4. If preceded by both an address-size prefix and an operand-size prefix, moves
32 bits from a 32-bit register to memory using a 32-bit effective address.

These examples show that any instruction can generate any combination of operand size
and address size regardless of whether the instruction is in a 16- or 32-bit segment. The
choice of the 16- or 32-bit default for a code segment is based upon these criteria:

1. The need to address instructions or data in segments which are larger than
64K bytes.

2. The predominant size of operands.

3. The addressing modes desired.

The Default bit should be given a setting which allows the predominant size of operands
to be accessed without operand-size prefixes.

24.3 SHARING DATA AMONG MIXED·SIZE CODE SEGMENTS

Because the choice of operand size and address size .is specified in code· segments and
their descriptors, data segments can be shared freely among both 16-bit and 32-bit code
segments. The only limitation is imposed by pointers with 16-bit offsets, which only can
point to the first 64K bytes of a segment. When a data segment with more than 64K
bytes is to be shared among 16- and 32-bit segments, the data which is to be accessed by
the 16-bit segments must be located within the first 64K bytes.

A stack which spans less than 64K bytes can be shared by both 16- and 32-bit code
segments. This class of stacks includes:

o Stacks in expand-up segments with the Granularity and Big bits clear.

" Stacks in expand-down segments with the Granularity and Big bits clear.

• Stacks in expand-up segments with the Granularity bit set and the Big bit clear, in
which the stack is contained completely within the lower 64K bytes. (Offsets greater
than OFFFFH can be used for data, other than the stack, which is not shared.)

The B-bit ofa stack segment cannot, in general, be used to change the size of stack used
by a 16-bit code segment. The size of stack pointer used by the processor for implicit
stack references is controlled by the B~bit of the data-segment descriptor for the stack.
Implicit references are those caused by interrupts, exceptions, and instructions such as
the PUSH, POP, CALL, and RET instructions. Although it seems like the B bit could be
used to increase the stack segment for 16-bit programs beyond 64K bytes, this may not

24-3

int:et MIXING 16-BIT AND 32-BIT CODE

be done. The B-bit does not control explicit stack references, such as accesses to param­
eters or local variables. A 16-bit code segment can use a "big" stack only if the code is
modified so that all explicit references to the stack are preceded by the address-size
prefix,causing those references to use 32-bit addressing.

In big, expand-down segments (the Granularity, Big, and Expand-down bits set), all
offsets are greater than 64K, therefore 16-bit code cannot use this kind of stack segment
unless the code segment is modified to use 32-bit addressing. (See Chapter 6 for more
information about the G, B, and E bits.)

24.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE
SEGMENTS

When transferring control among procedures in 16-bit and 32-bit code segments, pro­
grammers must be aware of three points:

• Addressing limitations imposed by pointers with 16-bit offsets.

• Matching of operand-size attribute in effect for the CALL/RET instruction pair and
. the Interrupt/IRET pair for managing the stack correctly.

• Translation of parameters, especially pointer parameters.

Clearly, 16-bit effective addresses cannot be used to address data or code located beyond
OFFFFH in a 32-bit segment, nor can large 32-bit parameters be squeezed into a 16-bit
word; however, except for these obvious limits, most interface problems between 16-bit
and 32-bit modules can be solved. Some solutions involve inserting interface code
between modules.'· .

24.4.1 Size of Code-Segment Pointer'

For control-transfer instructions which use a pointer to identify the next instruction (Le.,
those which do not use gates), the size of the offset portion of the pointer is determined
by the operand-size attribute. The implications of the use of two different sizes of code­
segment pointer are:

• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is
always possible .using a 32-bit operand size.

• A JMP, CALL, or RET instruction from'a 16-bit segment using a 16-bit operand size
: cannot address a destination in a 32-bit segment if the address of the destination is

greater than OFFFFH.

An interface- procedure can provide a mechanism for transfers from 16-bit segments to
destinations in ·32-bit segments beyond 64K. The requirements for this kind of interface
procedure are discussed later in this chapter.

24·4

in~® MIXING 16~BIT AND 32-BIT CODE

24.4.2 Stack Management for Control Transfers

Because stack management is different for 16-bit CALL and RET instructions than for
32-bit CALL and RET instructions, the operand size of the RET instruction must match
the CALL instruction. (See Figure 24-1.) A 16-bit CALL instruction pushes the contents
of the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register.
The matching RET instruction also must use a 16-bit operand size to pop these 16-bit
values from the stack into the 16-bit registers. A 32-bit CALL instruction pushes the
contents of the 32-bit EIP register and (for interlevel calls) the 32-bit ESP register. The
matching RET instruction also must use a 32-bit operand size to pop these 32-bit values
from the stack into the 32-bit registers. If the two parts of a CALL/RET instruction pair
do not have matching operand sizes, the stack will not be managed correctly and the
values of the instruction pointer and stack pointer will not be restored to correct values.

While executing 32-bit code, if a call to 16-bit code at a more privileged level (i.e.,
dpl<cpl) is made via a 286 processor 16-bit call gate, then the upper 16-bits of the ESP
register may be unreliable upon returning to the 32-bit code (i.e., after executing a RET
in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in segments which
have D bits with the same values (i.e., both have 32-bit defaults or both have 16-bit
defaults), the default settings may be used. When the CALL instruction and its matching
RET instruction are in segments which have different D-bit values, an operand size
prefix must be used.

WITHOUT PRIVILEGE TRANSITION

o 0
I F
R
E E
C X
T P
I A
o N
N S

H

AFTER 16·BIT CALL

.31 .0

AFTER 32·BIT CALL
.31 .0

SP

WITH PRIVILEGE TRANSITION

o 0 AFTER 16·BIT CALL
I F 31 0
R
E E
C X
T P
I A
o N
N S

!~

SS SP

PARM2 PARM1

CS IP -
AFTER 32·BIT CALL
31 0

SS

ESP

ESP

Figure 24-1. Stack After Far 16- and 32-Bit Calls

24-5

240486i24·1

infel® MIXING 16-BIT AND 32-BIT CODE

There are three ways for a 16-bit procedure to make a 32-bit call:

1. Use a 16-bit call to a 32-bit interface procedure. The interface procedure uses a
32-bit call to the intended destination.

2. Make the call through a 32-bit call gate.

3. Modify the 16-bit procedure, inserting an operand-size prefix before the call, to
change it to a 32-bit call. .

Likewise, there are three ways to cause a 32-bit procedure to make a 16-bit call:

1 .. Use a 32-bit call to a 32-bit interface procedure. The interface procedure uses a
16-bit call to the intended destination. .

2. Make the call through a 16-bit call gate.

3. Modify the 32-bit procedure, inserting an operand-size prefix before the call,
thereby changing it to a 16-bit call. (Be certain that the return offset does not exceed
OFFFFH.) .

Programmers can use any of the preceding methods to make a CALL instruction in a
16-bit segment match the corresponding RET instruction in a 32-bit segment, or to make
a CALL instruction in a 32-bit segment match the corresponding RET instruction in a
16-bit segment.

24.4.2.1 CONTROLLING THE OPERAND SIZE FOR A CALL

The operand-size attribute in effect for the CALL instruction is specified by the D bit
for the segment containing the destination and by any operand-size instruction prefix.

When the selector of the pointer referenced by. a CALL instruction selects a gate
descriptor, the type of call is determined by the type of call gate. A call through a 286
call gate (descriptor type 4) has a 16-bit operand-size attribute; a call through an
Intel386/Intel486 CPU call gate (descriptor type 12) has a 32-bit operand-size attribute.
The offset to the destination is taken from the gate descriptor; therefore, even a 16-bit
procedure can calla procedure located more than 64K bytes from the base of a 32-bit
segment, because a 32-bit call gate contains a 32-bit offset.

An unmodified 16-bit code segment which has run successfully on an 8086 processor or
in real-mode on a 286 processor will have a D-bit which is clear and will not use
operand-size override prefixes; therefore, it will use 16-bit versions of the CALL instruc­
tion. The only modification needed to make a 16-bit procedure produce a 32-bit call is to
relink the call to an Intel386/Intel486 CPU call gate.

24.4.2.2 CHANGING SIZE OF A CALL

When adding 3:2-bit gates to 16-bit procedures, it is important to considerthe numberof
parameters. The count field of the gate descriptor specifies the size of the parameter
string to copy from the current stack to the stack of the more privileged procedure. The

24-6

MIXING 16-BIT AND 32-BIT CODE

count field of a 16-bit gate specifies the number of words to be copied, whereas the count
field of a 32-bit gate specifies the number of doublewords to be copied; therefore, the
16-bit procedure must use an even number of words as parameters.

24.4.3 Interrupt Control Transfers

With a control transfer caused by an exception or interrupt, a gate is used. The operand­
size attribute for the interrupt is determined by the gate descriptor in the interrupt
descriptor table (IDT).

An Intel386/Intel486 CPU interrupt or trap gate (descriptor type 14 or 15) to a 32-bit
interrupt handler can be used to interrupt either 32-bit or 16-bit procedures. However,
sometimes it is not practical to permit an interrupt or exception to call a 16-bit handler
when 32-bit code is running, because a 16-bit interrupt procedure has a return offset of
only 16 bits saved on its stack. If the 32-bit procedure is running at an address beyond
OFFFFH, the 16-bit interrupt procedure cannot provide the return address.

24.4.4 Parameter Translation

When segment offsets or pointers (which contain segment offsets) are passed as param­
eters between 16-bit and 32-bit procedures, some translation is required. If a 32-bit
procedure passes a pointer to data located beyond 64K to a 16-bit procedure, the 16-bit
procedure cannot use it. Except for this limitation, interface code can perform any for­
mat conversion between 32-bit and 16-bit pointers which may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require translation
between 32-bit and 16-bit formats. The form of the translation is application-dependent.

24.4.5 The Interface Procedure

Placing interface code between 32-bit and 16-bit procedures can be the solution to sev­
eral interface problems:

o Allowing procedures in 16-bit segments to call procedures with offsets greater than
OFFFFH in 32-bit segments.

o Matching operand size between CALL and RET instructions.

o Translating parameters (data).

The interface code is simplified where these restrictions are followed.

o Interface code -resides in a code segment whose D-bit is set, which indicates a default
operand size of 32-bits.

o All procedures which may be called by 16-bit procedures have offsets which are not
greater than OFFFFH.

o All return addresses saved by 16-bit procedures also have offsets not greater than
OFFFFH.

24-7

MIXING 16-81T AND 32-81T CODE

The interface code becomes more complex if any ofthese restrictions are violated. For
example, if a 16-bit procedure calls a 32-bit procedure with an entry. point beyond
OFFFFH, the interface code will have to provide the offset to the entry point. The
mapping between 16- and 32-bit addresses only is performed automatically when a call
gate is used, because the descriptor for a call gate contains a 32-bit address. When a call
gate is not used, the descriptor must provide the 32-bit address.

The interface code calls procedures in other segments. There may be two kinds of
interface:

o Where 16-bit procedures call 32-bit procedures. The interface code is called by 16-bit
CALL instructions and uses the operand-size prefix before RET instructions for per­
forming a 16-bit RET instruction. Calls to 32-bit segments are 32-bit CALL instruc­
tions (by default, because the D-bit is set), and the 32-bit. code returns with 32-bit
RET instructions. .

o Where 32-bit procedures call 16-bit procedures. The interface code is called by 32-bit
CALL instructions, and returns with 32-bit RET instructions (by default, because the
D-bit is set). CALL instructions to 16-bit procedures use the operand-size prefix;
16-bit procedures return with 16-bit RET instructions.

24-8

Compatibility with the 8087, 25
Intel287 and Intel387 Math
CoProcessors

CHAPTER 25
COMPATIBILITY WITH THE 8087,

Intel287 AND Intel387 MATH COPROCESSORS

This chapter addresses the issues that must be faced when transporting numerical soft­
ware to an Intel486 processor with integrated FPU from one of its predecessor systems.
To software, the Intel486 processor looks very much like an Intel386 CPU/lnte1387 math
coprocessor system. Software which runs on an Inte1386 CPU/Inte1387 NPX system,
whether it was originally created for the Intel386 CPU/lnte1387 or was transported from
a 286/Inte1287 or 8086/8087 system, will run with at most minor modifications on the
Intel486 processor. To transport code directly from a 286/Inte1287 or 8086/8087 system
to the Intel486 processor, certain additional issues must be addressed. Separate sections
of this chapter are devoted to the differences between the Intel486 processor and each
of its predecessors. .

25.1 DIFFERENCES FROM Intel386 CPU/lntel387 NPX SYSTEMS

This section 'summarizes those differences between the Intel386 CPU/lnte1387 NPX sys­
·tem and the Intel486 processor which may·affect numerical software.

1. Control Register Bits:

The ET (Extention Type) bit of the CRO control register is used in the Inte1386
processor to indicate whether the math coprocessor in the system is an Intel287
(ET = 0) or an Intel387 DX (ET = 1). This bit is not used by Intel486 processor
hardware. The ET bit is hardwired to "1."

The NE (Numeric Exception) bit of the CRO register is used in the Intel486 proces­
sor to determine whether. unmasked floating-point exceptions are reported inter­
nally via interrupt vector 16 (NE = 1) or through external interrupt (NE == 0). On
reset, the NE bit is initialized to 0, so software using the automatic internal error­
reporting mechanism must set this bit to 1.

As on the 286 and Intel386 processors, the MP (Monitor coProcessor) bit of the
CRO control register determines whether WAIT instructions trap when the context
of the FPU is different from that of the currently-executing task. If MP =:= 1 and
TS = 1, then a WAIT instruction will cause a Device Not Available fault (interrupt
vector 7). The MP bit is used on the 286 and Inte1386 microprocessors to support
the use of a WAIT instruction to wait on a <;levice other than a numeric coprocessor.
The device reports its status through the BUSY # pin. Since the Intel486 processor
does not have such a pin, the MP bit has no relevant use, and should be set to 1 for
normal operation.

2. Initialization and RESET:

Upon hardware RESET, the floating-point registers will remain unchanged unless
the Built-In Self-Test (BIST) is requested. When the BIST is requested, hardware
RESET has almost the same effect as the FINIT instruction; the only difference is
that FINIT leaves the stack registers unchanged, while hardware RESET with BIST
resets them to O.

25-1

inteL COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

Upon hardware RESET or FINIT, the Intel387 math coprocessor signals an error
condition. The Intel486 processor, like the Intel287 coprocessor, does not.

On the Intel486 processor, the FINIT instruction clears the error pointers (data and
instruction).

3. Exceptions:

On the Intel486 processor, an undefined ESC opcode will cause an Illegal Opcode
exception (interrupt vector 6). Undefined ESC opcodes, like legal ESC opcodes,
cause a Device Not Available exception (interrupt vector 7) when either the TS or
the EM bit of CRO is set. The Intel486 processor does not check for floating-point
error conditions on encountering an undefined ESC opcode.

A misaligned data operand will calise an alignment exception (interrupt vector 17)
in level 3 software, except for the stack portion of an FSA VE/FRSTOR operation.

On the Intel486 processor, a WAIT instruction will sometimes be executed as Nap.
This happens when the WAIT precedes an instruction which itself waits anywhere in
the course of its execution. In such a case, the report of a numeric exception may
come one instruction later on the Intel486 processor than on an Intel386 CPU/
Intel387 NPX system.

On the Intel486 processor, when the first half of an operand to be written is inside a
page or segment and the second half is outside, a memory fault can cause the first.
half to be stored without the second. In such cases, Intel386 CPU/lntel387 NPX
systems store nothing.

On the Intel486 processor, when a segment fault occurs in the middle of an
FLDENV operation, it can happen that part of the environment is loaded and part
not. In such cases, the FPU control word is left with a value of 007F H.

Interrupt 9 does not occur in the Intel486 processor. In cases where the Intel387
would cause interrupt 9, the Intel486 processor simply aborts the instruction. Some
care is necessary, however. Memory faults (especially page faults), if they occur in
FLDENV or FRSTOR while the operating system is performing a task switch, can
cause the floating-point environment to be lost. Intel strongly recommends that the
floating-point save area be the same page as the TSS.

4. Transcendental Instructions:

On the Intel486 processor, transcendental instructions can .be aborted at certain
checkpoints during execution if an INTR is pending. Transcendental instructions
should therefore be used only in an environment where INTRs are not expected to
come as close as 200 clocks apart.

25.2 DIFFERENCES FROM 286/lnte1287 SYSTEMS

This section summarizes the differences between Intel486 processor and Inte1386 CPU/
Intel387 math coprocessor systems on the one hand, and 286/Inte1287 and 8086/8087
systems on the other, and analyzes the impact of these differences on software that must
be transported from a 286/Inte1287 system to the Intel486 processor. Any migration
directly from the 8086/8087 must also take into account the additional issues addressed
in Section 25.3.

25-2

Intel", COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

25.2.1 Data Types and Exception Handling

Difference Description

Impact on Reason
Issue InteI486'" CPU/ for the

InteI387'" NPX Intel28T" /8087 Software Difference
Behavior CPU Behavior

NaN The Intel486 CPU/ The Inte1287/ Uninitialized IEEE Stan-
Intel387 NPX distin- 8087 CPU only memory loca- dard 754
guishes between generates one tions that contain compatibility.

. signaling NaNs and kind of NaN (the QNaNs should
quiet NaNs. The equivalent of a be changed to
Intel486 CPU/lntel387 quiet NaN) but SNaNs to cause
NPX only generates raises an invalid- the Intel486
quiet NaNs. An invalid- operation excep- CPU/lntel387
operation exception is tion upon NPX to fault
raised only upon encountering any when uninitial-
encountering a signal- kind of NaN. ized memory
ing NaN (except for locations are
FCOM, FIST, and referenced.
FBSTP which also
raise IE for quiet
NaNs).

Pseudozero, The Intel486 CPU/ The Inte1287/ None. The IEEE Stan-
Pseudo-NaN, Intel387 NPX neither 8087 CPU Intel486 CPU/ dard 754
Pseudoinfinity, generates nor sup- defines and sup- Intel387 DX does compatibility.
and Un normal . ports these formats; it ports special not generate
Formats raises an invalid- handling for these formats,

operation exception these formats. and therefore will
whenever it encoun- not encounter
ters them in an arith- them unless a
metic operation. programmer

deliberately
enters them.

Tag Word Bits The encoding in the The encoding for The exception IEEE Stan-
for Unsupported tag word for the pseudo-zero and handler may dard 754
Data Formats unsupported data for- unnormal is need to be compatibility.

mats mentioned in "valid" (type 00); changed if pro-
Section 25.2.1 is "spe- the others are grammers. use
cial data" (type 10). "special data" such data types.

(type 10).

Invalid-Operation No invalid-operation Upon encounter- None. Software Upgrade, to
Exception exception is raised ing a denormal on the.lnfel486 eliminate

upon encountering a in FSQRT, FDIV, CPU/lntel387 exception.
denormal in FSQRT, or FPREM or NPX will continue
FDIV, or FPREM or upon conversion to execute in
upon conversion to to BCD or to cases where the
BCD or to integer. The integer, the Inte1287/8087
operation proceeds by invalid-operation CPU would trap.
first normalizing the exception is
value. raised.

25-3

in1'el® COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

Difference Description

Impact on Reason.
Issue InteI486'" CPUI for the

InteI387'" NPX InteI287'" 18087 Software Difference
Behavior CPU Behavior

Denormal The denormal excep- The denormal The exception Performance
Exception tion is raised in tran- exception is not handler needs to enhance-

scendental instructions raised in tran- be changed only ment for nor-
and FXTRACT. scendental ifit gives special mal case.

instructions and treatment to dif-

: FXTRACT. ferent opcodes.

. Overflow Overflow exception Overflow excep~ . Overflow excep- IEEE Stan-
Exception masked. tion masked. tion masked. dard 754

If the rounding mode The Inte1287/ Under the most compatibility.

is set to chop (toward 8087 CPU does common round-
zero), the result is the not signal the ing modes, no
most positive or more overflow excep7 impact. If round-
negative number. tion when the ing is toward

masked zero (chop), a
response is not program on the
infinity; Le., it Intel486 CPU!
signals overflow Intel387 NPX
only when the produces under
rounding control overflow condi-
is not set to tions a result that
round to zero. If is different in the
rounding is set least significant
to chop (toward bit of the signifi-
zero), the result cand, compared
is positive or to the result on
negative infinity. the Intel287

CPU.

Overflow exception Overflow Overflow
not masked. exception not exception not

The preciSion excep- masked. masked.

tion is flagged. When The precision If the result is
the result is stored in exception is not stored on the
the stack,the signifi- flagged and the stack, a program
cand is rounded '. signficand is not on the Intel486
according to the preci- rounded. CPU/lntel387
sion control (PC) bit of NPX produces a
the control word or different result
according to the under overflow
opcode. conditions than

on the Inte1287/
8087 CPU. The
difference is
apparent only to

. the exception
handler.

25-4

intei ® COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

Difference Description

Impact on Reason
Issue InteI486'" CPU/ for the

Intel38T" NPX Intel28T" /8087 Software
Difference

Behavior CPU Behavior

Underflow Conditions for under- Conditions for Underflow IEEE Stan-
Exception flow. underflow. exception dard 754

Two related When the underflow When the under- masked. compatibility.

events contribute exception is masked, flow exception is No impact. The
to underflow: the underflow excep- masked and underflow excep-

1. The creation tion is signaled when rounding is tion occurs less

tiny result. A both the result is tiny toward zero, the often when

tiny number, and denormalization underflow excep- rounding is

because it is results in a loss of tion flag is raised toward zero.

so small, may accuracy. on tininess, Underflow
cause some Response to regardless of e)(ception not
other underflow. loss of accuracy. masl<ed.
exception When the underflow Response to A program on
later (such as exception is unmasked underflow. the Intel486
overflow upon and the instruction is When the under- CPU/lntel387
division). supposed to store the flow exception is NPX produces a

2. Loss of result on the stack, the not masked and different result
accuracy significand is rounded the destination is during underflow
during the to the appropriate pre- the stack, the conditions than
denormalization cision (according to signficand is not on the Inte1287/
of a tiny the precision control rounded but 8087 CPU if the
number. (PC) bit of the control rather is left as result is stored

Which of these word, for those instruc- is. on the stack. The

events triggers tions controlled by PC, difference is only

the underflow otherwise to extended in the least sig-

exception precision). nificant bit of the

depends on significand and is

whether the apparent only to

underflow the exception

exception is handler.

masked.

Exception There is no difference When the denor- None, but some Operational
Precedence in the precedence of mal exception is unneeded nor- improvement.

the denormal excep- not masked, it malization of
tion, whether it be takes prece- denormal oper-
masked or not. dence over all ands is pre-

other exceptions. vented on the
Intel486
CPU/lntel387 NPX.

25-5

inteL COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

25.2.2 Tag, Status, and Control Words

Difference Description

Impact on Reason
Issue InteI486'· CPU/ for the

InteI387'· NPX InteI287'· /8087 Software Difference
Behavior CPU Behavior

Bits C3-CO After FINIT, incomplete After FINIT, None. Upgrade, to pro-
of Status FPREM, and hardware incomplete vide consistent
Word reset, these bits are FPREM, and state after reset.

set to zero. hardware reset,
the Inte1287/8087
CPU leaves these
bits intact (they
contain the prior
value).

Bit C2 of Bit 10 (C2) serves as This bit is unde- None. Programs Upgrade to allow
Status an incomplete bit for fined for FPTAN. don't check C2 fast checking of
Word FPTAN. after FPTAN. operand range.

Infinity Only affine closure is Both affine and Software that IEEE Standard
Control supported. Bit 12 projective clo- requires projec- 754 compatibility.

remains programmable sures are sup- tive infinity arith-
but has no effect on ported. After metic may give
operation. RESET, the different results.

default value in
the control word
is projective.

Status When an invalid- When an invalid- None. Existing Upgrade and per-
Word Bit 6 operation exception operation excep- exception han- formance
for Stack occurs due to stack tion occurs due dlers need not improvement.
Fault overflow or underflow, to stack overflow change, but may

not only is bit 0 (IE) of or underflow, only be upgraded to
the status word set, bit 0 (I E) of the take advantage of
but also bit 6 is set to status word is the additional
indicate a stack fault set. Bit 6 is information.
and bit 9 (C1) speci- RESERVED. Newly written
fies overflow or under- handlers will be
flow. Bit 6 is called SF more effective.
and serves to distin-
guish invalid excep-
tions caused by stack
overflow/underflow
from those caused by
numeric operations.

25-6

inteL COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

Difference Description

Impact on Reason
Issue Intel486 '" CPU/ for the

InteI387'" NPX InteI287'" /8087 Software Difference
Behavior

CPU Behavior

Tag Word When loading the tag The correspond- Software may not Performance
word with an FLDENV ing tag is operate correctly improvement.
or FRSTOR instruction, checked before if it uses FLDENV
the only interpretations each register or FRSTOR to
of tag values are access to deter- change tags to
empty (value 11) and mine the class of values (other than
nonempty (values 00, operand in the empty) that are
01, and 10). Subse- register; the tag different from
quent operations on a is updated after actual register
nonempty register every change to a contents.
always examine the register so that
value in the register, the tag always
not the value in its tag. reflects the most
The FSTENV and recent status of
FSAVE instructions the register. Pro-
examine the nonempty grammers can
registers and put the load a tag with a
correct values in the value that dis-
tags before storing the agrees with the
tag word. contents of a reg-

ister (for example,
the register con-
tains valid con-
tents, but the tag
says special; the
Inte1287/8087
CPU, in this case,
honors the tag
and does not
examine the
register).

25-7

intel <&. COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

25.2.3 Instruction Set

Difference Description

Impact on
Reason

Issue InteI486'· CPU/· for the
InteI387'" NPX InteI287'" 18087 Software Difference.

Behavior CPU Behavior

FBSTP, FDIV, Operation on denormal Operation on The exception IEEE
FIST(P), operand is supported. denormal oper- handler for Standard 754
FPREM, An underflow excep- and raises underflow may compatibility.

tion can occur. invalid-operation require change
exception. only if it gives
Underflow is not different treat-
possible. ment to different

opcodes. Possi-
bly fewer invalid-
operation
exceptions will
occur.

FSCALE The range of the scal- The range of the Different result Upgrade.
ing operand is not scaling operand when 0 < I
restricted. If 0 < I is restricted. If 0 ST(1) I < 1.
ST(1) I <: 1, the scal- < I ST(1) I < 1,
ing factor is zero; the result is
therefore, ST(O) undefined and .
remains unchanged. If no exception is
the rounded result is signaled.
not exact or if there
was a loss of accuracy
(masked underflow),
the precision excep-
tion is signaled.

FPREM1 Performs partial Does not exist. None. IEEE Standard
remainder according 754 compatibility
to IEEE Standard 754 and upgrade.
standard.

FPREM Bits CO, C3, C1 of the The quotient bits None. Software Upgrade.
status word, correctly are incorrect that works
reflect the three low- when performing around the bug
order bits of the a reduction of should not be
quotient. 64N+M when N affected.

~ 1 and M=1
or M=2.

FUCOM, Perform unordered Do not exist. None. IEEE
FUCOMP, compare according to Standard 754
FUCOMPP IEEE Standard 754 compatibility.

standard.

25-8

inteL COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

Difference Description

Impact on Reason
Issue InteI486'" CPU/ for the

InteI387'" NPX InteI287'" /8087 Software
Difference

Behavior CPU Behavior

FPTAN Range of operand is Range of oper- None. Upgrade.
much less restricted (I and is restricted
ST(O) 1 < 263); reduces (I ST(O) 1 < 1T/4);
operand internally operand must
using an internal1T/4 be reduced to
constant that is mor~ range using
accurate. FPREM.

After a stack overflow After a stack IEEE
when the invalid- overflow when Standard 754
operation exception is the invalid- compatibility.
masked, both ST and operation excep-
ST(1) contain quiet tion is masked,
NaNs. the original

operand remains
unchanged, but
is pushed to
ST(1).

FSIN, FCOS, Perform three common Do not exist. None. Upgrade.
FSINCOS trigonometric

functions.

FPATAN Range of operands is 1 ST(O) 1 must be None. Upgrade.
unrestricted. smaller than

1 ST(1) I·

F2XM1 Wider range of oper- The supported None. Upgrade.
and (-1sST(O)s+1). operand range

is OsST(O)sO.5.

FLO Does not report denor- Reports denor- None. Upgrade.
extended-real mal exception because mal exception.

the instruction is not
arithmetic.

FXTRACT If the operand is zero, If the operand is None. Software IEEE 754 rec-
the zero-divide excep- zero, ST(1) is usually ommendation to
tion is reported and zero and no bypasses zero· fully support the
ST(1) is -00. If the exception is \ and 00. 10gb function.
operand is + 00, no reported. If the
exception is reported. operand is + 00,

the invalid-
operation excep-
tion is reported.

25-9

inteL, COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

Difference Description

Impact on Reason
Issue Inte1486'· CPU/ for the

Inte1387'· NPX
Intel287 ,. /8087 Software Difference

Behavior
CPU Behavior

FLD constant Rounding control is in Rounding con- Results for iEEE 754
effect. trol is not in FLOPI, FLDLN2, recommendations.

effect. FLDLG2, and
FLDL2E are the
same as for the
8087/lnte1287
CPU when
rounding control
.is .setto round
to nearest or
round to +00.
They are the the
same for
FLDL2Twhen
rounding control
is set to round
to nearest,
round to -00, or
round to zero.
Results are dif-
ferent from. the
8087/lnte1287
CPU in the
leaast significant
bit of the man-·
tissa if rounding
control is set to
round to _00 or
round to 0 for
FLDPI, FLDLN2,
FLDLG2, and
FLDL2E; they
are diferenUor
FLDL2T if round
to +00 is
specified.

FLD Loading a denormal Loading a If the next IEEE
single/double causes the number to denormal instruction is Standard 754
precision be converted to causes the num- FXTRACTor compatibility.

extended precision ber to be con- FXAM, the
(because it is put on verted to an Intel486 CPU!
the stack). unnormal. Intel387 NPX will

give a different
result than the
Inte1287/8087
CPU.

FLD When loading a signal- Does not raise The exception IEEE
single/double ing NaN, raises invalid an exception handler needs Standard 754
precision exception. when loading a to be updated to compatibility.

signaling NaN. handle this
condition.

25-10

inteL, COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

Difference Description

Impact on Reason
Issue InteI486'" CPU! for the

Intel38T" NPX Intel28T" 18087 Software Difference
Behavior

CPU Behavior

FSETPM Treated as FNOP (no Informs the None. The Intel4861
operation). Intel287 CPU Intel386 CPU

that the system handles all
is in protected addressing and
mode. exception-

pointer informa-
tion, whether in
protected mode
or not.

FXAM Encountering an May generate None. Upgrade, to pro-
empty register will not these combina- vide repeatable
generate combinatioris tions, among results.
of C3-CO equal to others.
1101 or 1111.

All May generate different Round-up bit of None. Upgrade, to sig-
Transcendental results in round-up bit status word is nal rounding
Instructions of status word. undefined for status.

these
instructions.

25.3 DIFFERENCES FROM 8086/8087 SYSTEMS

The Intel486 processor operating in real-address mode will execute 8087 programs with­
out major modification. However, because of differences in the handling of numeric
exceptions between the Intel486 processor and the 8087 NPX, exception-handling rou­
tines may need to be changed. This section provides details showing how 8087 programs
can be ported to the Intel486 processor.

1. The 8087 requires an interrupt controller (8259A) to interrupt the CPU when an
unmasked exception occurs. Therefore, any interrupt-controller-oriented instruc­
tions in numeric exception handlers for the 8087 should be deleted.

2. The 8087 instructions FENI/FNENI and FDISI/FNDISI perform no useful function
in the Intel486 processor. If the Intel486 processor encounters one of these opcodes
in its instruction stream, the instruction will effectively be ignored - none of the,
Intel486 processor internal states will be updated. While 8087 code containing these
instructions may be executed on the Intel486 processor, it is unlikely that the
exception-handling routines containing these instructions will be completely
portable.

3. In real mode and protected mode (not including virtual 8086 mode), interrupt vector
16 must point to the numeric exception handling routine. In virtual 8086 mode, the
V86 monitor can be programmed to accommodate a different location of the inter­
rupt vector for numeric exceptions.

25-11

intet COMPATIBILITY WITH THE 8087, Intel287 AND Intel387 COPROCESSORS

4. The ESC instruction address saved in the Iritel486 processor includes any leading
prefixes before the ESC opcode. The corresponding address saved in the 8086/8087
does not include leading prefixes.

5. In protected mode (not including virtual 8086 mode), the format of the Intel486
processor saved instruction and address pointers is different than for the 8087. The
instruction opcode is not saved in protected mode - exception handlers will have to
retrieve the opcode from memory if needed.

6. Interrupt 7 will occur in the Intel486 processor when executing ESC instructions
with either TS (task switched) or EM (emulation) of the MSW set (TS = 1 or
EM = 1). If TS and MP are set, then a WAIT instruction will also cause interrupt 7.
An exception handler should be included in Intel486 processor code to handle these
situations.

7. Interrupt 13 will occur if the starting address of a numeric operand falls outside a
segment's size. An exception handler should be included to report these program­
ming errors.

8. Except for the. FPU control instructions, all of the Inte1486 processor numeric
instructions are automatically synchronized - the processor automatically waits until
all operands have been transferred before executing the next ESC instruction. No
explicit WAIT instructions are required to assure this synchronization. For the 8087
used with 8086 and 8088 processors, explicit WAITs are required before each
numeric instruction to ensure synchronization. Although 8087 programs having
explicit WAIT instructions will execute perfectly on the Intel486 processor without
reassembly, these WAIT instructions are unnecessary.

9. Since the Intel486 processor does not require WAIT instructions before each
numeric instruction, the ASM386/486 assembler does not automatically generate
these WAIT instructions. The ASM86 assembler, however, automatically precedes
every ESC instruction with a WAIT instruction. Although numeric routines gener­
ated using the ASM86 assembler will generally execute correctly on the Intel486
processor, reassembly using ASM386/486 may result in a more compact code image
and faster execution.

The control instructions for the Intel486 FPU can be coded using either a WAIT or
No-WAIT form of mnemonic. The WAIT forms of these instructions cause
ASM386/486 to precede the ESC instruction with a WAIT instruction, in the iden­
tical manner as does ASM86.

10. The address of a memory operand ~tored by FSA VE or FSTENV is undefined if the
previous ESC instruction did not refer to memory.

11. Because the Intel486 processor automatically normalizes denormal numbers when
possible, an 8087 program that uses the denormal exception solely to normalize
denormal operands can run on an Intel486 processor by masking the denormal
exception. The 8087 de normal exception handler would not be used by the Intel486
processor in this case. A numerics program runs faster when the Intel486 processor

. performs normalization of denormal operands. .

25-12

Part V
Instruction Set

I
I
I
I
I

I

I
I
I
I

I
I

I
I
I
I

I

I
I
I
I

I
I
I
I

I
I
I
I

Instruction Set 26

CHAPTER 26
INSTRUCTION SET

This chapter presents instructions for the Intel486 processor in alphabetical order. For
each instruction, the forms are given for each operand combination, including object
code produced, operands required, execution time, and a description. For each instruc­
tion, there is an operational description and a summary of exceptions generated.

26.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When executing an instruction, the Intel486 processor can address memory using either
16 or 32-bitaddresses. Consequently, each instruction that uses memory addresses has
associated with it an address-size attribute of either 16 or 32 bits. The use of 16-bit
addresses implies both the use of 16-bit displacements in instructions and the generation
of 16-bit address offsets (segment relative addresses) as the result of the effective
address calculations. 32-bit addresses imply the use of 32-bit displacements and· the
generation of 32-bit address offsets. Similarly, an instruction that accesses words
(16 bits) or doublewords (32 bits) has an operand-size attribute of either 16 or 32 bits.

The attributes are determined by a combination of defaults, instruction prefixes; and
(for programs executing in protected mode) size-specification bits in segment
descriptors.

26.1.1 Default Segment Attribute

For programs running in protected mode, the D bit in executable-segment descriptors
specifies the default attribute for both address size and operand size. These default
attributes apply to the execution of all instructions in the segment. A clear D bit sets the
default address size and operand size to 16 bits; a set D bit, to 32 bits.

Programs th~t execute in real mode or virtual-8086 mode have 16-bit addresses and
operands by default.

26.1.2 Operand-Size and Address-Size Instruction Prefixes

The internal encoding of an instruction can include two byte-long prefixes: the address­
~ize prefix, 67H, and the operand-size prefix, 66H. (A later section, "Instruction For­
mat," shows the position of the prefixes in an instruction's encoding.) These prefixes
override the default segment attributes for the instruction that follows. Table 26-1 shows
the effect of each possible combination of defaults and overrides.

26-1

intel® INSTRUCTION SET

Table 26·1. Effective Size Attributes

Segment Default D = ... 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N V V N N V V

Address-Size Prefix 67H N V N V N V N V

Effective Operand Size 16 16 32 32 32 32 16 16

Effective Address Size 16 32 16 32 32 16 32 16

V = Yes, this instruction prefix is present
N = No, this instruction prefix is not present

26.1.3 Address-Size Attribute for Stack

Instructions that use the stack implicitly (for example: POP EAX) also have a stack
address-size attribute of either 16 or 32 bits. Instructions with a stack address-size
attribute of 16 use the 16-bit SP stack pointer register; instructions with a stack address­
size attribute of 32 bits use the 32-bit ESP register to form the address of the top of the
stack.

The stack address-size attribute is controlled by the B bit of the data-segment descriptor
in the SS register. A value of zero in the B bit selects a stack address-size attribute of 16;
a value of one selects a stack address-size attribute of 32.

26.2 INSTRUCTION FORMAT

All instruction encodings are subsets of the general instruction format shown in
Figure 26-1. Instructions consist of optional instruction prefixes, one or two primary
opcode bytes, possibly an address specifier consisting of the ModR/M byte and the SIB
(Scale Index Base) byte, a displacement, if required, and an immediate data field, if
required.

INSTRUCTION I ADDRESS· I OPERAND· I SEGMENT
PREFIX SIZE PREFIX SIZE PREFIX OVERRIDE

o OR 1 0 OR 1 0 OR 1 0 OR 1 ----------------------------
NUMBER OF BYTES

OPCODE I MODR/M I SIB I DISPLACEMENT I IMMEDIATE

10R2 OORl OORl 0,1,20R4 0,1,2 OR 4

~-~---------------------NUMBER OF BYTES

240486i26·1

Figure 26·1. Intel486™ Processor Instruction Format

26-2

intel® INSTRUCTION SET

Smaller encoding fields can be defined within the primary opcode or opcodes. These
fields define the direction of the operation, the size of the displacements, the register
encoding, or sign extension; encoding fields vary depending on the class of operation.

Most instructions that can refer to an operand in memory have an addressing form byte
following the primary opcode byte(s). This byte, called the ModR/M byte, specifies the
address form to be used. Certain encodings of the ModR/M byte indicate a second
addressing byte, the SIB (Scale Index Base) byte, which follows the ModR/M byte and is
required to fully specify the addressing form.

Addressing forms can include a displacement immediately following either the ModR/M
or SIB byte. If a displacement is present, it can be 8-, 16- or 32-bits.

If the instruction specifies an immediate operand, the immediate operand always follows
any displacement bytes. The immediate operand, if specified, is always the last field of
the instruction.

The following are the allowable instruction prefix codes:

F3H REP prefix (used only with string instructions)
F3H REPE/REPZ prefix (used only with string instructions)
F2H REPNE/REPNZ prefix (used only with string instructions)
FOH LOCK prefix

The following are the segment override prefixes:

2EH CS segment override prefix
36H SS segment override prefix
3EH DS segment override prefix
26H ES segment override prefix
64H FS segment override prefix
65H GS segment override prefix
66H Operand-size override
67H Address-size override

26.2.1 ModR/M and SIB Bytes

The ModR/M and SIB bytes follow the opcode byte(s) in many of the Intel486 processor
instructions. They contain the following information:

o The indexing type or register number to be used in the instruction

• The register to be used, or more information to select the instruction

• The base, index, and scale information

The ModR/M byte contains three fields of information:

• The mod field, which occupies the two most significant bits of the byte, combines with
the rim field to form 32 possible values: eight registers and 24 indexing modes.

26-3

infel® INSTRUCTION SET

• The reg field, which occupies the next. three bits following the mod field, specifies
either a register number or three more bits of opcode information. The meaning of
the reg field is determined by the first (opcode) byte of the instruction.

• The rim field, which occupies the three least significant bits of the byte, can specify a
register as the location of an operand, or can form part of the addressing-mode
encoding in combination with the mod field as described above.

The based indexed and scaled indexed forms of 32-bit addressing require the SIB byte.
The presence of the SIB byte is indicated by certain encodings of the Mod RIM byte. The
SIB byte then includes the following fields:

• The ss field, which occupies the two most significant bits of the byte, specifies the
scale factor.

• The index field, which occupies the next three bits following the ss field and specifies
the register number of the index register.

• The base field, which occupies the three least significant bits of the byte, specifies the
register number of the base register. .

Figure 26-2 shows the formats of the ModR/M and SIB bytes.

The values and the corresponding addressing forms of the ModR/M and SIB bytes are
shown in Tables 26-2, 26-3, and 26-4. The 16-bit addressing forms specified by the
ModR/M byte are in Table 26-2. The 32-bit addressing forms specified by the ModR/M
byte are in Table 26-3. Table 26-4 shows the 32-bit addressing forms specified by the SIB
byte.

MODR/M BYTE

7 6 5 4 3 2 0

MOD I REG/OPCODE I RIM

SIB (SCALE INDEX BASE) BYTE

7 6 5 4 3 2 0

SS INDEX BASE

240486;26-2

Figure 26-2. ModR/M and SIB Byte Formats

26-4

infel® INSTRUCTION SET

Table 26-2. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL CL OL BL AH CH OH BH
r16(/r) AX CX OX BX SP BP SI 01
r32(/r) EAX ECX EOX EBX ESP EBP ESI EDI
/digit (Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective
Mod R/M ModR/M Values in Hexadecimal

Address

[BX+SI] 00 000 00 08 10 18 20 28 30 38
[BX+DI] 001 01 09 11 19 21 29 31 39
[BP+SI] 010 02 OA 12 1A 22 2A 32 3A
[BP+DI] 011 03 OB 13 1B 23 2B 33 3B
[SI] 100 04 OC 14 1C 24 2C 34 3C
[DI] 101 05 OD 15 10 25 2D 35 3D
disp16 110 06 OE 16 1E 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F

[BX + SI] + disp8 01 000 40 48 50 58 60 68 70 78
[BX + DI] + disp8 001 41 49 51 59 61 69 71 79
[BP + SI] + disp8 010 42 4A 52 5A 62 6A 72 7A
[BP + DI] + disp8 011 43 4B 53 5B 63 6B 73 7B
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D
[BP] +disp8 110 46 4E 56 5E 66 6E 76 7E
[BX] +disp8 111 47 4F 57 5F 67 6F 77 7F

[BX + SI] + disp16 10 000 80 88 90 98 AO A8 BO B8
[BX + DI] + disp16 001 81 89 91 99 A1 A9 B1 B9
[BP + SI] + disp16 010 82 8A 92 9A A2 AA B2 BA
[BP+ DI] +disp16 011 83 8B 93 9B A3 AB 83 BB
[SI] + disp16 100 84 8C 94 9C A4 AC B4 BC
[DI] + disp16 101 85 8D 95 9D A5 AD B5 BD
[BP] + disp16 110 86 8E 96 9E A6 AE B6 BE
[BX] +disp16 111 87 8F 97 9F -A7 AF B7 BF

EAX/AX/AL 11 000 CO C8 DO D8 EO E8 FO F8
ECX/CX/CL 001 C1 C9 D1 D9 EO E9 F1 F9
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE 06 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

NOTES: disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added
to the index. disp16 denotes a 16-bitdisplacement following the ModR/M byte, to be added to the
index. Default segment register is· SS for the effective addresses containing a BP index, DS for
other effective addresses.

26-5

INSTRUCTION SET

Table 26-3. 32-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL CL OL BL AH CH OH BH
r16(/r) AX CX OX BX SP BP SI 01
r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI
/digit (Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective Mod R/M ModR/M Values in Hexadecimal Address

[EAX] 00 000 00 08 10 18 20 28 30 38
[ECX] 001 01 , 09 11 19 21 29 31 39
[EDX] 010 02 OA 12 1A 22 2A 32 3A
[EBX] 011 03 OB 13 1B 23 2B 33 3B
HH1 100 04 OC 14 1C 24 2C 34 3C
disp32 101 05 OD 15 10 25 2D 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EDI] 111 07 OF 17 1F 27 2F 37 3F

disp8[EAX] 01 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EBX] ; 011 43 4B 53 5B 63 6B 73 7B
disp8[--] [--] 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[EDI] 111 47 4F 57 5F 67 6F 77 7F

disp32[EAX] 10 000 80 88 90 98 AO A8 BO B8
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB
disp32 [--][--] 100 84 8C 94 9C A4 AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF

EAX/AX/AL 11 000 CO C8 DO D8 EO E8 FO F8
ECX/CX/CL 001 Cl C9 D1 D9 E1 E9 F1 F9
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4. FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

NOTES: 1[--][--] means a SIB follows the ModR/M byte.
2disp8 denotes an 8-bit displacement following the SIB byte, to be sign-extended and added to
the index. disp32 denotes a 32-bit displacement following the SIB byte, to be added to the index.

26-6

infel~ INSTRUCTION SET

Table 26-4. 32-Bit Addressing Forms with the SIB Byte

r32 EAX ECX EDX EBX ESP [*] ESI EDI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111

Scaled Index SS Index SIB Values in Hexadecimal

[EAX] 00 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 OA OB OC 00 OE OF
[EOX] 010 10 '11 12 13 14 15 16 17
[EBX] 011 18 19 1A 1B 1C 10 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 20 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EOI] 111 38 39 3A 3B 3C 30 3E 3F

[EAX*2] 01 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 40 4E 4F
[ECX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 011 58 59 5A 5B 5C 50 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 60 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EOI*2] 111 78 79 7A 7B 7C 70 7E 7F

[EAX*4] 10 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 80 8E 8F
[EOX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 011 98 89 9A 9B 9C 90 9E 9F
none 100 AO A1 A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AO AE AF
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7
[EOI*4] 111 B8 B9 BA BB BC BO BE BF

[EAX*8] 11 000 CO C1 C2 C3 C4 C5 C6 C7
[ECX*8] 001 C8 C9 CA CB CC CO CE CF
[EOX*8] 010 00 01 02 03 04 05 06 07
[EBX*8] 011 08 09 OA OB OC 00 OE OF
none 100 EO E1 E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC EO EE EF
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
[EOI*8] 111 F8 F9 FA FB FC FO FE .FF

NOTES: [*]means a disp32 with no base if MOO is 00, [EBP] otherwise. This provides the following
addressing modes:
disp32[index]
disp8[EBP] [index]
disp32[EBP] [index]

(MOO = 00)
(MOO=01)
(MOO=10)

26-7

int'et INSTRUCTION .SET

26.2.2 How to Read the Instruction Set Pages

The following is an example of the format used for each Intel486 processor instruc;tion
description in this chapter: .

CMC - Complement Carry Flag

Opcode

F5

Instruction

CMC

Clocks

2

Description

Complement carry flag

The above table is followed by paragraphs labelled "Operation," "Description/' "Flags
Affected," "Protected Mode Exceptions," "Real Address Mode Exceptions," and,
optionally, "Notes." The following sections explain the notational conventions and
abbreviations used in these paragraphs of the instruction descriptions.

26.2.2.1 OPCODE COLUMN

The "Opcode" column gives the complete object code produced for each form of the
instruction. When possible, the codes are given as hexadecimal bytes, in the same order
in which they appear in memory. Definitions of entries other than hexadecimal bytes are
as follows: .

Idigit: (digit is between 0 and 7) indicates that the ModR/M byte of the instruction uses
only the rim (register or memory) operand. The reg field contains the digit that provides
an extension to the instruction's opcode.

Ir: indicates that the ModR/M byte of the instruction c()ntains both a register operand
and an rim operand. .

cb, cw, cd, cp: a 1-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for the code
segment register. .

ib, iw, id: a 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, Mod RIM bytes or scale-indexing bytes. The opcode determines
if the operand is a signed value. All words and doublewords are given with the low-order
byte first.

intel® INSTRUCTION SET

+ rb, + rw, + rd: a register code, from 0 through 7, added to the hexadecimal byte given
at the left of the plus sign to form a single opcode byte. The codes are-

rb rw rd
AL 0 AA 0 EAA 0
CL 1 CX ECX
OL 2 OX 2 EOX 2
BL 3 BX 3 EBX 3

rb rw rd
AH 4 SP 4 ESP 4
CH 5 BP 5 EBP 5
OH 6 SI 6 ESI 6
BH 7 01 7 EOI 7

+ i: used in floating-point instructions when one of the operands is ST(i) from the FPU
register stack. The number i (which can range from 0 to 7) is added to the hexadecimal
byte given at the left of the plus sign to form a single opcode byte.

26.2.2.2 INSTRUCTION COLUMN

The "Instruction" column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to represent
operands in the instruction statements:

rel8: a relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

re116, re132: a relative address within the same code segment as the instruction assem­
bled. re116 applies to instructions with an operand-size attribute of 16 bits; rel32 applies
to instructions with an operand-size attribute of 32 bits.

ptr16:16, ptr16:32: a far pointer, typically in a code segment different from that of the
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The
value to the left of the colon is a 16-bit selector or value destined for the code segment
register. The value to the right corresponds to the offset within the destination segment.
ptr16:16 is used when the instruction's operand-size attribute is 16 bits; ptr16:32 is used
with the 32-bit attribute.

r8: one of the byte registers AL, CL, DL,BL, AH, CH, DH, or BH.

r16: one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI.

r32: one of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI.

imm8: an immediate byte value. imm8 is a signed number between -128 and + 127
inclusive. For instructions in which imm8 is combined with a word or doubleword oper­
and, the immediate value is sign-extended to form a word or doubleword. The upper
byte of the word is filled with the topmost bit of the immediate value.

26-9

inteL INSTRUCTION SET

imm16: an immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between -32768 and + 32767 inclusive.

imm32: an immediate doubleword value used for instructions whose operand-size
attribute is 32-bits. It allows the use of a number between + 2147483647 and
-2147483648 inclusive.

rimS: a one-byte operand that is either the contents of a byte register (AL, BL, CL, DL,
AH, BH, CH, DH), or a byte from memory.

r/m16: a word register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, DI. The
contents of memory are found at the address provided by the effective address
computation.

r/m32: a doubleword register or memory operand used for instructions whose operand­
size attribute is 32-bits. The'doubleword registers are: EAX, EBX, ECX, ED X, ESP,
EBP, ESI, EDI. The contents of memory are found at the address provided by the
effective address computation.

m: a 16 or 32-bit memory operand.

mS: a memory byte addressed by DS:[E]SI or ES:[E]DI (used only by string instruc­
tions).

m16: a memory word addressed by DS:[E]SI or ES:[E]DI (used only by string instruc­
tions).

m32: a memory doubleword addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

m16:16, m16:32: a memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment selector. The
number to the right corresponds to its offset.

m16&32, m16&16, m32&32: a memory operand consisting of data item pairs whose sizes
are indicated on the left and the right side of the ampersand. All memory addressing
modes are allowed. m16&16 and m32&32 operands are used by the BOUND instruction
to provide an operand containing an upper and lower bounds for array indices. m16&32
is used by LIDT and LGDT to provide a word with which to load the limit field, and a
doubleword with which to load the base field of the corresponding Global and IIiterrupt
Descriptor Table Registers.

moffsS, moffs16, moffs32: (memory offset) a simple memory variable of type BYTE,
WORD, or DWORDused by some variants, of the MOV instruction. The actual address
is given by a simple offset· relative to the segment base. No ModRIM byte is used in the
instruction. The number shown with moffs indicates its size, which is determined by the
address-size attribute ofthe instruction.

26-10

intel® INSTRUCTION SET

Sreg: a segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2,
DS=3, FS=4, and GS=5.

m32real, m64real, m80real: (respectively) single-, double-, and extended-real floating­
point operands in memory.

m16int, m32int, m64int: (respectively) word-, short-, and long-integer floating-point
operands in memory.

mNbyte: N-byte floating-point operand in memory.

ST or ST(O): Top element of the FPU register stack.

ST(i): ith element from the top of the FPU register stack. (i = 0 .. 7)

26.2.2.3 CLOCKS COLUMN

The "Clocks" column gives the approximate number of clock cycles the instruction takes
to execute. The clock count calculations makes the following assumptions:

o Data and instruction accesses hit in the cache.

o The target of a jump instruction is in the cache.

o No invalidate cycles contend with the instruction for use of the cache.

o Page translation hits in the TLB.

o Memory operands are aligned.

(\) Effective address calculations use one base register and no index register, and the
base register is not the destination register of the preceding instruction.

(\) Displacement and immediate are not used together.

.. No exceptions are detected during execution.

e There are no write-buffer delays.

For a discussion of the performance penalties incurred when these conditions do not
hold, see Appendix E.

The following symbols are used in the clock count specifications:

.. n, which represents a number of repetitions.

'" m, which represents the number of components in the next instruction executed,
where the entire displacement (if any) counts as one component, the entire immedi­
ate data (if any) counts as one component, and every other byte of the instruction and
prefix(es) each counts as one component.

• pm =, a clock count that applies when the instruction executes in Protected Mode.
pm = is not given when the clock counts are the same for Protected and Real Address
Modes.

26-11

INSTRUCTION SET

When an exception occurs during the execution of an instruction and the exception.
handler is in another task, the instruction execution time is increased by the number of
clocks to effect a task switch. This parameter depends on several factors:

• The type ofTSS used to represent the new task (Inte1486 CPU TSS or 80286 TSS).

• Whether the current task is in V86 mode.

• Whether the new task is in V86 mode.

• Whether accesses hit in the cache.

• Whether a task gate on an interrupt/trap gate is used.

Table 26-5 summarizes the task switch times for exceptions, assuming cache hits and the
use of task gates. For full details, see Appendix E.

26.2.2.4 DESCRIPTION COLUMN

The "Description" column following the "Clocks" column briefly explains the various
forms of the instruction. The "Operation" and "Description" sections contain more
details of the instruction's operation.

26.2.2.5 OPERATION

The "Operation" section contains an algorithmic description of the instruction which
uses a notation similar to the Algol or Pascal language. The algorithms are composed of
the following elements:

Comments are enclosed within the symbol pairs "(*" and "*)".

Compound statements are enclosed between the keywords of the "if' statement (IF,
THEN, ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement
(CASE ... OF, ESAC).

A register name implies the contents of the register. A register name enclosed in brack­
ets implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative
address is in register DI. [SI] indicates the contents of the address contained in register
SI relative to SI's default segment (DS) or overridden segment.

Table 26-5. Task Switch Times for Exceptions

New Task
Old Task

to Intel486™ CPU TSS to 80286 TSS to VM TSS .

VM/lntel486 CPU/80286 TSS 199 180 177

26-12

intel® INSTRUCTION SET

Brackets are also used for memory operands, where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] indicates that the
contents of the source operand is a segment-relative offset.

A ~ B; indicates that the value of B is assigned to A.

The symbols =, < >, :2':, and :::; are relational operators used ~ to compare two values,
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A = B is TRUE if the value of A is equal to B; otherwise it is
FALSE.

The following identifiers are used in the algorithmic descriptions:
.. Operand Size represents the operand-size attribute of the instruction, which is either

16 or 32 bits. AddressSize represents the address-size attribute, which is either 16 or
32 bits. For example,
IF instruction = CMPSW
THEN OperandSize ~ 16;
ELSE

FI;

IF instruction = CMPSD
THEN OperandSize ~ 32;
FI;

indicates that the operand-size attribute depends on the form of the CMPS instruc­
tion used. Refer to the explanation of address-size and operand-size attributes at the
beginning of this chapter for general guidelines on how these attributes are
determined.

.. StackAddrSize represents the stack address-size attribute associated with the instruc­
tion, which has a value of 16 or 32 bits, as explained earlier in the chapter.

.. SRC represents the source operand. When there are two operands, SRC is the one on
the right.

.. DEST represents the destination operand. When there are two operands, DEST is
the one on the left.

.. LeftSRC, RightSRC distinguishes between two operands when both are source
operands.

.. eSP represents either the SP register or the ESP register depending on the setting of
the B-bit for the current stack segment.

The following functions are used in the algorithmic descriptions:
.. Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding

the uppermost bits as needed.
.. Addr(operand) returns the effective address of the operand (the result of the effec­

tive address calculation prior to adding the segment base).
.. ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the

instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of -10
converts the byte from F6H to doubleword with hexadecimal value 000000F6H. If the
value passed to ZeroExtend and the operand-size attribute are the same size,
ZeroExtend returns the value unaltered.

26-13

INSTRUCTION SET

• SignExtend(value) returns a value sign-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the
value -10 converts the byte from F6H to a doubleword with hexadecimal value
FFFFFFF6H. If the value passed to SignExtend and the operand-size attribute are
the same size, SignExtend returns the value unaltered.

• Push(value) pushes a value onto the stack. The number of byteS pushed is deter­
mined by the operand-size attribute of the instruction. The action of Push is as
follows:

IF StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

SP ~ SP - 2;
SS: [SP] ~ value; (* 2 bytes assigned starting at

byte address in SP *)
ELSE (* OperandSize = 32 *)

FI;

SP ~ SP - 4;
SS:[SP] ~ value; (* 4 bytes assigned starting at

byte address in SP *)

ELSE (* StackAddrSize = 32 *)
IF OperandSize = 16
THEN

FI;

ESP~ ESP - 2;
SS:[ESP] ~ value; (* 2 bytes assigned starting at

byte address in. ESP*)
ELSE (* OperandSize = 32 *)

FI;

ESP ~ ESP - 4;
SS:[ESP] ~. value; (* 4 bytes assigned starting at

byte address in ESP*)

• Pop (value) removes the value from the top of the stack and returns it. The statement
EAX +- Pop(); assigns to EAX the 32-bit value that Pop took from the top of the
stack. Pop will return either a word or a doubleword depending on the operand-size
attribute. The action of Pop is as follows: .
IF StackAddrSize = 16
THEN

IF Operand Size = 16
THEN

retval ~ SS:[SP]; (* 2-byte value *)
SP ~ SP + 2;

ELSE (* OperandSize = 32 *)
ret val ~ SS:[SP]; (* 4-byte value *)
SP ~ SP + 4;

FI;
ELSE (* StackAddrSize = 32 *)

26-14

intel® INSTRUCTION SET

FI;

IF OperandSize = 16
THEN

ret val +--- SS: [ESP]; (* 2 byte value *)
ESP +--- ESP + 2;

ELSE (* OperandSize = 32 *)

FI;

ret val +--- SS: [ESP]; (* 4 byte value *)
ESP +--- ESP + 4;

RETURN(ret val); (*returns a word or doubleword*)

Pop ST is used on floating-point instruction pages to mean pop the FPU register stack.

• Bit[BitBase, BitOffset] returns the address of a bit within a bit string, which is a
sequence of bits in memory or a register. Bits are numbered from low-order to high­
order within registers and within memory bytes. In memory, the two bytes of a word
are stored with the low-order byte at the lower address.

If the base operand is a register, the offset can be in the range 0 .. 31. This offset
addresses a bit within the indicated register. An example, 'BIT[EAX, 21]' is illus­
trated in Figure 26-3.

If BitBase is a memory address, BitOffset can range from - 2 gigabits to 2 gigabits.
The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase
+ (Bit Offset DIY 8)), where DIY is signed division with rounding towards negative
infinity, and MOD returns a positive number. This is illustrated in Figure 26-4.

• I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O
permission bitmap and other factors. This function is defined as follows:
IF TSS type is 80286 THEN RETURN FALSE; FI;
Ptr +--- [TSS + 66]; (* fetch bitmap pointer *)
BitStringAddr +--- SHR (I-G-Address, 3) + Ptr;
MaskShift +--- I-O-Address AND 7;
CASE width OF:

BYTE: nBitMask +--- 1;
WORD: nBitMask +--- 3;
DWORD: nBitMask .;- 15;

31 21

Figure 26-3. Bit Offset for BIT[EAX, 21]

26-15

o

240486i26-15

int:eL

ESAC;

INSTRUCTION SET

BIT INDEXING (POSITIVE OFFSET)

765432 1 07654 32 10765432 1 O'

I I I
I BITBASE + 1 I BIT BASE I BITBASE - 1

L-OFFSET = - 13---.J

BIT INDEXING (NEGATIVE OFFSET)

765432107654321076543210

BITBASE
I I

I BITBASE - 1 I BITBASE -' 2

LOFFSET = -11~

Figure 26-4. Memory Bit Indexing

mask ~SHL (nBitMask, MaskShift);
CheckString - [BitStringAddrj AND mask;
IF CheckString = 0
THEN RETURN (TRUE);
ELSE RETURN (FALSE);
FI;

• Switch-Tasks is the task switching function described in Chapter 7.

26.2.2.6 DESCRIPTION

240486i26-4

The "Description" section contains further explanation of the instruction's operation.

26.2.2.7 FLAGS AFFECTED

The "Flags Affected" section lists the flags that are affected by the instruction, as
follows:

• If a flag is always cleared or always set by the instruction, the value is given (0 or 1)
after the flag name. Arithmetic and logical instructions usually assign values to the
status flags in the uniform manner described in Appendix C. Nonconventional assign­
ments are described in the "Operation" section.

• The values of flags listed as "undefined" may be changed by the instruction in an
indeterminate manner.

All flags not listed are unchanged by the instruction.

26-16

intel® INSTRUCTION SET

The floating-point instruction pages have a section called "FPU Flags Affected," which
tells how each instruction can affect the four condition code bits of the FPU status word.
These pages also have a section called "Numeric Exceptions," which lists the exception
flags of the FPU status word that each instruction can set.

26.2.2.8 PROTECTED MODE EXCEPTIONS

This section lists the exceptions that can occur when the instruction is executed in
protected mode. The exception names are a pound sign (#) followed by two letters and
an optional error code in parentheses. For example, #GP(O) denotes a general protec­
tion exception with an error code of O. Table 26-6 associates each two-letter name with
the corresponding interrupt number.

Chapter 9 describes the exceptions and the Intel486 processor state upon entry to the
exception.

Application programmers should consult the documentation provided with their operat­
ing systems to determine the actions taken when exceptions occur.

26.2.2.9 REAL ADDRESS MODE EXCEPTIONS

Because less error checking is performed by the Intel486 processor in Real Address
Mode, this mode has fewer exception conditions. Refer to Chapter 22 for further infor­
mation on these exceptions.

26.2.2.10 VIRTUAL-8086 MODE EXCEPTIONS

Virtual 8086 tasks provide the ability to simulate Virtual 8086 machines. Virtual 8086
Mode exceptions are similar to those for the 8086 processor, but there are some differ­
ences. Refer to Chapter 23 for details.

Table 26-6. Exceptions .

Mnemonic Interrupt Description

#UD 6 Invalid opcode

#NM 7 Device not available

#DF 8 Doubel fault

#TS 10 Invalid TSS

#NP 11 Segment or gate not present

#SS 12 Stack fault

#GP 13 General protection fault

#PF 14 Page fault

#MF 16 Floating-point error

#AC 17 Alignment check

26-17

INSTRUCTION· SET

AAA-ASCII Adjust after Addition

Opcode

37

Operation

Instruction

AAA

Clocks

3

IF ((AL AND OFH) > 9) OR (AF = 1)
THEN , "

AL ~ (AL + 6) AND OFH;
AH ~ AH + 1;
AF~ 1;
CF~ 1;

ELSE
CF~O;

AF~O;
FI;

Description

Description

ASCII 'adjust AL after addition

Execute the AAA instruction only following an ADD instruction of two unpacked BCD
bytes that leaves a byte result in the AL register. In this case, the AAA instruction
adjusts the AL register to contain the correct decimal digit result. If the addition pro­
duced a decimal carry, the AH register is incremented, and the CF and AF flags are set.
If there was no decImal carry, the CF and AF flags are cleared and the AH register is
unchanged. In either case, the AL register is left with its top nibble set to O. To convert
the AL register to an ASCII result, follow the AAA instruction with OR AL, 30H.

Flags Affected

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal
carry; the OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-18

intel® INSTRUCTION SET

AAD - ASCII Adjust AX before Division

Opcode

D5 OA

Operation

Instruction

AAD

AL <- AH * 10 + AL;
AH <- 0;

Description

Clocks

14

Description

ASCII adjust AX before division

The AAD instruction is used to prepare two unpacked BCD digits (the least-significant
digit in the AL register, the most-significant digit in the AH register) for a division
operation that will yield an unpacked result. This is accomplished by setting the AL
register to AL + (10 * AH), and then clearing the AH register. The AX register is then
equal to the binary equivalent of the original unpacked two-digit number.

Flags Affected

The SF; ZF, and PF flags are set.according to the result; the OF, AF, and CF flags are
undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-19

infel· INSTRUCTION SET

AAM -ASCII Adjust AX after Multiply.··

Opcode

04 OA

InstructIon

AAM·

Operation

AH +- AL/10;
AL +- AL MOD 10;

Description

Clocks

.15

DescrIptIon

ASCII adjust AX after multiply

ExecUte· the AAM instruction only after executing a MUL instruction between two
unpacked BCD digits that leaves the result in the AX register. Because the result is less
than 100, it is contained entirely iIi the AL !register.' The AAM instruction unpacks the
AL result by dividing'AL by 10, leaving the quotient (most-significant digit) in the AH
register and the remainder (least~significantdigit) in the AL register.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are
undefmed.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-2()

infele INSTRUCTION SET

AAS - ASCII Adjust AL after Subtraction

Opcode

3F

Operation

Instruction

AAS

IF (AL AND OFH) >9 OR AF = 1
THEN

AL ~ AL - 6;
AL ~ AL AND OFH;
AH ~ AH - 1;
AF~ 1;
CF~ 1;

ELSE
CF~O;

AF~O;

FI;

Description

Clocks

3

Description

ASCII adjust AL after subtraction

Execute the AAS instruction only after a SUB instruction of two unpacked BCD bytes
that leaves the byte result in the AL register. In this case, the AAS instruction adjusts
the AL register so it contains the correct decimal digit result. If the subtraction pro­
duced a decimal carry, the AH register is decremented, and the CF and AF flags are set.
If no decimal carry occurred, the CF and AF flags are cleared, and the AH register is
unchanged. In either case, the AL register is left with its top nibble set to O. To convert
the AL result to an ASCII result, follow theAAS instruction with OR AL, 30H.

Flags Affected

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal
carry; the OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-21

int'eL

ADC - Add with Carry

Opcode Instruction Clocks

14 ib ADCAL,immB ' . 1.
15 iw ... ADCAX,imm,16, 1
15 id ADC EAX,imm32 1
80 /2 ib ADC rlmB,immB 1/3
81 /2 iw ADC rlml6,imml6 1/3
81 /2 id ADC rlm32,imm32 1/3
83 /2 ib ADC rlml6,immB 1/3
83 /2 ib ADC rlm32,immB 1/3

10 /r ADC rlmB,rB 1/3
11 /r ADC rlml6,rl6 1/3
11 /r ADC rlm32,r32 1/3
12 /r ADC rB,rlmB 1/2
13 /r ADC rl6,rlml6 1/2
13 /r ADC r32,rlm32 1/2

Operation

DEST <c- DEST + SRC + CF;

Description

INSTRUCTION. SET

Description

Add with carry immediate byte to AL
Add with carry immediate word to AX
Add with carry immediate dword to EAX
Add with carry immediate byte to rim byte
Add with carry immediate word to rim word
Add with CF immediate dword to rim dword
Add with CF sign-extended immediate byte to rlr;n word
Add with CF sign-extended immediate byte into rim.
~o~ ,
Add with carry byte register to rim byte
Add with carry word register to rim word
Add with CF dword register to rim dword
Add with carry rim byte to byte register
Add with carry rim word to word register
Add with CF rim dword to dword register

the Abc instruction performs iln,integer addition of the tWQ.operands DEST and SRC
and .the .C';lHy flag, CF. T:heresultof the addition is, assigned to the first operand
(DEST), andthe,flggs are set accordingly. The ADC instruction is usually executed as
part of a mu,lti-byte.or muIti-wonl addition opet;ation. When an immediate byte value is
added to, a word Qr doubleword operal!d,the immediate value is first sign-extended to
the size of the word or doubleword operand. ' .

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set accordiIlg to th~ result.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-22

INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-23

int:et

ADD-Add
Opcode

04 ib
05 iw
05 id
80 /0 ib
81 /0 iw
81 /0 id
83 /0 ib
83 /0 ib
OO/r
01 /r
01 /r
02 /r
03/r
03 /r

Operation

Instruction

ADDAL,imm8
ADDAX,immI6
ADD EAX,imm32
ADD rlm8,imm8
ADD rlml6,imml6
ADD rlm32,imm32
ADD rlml6,imm8
ADD rlm32,immB
ADD rlmB,r8
ADD rlml6,rl6
ADD rlm32,r32
ADD r8,rlm8
ADD rl6,rlml6
ADO r32,rlm32

DEST +- DEST + SRC;

Description

INSTRUCTION SET

Clocks

1
1
1
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/2
1/2
1/2

Description

. Add immediate byte to AL
Add immediate word to AX
Add immediate dword to EAX
Add immediate byte to rim byte
Add immediate word to rim word
Add immediate dword to rim dword
Add sign-extended immediate byte to rim word
Add sign-extended immediate byte to rim dword
Add byte register to rim byte
Add word register to rim word
Add dword register to rim dword
Add rim byte to byte register
Add rim word to word register
Add rim dword to dword register

The ADD instruction performs an integer addition of the two operands (DEST and
SRC). The result of the addition is assigned to the first operand (DEST), and the flags
are set accordingly.

When an immediate byte is added to a word or doubleword operand, the immediate
value is sign-extended to the size of the word or doubleword operand.

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-24

intel® INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-25

INSTRUCTION ·SET

AND-Logical AND

Opcode

24 ib
25 iw
25 id
80/4 ib
81 /4 iw
81 /4 id
83/4 ib
83/4 ib
20. /r
21 /r
21 /r
22/r
23/r
23/r

Operation

Instruction

ANDAL,immB
AND AX,Imm16
AND EAX,imm32
AND rlmB,immB
AND rlm16,imm16
AND rlm32,imm32
AND rlm16,immB
AND rlm32,immB
AND rlmB,rB
AND rlm16,r16
AND rlm32,r32
AND rB,rlmB
AND r16,rlm16
AND r32,rlm32

DEST +- DEST AND SRC;
CF +- 0;
OF +- 0;

Description

Clocks

1
1
1
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/2
1/2
1/2

Description

. AND immediate byte to AL
AND immediate word to AX
AND immediate dword to EAX
AND immediate byte to rim byte
AND immediate word to rim word
AND immediate dword to rim dword
AND sign-extended immediate byte with rim word
AND sign-extended immediate byte with rim dword
AND byte register to rim byte
AND word register to rim word
AND dword register to rim dword
AND rim byte to byte register
AND rim word to word register
AND rim dword to dword register

Each bit of the result of the AND instruction is a 1 if both corresponding bits of the
operands are 1; othelWise, it becomes a O.

Flags Affected

The CF and OF flags are cleared; the PF, SF, and ZF flags are set according to the
result; the AF flag is undefined.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-oode) for a page fault; #AC for, unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside' of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3. .

26-26

inteL INSTRUCTION SET

ARPL-Adjust RPL Field of Selector

Opcode

63 Ir

Operation

Instruction

ARPL rlml6,rl6

Clocks

pm =9/9

IF RPL bits(0,1) of DEST < RPL bits(0,1) of SRC
THEN
ZF~ 1;
RPL bits(0,1) of DEST ~ RPL bits(0,1) of SRC;

ELSE
ZF ~ 0;

FI;

Description

Description .

. Adjust RPL'of rim 16 to not less than RPL of r16'

The ARPL instruction has two operands. The first operand is a 16-bit memory variable
or word register that contains the value of a selector. The second operand is a word
register. If the RPL field ("requested privilege level"-bottom two bits) of the first
operand is less than the RPL field of the second operand, the ZF flag is set and the RPL
field of the first operand is increased to match the second operand. Otherwise, the ZF
flag is cleared and no change is made to the first operand.

The ARPL instruction appears in operating system software, not in application pro­
grams. It is used to guarantee that a selector parameter to a subroutine does not request
more privilege than the caller is allowed. The second operand of the ARPL instruction is
normally a register that contains the CS selector value of the caller.

Flags Affected

The ZF flag is set if the RPL field of the first operand is less than that of the second
operand.

Protected Mode Exceptions

#Of(O) if the result is a nonwritable segment; #OP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or OS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the ARPL instruction is not recognized in Real Address Mode.

26c27.

intet INSTRUCTION SET

Virtual 8086 Mode exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-28

intel® INSTRUCTION SET

BOUND - Check Array Index Against Bounds

Opcode

62 /r
62/r

Operation

Instruction Clocks

BOUND rI6,mI6&16 7
BOUND r32,m32&32 7

Description

Check if r16 is within bounds (passes test)
Check if r32 is within bounds (passes test)

IF (LeftSRC < [RightSRC] OR LeftSRC > [RightSRC + OperandSize/8j)
(* Under lower bound or over upper bound *)

THEN Interrupt 5;
FI;

Description

The BOUND instruction ensures that a signed array index is within the limits specified
by a block of memory consisting of an upper and a lower bound. Each bound uses one
word when the operand-size attribute is 16 bits and a doubleword when the operand-size
attribute is 32 bits. The first operand (a register) must be gr~ater than or equal to the
first bound in memory (lower bound), and less than or equal to the second bound in
memory (upper bound) plus the number of bytes occupied for the operand size. If the
register is not within bounds, an Interrupt 5 occurs; the return EIP points to the
BOUND instruction.

The bounds limit data structure is usually placed just before the array itself, making the
limits addressable via a constant offset from the beginning of the array.

Flags Affected

None.

Protected Mode Exceptions

Interrupt 5 if the bounds test fails, as described above; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3.

The second operand must be a memory operand, not a register. If the BOUND instruc­
tion is executed with a ModR/M byte representing a register as the second operand,
#UD occurs.

Real Address Mode Exceptions

Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie
outside of the effective address space from 0 to OFFFFH; Interrupt 6 if the second
operand is a register.

26-29

intel® INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #Ac for
unaligned memory reference if the Gurrent privilege level is 3.

26-30

int:eL INSTRUCTION SET

BSF - Bit Scan Forward

Opcode

OF BC
OF BC

Operation

IF rim = 0
THEN
ZF~ 1;

Instruction

BSF r16,rlm16
BSF r32,rlm32

register ~ UNDEFINED;
ELSE

temp ~ 0;
ZF~O;

WHILE BIT[rlm, temp] = 0
DO

temp ~ temp + 1;
register ~ temp;

00;
FI;

Description

Clocks

6-42/7-43
6-42/7-43

Description

Bit scan forward on rim word
Bit scan forward on rim dword

The BSF instruction scans the bits in the second word or doubleword operand starting
with bit O. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the
destination register is loaded with the bit index of the first set bit.

Flags Affected

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared. OF, SF, AF, PF,
CF = undefined.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; # AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-31

INSTRUCTION SeT

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-32

inteL INSTRUCTION SET

BSR - Bit Scan Reverse

·Opcode

OF BD
OF BD

Operation

IF rim = 0
THEN
ZF~ 1;

. Instruction

BSR r16,rlm16
BSR r32,rlm32

register ~ UNDEFINED;
ELSE

temp ~ Operand Size - 1;
ZF~O; .
WHILE BIT[rlm, temp] = 0
DO

temp ~ temp - 1;
register ~ temp;

00;
FI;

Description

Clocks

6-103/7-104
6-103/7-104

Description

Bit scan reverse 'on rim word
Bit scan reverse on rim dword

The BSR instruction scans the bits in the second word or doubleword operand from the
most significant bit to the least significant bit_ The ZF flag is set if all the bits are 0;
otherwise, the ZF flag is cleared and the destination register is loaded with the bit index
of the first set bit found when scanning in the reverse direction_

Flags Affected

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared_ as, SF, AF, PF,
CF = undefined_

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3_

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH_

26-33

intet INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-34

intel® INSTRUCTION SET

BSWAP - Byte Swap

Opcode

OF CB/r

Instruction Clocks Description

BSWAP (32

Operation

TEMP ~ r32
r32(7 .. 0) ~ TEMP(31 .. 24)
r32(15 .. 8) ~ TEMP(23 .. 16)
r32(23 .. 16) ~ TEMP(15 .. 8)
r32(31 .. 24) ~ TEMP(7 .. 0)

Description

Swap bytes to convert little/big end ian data in a
32-bit register to big/little endian form.

The BSWAP instruction reverses the byte order of a 32-bit register, converting a value in
little/big endian form to big/little endian form. When BSWAP is used with 16-bit oper­
and size, the result left in the destination register is undefined.

Flags Affected

None.

Protected Mode· Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Notes

BSWAP is not supported on Intel386 processors. See Section 3.11 to use BSWAP com­
patible with Intel386 processors.

26-35

int:et INSTRUCTION SeT

BT -Bit Test

Opcode

OF A3
OF A3
OF BA 14 ib
OF BA/4 ib

Operation

Instruction

BT r/m16,r16
BTr/m32,r32
BT r/m16,imm8
BT r/m32,imm8

CF ~ BIT[LeftSRC, RightSRC];

Description

Clocks

3/8
3/8
3/3
3/3

Description

Save bit in carry flag
Save bit in carry flag
Save bit in carry flag
Save bit in carry flag

The BT instruction saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the CF flag.

Flags Affected

The CF flag contains the value of the selected bit.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The index of the selected bit can be given by the immediate constant in the instruction
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 3l. This
allows any bit within a register to be selected. For memory bit strings, this immediate
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger
than 31 are supported by using the immediate bit offset field in combination with the

26-36

intel® INSTRUCTION SET

displacement field of the memory operand. The low-order 3 to 5 bits of the immediate
bit offset are stored in the immediate bit offset field, and the high-order bits are shifted
and combined with the byte displacement in the addressing mode by the assembler. The
processor will ignore the high order bits if they are not zero.

When accessing. a bit in memory, the processor may access four bytes starting from the
memory address given by:

Effective Address + (4 * (BitOffset DIY 32»

for a 32-bit operand size, or two bytes starting from the memory address given by:

Effective Address + (2 * (BitOffset DIY 16»

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed
in order to reach the given bit. You must therefore avoid referencing areas of memory
close to address space holes. In particular, avoid references to memory-mapped I/O
registers. Instead, use the MOY instructions to lo~d from or store to these addresses,
and use the register form of these instructions to manipulate the data.

26-37

intet INSTRUCTION SET

BTC - Bit Test and Complement
'.'

Opcode Instruction Clocks

OF BB BTC r/m16,r16 6/13'
OF BB BTC r/m32,r32 6/13
OF BA /7 ib BTC r/m16,immB 6/8
OF BA /1 ib BTC r/m32,immB 6/8

Operation

CF <- BIT[LeftSRC, RightSRC];

Description

Save bit in carry flag and complement
Save bit in carry flag and complement
Save bit in carry flag and complement
Save bit in carry flag and complement

BIT[LeftSRC, RightSRC] <- NOT BIT[LeftSRC, RightSRCj;

Description

The BTC instruction saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the CF flag and then complements the bit.

Flags Affected

The CF flag contains the complement of the selected bit.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The index of the selected bit can be given by the immediate constant in the instruction
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This
allows any bit within a register to be selected. For memory bit strings, this immediate
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger
than 31 are supported by using the immediate bit offset field in combination with the

26·38

intel~ INSTRUCTION SET

displacement field of the memory operand. The low-order 3 to 5 bits of the immediate
bit offset are stored in the immediate bit offset field, and the high-order bits are shifted
and combined with the byte displacement in the addressing mode by the assembler. The
process<?r will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access four bytes starting from the
memory address given by:

Effective Address + (4 * (BitOffset DIV 32»

for a 32-bit operand size, or two bytes starting from the memory address given by:

Effective Address + (2 * (BitOffset DIV 16))

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed
in order to reach the given bit. You must therefore avoid referencing areas of memory
close to address space holes. In particular, avoid references to memory-mapped I/O
registers. Instead, use the MOV instructions to load from or store to these addresses,
and use the register form of these instructions to manipulate the data.

26-39

in1:eL INSTRUCTION SET

BTR - Bit Test and Reset

Opcode

OF B3
OF B3
OF BA /6 ib
OF BA /6 ib

Operation

Instruction

BTR r/m16.r16
BTR r/m32.r32
BTR r/m16,immB.
BTR r/m32,immB

CF ~.BIT[LeftSRC, RightSRC];
BIT[LeftSRC, RightSRC] ~ 0;

Description

Clocks

6/13
6/13
6/8
6/8

Description

Save bit in carry flag and reset
Save bit in carry flag and reset
Save bit in carry flag and reset
Save bit in carry flag and reset

The BTR instructiori saves the value of the bit indicated by tne 'base (first 9perand) and
the bit offset (secorid operand) into theCF flag arid then stores 0 in the bit. '

Flags Affected

The CF flag contains the value of the selected bit.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The index of the selected bit can be given by the immediate constant in the instruction
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 . .3l. This
allows any bit within a register to be selected. For memory bit strings, this immediate
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger
than 31 (or 15) are supported by using the immediate bit offset field in combination with

26-40

inte)® INSTRUCTION SET

the displacement field of the memory operand. The low-order 3 to 5 bits of the imme­
diate bit offset are stored in the immediate bit offset field, and the high-order bits are
shifted and combined with the byte displacement in the addressing mode by the assem­
bler. The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access four bytes starting from the
memory address given by:

Effective Address + 4 * (BitOffset DIY 32)

for a 32-bit operand size, or two bytes starting from the memory address given by:

Effective Address + 2 * (BitOffset DIY 16)

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed
in order to reach the given bit. You must therefore avoid referencing areas of memory
close to address space holes. In particular, avoid references to memory-mapped I/O
registers. Instead, use the MOY instructions to load from or store to these addresses,
and use the register form of these instructions to manipulate the data.

26-41

int:eL INSTRUCTION SET

,BTS - Bit Test and Set

Opcode

OF AS
OF AS
OF SA/5 ib
OF SA /5 ib

Operation

Instruction

STS r/m16,r16
STS r/m32,r32
STS r/m16,immB
STS r/m32,immB

CF ~ BIT[LeftSRC, RightSRC];
BIT[LeftSRC, RightSRC] ~ 1;

Description

Clocks

6/13
6/13
6/8
6/8

Description

Save bit in carry flag and set
Save bit in carry flag and set
Save bit in carry flag and set
Save bit in carry flag and set

The BTS instruction saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the CF flag and then stores 1 in the bit.

Flags Affected

The CF flag contains the value of the selected bit.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The index of the selected bit can be given by the immediate constant in the instruction
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This
allows any bit within a register to be selected. For memory bit strings, this immediate
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger
than 31 are supported by using the immediate bit offset field in combination with the

26-42

intel® INSTRUCTION SET

displacement field of the memory operand. The low-order 3 to 5 bits of the immediate
bit offset are stored in the immediate bit offset field, and the high order bits are shifted
and combined with the byte displacement in the addressing mode by the assembler. The
processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access four bytes starting from the
memory address given by:

Effective Address + (4 * (BitOffset DIV 32))

for a 32-bit operand size, or two bytes starting from the memory address given by:

Effective Address + (2 * (BitOffset DIV 16))

for a 16-bit operand size. It may do this even when only a single byte needs to be
accessed in order to get at the given bit. You must therefore be careful to avoid refer­
encing areas of memory close to address space holes. In particular, avoid references to
memory-mapped I/O registers; Instead, use the MOV instructions to load from or store
to these addresses, and use the register form of these instructions to manipulate the
data.

26-43

infel~ INSTRUCTION SET

CALL - Call Procedure

Opcode

E8 cw
FF /2
SA cd
SA cd
SA cd
SA cd
SA cd
FF /3
FF /3
FF /3
FF /3
FF /3
E8 cd
FF /2
SA cp
SA cp
SA.cp
SA cp
SA cp'
FF/3
FF /3
FF /3
FF /3
FF /3

Instruction

CALL re116
CALLrlm16
CALL ptr16:16
CALL ptr16:16
CALL ptr16:16
CALL ptr16:16
CALL ptr16:16
CALL m16:16
CALL m16:16
CALL m16:16
CALL m16:16
CALL m16:16
CALL re132
CALL rlm32
CALL ptr16:32 .
CALL ptr16:32
CALL ptr16:32
CALL ptr16:32
CALL ptri6:32
CALLm16:32
CALLm16:32
CALLm16:32
CALLm16:32
CALL m16:32

Clocks

3
5/5
18,pm=20
pm=35
pm=6S
pm=77+4x
pm=37+ts
17,pm=20
pm=35
pm=6S
pm=77+4x
pm=37+ts
3
5/5
18,pm=20
pm=35
pm=69
pm=77+4x
pm=37+ts
17,pm=20
pm=35
pm=69
pm=77+4x
pm=37+ts

NOTE: Values of ts are given by the following table:

Old Task

. Description

Call near,displacement relative to next instruction
Call near, register indirect/memory indirect
Call intersegment, to full pOinter given
Call gate, same privilege
Call gate, more privilege, no parameters
Call gate, more privilege, x parameters
Call to task
Call intersegment, address at rim dword
Call gate, same privilege
Can gate, more privilege, no parameters
Call gate, more privilege, x parameters
Call to task
Call near, displacement relative to next instruction
Call near, indirect
Call intersegment, to full pointer given

. Call gate, 'same privilege
Call gate, more privilege, no parameters
Call gate, more privilege, x parameters
Call to taSk .
Call intersegment,. address at rim dword .
Call gate, same privilege
Call gate, more privilege, no parameters
Call gate, more privilege, x parameters
Call to task

New Task

to Intel486'M CPU TSS to 80286 TSS toVM TSS

VM/lntel486 CPU/80286 TSS

Operation

IF re116 or rel32 type of call
THEN (* near relative call *)

IF OperandSize = 16
THEN

Push(IP);
EIP - (EIP + rel16) AND OOOOFFFFH;

ELSE (* OperandSize = 32 *)
Push(EIP);
EIP - EIP + rel32,

FI;
FI;

IF r/m16 or r/m32 type of call
THEN (* near absolute call *)

IF OperandSize = 16
THEN

Push(IP);

199 180 177

26-44

intel@ INSTRUCTION SET

EIP ~ [r/m16] AND OOOOFFFFH;
ELSE (* OperandSize = 32 *)

Push(EIP);
EIP ~ [r/m32];

FI;
FI;

IF (PE = 0 OR (PE = 1 AND VM = 1))
(* real mode or virtual 8086 mode *)

AND instruction = far CALL
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *)

THEN
IF OperandSize = 16
THEN

Push(CS);
Push(IP); (* address of next instruction; 16 bits *)

ELSE
Push(CS); (* padded with 16 high-order bits *)
Push(EIP); (* address of next instruction; 32 bits *)

FI;
IF operand type is m16:16 or m16:32
THEN (* indirect far call *)

IF OperandSize = 16
THEN

CS:IP ~ [m16:16];
EIP ~ EIP AND OOOOFFFFH; (:I< clear upper 16 bits *)

ELSE (* OperandSize = 32. *) .
CS:EIP ~ [m16:32];

FI;
FI;
IF operand type is ptr16:16 or ptr16:32
THEN (* direct far call *)

IF OperandSize = 16
THEN

CS:IP ~ ptr16:16;
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *)

ELSE (* OperandSize = 32 *)
CS:EIP ~ ptr16:32,

FI;
FI;

FI;

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *)
AND instruction = far CALL

THEN
If indirect, then check access of EA doubleword;

#GP(O) if limit violation;
New CS selector must not be null else #GP(O);
Check that new CS selector index is within its

26-45

infel® INSTRUCTION SET

descriptor table limits; else #GP(new CS selector);
Examine AR byte of selected descriptor for various legal values;

depending on value:
go to CONFORMING-CODE-SEGMENT;
go to NONCONFORMING-CODE-SEGMENT;
go to CALL-GATE;
go to TASK-GATE;
go to TASK-STATE-SEGMENT;

ELSE #GP(code segment selector);
FI;

CONFORMING-CODE-SEGMENT:
DPL must be ::; CPL ELSE #GP(code segment selector);
Segment must be present ELSE #NP(code segment selector);
Stack must be big enough for return address ELSE #SS(O);
Instruction pointer must be in code segment limit ELSE#GP(O);
Load code segment descriptor into CS register;
Load CS with new code segment selector;
Load EIP with zero-extend(new offset);
IF OperandSize = 16 THEN EIP ~ EIP AND OOOOFFFFH; FI;

NONCONFORMING-CODE-SEGMENT:
RPL must be ::; CPL ELSE #GP(code segment selector)
DPL must be = CPL ELSE #GP(code segment selector)
Segment must be present ELSE #NP(code segment selector)
Stack must be big enough for return address ELSE#SS(O)
Instruction pOinter must be in code segment limit ELSE #GP(O)
Load code segment descriptor into CS register
Load CS with new code segment selector
Set RPL of CS to CPL
Load EIP with zero-extend(new offset);
IF OperandSize = 16 THEN EIP ~ EIP AND OOOOFFFFH; FI;

CALL-GATE:
Call gate DPL must be :2: CPL ELSE #GP(call gate selector)
Call gate DPL must be :2: RPL ELSE#GP(call gate selector)
Call gate must be present ELSE #NP(call gate selector)
Examine code segment selector in call gate descriptor:

Selector must not be null ELSE #GP(O)
Selector must be within its descriptor table

limits ELSE #GP(code segment selector)
AR byte of selected descriptor must indicate code

segment ELSE #GP(code segment selector)
DPL of selected descriptor must be ::; CPL ELSE

#GP(code segment selector)
IF non-conforming code segment AND DPL < CPL·
THEN go to MORE-PRIVILEGE
ELSE go to SAME-PRIVILEGE
FI;

26-46

intel® INSTRUCTION SET

MORE-PRIVILEGE:
Get new SS selector for new privilege level from TSS

Check selector and descriptor for new SS:
Selector must not be null ELSE #TS(O)
Selector index must be within its descriptor

table limits ELSE #TS(SS selector)
Selector's RPL must equal DPL of code segment

ELSE #TS(SS selector)
Stack segment DPL must equal DPL of code

segment ELSE #TS(SS selector)
Descriptor must indicate writable data segment

ELSE #TS(SS selector)
Segment present ELSE #SS(SS selector)

IF OperandSize = 32
THEN

New stack must have room for parameters plus 16 bytes
ELSE #SS(SS selector)

EIP must be in code segment limit ELSE #GP(O)
Load new SS:eSP value from TSS
Load new CS:EIP value from gate

ELSE
New stack must have room for parameters plus 8 bytes

ELSE #SS(SS selector)
IP must be in code segment limit ELSE #GP(O)
Load new SS:eSP value from TSS
Load new CS:IP value from gate

FI;
Load CS descriptor
Load SS descriptor
Push long painter of old stack onto new stack
Get word count from call gate, mask to 5 bits
Copy parameters from old stack onto new stack
Push return address onto new stack
Set CPL to stack segment DPL
Set RPL of CS to CPL

SAME-PRIVILEGE:
IF OperandSize = 32
THEN

Stack must have room for 6-byte return address (padded to 8 bytes)
ELSE #SS(O)

EIP must be within code segment limit ELSE #GP(O)
Load CS:EIP from gate

ELSE
Stack must have room for 4-byte return address ELSE #SS(O)
IP must be within code segment limit ELSE #GP(O)
Load CS:IP from gate

FI;

26-47

INSTRUCTION SET

Push return address onto stack
Load code segment descriptor into CS register
Set RPL of CS to CPL

TASK-GATE:
Task gate DPL must be 2: CPL ELSE #TS(gate selector)
Task gate DPL must be 2: RPL ELSE #TS(gate selector)
Task Gate must be present ELSE #NP(gate selector)
Examine selector to TSS, given in Task Gate descriptor:

Must specify global in the local/global bit ELSE #1'S(TSS selector)
Index must be within GDT limits ELSE #TS(TSS selector)
TSS descriptor AR byte must specify non busy TSS

ELSE #TS(TSS selector)
Task State Segment must be present ELSE #NP(TSS selector)

SWITCH-TASKS (with nesting) to TSS
IP must be in code segment limit ELSE #TS(O)

TASK-STATE-SEGMENT:
TSS DPL must be 2: CPL ELSE #TS(TSS selector)
TSS DPL must be 2: RPL ELSE #TS(TSS selector)
TSS descriptor AR byte must specify availableTSS

ELSE #TS(TSS selector)
Task State Segment must be present ELSE #NP(TSS selector)
SWITCH-TASKS (with nesting) to TSS
IP must be in code segment limit ELSE#TS(O)

Description

The CALL instruction causes the procedure named in the operand to be executed.
When the procedure is complete (a return instruction is executed within the procedure),
execution continues at the instruction that follows the CALL instruction.

The action of the different forms of the instruction are described below .

. Near calls are those with destinations of type r/m16, r/m32, re/16, re/32; changing or saving
the segment register value is not necessary. The CALL re/16 and CALL re/32 forms add
a signed offset to the address of the instruction following the CALL instruction to deter­
mine the destination. The re(16 form is used when the instruction's operand-size
attribute is 16 bits; re/32 is used when the operand-size attribute is 32 bits. The result is
stored in the 32-bit EIP register. With re/16, the upper 16 bits of the EIP register are
cleared, resulting in an offset whose value does not exceed 16. bits. CALL r/m16 and
CALL r/m32 specify a register or memory location from which the absolute segment
offset is fetched. The offset fetched from rim is 32 bits for an operand-size attribute, of 32
(r/m32), or 16 bits for an operand-size oU6 (r/m16). The offset·of the instruction follow­
ing the CALL instruction is pushed onto the stack. It will be popped bya near RET
instruction within the procedure. The CS register is not changed by this form of CALL.

26-48

intel® INSTRUCTION SET

The far calls, CALL ptr16:16 and CALL ptr16:32, use a four-byte or six-byte operand as
a long pointer to the procedure called. The CALL m16:16 and m16:32 forms fetch the
long pointer from the memory.location specified (indirection). In Real Address Mode or
Virtual 8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits
for the EIP register (depending on the operand-size attribute). These forms of the
instruction push both the CS and IP or EIP registers as a return address.

In Protected Mode, both long pointer forms consult the AR byte in the .descriptor
indexed by the selector part of the long pointer. Depending .on the value of the AR byte,
the call will perform one of the following types of control transfers:

• A far call to the same protection level

• An inter-protection level far call

• A task switch

A CALL-indirect-thru-memory, which uses the stack pointer (ESP) as a base register,
references memory before the CALL. The base used is the value of the ESP before the
instruction executes.

For more information on Protected Mode control transfers, refer to Chapter 6 and
Chapter 7.

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.

Protected Mode Exceptions

For far calls: #GP, #NP, #SS, and #TS, a~ indicated in the "Operation" section.

For near direct calls: #GP(O) if procedure location is beyond the code segment limits;
#SS(O) if pushing the return address exceeds the bounds of the stack segment; #PF
(fault-code) for a page fault; #AC for unaligned memory reference if the current privi­
lege level is 3.

For a near indirect call: #GP(O) for an illegal memory operand effective address in the
CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment;
#GP(O) if the indirect offset obtained is beyond the code segment limits; #PF(fault­
code) for a page fault; # AC for unaligned memory reference if the current privilege
level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-49

infel~ INSTRUCTION SET

Virtual 8086 Mode Exceptions . .

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3. .

Notes

Any far call from a 32-bit code segment to a 16-bit code segment should be made from
the first 64Kbytes of the 32-bit code segment, because the operand-size attribute of the
instruction is set to 16, allowing only a 16-bit return address offset to be saved. .

26-50

INSTRUCTION SET

CBW /CWDE - Convert Byte to Word/Convert Word to Double­
word

Opcode

98
98

Operation

Instruction

CBW
CWDE

Clocks

3
3

IF OperandSize = 16 (* instruction = CBW *)
THEN AX ~ SignExtend(AL);
ELSE (* Op~randSize = 32, instruction = CWDE *)

EAX ~ SignExtend(AX);- -
FI;

Description

Description

AX <- sign-extend of AL
EAX <- sign-extend of AX

The CBW instruction converts the signed byte in the AL register to a signed word in the
AX register by extending the most significant bit of the AL register (the sign bit) into all
of the -bits of the AH register. The CWDE instruction converts the signed word fn the
AX register to a doubleword in the EAX register by extending the most significant bit of
the AX register into the two most significant bytes of the EAX register. Note that the
CWDE instruction is different from the CWD instruction. The CWDinstruction uses
the DX:AX register pair rather than the EAX register as a destination.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-51

INSTRUCTION SET

CLC- Clear Carry Flag

Opcode

Fa

Operation

CF~O;

Description

Instruction

CLC

Clocks

2

Description

Clear carry flag

The CLC instruction clears the CF flag. It does not affect other flags or registers.

Flags Affected

The CF flag is cleared.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-52

INSTRUCTION SET

ClD - Clear Direction Flag

Opcode

FC

Operation

DF~O;

Description

Instruction

CLO

Clocks

2

Description

Clear direction flag; 81 and 01 will increment dur­
ing string instructions

The CLD instruction clears the direction flag. No othet; flags or registers are affected.
After a CLD instruction is executed, string operations will increment the index registers
(SI and/or DI) that they use.

Flags Affected

The DF flag is cleared.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-53

inteL INSTRUCTION SET

CLI- Clear Interrupt Flag

Opcode

FA

Operation

IF ~ 0;

Description

Instruction

CLI

Clocks

5

Description

Clear interrupt flag; interrupts disabled

The CLI instruction clears the IF flag if the current privilege level is at least as privileged
astOPL No oth~rflags are affected. External interrupts are not recognized at the end
of theCLI instruction or from that point on until the IF flag is set.

Flags Affected

The IF flag is cleared.

Protected Mode Exceptions

#GP(O) if the current privilege level is greater (has less privilege) than the I/O privilege
level in the flags register. The I/O privilege level specifies the least privileged level at
which I/O can be performed.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(O) as for Protected Mode.

26-54

intel~ INSTRUCTION SET

CL TS - Clear Task-Switched Flag in eRO

Opcode

OF 06

Operation

Instruction

CLTS

TS Flag in eRO ~ 0;

Description

Clocks

7

Description

Clear task-switched flag

The CLTS instruction clears the task-switched (TS) flag in the CRO register. This flag is
set by the processor every time a task switch occurs. The TS flag is used to manage
processor exten.sions as follows:

• Every execution of an ESC instruction is trapped if the TSflag is set.

• Execution of a WAIT instruction is trapped if the MP flag and the TS flag are both
set.

Thus, if a task switch was made after an ESC instruction was begun, the floating-point
unit's context may need to be saved before a new ESC instruction can be issued. The
fault handler saves the context and clears the TS flag.

The CLTS instruction appears in operating system software, not in application pro­
grams. It is a privileged instruction that can only be executed at privilege level O.

Flags Affected

The TS flag is cleared (the TS flag is in the CRO register, not the flags register).

Protected Mode Exceptions

#GP(O) if the CLTS instruction is executed with a current privilege level other than O.

Real Address Mode Exceptions

None (valid in Real Address Mode to allow initialization for Protected Mode).

Virtual 8086 Mode Exceptions

Same exceptions as in Protected Mode.

26-55

INSTRUCTION SET

CMC - Complement Carry Flag

Opcode

F5

Operation

Instruction

CMC

CF ~ NOT CF;

Description

Clocks

2 '

Description

Complement carry flag

The CMC instruction reverses the setting of the CF flag. No other flags are affected;

Flags Affected

The CF flag contain~ the complement of ,its original valut<.

Protected Mode Exceptions

None.

Real Address Mode Exceptions
: i"·

None.

Virtual 8086 Mode Exceptions

None.

26-56 '

intel® INSTRUCTION SET

eM P - Compare Two Operands

Opcode Instruction Clocks

3C ib CMPAL,immB 1
3D iw CMP AX,imml6 1
3D id CMP EAX,imm32 1
80/7 ib CMP rlmB,immB 1/2
81 /7 iw CMP rlml6,imml6 1/2
81 /7 id CMP rlm32,imm32 1/2
83/7 ib CMP rlml6,immB 1/2
83/7 ib CMP rlm32,immB 1/2

38/r CMP rlmB,rB 1/2
39/r CMP rlml6,rl6 1/2
39/r CMP rlm32,r32 1/2
3A /r CMP rB,rlmB 1/2
38/r CMP rl6,rlml6 1/2
38/r CMP r32,rlm32 1/2

Operation

LeftSRC - SignExtend(RightSRC);

Description

Compare immediate byte to AL
Compare immediate word to AX
Compare immediate dword to EAX
Compare immediate byte to rim byte
Compare immediate word to rim word
Compare immediate dword to rim dword
Compare sign extended immediate byte to rim word
Compare sign extended immediate byte to rim
dword
Compare byte register to rim byte
Compare word register to rim word
Compare dword register to rim dword
Compare rim byte to byte register
Compare rim word to word register
Compare rim dword to dword register

(* CMP does not store a result; its purpose is to set the flags *)

Description

The CMP instruction subtracts the second operand from the first but, unlike the SUB
instruction, does not store the result; only the flags are changed. The CMP instruction is
typically used in conjunction with conditional jumps and the SETcc instruction. (Refer to
Appendix D for the list of signed and unsigned flag tests provided.) If an operand
greater than one byte is compared to an immediate byte, the byte value is first
sign-extended.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

. #GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-57

intel® INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference ifthe current privilege level is 3.

26-58

intel® INSTRUCTION SET

CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands

Opcode Instruction Clocks

A6 CMPS m8,m8 8

A7 CMPS m16,m16 8

A7 CMPS m32,m32 8

A6 CMPSB 8
A7 CMPSW 8
A7 CMPSD 8

Operation

IF (instruction = CMPSD) OR
(instruction has operands of type DWORD)

THEN OperandSize ~ 32;
ELSE OperandSize ~ 16;
FI;
IF AddressSize = 16
THEN

use SI for source-index and DI for destination-index
ELSE (* AddressSize = 32 *)

Description

Compare bytes ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
Compare words ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
Compare dwords ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
Compare bytes ES:[(E)DI] with DS:[SI]
Compare words ES:[(E)DI] with DS:[SI].
Compare dwords ES:[(E)DI] with DS:[SI]

use ESI for source-index and EDI for destination-index;
FI;
IF byte type of instruction
THEN

set ZF based on
[source-index] - [destination-indexl~ (* byte comparison *)
IF DF = 0 THEN IncDec ~ 1 ELSE IncDec ~ -1; FI;

ELSE
IF OperandSize = 16
THEN

set ZF based on
[source-index] - [destination-index]; (* word comparison *)
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec ~ -2; FI;

ELSE (* OperandSize = 32 *)
set ZF based on
[source-index] - [destination-index]; (* dword comparison *)
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ -4; FI;

FI;
FI;
source-index = source-index + IncDec;
destination-index = destination-index + IncDec;

Description

The CMPS instruction compares the byte, word, or doubleword pointed to by the
source-index register with the byte, word, or doubleword pointed to by the destination­
index register.

26-59

intel® INSTRUCTION. SET

If the address-size attribute of this instruction is 16 bits, the SIand DI registers will be
used for source- and destination-index registers; otherwise the ESI and EDI registers
will be used. Load the correct index values into the SI and D I (or ESI and ED I) registers
before executing the CMPS instruction.

The comparison is done by subtracting the operand indexed by the destination-index
register from the operand indexed by the source-index register.

Note that the direction of subtraction for the CMPS instruction is [SI] - [DI] or [ESI] -
[EDI]. The left operand (SI or ESI) is the source and the right operand (DI or EDI) is
the destination. This is the reverse of the usual Intel convention in which the left oper­
and is the destination and the right operand is the source.

The result of the subtraction is not stored; only the flags reflect the change. The types of
the operands determine whether bytes, words, or doublewords are compared. For the
first operand (SI or ESI), the DS register is used, unless a segment override byte is
present. The second operand (DI or EDI) must be addressable from the ES register; no
segment override is possible.

After the comparison is made, both the source-index register and destination-index reg­
ister are automatically advanced. If the DF flag is 0 (a CLD instruction was executed),
the registers increment; if the DF flag is 1 (an STD instruction was executed), the
registers decrement. The registers increment or decrement by1 if a byte is compared, by
2 if a word is compared, or by 4 if a doubleword is compared.

The CMPSB, CMPSW and CMPSD instructions are synonyms for the byte, word, and
doubleword CMPS instructions, respectively. .

The CMPS instruction can be preceded by the REPE or REPNE prefix for block com­
parison of CX or ECX bytes, words, or doublewords. Refer to the description of the
REP instruction for more information on this operation.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-60

INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-61

intel® INSTRUCTION SET

CMPXCHG-Compare and Exchange

Opcode

OF BOlr

OF B11r

OF B11r

Operation

, Instruction

CMPXCHG rlmB,rB

CMPXCHG
rlm16,r16

CMPXCHG
rlm32,r32

I F accumulator = DEST
ZF ~ 1
DEST ~ SRC

ELSE
ZF ~ 0
accumulator ~ DEST

Description

Clocks'

6/7 if comparison is ' .
successful; 6/10 if
comparison fails
6/7 if comparison is
successful; 6/10 if
comparison fails
6/7 if comparison is
successful; 6/10 if
comparison fails

Description

. Compare AL with rIm byte. If equal, set ZF and
load byte reg into rIm byte. Else, clear ZF and
load rIm byte into AL.
Compare AX with rIm word. If equal, set ZF and
load word reg into rIm word. Else, clear ZF and
load rIm word into AX.
Compare EAX with rIm dword. If equal, set ZF
and load dword reg into rIm dword. Else, clear
ZF and load rIm dword into EAX.

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX register) with
DEST. If they are equal, SRC is loaded into DEST. Otherwise, DEST is loaded into the
accumulator.

Flags Affected

The CF, PF, AF, SF, and OF flags are affected as if a CMP instruction had been
executed with DEST and the accumulator as operands. The ZF flag is set if the destina­
tion operand and the accumulator are equal; otherwise it is cleared.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF (fault code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH.

26-62

int:eL INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

This instruction can be used with a LOCK prefix. In order to simplify interface to the
processor's bus, the destination operand receives a write cycle without regard to the
result of the comparison. DEST is written back if the comparison fails, and SRC is
written into the destination otherwise. (The processor never produces a locked read
without also producing a locked write.) This instruction is not supported on Inte1386
processors. See Section 3.11 to use CMPXCHG compatible with Inte1386 processors.

26-63

infel® INSTRUCTION SET

CWD/CDQ - Convert Word to Doubleword/Convert Doubleword
to Quadword .

Opcode

99
99

Operation

Instruction

CWO
coa

. Clocks

3
3

.IF OperandSize = 16 (* CWO instruction· *r
THEN ..

IFAx<o THEN mn-OFFFFH; ELSE OX ~ 0; FI;
ELSE (* OperandSize~ 32, COQinstruction *)

, Description

DX:AX <- sign-extend of AX
EDX:EAX <- sign-extend of EAX

IF EAX < 0 THEN EOX - OFFFFFFFFH; ELSE EOX - 0; FI;
FI;

Description

The CWD instruction converts the signed word in the AX register to a signed double­
word in the DX:AX register pair by extending the most significant bit of the AX register
into all the bits of the DX register. The CDQ instruction converts the signed doubleword
in the EAX register to a signed 64-bit integer in the register pair EDX:EAX by extend­
ing the most significant bit of the EAX register (the sign bit) into all the bits of the EDX
register. Note that the CWD instruction is different from the CWDE instruction_ The
CWDE instruction uses the EAX register as a destination, instead of the DX:AX regis­
ter pair.

Flags Affected

None_

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-64

· inteL INSTRUCTION SET

OAA - Decimal Adjust AL after Addition

Opcode

27

Operation

tmpAL=AL

Instruction

DAA

Clocks

2

IF ((tmpAL AND OFH) > 9) OR (AF = 1)
THEN

AL ~ tmpAL + 6;
AF ~ 1;

ELSE
AF ~ 0;

FI;
IF (tmpAL > 9FH) OR (CF = 1)
THEN

AL ~ tmpAL + 60H;
CF~ 1;

ELSE CF ~ 0;
FI;

Description

Description

Decimal adjust AL after addition

Execute the DM instruction only after executing an ADD instruction that leaves a
two~BCD-digit byte result in the AL register. The ADD operands should consist of two
packed BCD digits. The DAA instruction adjusts the AL register to contain the correct
two-digit packed decimal result.

Flags Affected

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal
carry; the SF, ZF and PF flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-65

INSTRUCTION SET

DAS - Decimal Adjust AL after Subtraction

Opcode

2F

Operation

tmpAL=AL

Instruction

DAS

Clocks

2

IF (tmpAL AND OFH) > 9 OR AF = 1
THEN

AL ~ tmpAL - 6;
AF~ 1;

ELSE
AF~O;

FI;
IF (tmpAL > 9FH) OR (CF = 1)
THEN

AL ~ tmpAL - 60H;
CF~ 1;

ELSE CF ~ 0;
FI;

Description

Description

Decimal adjust AL after subtraction

Execute the DAS instruction only after a subtraction instruction that leaves a two-BCD­
digit byte result in the AL register. The operands should consist of two packed BCD
digits. The DAS instruction adjusts the AL register to contain the correct packed two­
digit decimal result.

Flags Affected

The AF and CF flags are set if there is a decimal carry, cleared if. there is no decimal
carry; the SF, ZF and PF flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-66

intel® INSTRUCTION SET

DEC - Decrement by 1

Opcode Instruction

FE 11 DEC rlmB
FF 11 DEC r/m16

DEC r/m32
4B+rw DEC r16
4B+rw DEC r32

Operation

DEST +--- DEST - 1;

Description

Clocks

1/3
1/3
1/3
1
1

Description

Decrement rim byte by 1
Decrement rim word by 1
Decrement rim dword by 1
Decrement word register by 1
Decrement dword register by 1

The DEC instruction subtracts 1 from the operand. The DEC instruction does not
change the CF flag. To affect the CF flag, use the SUB instruction with an immediate
operand of 1. .

Flags Affected

The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(O) if the result is a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3. .

26-67

int:eL INSTRUCTION SET

DIV - Unsigned Divide

Opcode Instruction

F6/6 DIVAL,rlmB

F7/6 DIV AX,rlm,16

F7/6 DiV EAX,rlm32 ,
..

Operation

temp <f- dividend / divisor;
IF temp does not fit in quotient
THEN Interrupt 0;
ELSE

Clocks

16/16

24/24

40/40

quotient~ temp;
remainder<f-dividend MOD (rim);

FI;

.'

Description

Unsigned divide AX by rim byte (AL=Quo,
AH=Rem)
Unsigned divide DX:AX by rim word (AX = Quo,
DX=Rem)
Unsigned divide EDX:EAX by rim dword
(EAX = Quo, EDX = Rem)

Note: Divisions are unsigned. The divisor is given by the rim operand. The dividend,
quotient, and remainder use implicit registers. Refer to the table under "Description."

Description

The DIV instniction performs an unsigned division. The dividend is implicit; only the
divisor is given as an operand. The remainder is always less than the divisor. The type of
the divisor determines which registers to use as follows: .

Size Dividend Divisor Quotient Remainder

byte AX rlmB AL AH
,word OX:AX.' rim 16 AX OX
dword EOX:EAX rlm32 EAX EOX

Flags Affected

The OF, SF, ZF, AF, PF, CF fIag~ areundefit;led.

Protected Mode Exceptions

Interrupt 0 if the quotient is too large to fit in the designated register (AL, AX, or
EAX), or if the divisor is 0; #GP(O) for an iIIegal memory operand effective address in
the CS, DS, ES, FS, or GS segments; #SS(O) for an iIIegal address in the SS segment;
#PF(fault-code) for a page fault; #AC for unaligned memory reference if the current
privilege level is 3.

26-68

intel® INSTRUCTION SET

Real Address Mode Exceptions

Interrupt 0 if the quotient is too big to fit in the designated register (AL, AX, or EAX),
or if the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the
effective address space from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-69

intel® INSTRUCTION SET

ENTER - Make Stack Frame for Procedure Parameters

Opcode

C8 iwOO
C8 iw01
C8 iwib

Operation

Instruction Clocks .

ENTER imm16,O 14
ENTER imm16,1 17
ENTER imm16,immB 17+3n

level ~ level MOD 32

Description

Make procedure stack frame
Make stack frame for procedure parameters
Make stack frame for procedure parameters

IF OperandSize = 16 THEN Push(BP) ELSE Push (EBP) FI;
(* Save stack pointer *)

frame-ptr ~ eSP
IF level> 0
THEN (* level is rightmost parameter *)

FOR i ~ 1 TO level - 1
DO

IF OperandSize = 16
THEN

BP ~ BP - 2;
Push [BP]

ELSE (* OperandSize = 32 *)
EBP ~ EBP - 4;
Push[EBP];

FI;
00;
Push (frame-ptr)

FI;
IF OperandSize = 16 THEN BP ~ frame-ptr ELSE EBP ~ frame-ptr; FI;
IF StackAddrSize =.16
THEN SP ~ SP - First operand;
ELSE ESP ~ ESP - ZeroExtend(First operand);
FI;

Description

The ENTER instruction creates the stack frame required by most block-structured high­
level languages. The first operand specifies the number of bytes of dynamic storage
allocated on the stack for the routine being entered. The second operand gives the
lexical nesting level (0 to 31) of the routine within the high-level language source code. It
. determines the number of stack frame pointers copied into the new stack frame from the
preceding frame. The BP register (or EBP, if the operand-size attribute is 32 bits) is the
current stack frame pointer.

If the operand-size attribute is 16 bits, the processor uses the BP register as the frame
pointer and the SP register as the stack pointer. If the operand-size attribute is 32 bits,
the processor uses the EBP register for the frame pointer and the ESP register for the
stack pointer.

26-70

intel® INSTRUCTION SET

If the second operand is 0, the ENTER instruction pushes the frame pointer (BP or EBP
register) onto the stack; the ENTER instruction then subtracts the first operand from
the stack pointer and sets the frame pointer to the current stack-pointer value.

For example, a procedure with 12 bytes of local variables would have an ENTER 12,0
instruction at its entry· point and a LEAVE instruction before every RET instruction.
The 12 local bytes would be addressed as negative offsets from the frame pointer.

Flags Affected

None.

Protected Mode Exceptions

#SS(O) if the SP or ESP value would exceed the stack limit at any point during instruc­
tion execution; #PF(fault-code) for a page fault.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-71

infel® INSTRUCTION SET

F2XM1-Compute 2x-1

Opcode

D9 FO

Operation

ST ~ (2ST -1);

Description

Instruction Clocks - Concurrent Execution

F2XM1 242 (140-279) 2

Description

Replace ST with (2ST -1)

F2XMl replaces the contents of ST with (2ST -1). ST must lie in the range -1 <ST <
1.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

1', U, 0, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

If the operand is outside the acceptable range, the result of F2XMl is undefined.

The F2XMl instruction is designed to produce a very accurate result even when the
operand is close to zero. Larger errors are incurred for operands with magnitudes very
close to 1.

Values other than 2 can be exponentiated using the formula

26-72

intel® INSTRUCTION SET

The instructions FLDL2T and FLDL2E load the constants log21O and log2e, respec­
tively. FYL2X can be used to calculate y x log2x for arbitrary positive x.

26-73

intel® INSTRUCTION SET

FABS - Absolute Value

Opcode

D9 El

Operation

Instruction

FAB8

sign bit of ST <- 0

Description

Clocks

3

Description

Replace 8T with its absolute value.

The absolute value instruction clears the sign bit of ST. This operation leaves a positive
value unchanged, or replaces a negative value with a positive value of equal magnitude.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

The invalid-operation exception is raised only on stack underflow, even if the operand is
signalling NaN or is in an unsupported format.

26·74

intel® INSTRUCTION SET

FADD/FADDP /FIADD - Add

Opcode Instruction Clocks Concurrent Execution Description

D8/0 FADD m32 real 10 (8~20) 7 (5-17) Add m32realto ST.
DC /0 FADD m64real 10 (8-20) 7 (5-17) Add m64real to ST.
D8 CO+i FADD ST,ST(i) 10 (8-20) 7 (5-17) Add ST(i) to ST.
DC CO+i FADD ST(i), ST 10 (8-20) 7 (5-17) Add 8T to ST(i).
DE CO+i FADDP ST(i), ST 10 (8-20) 7 (5-17) Add ST to 8T(i) and pop ST.
DE C1 FADD 10 (8-20) 7 (5-17) Add 8T to ST(1) and pop ST.
DA /0 FIADD m32int 22.5 (19-32) 7 (5-17) Add m32int to ST.
DE /0 FIADD m16int 24 (20-35) 7 (5-17) Add m16intto ST]

Operation

DEST ~ DEST+ SRC;
If instruction = FADDP THEN pop ST FI;

Description

The addition instructions add the source and destination operands and return the SlIlll to
the destination. The operand at the stack top can be doubled by coding:

FADD ST, ST(O)

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, U, 0, D, I, IS.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF (fault~code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

26-75

int'eL INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

If the source operand is in memory, it is automatically converted to the extended-real
format.

26-76

intel® INSTRUCTION SET

FBLD - Load Binary Coded Decimal

Opcode

DF /4

Operation

Instruction Clocks

FBLD mBOdec 75 (70-103)

Decrement FPU stack-top pointer;
ST(O) (- SRC;

Description

Concurrent Execution Description

Push mBOdec onto the FPU stack.

FBLD converts the BCD source operand into extended-real format, and pushes it onto
the FPU stack. See Figure 15-10 for BCD data layout.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The source is loaded without rounding error. The sign of the source is preserved, includ­
ing the case where the value is negative zero.

26-77

inteL INSTRUCTION SET

The packed decimal digits are assumed to be in the rangeO-9. The instruction does not
check for invalid digits (A-FH), and the result of attempting to load an invalid encoding
is undefined. .

ST(7) must be empty to avoid causing an invalid-operation exception.

int:et INSTRUCTION SET

FBSTP - Store Binary Coded Decimai and Pop

Opcode

DF /6

Instruction

FBSTP m80dec

Operation

DEST ~ ST(O);
pop ST FI;

Description

Clocks Description

175 (172-176) Store ST in m80dec and pop ST.

FBSTP converts the value in ST into a packed decimal integer, stores the result at the
destination in memory, and pops ST. Non-integral values are first rounded according to
the RC field of the control word. See Figure 15-10 for BCD data layout.

FPU Flags Affected

C1 as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, I, IS.

Protected Mode Exceptions

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF (fault-code) for a page fault; #NM if either EM or TS
in CRO is set; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-79

inteL INSTRUCTION SET

FCHS - Change Sign

Opcode

D9 EO

Operation

Instruction

FCHS

Clocks

. 6.

sign bit of ST ~ NOT (sign bit of ST)

Description

Description

Replace ST with a value of opposite sign.

The change sign instruction inverts the sign bit of ST. This operation replaces a positive
value with a negative value. of equal magnitude, or vice-versa.

FPU Flags Affected

CI as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Int~rrupt7 if either EM or TS in eRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

The invalid-operation exception is raised only on stack underflow, even if the op'erand is
a signalling NaN or is in an unsupported format.

26-80

intel® INSTRUCTION SET

FCLEX/FNCLEX - Clear Exceptions

Opcode

9B DB E2

DB E2

Operation

Instruction

FCLEX

FNCLEX

SW[0 .. 7].·<;- 0;
SW[15] ~ 0;

Description

Clocks

7 + at least 3 for
FWAIT
7

Description

Clear floating-point exception flags after check­
ing for floating-point error conditions.
Clear floating-point exception flags without
checking for floating-point error conditions.

FCLEX clears the exception flags, the exception status flag, and the busy flag of the
FPU status word.

FPU Flags Affected

CO, Cl, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

FCLEX checks for unmasked floating-point error conditions before clearing the excep-
tion flags; FNCLEX does not. . , .

INSTRUCTION SET

FCOM/FCOMP/FCOMPP-Compare Real

Opcode Instruction Clocks

08/2 FCOM m32real 4
DC /2 FCOM m64real 4
08 OO+i FCOM ST(i) 4

. 0801 FCOM 4
08/3 FCOMP m32real 4
DC /3 FCOMP m64real 4
08 08+i FCOMPST(i) 4
0809 FCOMP 4
DE 09 FCOMPP 5

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, CO ~ 111;
ST > SAC: C3, C2, CO ~ 000;
ST < SAC: C3, C2, CO ~ 001;
ST = SAC: C3, C2, CO ~ 100;

IF instruction = FCOMP THEN pop ST; FI;
IF instruction = FCOMPP THEN pop ST; pop ST; FI;

FPU Flags

Co
C1

C2

Cs

Description

Description

Compare ST with m32real.
Compare ST with m64real.
Compare ST with ST(i).
Compare ST with ST(1).
Compare ST with m32real and pop ST.
Compare ST with m64real and pop ST.
Compare ST with ST(i) and pop ST.
Compare ST with ST(1) and pop ST.
Compare ST with ST(1) and pop ST twice.

EFlags

CF
Zero
PF
ZF

The compare real instructions compare the stack top to the source, which can be a
register or a single- or double-real memory operand. If no operand is encoded, ST is
compared to ST(l). FoIIowing the instruction, the condition codes reflect the relation
between ST and the source operand.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 as specified above.

Numeric Exceptions

D, I, IS.

26-82

in~® INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS.
segments; #SS(O) for an illegal address in the SS segment; #PF (fault-code) for a page.
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3. .

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
. 0 to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised, and the condition bits ·are set to "unordered."

The sign of zero is ignored, so that -0.0 = - + 0.0.

26-83.

inteL

Feos - Cosine

Opcode

09 FF

Operation

Instruction

Feos

IF operand is in range
THEN

C2~O;

ST ~ cos{ST);
ELSE

C2 ~ 1;
FI;

Description

INSTRUCTION SET

Clocks Concurrent Execution Description

241 (193-279) 2 Replace ST with its cosine

The cosine instruction replaces the contents of ST with cos(ST). ST, expressed in radi­
ans, must lie in the range I e I < 263.

FPU Flags Affected

Cl, C2 as described in Table 15-1; CO, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

intel@ INSTRUCTION SET

Notes

If the operand is outside the acceptable range, the C2 flag is set, and ST remains
unchanged. It is the programmer's responsibility to reduce the operand to an absolute
value smaller than 26 by subtracting an appropriate integer multiple of 2'IT. See Section
17.5 for a discussion of the proper value touse for 'IT in performing such reductions.

The Intel4.86 CPU checks for interrupts while performing this instruction. It will be
aborted to service an interrupt. .

26-85

iniaL INSTRUCTION SET

FDECSTP - Decrement Stack-Top Pointer

Opcode

D9 F6

Operaticm

IF TOP=O

Instruction

FDECSTP

THEN TOP <-7;
ELSE TOP <- TOP-1;
FI;

Description

Clocks
. 3

Description

Decrement top-ol-stack pointer lor FPU register
stack.

, .

FDECSTP subtracts one (without carry) from the three-bit TOP field of the FPU status
word_

FPU Flags Affected

CI as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

NM if either EM or TS in CRO is set.

Notes

The effect of FDECSTP is to rotate the stack. If does not alter register tags or contents,
nor does it transfer data.

26-86

int:et INSTRUCTION SET

FDIV IFDIVP IFI DIV - Divide

Opcode Instruction Clocks Concurrent execution

DB /6 FDIV m32real 73 70
DC /6 FDIV m64real 73 70
DB FO+i . FDIV ST, ST(i) 73 70
DC FB+i FDIV ST(i), ST 73 70
DE FB+i FDIVP ST(i), ST 73 70
DE F9 FDIVP 73 70
DA /6 FIDIV m32int 73 70
DE /6 FIDIV m16int 73 70

Operation

F DIV DEST, SCR
DEST ~ DEST + SCR
IF instruction = FDIVP THEN pop ST FI;

Description

Description

Divide ST by m32real.
Divide ST by m64real.
Divide ST by ST(i)
Replace ST(i) with ST(i) + ST
Replace ST(i) with ST(i) + ST; pop ST.
Replace ST(l) with ST(l) + ST; pop ST.
Divide ST by m32int.
Divide ST by ml6int.

The division instructions divide the stack top by the other operand and return thc quo­
tient to the destination.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, U, 0, Z, D, I, IS.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault~code) for a. page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exc~ptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-87

infej® INSTRUCTION SET

Notes

If the source operand is in memory, it is automatically converted to the exten.ded-real
. format.

The performance of the division instructions depends on the PC (Precision Control)
field of the FPU control word. If PC specifies a precision of 53 bits, the division instruc­
tions will execute in 62 clocks. If the specified precision is 24 bits, the. division instruc­
tions will take only' 35 clocks.

26-88

INSTRUCTION SET

FDIVR/FDIVPR/FIDIVR - Reverse Divide

Opcode Instruction Clocks Concurrent Execution Description

08 /7 FDIVR m32rea/ 73 70 Replaces ST with m32rea/7 ST.
DC /7 FDIVR m64rea/ 73 70 Replace ST with m64rea/ 7 ST.
08 F8+i FDIVR ST, ST(i) 73 70 Replace ST by ST(i) 7 ST.
DC FO+i FDIVR ST(i) , ST 73 70 Divide. ST(i) = ST 7 ST(i).
DE FO+i FDIVRP ST(i). ST 73 70 Divide ST(i) = ST 7. ST(i) and pop ST.
DE Fl FDIVRP 73 70 Divide ST(l) = ST 7 ST(l) and pop ST.
DA /7 FIDIVR m32int 73 70 Replace ST with m32int 7 ST.
DE /7 FIDIVR m16int 73 70 Replace ST with m16int 7 ST.

Operation

FDIVR DEST, SRC
DEST <- SRC -;- DEST
IF instruction = FDIVRP THEN pop ST FI;

Description

The division instructions divide the other operand by the stack top and return the quo­
tient to the destination.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, U, 0, Z, D, I, IS.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

int:eL INSTRUCTION SET

Notes

If the source operand is in memory, it is automatically converted to the extended-real
format.

The performance of the reverse division instructions depends on the PC (Precision Con­
trol) field of the FPU control word. If PC specifies a precision of 53 bits, the reverse
division instructions will execute in 62 clocks. If the specified precision is 24 bits, the
reverse division instructions will take only 35 clocks.

26-90

intel® INSTRUCTION SET

FFREE - Free Floating-Point Register

Opcode

DO CO+i

Instruction

FFREE ST(i)

Operation

TAG(i) +---116;

Description

Clocks

3

FFREE tags the destination register as empty.

FPU Flags Affected

CO, Cl, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TSin CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

Description

Tag ST(i) as empty.

FFREE does not affect the contents of the destination register. The floating-point stack­
top pointer (TOP) is also unaffected.

26-91'

in1:el® INSTRUCTION SET

FICOM/FICOMP - Compare Integer

Opcode Instruction Clocks Concurrent Execution Description

DE /2 FICOM m16real 18 (16-20) Compare ST with ml6int.
DA /2 FICOM m32real 16.5 (15-17) Compare ST with m32int.
DE /3 FICOMP m16int 18 (16-20) Compare ST with m16int and pop ST.
DA /3 FICOMP m32int 16.5 (15-17) Compare ST with m32int and pop ST.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, CO ~ 111;
ST > SRC: C3, C2, CO ~ 000;
ST < SRC: C3, C2, CO ~ 001;
ST = SRC: C3, C2, CO ~ 100;

IF instruction = FICOMP THEN pop ST; FI;

FPU Flags EFlags

Co CF

C1 (none)

C2 PF

C3 ZF

Description

The compare integer instructions compare the stack top to the sour.ce. Following the
instruction, the condition codes reflect the relation between ST and the source operand.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 as specified above.

Numeric Exceptions

D, I, IS.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

26-92

intel® INSTRUCTION SET

Real Address Mode Exceptions

Interupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The memory operand is converted to extended-real format before the comparison is
performed.

If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised, and the condition bits are set to "unordered."

26-93

int:et INSTRUCTION SET

FILD - Load Integer

Opcode'

DF /0
DB /0
DF /5

Operation

Instruction

FILD m16int
FILD m32int
FILD m64int

Clocks

14.5 (13-16)
11.5 (9-12)
16.8 (10-18)

Decrement FPU stack-top pointer;
ST(O) ~ SRC;

Description

Concurrent Execution

4
4 (2-4)'
7.8 (2-8)

Description ,

Push' m16i1itonto the FPU stack.
Push m32int onto the FPU stack.
Push m64int onto the f.PU stack.

FILD converts the source signed integer operand into extended-real format, and pushes
it onto the FPU stack.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#GP(O) for an iIIegal memory operand effectivfe address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an iIIegal address in the SS segment; #PF(fault-code) fora page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-94

intet INSTRUCTION SET

Notes

The source is loaded without rounding error.

ST(7) must be empty to avoid causing an invalid-operation exception.

26-95

iniaL INSTRUCTION SET

FINCSTP -Increment Stack-Top Pointer

Opcode

D9 F7

Operation

Instruction

FINCSTP

IF TOP =7
THEN TOP +- 0;
ELSE TOP +- TOP + 1;
FI;

Description

Clocks

3

Description

Increment top-ol-stack pOinter lor FPU register
, stack;

FINCSTP adds one (without carry) to the three-bit TOP field of the FPU status word.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM is either EM or TS in CRO is set.

Notes

The effect of FINCSTP is to rotate the stack. It does not alter register tags or contents,
nor does it transfer data. It is not equivalent to popping the stack, because it does not set
the tag of the old stack-top to empty.

26-96

inteL INSTRUCTION SET

FINIT/FNINIT -Initialize Floating-Point Unit

Opcode

DB E3

DB/E3

Operation

Instruction

FINIT

FNINIT

CW -<- 037FH;
SW -<- 0;
TW -<- FFFFH;
FEA -<- 0; FDS -<- 0;

Clocks

17+at least 3 for
FWAIT
17

(* Control word *)
(* Status word *)
(* Tag word *)
(* Data painter *)

Description'

Initialize FPU after checking for unmasked
floating-point error condition.
Initialize. FPU without checking for unmasked .
floating-point error condition. '

FIP -<- 0; FOP -<- 0; FCS -<- 0; (* Instruction pointer *)

Description

The initialization instructions set the FPU into a known state, unaffected by any previ­
ous activity.

The FPU control word is set to 037FH (round to nearest, all exceptions masked, (A-bit
prevision). The status word is cleared (no exception flags set, stack register RO = stack­
top). The stack registers are all tagged as empty. The error pointers (both instruction and
data) are cleared.

FPU Flags Affected

CO, Cl, C2, C3 cleared.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

26-97

INSTRUCTION SET

Notes

FINIT checks for unmasked floating-point error conditions before performing the ini~
tialization; FNINIT does not.

FINIT and FNINIT leave the FPU in the same state as that which results from a hard­
ware RESET signal with Built-In Self-Test.

On the Intel486 processor, unlike the Intel387 math coprocessor, FINIT and FNINIT
clear the error pointers.

26-98

intel® INSTRUCTION SET

FIST/FISTP-Store Integer
Opcode Instruction Clocks

DF /2 FIST m16int 33.4 (29-34)
DB /2 FIST m32int 32.4 (28-34)
DF /3 FISTP m16int 33.4 (2!;l-34)
DB /3 FISTP m32int 33.4 (29-34)
DF /7 FISTP m64int 33.4 (29-34)

Operation

DEST ~ ST(O);
IF instruction = FISTP THEN pop ST FI;

Description

Description

Store ST in m16int.
Store ST in m32int.·

. Store ST in m16intand pop ST.
Store ST in m32int and pop ST.
Store ST in m64int and pop ST.

FIST converts the value in ST into a signed integer according to the RC field of the
control word and transfers the result to the destination. ST remains unchanged. FIST
accepts word and short integer destinations; FISTP accepts these and long integers as
well.

FPU Flags Affected

C1 as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, I, IS.

Protected Mode Exceptions

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in
CRO is set; # AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-99

int'et INSTRUCTION SET

Notes

Negative zero is stored with the same encoding (00 .. 00) as positive zero.
. .

. " ,

If the value is too large to represent as an integer, anI exception is raised. The masked
response is to write~hem:ost negative integer to' memory.

'.'

" ,.'

;', ':,

26-100

infel® INSTRUCTION SET

FLD - Local Real

Opcode Instruction Clocks Description

09/0
DO /0
DB /5
09 CO+i

Operation

FLO m32real
FLO m64real
FLO mBOreal
FLO ST(i)

3
3
6
4

Decrement FPU stack-top pointer;
ST{O) <-- SRC;

Description

Push m32real onto the FPU stack.
Push m64real onto the FPU stack.
Push mBOreal onto the FPU stack.
Push ST(i) onto the FPU stack.

FLD pushes the source operand onto the FPU stack. If the source is a register, the
register number used is that before the stack-top pointer is decremented. In particular,
coding .

FLD ST(O)

duplicates the stack top.

FPU Flags Affected

C1 as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

D, I, IS.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

26-101

int:eL INSTRUCTION 'SET

Virtual 8086 Mode Exceptions

Saine exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference ifthe current privilege level is 3.

Notes

If the source operand is in single- or double-real format, it is automatically converted to
the extended-real format. Loading an extended-real operand does not require conver-
sion, so the I and D exceptions will not occur in this case. '

ST(7) must be empty to avoid causing an invalid-operation exceptioll;

intel® INSTRUCTION SET

FLD1 /FLDL2T /FLDL2E/
FLDPI/FLDLG2/FLDLN2/FLDZ - Load Constant

Opcode Instruction Clocks

09 E8 FL01 4
09 E9 FLOL2T 8
09 EA FLOL2E 8
09 EB FLOPI 8
09 EC FLOLG2 8
09 EO FLOLN2 8
09 EE FLOZ 4

Operation

Decrement FPU stack-top pointer;
ST(O) ~ CONSTANT;

Description

Concurrent Execution

2
2
2
2
2

Description

Push + 1.0 onto the FPU Stack.
Push 109210 onto the FPU Stack.
Push 1092e onto the FPU Stack.
Push "IT onto the FPU Stack.
Push 109102 onto the FPU Stack.
Push 10902 onto the FPU Stack.
Push + 0.0 onto the FPU Stack.

Each of the constant instructions pushes a commonly-used (in extended-real format)
onto the FPU stack.

FPU Flags Affected

C1 as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

ST(7) must be empty to avoid an invalid exception.

26-103

infel~ INSTRUCTION SET

An internal 66-bit constant is used and rounded to external-real format (as specified by
the RC bit of the control words). The precision exception is not raised.

26-104

infel® INSTRUCTION SET

FLDCW - Load Control Word

Opcode

09/5

Operation

CW~SRC;

Description

Instruction

FNLOCW m2byte

Clocks

4

. Description

Load FPU control word from m2byte.

FLDCW replaces the current value of the FPU control word with the value contained in
the specified memory word. .

FPU Flags Affected

CO, Cl, C2, C3 undefined.

Numeric Exceptions

None, except for unmasking an existing exception.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in eRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FLDCW is typically used to establish or change the FPU's mode of operation.

26-105

INSTRUCTION SET

If an exception bit in the status word is set, loading a new control word that· unmasks
that exception will result in a floating-point error condition. When changing modes, the
recommended procedure is to cleat any pending exceptions before loading the new con"
trol word.

26-106.

intel® INSTRUCTION SET

FLDENV - Load FPU Environment

Opcode

09/4

Operation

Instruction

FLOENV m14/
28byte

FPU environment ~ SRC;

Description

Clocks

. 44 real or virlual/34
protected

Description

Load FPU environment from m14byte or
m28byte.

FLDENV reloads the FPU environment from the memory area defined by the source
operand. This data should have been written by previous FSTENV or FNSTENV
instruction.

The FPU environment consists of the FPU control word, status word, tag word, and
error pointers (both data and instruction). The environment layout in memory depends
on both the operand size and the current operating mode of the processor. The USE
attribute of the current code segment determines the operand size: the 14-byte operand
applies to a USE16 segment, and the 28-byte operand applies to a USE32 segment.
Figures 15-5 through 15-8 show the environment layouts for both operand sizes in both
real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.)
FLDENV should be executed in the same operating mode as the corresponding
FSTENV or FNSTENV.

FPU Flags Affected

CO, C1, C2, C3 as loaded.

Numeric Exceptions

None, except for loading an unmasked exception.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set. .

26-107

int:et INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

If the environment image contains an unmasked exception, loading it will result in a
floating-point error condition.

26-108

intel® INSTRUCTION SET

FMUL/FMULP/FIMUl- Multiply

Opcode Instruction Clocks Concurrent Execution Description

DB /1 FMUL m32reaf 11 B Multiply ST by m32real.
DC /1 FMUL m64reaf 14 11 Multiply ST by m64reaf.
DB CB+i FMUL ST, ST(i) 16 13 Multiply ST by ST(i)
DC CB+i FMUL ST(i), ST 16 13 Multiply ST(i) by ST.
DE C8+i FMULP ST(i), ST 16 13 Multiply ST(i) by ST and pop ST.
DE C9 FMUL 16 13 Multiply ST(1) by ST and pop ST.
DA /1 FIMUL m32int 23.5 (22-24) B Multiply ST by m32int.
DE /1 FIMUL m16int 25 (23-27) B Multiply ST by ml6int.

Operation

DEST ~ DEST x SRC;
IF instruction = FMULP THEN pop ST FI;

Description

The multiplication instructions multiply the destination operand by the source operand
and return the product to the destination.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, U, 0, D, I.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-109

intel~ INSTRUCTION SET

Notes

If the source operand is in meniory~ i~ is automatically converted to the extended-real
format. ' . , '

''': ,.

'i

"'., ;

'",

intel® INSTRUCTION SET

FNOP - No Operation

Opcode

D9 DO

Description

Instruction

FNOP

Clocks

3

Description

No operation is performed.

FNOP performs no operation. It affects nothing except instruction pointers.

FPU Flags Affected

CO, Cl, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

26-111

I.NSTRUCTIONSET

FPATAN - Partial Arctangent

Opcode

D9 F3

Operation

Instruction Clocks"

FPATAN '; 289(218-303)

ST(1) ~ arctan(ST(1j' -i-'ST);'
pop ST;

Description

Concurrent Execution'

5 (2-17)

Description

Replace ST(1) with arctan(ST(1) +'ST)
and pop ST.

The partial arctangent instruction computes the arctflngent of ST(I) -;- ST, and returns
the computed value, expressed in radians, to ST(I). It then pops ST. The result has the
same sign as the operand from ST(I), and a magnitude less than 'IT.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

,P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions ",":'

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

There is no restriction on the range of arguments that FPATAN can accept.

The fact that FPATAN takes two arguments and computes the arctangent of their ratio
simplifies the calculation of other trigonometric functions. For instance, arcsin(x) (which
is the arctangent of x -;- v(1-x2» can be computed using the following sequence of
operations: Push x onto the FPU stack; compute V(I-~) and push the resulting value
onto the stack; execute FPATAN.

The Intel486 CPU checks for interrupts while performing this instruction. It will abort
this instruction to serve an interrupt.

26-112

inteL INSTRUCTION SET

FPREM - Partial Remainder

Opcode

09 F8

Operation

Instruction Clocks

FPREM 84 (70-138)

Concurrent Execution

2 (2-8)

EXPDIF ~ exponent(ST) - exponent(ST(1));
IF EXPDIF < 64
THEN

Description

Replace ST with the remainder obtained on
dividing ST by ST(1).

a ~ integer obtained by chopping ST + ST(1) toward zero;
ST ~ ST - (ST(1) x a);
C2~O;

co. C1. C3 ~ three least-significant bits of a; (* a2. 01. ao *)
E~E .

C2""': 1;
N ~ a number between 32 and 63;
aa ~ integer obtained by chopping (ST + ST(1)) . .;- 2EXPDIF-N

toward· zero;
ST ~ ST - (ST(1) x aa x 2EXPDIF-N;

F.I;

Description

The partial remainder instruction computes the remainder obtained on dividing ST by
ST(I), and leaves the result in ST. The sign of the remainder is the same as the sign of
the original dividend in ST. The magnitude of the remainder is less than that of the
modulus.

FPU Flags Affected

CO, Cl, C2, C3 as described in Table 15-1.

Numeric Exceptions

U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

26-113

INSTRUCTION SET

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

FPREM produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect.

The FPREM instruction is not the remainder operation specified in IEEE Std 754. To
get that remainder, the FPREMt instruction should be used. FPREM is supported for
compatibility with the 8087 and 80287 math coprocessors.

FPREM works by iterative subtraction, and can reduce the exponent of ST by no more
than 63 in one execution. If FPREM succeeds in producing a remainder that is less than
the modulus, the function is complete and the C2 flag is cleared. Otherwise, C2 is set,
and the result in ST is called the partial remainder. The exponent of the partial remain­
der is less than the exponent of the original dividend by at least 32. Software can
re-execute the instruction (using the partial remainder in ST as the dividend) until C2 is
cleared. A higher-priority interrupting routine that needs theFPU can forte a context
switch between the instructions in the remainder loop. .

An important use of FPREM is to reduce the arguments of periodic functions. When:
reduction is complete, FPREM provides the three least-significant bits of the quotient in
flags C3, Ct, and CO. This is important in argument reduction for the tangent function
(using a modulus of 71'/4), because it locates the original angle in the correct one of eight
sectors of the unit circle ..

intel® INSTRUCTION SET

FPREM 1 - Partial Remainder

Opcode Instruction Clocks Concurrent Execution

D9 F5 FPREM1 94.5 (72-167) 5.5 (2-18)

Operation

EXPDIF ~ exponent(ST) - exponent(ST(1));
IF EXPDIF < 64
THEN

Description

Replace ST with the remainder obtained on
dividing ST by ST(1).

Q ~ integerobtained by chopping ST + ST(1) toward zero;
ST ~ ST - (ST(1) x Q);
C2~O;

CO, C1, C3 ~ three least-significant bits of Q; (* Q2, Q1, QO *)
ELSE

C2~ 1;
N ~ a number between 32 and 63;
QQ ~ integer nearest to (ST + ST(1)) .+ 2EXPDIF-N;
ST ~ ST - (ST(1) x QQ x 2EXPDIF-N;

FI;

Description

The partial remainder instruction computes the remainder obtained on dividing ST by
ST(I), and leaves the result in ST. The magnitude of the remainder is less than half the
magnitude of the modulus.

FPU Flags Affected

CO, Cl, C2, C3 as described in Table 15-1.

Numeric Exceptions

U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

26-115

INSTRUCTION SET

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR.O is set.

Notes

FPREMl produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. .

The FPREMl instruction is the remainder operation specified in IEEE Std 754. It dif­
fers from FPREM in the way it rounds the quotient of ST and ST(l).

FPREMl works by iterative subtraction, and can reduce the exponent of ST by no more
than 63 in one execution. If FPREMl succeeds in producing a remainder that is less
than one half the modulus, the function is complete and the C2 flag is cleared. Other­
wise, C2 is set, and the result in ST is called the partial remainder. The exponent of the
partial remainder is less than the exponent of the original dividend by at least 32. Soft­
ware can re-execute the instruction (using the partial remainder in ST as the dividend)
until C2 is cleared. A higher-priority interrupting routine that needs the FPU can force
a context switch between the instructions in the remainder loop.

An important use of FPREMl is to reduce the arguments of periodic functions. When
reduction is complete, FPREMl provides the three least-significant bits of the quotient
in flags C3, Cl, and CO. This is important in argument reduction for the tangent function
(using a modulus of "./4), because it locates the original angle in the correct one of eight
sectors of the unit circle.

26-116

intet INSTRUCTION SET

FPTAN - Partial Tangent

Opcode

09 F2

Instruction Clocks Concurrent Execution

FPTAN 244 (200-273) 70

Operation

IF operand is in range
THEN

C2~0;

ST ~ tan(ST);
Decrement stack-top pointer;
ST ~ 1.0;

ELSE
C24- 1;

FI;

Description

Description

Replace ST with its tangent and push 1
onto the FPU stack.

The partial tangent instruction replaces the contents of ST with tan(ST), and then
pushes 1.0 onto the FPU stack. ST, expressed in radians, must lie in the range I e I < 263.

FPU Flags Affected

C1, C2 as described in Table 15-1; CO, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

26-117

INSTRUCTION SET

Notes

If the operand is outside the acceptable range,. the. C2 flag is· set, and STremains
unchanged. It is the programmer's responsibility to reduce the operand to an absolute
value smaller than 263 by subtracting an appropriate integer multiple of 2".. See
Section 17.5 fora discussion of the proper value to use for". in performing such
reductions.

The fact that FPTAN pushes 1.0 onto the FPU stack after computing tan(ST) maintains
compatibility with the 8087 and 80287 math coprocessors, and simplifies the calculation
of other trigonometric functions. For instance, the cotangent (which is the reciprocal of
the tangent) can be computed by executing FDIVR after FPTAN.

ST(7) must be empty to avoid an invalid-operation exception.

The Intel486 CPU periodically checks for interrupts while performing this instruction. It
will be aborted to service an interrupt.

26·118

intel® INSTRUCTION SET

FRNDINT - Round to Integer

Opcode

D9 Fe

Operation

Instruction

FRNDINT

ST ~ rounded ST;

Description

Clocks Concurrent Execution

29.1 (21-30) 7.4 (2-8)

Description

Round ST to an integer.

The round to integer instruction rounds the value in ST to an integer according to the
RC field of the FPU control word_

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

26-119

intel® INSTRUCTION SET

FRSTOR - Restore FPU State

Opcode

DD /4

Operation

Instruction

FRSTOR m94/
10Bby'te

FPU state +- SRC;

Description

Clocks

131 real or virtual/120
protected ..

Description

Load FPU state from .m94byte or m 1OBbyte.

...

FRSTOR reloads the FPUstate (environment and register stack) from the memory area
defined by the source operand. This data should have been written by a previous
FSA VE or FNSA VE instruction.

The FPU environment consists of the FPU control word, status word, tag word, and
error pointers (both data and instruction). The environment layout in memory depends·
on both the operand size and the current operating mode of the processor. The USE
attribute of the current code segment determines the operand size: the 14-byte operand
applies to a USE16 segment, and the 28-byte operand applies to a USE32 segment.
Figures 15-5 through 15-8 show the environment layouts for both operand sizes in both
real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.)
The stack registers, beginning with ST and ending with ST(7), are in the 80 bytes th~t
immediately follow the environment image. FRS TOR should be executed in the same
operating mode as the corresponding FSA VE or FNSA VE.

FPU Flags Affected

CO, C1, C2, C3 as loaded.

Numeric Exceptions

None, except for loading an unmasked exception.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code} for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

26-120

intel® INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(faultcode) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

If the state image contains an unmasked exception, loading it will result in a floating~
point error condition.

26-121

INSTRUCTION SET

FSAVE/FNSAVE - Store FPU State

Opcode

98 DD /6

DD /6

Operation

Instruction Clocks

FSAVE m94/108byte 154 real or virtual/143
protected; + at least 3
for FWAIT

FNSAVE m94/ 154 real or virtual/143
108byte protected

DEST ~ FPU state;
initialize FPU; (* Equivalent to FNINIT *)

Description

Description

Store FPU state to m94byte or m 108byte after
checking for unmasked floating-point error con­
dition. Then re-initialize the FPU.
Store FPU environment to m94byte or m108byte
without checking for unmasked floating-point
error condition. Then re-initialize the FPU.

The save instructions write the current FPU state (environment and register stack) to
the specified destination, and then re-initialize the FPU. The environment consists of
the FPU control word, status word, tag word, and error pointers (both data and
instruction).

The state layout in memory depends on both the operand size and the current operating
mode of the processor. The USE attribute of the current code segment determines the
operand size: the 94-byte operand applies to USE16 segment, and the lO8-byte operand
applies to a USE32 segment. Figures 15-5 through 15-8 show the environment layouts for
both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the
real mode layout is used.) The stack registers, beginning with ST and ending with ST(7),
are stored in the 80 bytes that immediately follow the environment image.

FPU Flags Affected

CO, C1, C2, C3 cleared.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in
CRO is set; #AC for unaligned memory reference if the current privilege level is 3.

26-122

intel® INSTRUCTION SET

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FSA VE and FNSA VE do not store the FPU state until all FPU activity is complete.
Thus, the saved image reflects the state of the FPU after any previously decoded instruc­
tion has been executed.

If a program is to read from the memory image of the state following a save instruction,
it must issue an FW AIT instruction to ensure that the storage is complete.

The save instructions are typically used when an operating system needs to perform a
context switch, or an exception handler needs to use the FPU, or an application program
wants to pass a "clean" FPU to a subroutine.

26'123

FSCALE - Scale

Opcode

09 FO

Operation

Description

Instruction

FSCALE

INSTRUCTION SET

Clocks

31(30-32)

Concurrent Execution

2

Description

Scale ST by ST(1).

The scale instruction interprets the value in ST(I) as an integer, and adds this integer to
the exponent of ST_ Thus, FSCALE provides rapid multiplication or division by integral
powers of 2.

FPU Flags Affected

Cl as described in Table IS-I; CO, C2, C3 undefined.

Numeric Exceptions .

P, U, 0, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO· is set.

Notes

FSCALE can be used as an inverse to FXTRACT. Since FSCALE does not pop the
exponent part, however, FSCALE must be followed by FSTP ST(I) in order to com­
pletely undo the effect of a preceding FXTRACT.

There is no limit on the range of the scale factor in ST(l). If the value is not integral,
FSCALE uses the nearest integer smaller in magnitude; i.e., it chops the value toward O.
If the resulting integer is zero, the value in ST is not changed.

26-124

intel®

FSIN-Sine

Opcode

09 FE

Operation

Instruction

FSIN

IF operand is in range
THEN

C2 <E- 0;
ST <E- sin(ST);

ELSE
C2 <E- 1;

FI:

Description

INSTRUCTION SET

Clocks Concurrent Execution Description

241 (193-279) 2 Replace ST with its sine.

The sine instruction replaces the contents of ST with sin(ST). ST, expressed in radians,
must lie in the range I 8 I < 263 •

FPU Flags Affected

C1, C2 as described in Table 15-1; CO, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

NM if either EM or TS in CRO is set.

26-125

inteL INSTRUCTION· SeT

Notes

If the operand is outside the acceptable. range, the C2 flag is set, and ST remains
unchanged. It is the. programmer's responsibility to reduce the operand to an absolute
value smaller than 263 by subtracting an appropriate integer multiple of 2'1T. See
Section 17.5 for a discussion of the proper value to use for '1T in performing such
reductions.

The Intel486 CPU periodically checks for interrupts while performing this instruction. It
will be aborted to service an interrupt.

26-126

intet INSTRUCTION SET

FSINCOS - Sine and Cosine

Opcode Instruction Clocks Concurrent Execution

09 FB FSINCOS 291 (243-329) 2

Operation

IF operand is in range
THEN

C2~O;

TEMP ~ cos(ST);
ST ~ sin(ST);
Decrement FPU stack-top pointer;
ST~TEMP;

ELSE
C2 ~ 1;

FI:

Description

Description .

Compute the sine and cosine of ST;
replace ST with the sine, and then
push the cosine onto the FPU stack.

FSINCOS computes both sin(ST) and cos(ST), replaces ST with the sine and then
pushes the cosine onto the FPU stack. ST, expressed in radians, must lie in the range
181 < 263.' .

FPU Flags Affected

C1, C2 as described in Table 15-1; CO, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

NM if either EM or TS in CRO is set.

26-127

intel~ INSTRUCTION SET

Notes

If the operand is outside. the acc~ptable range, the C2 flag is set, .and ST remains
unchanged. It is the programmer's responsibility to reduce the operand to an absolute
value smaller than 26 . by subtracting an appropriate integer multiple of 21T. See Section
:17.5 for a discussion of the proper value to use for 1T in performing such reductions.

It is faster to execute FSINCOS than to execute both FSIN and FCOS.

The Intel486 CPU periodically checks for interrupts while performing this instruction. It
will be aborted to service an interrupt.

26-128

intel® INSTRUCTION SET

FSQRT - Square Root

Opcode

09 FA

Operation

Instruction

FSQRT

ST ~ square root of ST;

Description

Clocks Concurrent Execution

85.5 (83-87) 70

Description

Replace ST with its square root.

The square root instruction replaces the value in ST with its square root.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

The square root of -0 is -0.

26-129

INSTRUCTION SET

FST /FSTP - Store Real

Opcode Instruction Clocks
" ".,

09/2 FST m32real 7
DO /2 FST iTl64real 8
DO DO+i FST ST(i) 3
09/3 FSTP m32real 7
OD /3 FSTP m64real 8
DB /7 FSTP mBOreal 6
DO 08+i FSTP ST(i) 3

Operation

DEST ~ ST(O);
IF instruction = FSTP THEN pop ST FI;

Description

Description

Copy ST·to m32real.
Copy ST to m64real.
Copy ST to ST(i).
Copy ST to m32real and pop ST.
Copy ST to m64real and pop ST.
Copy ST to mBOreal and pop ST.
Copy ST to ST(i) and pop ST.

FST copies the current value in the ST register to the destination, which can be another
register or a single- or double-real memory operand. FSTP copies and then pops ST; it
accepts extended-real memory operands as well as the types accepted by FST.

If the source is a register, the register number used is that before the stack is popped.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

Register or extended-real destinations: IS
Single- or double-real destinations: P, U, 0, D, I, IS

Protected Mode Exceptions

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in
CRO is set; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

26-130

intel® INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

If the destination is single- or double-real, the significand is rounded to the width of the
destination according to the RC field of the control word, and the exponent is converted
to the width and bias of the destination format. The over/underflow condition is checked
for as well.

If ST contains zero, ±oo, or a NaN, then the significand is not rounded, but chopped (on
the right) to fit the destination. Nor is the exponent converted; it too is chopped on the
right. These operations preserve the value's identity as 00 or NaN (exponent all ones).

The invalid-operation exception is not raised when the destination is a nonempty stack
element.

26-131

intel~ INSTRUCTION SET

FSTCW/FNSTCW - Store Control Word

Opcode ' Instruction

98 D9 /7 FSTCW m2byte

D9 /7 FNSTCW m2byte

Operation'

DEST +- CW;

p~sC?ription . c'

" Clocks

3 + at least 3 for
FWAIT
3

Description

Store FPU control word to m2byte after checking
for unmasked floating-point error condition.
Store FPU control word to m2byte without
checking for unmasked floating-point error
condition.

FStCW and FNSTCWwrite the crirrent value ofth~FPU control word to the specified
destination.
I'''' .I i

FPU Flags Affected

CO, Cl, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in th~ CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in
CRO is set; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode. Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FSTCW checks for unmasked floating-point error conditions before storing the control
word; FNSTCW does not.

intel® INSTRUCTION SET

FSTENV /FNSTENV - Store FPU Environment

Opcode

98 D9 /6

D9/6

Operation

Instruction Clocks

FSTENV m 14/28byte 67 real or virtual/56
protected; + at least 3
for FWAIT

FNSTENV m14/ 67 real or virtual/56
28byte protected;

DEST ~ FPU environment;
CW[O .. 5] ~ 111111 B;

Description

Description

Store FPU environment to m14byte or m28byte
after checking for unmasked floating-point error
condition. Then mask all floating-point
exceptions.
Store FPU environment to m 14byte or m28byte
without checking for unmasked floating-point
error condition. Then mask all floating-paint
exceptions.

The store environment instructions write the current FPU environment to the specified
destination, and then mask all floating-point exceptions. The FPU environment consists
of the FPU control word, status word, tag word, and error pointer (both data and
instruction).

The environment layout in memory depends on both the operand size and the current
operating mode of the processor. The USE attribute of the current code segment deter­
mines the operand size: the 14-byte operand applies to a USE16 segment, and the
28-byte operand applies to a USE32 segment. Figures 15-5 through 15-8 show the envi­
ronment layouts for both operand sizes in both real mode and protected mode. (In
virtual-8086 mode, the real mode layout is used.)

FPU Flags Affected

CO, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in
CRO is set; #AC for unaligned memory reference if the current privilege level is 3.

26-133

INSTRUCTION SET

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would He outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO ,is set.

Virtual 8086 Mode Ex~eptions

Same exceptions as in Re~l Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FSTENV and FNSTENV do not store the environment until all FPU activity is com­
plete. Thus, the saved environment reflects the state of the FPU after any previously
decoded instruction has been executed.

The store environment instructions are often used by exception handlers because they
provide access to the FPU error pointers. The environment is typically saved onto the
memory stack. After saving the environment, FSTENV and FNSTENV sets all the
exception masks in the FPU control word. This prevents floating-point errors from inter-
~upting the exception handler. '

FSTENV checks for unmasked floating-point error conditions before storing the FPU
environment; FNSTENV does not.

26-134

intel® INSTRUCTION SET

FSTSW jFNSTSW - Store Status Word

Opcode Instruction Clocks Description

9B 00/7 FSTSW m2byte 3 + at least 3 for
FWAIT

Store FPU status word to mbyte after checking
for unmasked floating-point error condition.

9B OF EO FSTSW 3 + at least 3 for Store FPU status word to AX register after
FWAIT checking for unmasked floating-point error

condition.
00/7 FNSTSW m2byte 3 Store FPU status word to m2byte without check-

ing for unmasked floating-point error condition.
OF EO FNSTSW AX 3 Store FPU status word to AX register without

checking for unmasked floating-point error
condition.

Operation

DEST~ SW;

Description

FSTSW and FNSTSW write the current value of the FPU status word to the specified
destination, which can be either a two-byte location in memory or the AX register.

FPU Flags Affected

CO, Cl, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in
CRO is set; #Ac for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-135

INSTRUCTION SET

Notes

FSTSW checks for unmasked floating-point error conditions before storing the status
word;FNSTSW does not.

FSTSW and· FNSTSW are used primarily in conditional branching (after a comparison,
FPREM, FPREMl, or FXAM instruction). They can also be used to invoke exception
handlers (by polling the exception bits) in environments that do not use interrupts.

When FNSTSWAX is executed, the AX register is updated before the Intel486 Proces7
sor executes any further instructions. The status stored is that from the completion of
the prior ESC instruction. .

26-136

intel® INSTRUCTION SET

FSUB/FSUBP/FISUB - Subtract

Opcode Instruction Clocks Concurrent Execution Description

08/4 FSUB m32reaJ 10 (8-20) 7 (5-17) Subtract m32reaJfrom ST.
DC /4 FSUB m64reaJ 10 (8-20) 7 (5-17) Subtract m64reaJ from ST.
08 EO+i FSUB ST, ST(i) 10 (8-20) 7 (5-17) Subtract ST(i) from ST STO.
DC E8+i FSUB ST(i); ST 10 (8-20) 7 (5-17) Replace ST(i) with ST -ST(i).
DE E8+i FSUBP ST(i), ST 10 (8-20) 7 (5-17) Replace ST(i) with ST -ST(i); pop ST.
DE E9 FSUBP 10 (8-20) 7 (5-17) Replace ST(1) with ST -ST(1); pop ST.
DA /4 FISUB m32int 22.5 (19-32) 7 (5-17) Subtract m32int from ST.
DE /4 FISUBm16int 24 (20-35) 7 (5-17) Subtract m16int from ST.

Operation

DEST ~ ST - Other Operand;
IF instruction = FSUBP THEN pop ST FI;

Description

The subtraction instructions subtract the other operand from the stack top and return
the difference to the destination.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, U, 0, D, I, IS.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; # NM if either EM or TS in CRO is set; # AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-137

INSTRUCTION SET

Notes

If the source operand is in memory, it is automatically converted to the extended-real
format.

26-138

intel" INSTRUCTION SET

FSUBR/FSUBPR/FISUBR - Reverse Subtract

Opccide Instruction Clocks Concurrent Execution Description

D8/5 FSUBR m32real 10 (8-20) 7 (5-17) Replace ST with m32real - ST.
DC /5 FSUBR m64real 10 (8-20) 7 (5-17) Replace ST with m64real - ST.
D8 E8+i FSUBR ST, ST(i) 10 (8-20) 7 (5-17) Replace ST with ST(i) - ST.
DC EO+i FSUBR ST(i), ST 10 (8-20) 7 (5-17) Subtract ST from ST(i)~ST(i).
DE EO+i FSUBRP ST(i), ST 10 (8-20) 7 (5-17) Subtract ST from ST(i) and pop ST.
DE E1 FSUBR 10 (8-20) 7 (5-17) Subtract ST from ST(l) and pop ST.
DA /5 FISUBR m32int 22.5 (19-32) 7 (5-17) Replace ST with m32int - ST.
DE /5 FISUBR m16int 24 (20-35) 7 (5-17) Replace ST with m16int - ST.

Operation

DEST ~ Other Operand - ST;
IF instruction = FSUBRP THEN pop ST FI;

Description

The reverse subtraction instructions subtract the stack top from the other operand and
return the difference to the destination.

FPU Flags Affected

C1 as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, U, 0, D, I, IS.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if
the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-139

intet INSTRUCTION SET

Notes

If the source operand is in memory, it is automatically converted to the. extended-real
format.

26-140

infel® INSTRUCTION SET

FTST-TEST

Opcode

D9 E4

Operation

Instruction

FTST

CASE (relation of operands) OF

Clocks

4

Not comparable: C3, C2, CO ~ 111;
ST > SRC: C3, C2, CO ~ 000;
ST < SRC: C3, C2, CO ~ 001 ;
ST = SRC: C3, C2, CO ~ 100;

FPU Flags

Co
C1

C2

C3

Description

Concurrent Execution Description

Compare ST with 0.0.

EFlags

CF
(none)

PF
ZF

The test instruction compares the stack top to 0.0. Following the instruction, the condi­
tion codes reflect the result of the comparison.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 as specified above.

Numeric Exceptions

D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

26-141

INSTRUCTION SET

Notes

If ST contains a NaN or an object of undeCuied format, or ifa.stack fault occurs, the.
invalid-operation exception is raised, and the condition bits are set to "unordered."

The sign of zero is ignored, so that "':0.0 = :.... + 0.0.

26-142

intel® INSTRUCTION SET

FUCOM/FUCOMP/FUCOMPP - Unordered Compare Real

Opcode Instruction Clocks Concurrent Execution Description

DD EO+i FUCOM ST(i) 4 Compare ST with ST(i).
DD E1 FUCOM 4 Compare ST with ST(1).
DD EB+i FUCOMP ST(i) 4 Compare ST with ST(i) and pop ST.
DD E9 FUCOMP 4 Compare ST with ST(1) and pop ST.
DA E9 FUCOMPP 5 Compare ST with ST(1) and pop ST twice.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, CO ~ 111;
ST > SRC: C3, C2, CO ~ 000;
ST < SRC: C3, C2, CO ~ 001;
ST = SRC: C3, C2, CO ~ 100;

IF instruction = FUCOMP THEN pop ST; FI;
IF instruction = FUCOMPP THEN pop ST; pop ST; FI;

FPU Flags EFlags

Co CF

C1 (none)

C2 PF

Ca ZF

Description

The unordered compare real instructions compare the stack top to the source, which
must be a register. If no operand is encoded, ST is compared to ST(I). Following the
instruction, the condition codes reflect the relation between ST and the source operand.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 as specified above.

Numeric Exceptions

D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

26-143

INSTRUCTION SET

Real Address Mode Exceptions

Interrupt? if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM orTS in eRO is set.

Notes

If either operand is an SNaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised, and the condition bits are set to "unordered."

If either operand is a QNaN, the condition bits are set to "unordered." Unlike the
ordinary compare instructions (FCOM, etc.), the unordered compare instructions do not
raise the invalid-operation exception on account of a QNaN operand. .

The sign of zero is ignored, so that -0.0 = - + 0.0.

26-144

in1:el® INSTRUCTION SET

FWAIT-Wait
Opcode

98

Description

Instruction

FWAIT

Clocks

(1-3)

Description

Alias for WAIT.

FW AIT causes the processor to check for pending unmasked numeric exceptions before
proceding.

FPU Flags Affected

CO, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if both MP and TS in CRO are set.

Real Address Mode Exceptions

Interrupt 7 if both MP and TS in CRO are set.

Virtual 8086 Mode Exceptions

#NM if both MP and TS in CRO are set.

Notes

As its opcode shows, FW AIT is not actually an ESC instruction, but an alternate mne­
monic for WAIT.

Coding FW AIT after an ESC instruction ensures that any unmasked floating-point
exceptions the instruction may cause are handled before the processor has a chance to
modify the instruction's results.

Information about when to use FW AIT is given in Chapter 18, in the section on "Con-
current Processing." .

26-145

inteL INSTRUCTION SET

FXAM - Examine

Opcode

D9 E5

Operation

Instruction

FXAM

Clocks

8

C1 +- sign bit of ST; (* o for positive; 1 for negative *)

CASE (type of object in Sn OF
Unsupported: C3, C2, CO +- 000;
NaN: C3, C2, CO +- 001 ;
Normal: C3, C2, CO +- 010;
Infinity: C3, C2, CO +- 011;
Zero: C3, C2, CO +- 100;
Empty: C3, C2, CO +- 101;
Denormal: C3, C2, CO +- 110;

FPU Flags
,

Co
C1

C2

C3

Description

Description

Report the type of object iri'the ST register.

EFlags

CF
(none)

PF
ZF

The examine instruction reports the type of object contained in the ST register by setting
the FPU Flags.

FPU Flags Affected

CO, Cl, C2,. C3 as shown above.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

26-146

INSTRUCTION SET

Virtual 8086 Mode Exceptions

#NM if either EM or TS in eRO is set.

26-147

intet INSTRUCTION SET

FXCH - Exchange Register Contents

Opcode

09 C8+i
09 C9

Operation

Instruction

FXCH ST(i)
FXCH

TEMP +- ST;
ST +- DEST;
DEST +- TEMP;

Description

Clocks

4
4

Description

Exchange thecontents of ST and ST(i).
Exchange the contents of ST and ST(I).

FXCH swaps the contents of the destination and stack-top registers. If the destination is
not coded explicitly, ST(I) is used.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

. Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

26-148

intel~ INSTRUCTION SET

Notes

Many numeric instructions operate only on the stack top; FXCH provides a simple
means for using these instructions on lower stack elements. For example, the following
sequence takes the square root of the third register form the top (assuming that ST is
nonempty):

FXCH ST(3)
FSQRT
FXCH ST(3)

26-149

inteL INSTRUCTION SET

FXTRACT - Extract Exponent and Significand

Opcode

D9 F4

Operation

Instruction

FXTRACT

Clocks

19 (16-20)

TEMP ~ significand of ST;
ST ~ exponent of ST;
Decrement FPU stack-top pOinter;
ST~TEMP;

Description

Concurrent Execution

4 (2-4).

Description

Separate ST into its exponent and signifi- ..
, cand; replace ST with the exponent and

then push the significand onto the FPU
stack.

FXTRACT splits the value in ST into its exponent and significand. The exponent
replaces the original operand on the stack and the significand is pushed onto the stack.
Following execution of FXTRACT, ST (the new stack top) contains the value of the
original significand expressed as a real number: its sign is the same as the operand's, its
exponent is 0 true (16,383 or 3FFFH biased), and its significand is identical to the
original operand's. ST(1) contains the value of the original operand's true (unbiased)
exponent expressed as a real number.

To illustrate the operation of FXTRACT, assume that ST contains a number whose true
exponent is + 4 (i.e., its exponent field contains 4003H). After executing FXTRACT,
ST(1) will contain the real number + 4.0; its sign will be positive, its exponent field will
contain 4001H (+ 2 true) and its significand field will contain 1~00 ... 00B. In other words,
the value in ST(1) will be 1.0 x 22 = 4. If ST contains an operand whose true exponent
is -7 (i.e., its exponent field contains 3FF8H), then FXTRACT will return an "expo­
nent" of -7.0; after the instruction executes, ST(1)'s sign and exponent fields will con­
tain C001H (negative sign, true exponent of 2), and its significand will be 1~1100 ... 00B.
In other words, the value in ST(1) will be -1.75 x 22=-7.0. In both cases, following
FXTRACT, ST's sign and significand fields will be the same as the original operand's,
and its exponent field will contain 3FFFH (0 true).

FPU Flags Affected

C1 as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

Z, D, I, IS.

26-150

intel@ INSTRUCTION SET

Protected Mode Exceptions

#NM if either EM or TS in CRa is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRa is set.

Virtual 8086 Mode Exceptions

NM if either EM or TS in CRa is set.

Notes

FXTRACT (extract exponent and significand) performs a superset of the IEEE­
recommended logb(x) function.

If the original operand is zero, FXTRACT leaves -<Xl in ST(l) (the exponent) whileSr
is assigned the value zero with a sign equal to that of the original operand. The zero­
divide exception is raised in this case, as well.

ST(7) must be empty to avoid the invalid-operation exception.

FXTRACT is useful for power and range scaling operations. Both FXTRACT and the
base 2 exponential instruction F2XMl are needed to perform a general power opera­
tion. Converting numbers in extended-real format to decimal representations (e.g., for
printing or displaying) requires not only FBSTP but also FXTRACT to allow scaling that
does not overflow the range of the extended format. FXTRACT can also be useful for
debugging, because it allows the exponent and significand parts of a real numbt::r to be
examined separately.

26-151

in1'eL INSTRUCTION SET

FYL2X - Compute y x I092X

Opcode Instruction Clocks

D9 F1 FYl2X 311 (196-329)

Operation

8T(1) ~ 8T(1) x 10928T;
pop 8T;

Description

Concurrent Execution Description

13 Replace ST(1) with ST(1) x I092ST and pop ST.

FYL2X computes the base-2 logarithm of ST, multiplies the logarithm by ST(l), and
returns the resulting value to ST(l). It then pops ST. The operand in STcannot be
negative.

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3undefined.

Numeric Exceptions

P, U, O,Z, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in eRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

If the operand in ST is negative, the invalid-operation exception is raised.

The FYL2X instruction is designed with a built-in multiplication to optimize the calcu­
lation of logarithms with arbitrary positive base:

26-152

intel® INSTRUCTION SET

The instructions FLDL2T and FLDL2E load the constants 10g210 and 10g2e,
respectively.

The Inte1486 CPU periodically checks interrupts while executing this instruction. It will
be aborted to service an interrupt.

26-153

INSTRUCTION SET

FYL2XP1 - Compute y x I092(X + 1)

Opcode Instruction Clocks Concurrent Execution Description

D9 F9 FYL2XP1 313 (171-326) 13 Replace ST(1)with ST(1) x I092(ST+1.0)
and pop ST.

Operation

ST(1) (- ST(1) x I092(ST+1.0);
pop ST;

Description

FYL2XPI computes the base-2 logarithm of (ST+ 1.0), multiplies the logarithm by
ST(1), and returns the resulting value to ST(l). It then pops ST. The operand in ST
must be in the range.

-(1-(y2 / 2)) :5 ST :5 y2 -1

FPU Flags Affected

Cl as described in Table 15-1; CO, C2, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CRO is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CRO is set.

Notes

If the operand in ST is outside the acceptable range, the result of FYL2XPI is
undefined:

26-154

intel® INSTRUCTION SET

The FYL2XPl instruction provides improved accuracy over FYL2X when computing the
logarithms of numbers very close to 1. When E is small, more significant digits can be
retained by providing E as an argument to FYL2XPl than by providing 1 + E as an argue
ment to FYL2X.

The Intel486 CPU periodically checks for interrupts while executing this instruction. It
will be aborted to service an interrupt.

26-155

int'et INSTRUCTION SET

HLT-Halt

Opcode

F4

Operation

Instruction

HLT

Enter Halt state;

Description

Clocks

4

Description

Halt

The HLT instruction stops instruction execution and places the processor in a HALT
state. An enabled interrupt, NMI, or a reset will resume execution. If an interrupt
(including NMI) is used to resume execution after a HLT instruction, the saved CS:IP
(or CS:EIP) value points to the instruction following the HLT instruction.

Flags Affected

None.

Protected Mode Exceptions

The HLT instruction is a privileged instruction; #GP(O) if the current privilege level is
not O.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(O); the HLT instruction is a privileged instruction.

26-156

in1:el® INSTRUCTION SET

IDIV - Signed Divide

Opcode

F6/7

F7/7

F7/7

Operation

Instruction

IDIV rlmB

IDIV AX,rlm16

IDIV EAX,rlm32

temp ~ dividend / divisor;
IF temp does not fit in quotient
THEN Interrupt 0;
ELSE

quotient ~ temp;

Clocks

19/20

27/28

43/44

remainder ~ dividend MOD (rim);
FI;

Description

Signed divide AX (where AH must contain sign­
extension of AL) by rim byte. (Results: AL=Quo,
AH = Rem)
Signed divide DX:AX (where DX must contain sign­
extension of AX) by rim word. (Results: AX=Quo,
DX=Rem)
Signed divide EDX:EAX (where EDX must contain
sign-extension of EAX) by rim dword. (Results:
EAX = Quo, EDX = Rem) .

Notes: Divisions are signed. The dividend must be sign-extended. The divisor is given by
the rim operand. The dividend, quotient, and remainder use implicit registers. Refer to
the table under "Description."

Description

The IDIV instruction performs a signed division. The dividend, quotient, and remainder
are implicitly allocated to fixed registers. Only the divisor is given as an explicit rim
operand. The type of the divisor determines which registers to use as follows:

Size Divisor Quotient Remainder Dividend

byte rlmB AL AH AX
word rim 16 AX OX OX:AX
dword rlm32 EAX EOX EDX:EAX

If the resulting quotient is too large to fit in the destination, or if the divisor is 0, an
Interrupt 0 is generated. Nonintegral quotients are truncated toward O. The remainder
has the same sign as the dividend and the absolute value of the remainder is always less
than the absolute value of the divisor.

Flags Affected

The OF, SF, ZF, AF, PF, CF flags are undefined.

26-157

INSTRUCTION SET

Protected Mode Exceptions

Interrupt 0 if the quotient is too large to fit in the designated register (ALor AX), or if
the divisor is 0; #GP (0) for an illegal memory operand effective address in the CS, DS,

. ES, FS, or GS segments; #SS(O) fot an illegal address in the SS segment; #PF(fault.
code) for a page fault; #AC for unaligned memory reference if the qment privilege
level is 3.

Real Address Mode Exceptions

Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if
the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the effective
address space from 0 to OFFFFH. .

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #ACfor
unaligned memory reference if the current privilege level is 3.

26-158

intel® INSTRUCTION SET

IMUL-Signed Multiply

Opcode Instruction Clocks

F6/5 IMUL r/mB 13-18/13-18
F7/5 IMUL r/m16 13-26/13-26
F7/5 IMUL r/m32 12-42/13-42
OF AF /r IMUL r16,r/m16 13-26/13-26
OF AF /r IMUL r32,r/m32 13-42/13-42
66 /r ib IMUL r16,r/m16,immB 13-26/13-26

66 /r ib IMUL r32,r/m32,immB 13-42/13-42

66 /r ib IMUL r16,immB 13-26

66 /r ib IMUL r32,immB 13-42

69 /r iw IMUL r16,r/ 13-26/13-26
m16,imm16

69 /r id 'IMUL r32,r/ 13-42/13-42
m32,imm32

69 /r iw IMUL r16,imm16 13-26/13-26
69 /r id IMUL r32,imm32 13-42/13-42

Description

AX- AL * rim byte
DX:AX <- AX * rim word
EDX:EAX <- EAX * rim dword
word register <- word register * rim word
dword register <- dword register * rim dword
word register <- r/m16 * Sign-extended immedi­
ate byte
dword register - r/m32 * sign-extendeq immedi-,
ate byte . : .
. Word register <- word register * sign-exte'nded
immediate byte
dword register <- dword register * sign-extended
immediate byte
word register ~ r/m16 * immediate word

dword register <- r/m32 * immediate dword .

word register <- r/m16 * immediate word
dword register ~ r/m32 * immediate dword

NOTES: The Intel486 processor uses an early-out multiply algorithm. The actual number of clocks depends on the posi­
tion of the most significant bit in the optimizing multiplier. The optimization occurs for positive and negative
values. 6ecause of the early-out algorithm, clock counts given are minimum to maximum. To calculate the actual
clocks, use the following formula: ',,' '

Actual clock = if m <> 0 then max(ceiling(log2Im 13) '+ 6 clocks
Actual clock = if m = 0 then 9 clocks·
(where m is the multiplier)

Add three clocks if the multiplier is a memory operand.

Operation

result ~ multiplicand * multiplier;

Description

The IMUL instruction performs signed multiplication_ Some forms of the instruction use
implicit register operands. The operand combinations for all forms of the instruction are
shown in the "Description" column above.

The IMUL instruction clears the OF and CF flags under the following conditions (oth­
erwise the CF and OF flags are set):

Instruction Form Condition for Clearing CF and OF

rlmB AL = sign-extend of AL to 16 bits
rlm16 AX = sign-extend of AX to 32 bits
rlm32 EDX:EAX = sign-extend of EAX to 32 bits
r16,rlm16 Result exactly fits within r16
rl32,rlm32 Result exactly fits within r32
r16,rlm16,imm16 Result exactly fits within r16
r32,rlm32,imm32 Result exactly fits within r32

26-159.

infel® INSTRUCTION SET

Flags Affected

The OF and CF flags as described in the table in the "Description" section above; the
SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #ACfor unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH. .

Virtual 8086 Mode Exceptions

Same exeptions as in Real Address Mode;#PF(fault-code) for a page f~ult; #AC for
unaligned memory reference if the current privilege levelis 3.

Notes

When using the accumulator forms (IMUL rlmB, IMUL rim 16, or IMUL rlm32) , the
result of the multiplication is available even if the overflow flag is set because the result
is twice the size of the multiplicand and multiplier. This is large enough to handle any
possible result.

26-160

intel® INSTRUCTION SET

IN -Input from Port

Opcode Instruction

E4 ib IN AL,immB

E5 ib IN AX,imml6

E5 ib IN EAX,imm32

EC IN AL,DX

ED IN AX,DX

ED IN EAX,DX

NOTES: *If CPL ,;;;Ie 10PL
*"If CPL 2: 10PL

Operation

Clocks

14,pm=S",
2S"",vm=27
14,pm=S"'
2S*",vm=27
14,pm=S"'
2S**,vm=27
14,pm=S*'
2S**,vm=27
14,pm=S*'
2S**,vm=27
14,pm=8*l
28**,vm=27

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL))

Description

Input byte from immediate port into AL

Input word from immediate port into AX

Input dword from immediate port into EAX

Input byte from port DX into AL

Input word from port DX into AX

Input dword from port DX into EAX

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *)
IF NOT I-O-Permission (SRC, width(SRC))
THEN #GP(O);
FI;

FI;
DEST ~ [SRC]; (* Reads from I/O address space *)

Description

The IN instruction transfers a data byte or data word from the port numbered by the
second operand into the register (AL, AX, or EAX) specified by the first operand .

. Access any port from 0 to 65535 by placing the port number in the DX register and using
an IN instruction with the DX register as the second parameter. These I/O instructions
can be shortened by using an 8-bit port I/O in the instruction. The upper eight bits of the
port address will be 0 when 8-bit port I/O is used.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the current privilege level is larger (has less privilege) than the I/O pflvilege
level and any of the corresponding I/O permission bits in TSS equals 1.

Real Address Mode Exceptions

None.

26-161

int:eL INSTRUCTION SET

Virtual 8086 Mode Exceptions

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1.

26-162

intel® INSTRUCTION SET

INC -Increment by 1

Opcode Instruction

FE /0 INC rlmB
FF /0 INC rlm16
FF /0 INC rlm32
40+ rw INC r16
40+ rd INC r32

Operation

DEST - DEST + 1;

Description

Clocks

1/3
1/3
1/3
1
1

Description

Increment rim byte by 1
Increment rim word by 1
Increment rim dword by 1
Increment word register by 1
Increment dword register by 1

The INC instruction adds 1 to the operand. It does not change the CF flag. To affect the
CF flag, use the ADD instruction with a second operand of 1.

Flags Affected

The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(O) if the operand is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions·

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

26-163

INSTRUCTION SET

INS/INSB/INSW/INSD -Input from Port to String

Opcode Instruction

6C INS mB,DX"

6D INS m16,DX

6D INS 1T132,DX

6C INSB

6D INSW

6D INSD

NOTES: *If CPL :s; IOPL
**If CPL > IOPL

Operation, '

IF AddressSize = 16
THEN use 01 for dest-index;
ELSE (* AddressSize == 32 *)

use EOI for dest-index;
FI;

, Clo~ki

17,pm= 10*/
32**,VM=30
1'7,pm ~ 10*/
32**VM=30
j7,P~=10*/
32**,VM=30
'17,pm=10*/
32**,VM=30
17,pm=10*/
32**,VM=30
17,pm=10*/
32**,VM=30

IF (PE = 1) ANO ((VM = 1) OR (CPL > 10PL))

Description

Input byte from port DX into ES:(E)DI

Input word from port DX into ES:(E)DI

Input dword from port DX into ES:(E)DI

Input byte from port DX into ES:(E)DI

Input word from port DX into ES:(E)DI

Input dword from port DX into ES:(E)DI

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL*) •
IF NOT I-a-Permission (SRC, width(SRC))
THEN #GP(O);' , , .,'~ ,

,- FI;'
FI;, "
IF byte type of instruction
THEN

ES:[dest-index] ~ [OX]; (* Reads byte at OX from I/O address space*)
IF OF = a THEN IncOec ~ 1 ELSE IncOec ~ -1; FI;

FI; ,
IF OperandSize = 16
THEN

ES:[dest-index] ~ [OX]; (* Reads word at OX from I/O address space *),
IF OF = a THEN IncOec ~ 2 ELSE IncOec ~ -2; FI;

FI;
IF OperanelSize =:32
THEN

ES:[dest-index] ~ [OX]; (* Reads dword at OX from I/O address space *)
IF OF = a THEN IncOec ~ 4 ELSE IncOec ~ -4; FI;

FI;
dest-index ~ dest-index + IncOec;

Description

The INS instruction transfers data from the input port numbered by the DX register to
the memory byte or word at, ES:dest-index. The memory operand must be addressable

26-164

intel® INSTRUCTION SET

from the ES register; no segment override is possible. The destination register is the DI
register if the address-size attribute of the instruction is 16 bits, or the EDI register if the
address-size attribute is 32 bits.

The INS instruction does not allow the specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load the correct value
into the DX register before executing the INS instruction. .

The destination address is determined by the contents of the destination index register.
Load the correct index into the destination index register before executing the INS
instruction.

After the transfer is made, the DI or EDI register advances automatically. If the DF flag
is 0 (a CLD instruction was executed), the DI or EDI register increments; if the DF flag
is 1 (an STD instruction was executed), the DI or EDI register decrements. The DI
register increments or decrements by 1 if a byte is input, by 2 if a word is input, or by 4
if a doubleword is input.

The INSB, INSW and INSD instructions are synonyms of the byte, word, and double­
word INS instructions. The INS instruction can be preceded by the REP prefix for block
input of CX bytes or words. Refer to the REP instruction for details of this operation.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the current privilege level is numerically greater than the I/O privilege level
and any of the corresponding I/O permission bits in TSS equals 1; #GP(O) if the desti­
nation is in a nonwritable segment; #GP(O) for an illegal memory operand effective
address in the ES, segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault­
code) for a page fault; #AC for unaligned memory reference if the current privilege
level is 3.

26-165

int:et INSTRUCTION SET

I NT/I NTO - Call to Interrupt Procedure

Opcode Instruction Clocks Description

CC INT3 26 Interrupt 3-trap to debugger
CC INT 3 44 Interrupt 3-Protected Mode, same privilege
CC INT3 71 Interrupt 3-Protected Mode, more privilege
CC INT 3 82 Interrupt 3-from V86 mode to PL 0
CC INT3 37+TS Interrupt 3-Protected Mode, via task gate
CD ib INT immB 30 Interrupt numbered by immediate byte
CD ib INT immB 44 Interrupt-Protected Mode, same privilege
CD ib INT immB 71 Interrupt ~ Protected Mode, more privilege
CD ib INT immB 86 Interrupt - from V86 mode to PL 0
CD ib INT immB 37+TS Interrupt - Protected Mode, via task gate
CE INTO Pass: 28, Fail: 3 Interrupt 4 - if overflow flag is 1
CE INTO 46 Interrupt 4 - Protected Mode, same privilege
CE INTO 73 Interrupt 4-Protected Mode, more privilege
CE INTO 84 Interrupt 4 - from V86 mode to PL 0
CE INTO 39+TS Interrupt 4-Protected Mode, via task gate

NOTE: Approximate values of ts are given by the following table:

New Task
Old Task

to InteI486'· CPU TSS to 80286 J"SS to VM TSS

VM/lntel486 CPU/80286 TSS 199 180 177

Operation

NOTE: The following operational description applies not only to the above instructions
but also to external interrupts and exceptions.

IF PE = 0 . ..
THEN GOTO REAL-ADDRESS-MODE;
ELSE GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE:
Push (FLAGS);
IF +- 0; (* Clear interrupt flag *)
TF +- 0; (* Clear trap flag *)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS +- IDT[lnterrupt number * 4].selector;
IP +- IDT[lnterrupt number * 4].offset;

(* Start execution in real address mode *)
PROTECTED-MODE:

Interrupt vector must be within IDT table limits,
else #GP(vector number * 8+2+EXT);

Descriptor AR byte must indicate interrupt gate, trap gate, or task gate,
else #GP(vector number * 8 + 2 + EXT);

26-166

intel® INSTRUCTION SET

IF software interrupt (* i.e. caused by INT n, INT 3, or INTO *)
THEN

IF gate descriptor DPL < CPL
THEN #GP(vector number * 8 + 2 + EXT);
FI;

FI;
Gate must be present, else #NP(vector number * 8+2+EXT);
IF trap gate OR interrupt gate
THEN GOTO TRAP-GATE-OR-INTERRUPT-GATE;
ELSE GOTO TASK-GATE;
FI;

TRAP-GATE-OR-INTERRUPT-GATE:
Examine CS selector and descriptor given in the gate descriptor;
Selector must be non-nUll, else #GP (EXT);
Selector must be within its descriptor table limits

ELSE #GP(selector+ EXT);
Descriptor AR byte must indicate code segment

ELSE #GP(selector + EXT);
Segment must be present, else #NP(selector+ EXT);

IF code segment is non-conforming AND DPL < CPL
THEN GOTO INTERRUPT-TO-INNER-PRIVILEGE;
ELSE

IF code segment is conforming OR code segment DPL = CPL
THEN GOTO INTERRUPT-TO-SAME-PRIVILEGE-LEVEL;
ELSE #GP(CS selector + EXT);
FI;

FI;

INTERRUPT-TO-INNER-PRIVILEGE:
Check selector and descriptor for new stack in current TSS;

Selector must be non-nUll, else #TS(EXT);
Selector index must be within its descriptor table limits

ELSE #TS(SS selector+ EXT);
Selector's RPL must equal DPL of code segment, else #TS(SS

selector + EXT);
Stack segment DPL must equal DPL of code segment, else #TS(SS

selector + EXT); .
Descriptor must indicate writable data segment, else #TS(SS

selector + EXT);
Segment must be present, else #SS(SS selector + EXT);

IF 32-bit gate
THEN New stack must have room for 20 bytes else #SS(O)
ELSE New stack must have room for 10 bytes else #SS(O)
FI;
Instruction pointer must be within CS segment boundaries else #GP(O);
If VM = 1 in EFLAGS
Then Goto INTERRUPT from V-86-MODE;

26-167

intel® INSTRUCTION SET

Load new SS and eSP value from TSS;
IF 32-bit gate
THEN CS:EIP ~ selector:offset from gate;
ELSE CS:IP ~ selector:offset from gate;
FI;
Load CS descriptor into invisible portion of CS register;
Load SS descriptor into invisible portion of SS register;
IF 32-bit gate
THEN

Push (long pOinter to old stack) (* 3 words padded to 4 *);
Push (EFLAGS);
Push (long pOinter to return location) (* 3 words padded to 4*);

ELSE
Push (long pointer to old stack) (* 2 words *);
Push (FLAGS);
Push (long pointer to return location) (* 2 words *);

FI;
Set CPL to new code segment DPL;
Set RPL of CS to CPL;
IF interrupt gate THEN IF ~ 0 (* interrupt flag to 0 (disabled) *); PI;
TF~ 0;
NT~O;

INTERRUPT-FROM-V86-MODE:
TempEFlags ~ EFLAGS;
VM~O; .
TF~O;

IF service through Interrupt Gate THEN IF ~ 0;
TempSS ~ SS;
TempESP ~ ESP;
SS ~ TSS.SSO; (* Change to level 0 stack segment *)
ESP ~ TSS.ESPO; (* Change to level 0 stack pointer *)
Push(GS); (* padded to two words *)
Push(FS); (* padded to two words *)
Push(DS); (* padded to two words *)
Push(ES); (* padded to two words *)
GS ;ID 0;
FS ~ 0;
DS~O;

ES ~ 0;
Push(TempSS); (* padded to two words *)
Push(TempESP);
Push(TempEFlags);
Push(CS); (* padded to two words *)
Push(EIP);
CS:EIP ~ selector:offset from interrupt gate;
(* Starts execution of new routine in Protected Mode *)

INTERRUPT-TO-SAME-PRIVILEGE-LEVEL:
IF 32-bit gate

26-168

infel0 INSTRUCTION SET

THEN Current stack limits must allow pushing 10 bytes, else #SS(O);
ELSE Current stack limits must allow pushing 6 bytes, else #SS(O);
FI; .

IF interrupt was caused by exception with error code
THEN Stack limits must allow push of two more bytes;
ELSE #SS(O);
FI;
Instruction pointer must be in CS limit, else #GP(O);
IF 32-bit gate
THEN

Push (EFLAGS);
Push (long pointer to return location); (* 3 words padded to 4 *)
CS:EIP ~ selector:offset from gate;

ELSE (* 16-bit gate *)
Push (FLAGS);
Push (long pointer to return location); (* 2 words *)
CS:IP ~ selector:offset from gate;

FI;
Load CS descriptor into invisible portion of CS register;
Set the RPL field of CS to CPL;
Push (error code); (* if any *)
IF interrupt gate THEN IF ~ 0; FI;
TF~O;

NT~O;

TASK-GATE:
Examine selector to TSS, given in task gate descriptor;

Must specify global in the local/global bit, else #TS(TSS selector);
Index must be within GDT limits, else #TS(TSS selector);
AR byte must specify available TSS (bottom bits 00001),

else #TS(TSS selector);
TSS must be present, else #NP(TSS selector);

SWITCH-TASKS with nesting to TSS;
IF interrupt was caused by fault with error code
THEN

Stack limits must allow push of two more bytes, else #SS(O);
Push error code onto stack;

FI;
Instruction pointer must be in CS limit, else #GP(O);

Description

The INT n instruction generates via software a call to an interrupt handler. The imme­
diate operand, from a to 255, gives the index number into the Interrupt Descriptor Table
(IDT) of the interrupt routine to be called. In Protected Mode, the IDT consists of an
array of eight-byte descriptors; the descriptor for the interrupt invoked must indicate an
interrupt, trap, or task gate. In Real Address Mode, the IDT is an array of four byte­
long pointers. In Protected and Real Address Modes, the base linear address of the IDT
is defined by the contents of the IDTR.

26-169

infel~ INSTRUCTION SET

The INTO condition!!l software instruction is identical to the INT n interrupt instruction
except that the interrupt number is implicitly 4, and the interrupt is made only if the
Intel486 processor overflow flag is set.

The first 32 interrupts are reserved by Intel for system use. Some of these interrupts are
used for internally generated exceptions.

The INT n instruction generally behaves like a far call except that the flags register is
. pushed onto the stack before the return address. Interrupt procedures return via the
IRET instruction, which pops the flags and return address from the stack.

In Real Address Mode, the INT n instruction pushes the flags, the CS register,and the
return IP onto the stack, in that order, then jumps to the long pointer indexed by the
interrupt number.

Flags Affected

None.

Protected Mode exceptions

#GP, #NP, #SS, and #TS as indicated under "Operation" above.

Real Address Mode Exceptions

None; if the SP or ESP register is 1, 3,or 5 before executing the INT or INTO instruc­
tion, the Intel486 processor will shut down due to insufficient stack space.

Virtual 8086 Mode Exceptions

#GP(O) fault if IOPL is less than 3, for the INT ninstruction only, to permit emulation;
Interrupt 3 (OCCH) generates a breakpoint exception; the· INTO instruction generates
an overflow exception if the OF flag is set. .

26-170

intel@ INSTRUCTION SET

I NVD -Invalidate Cache·

Opcode

OF 08

Operation

Instruction

INVD

FLUSH INTERNAL CACHE

. Clocks

4

SIGNAL EXTERNAL CACHE TO FLUSH

Description

Description

Invalidate Entire Cache

The internal cache is flushed, and a special-function bus cycle is issued which indicates
that external caches should also be flushed. Data held in write-back external caches is
discarded.

Flags Affected

None.

Protected Mode Exceptions

The INVD instruction is a privileged instruction; #GP(O) if the current privilege·level is
~Q .

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(O); the INVD instruction is a privileged instruction.

Notes

This instruction is implementation-dependent; its function may be implemented differ­
ently on future Intel processors.

It is the responsibility of hardware to respond to the external cache flush indication.

This instruction is not supported on Intel386 processors. See Section 3.11 for detecting
an Intel486 processor at runtime. See WBINVD description to write back dirty data to
memory.

See Section 12.2 on disabling the cache.

26-171

int:et INSTRUCTION SET

INVLPG -Invalidate TLB Entry

Opcode

OF 01/7

Operatiqn

Instruction

INVLPG m

INVALIDATE TLB ENTRY

Description

Clocks

12 for hit

Description

Invalidate TLB Entry

The INVLPG instruction is used to invalidate a single entry in the TLB, the cache used
for page table entries. If the TLB contains a valid entry which maps the address of the
memory operand, that TLB entry is marked invalid.

Flags Affected

None

Protected Mode Exceptions

The INVLPG instruction is a privileged instruction; #GP(O) if the current privilege level
is not o. An invalid-opcode exception is generated when used with a register operapd.

Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

An invalid-opcode exception is generated when used with a register operand. #GP(O);
the INVLPG instruction is a privileged instruction.

Notes

This instruction is not supported on Inte1386 processors. See Section 3.11 for detecting
an Intel386 processor at runtime.

See Section 12.2 on disabling the cache.

26-172

intel® INSTRUCTION SET

IRET/IRETD -Interrupt Return

Opcode

CF
CF
CF
CF
CF
CF
CF

Instruction

IRET
IRET
IRET
IRETD
IRETD
IRETD
IRETD

Clocks

15
36
TS+32
15
36
15
TS+32

NOTE: Values of ts are given by the following table:

Old Task

Description

Interrupt return (far return and pop flags)
Interrupt return to lesser privilege
Interrupt return, .different task (NT =1)
Interrupt return (far return and pop flags)
Interrupt return to lesser privilege '
Interrupt return to Va6 mode
Interrupt return, different task (NT = 1)

New Task ,

to IntElI486'· CPU TSS to 80286 TSS to VM TSS

VM/lntel486 CPU/80286 TSS 199

Operation

IF PE = 0
THEN (* Real-address mode *)

IF OperandSize = 32 (* Instruction = IRETD *)
THEN EIP <-- Pop{);
ELSE (* Instruction = IRET *)

IP <-- Pop{);
FI;
CS <-- Pop{);
IF OperandSize = 32 (* Instruction ~ IRETD *)
THEN Pop{); EFLAGS <-- Pop();
ELSE (* Instruction = IRET *)

FLAGS <-- Pop{);
FI;

ELSE (* Protected mode *)
IF VM = 1
THEN #GP(O);
ELSE

IF NT = 1
THEN GOTO TASK-RETURN;
ELSE

IF VM = 1 in flags image on stack
THEN GO TO STACK-RETURN-TO-V86;
ELSE GOTO STACK-RETURN;
FI;

FI;
FI;

180

FI;STACK-RETURN-TO-V86: (* Interrupted procedure was in V86 mode *)
IF top 36 bytes of stack not within limits

26-173

177

intel~ INSTRUCTION S~T

THEN #SS(O);
FI;'

, IF instruction pointer not witIJincode segment limit THEN #GP(O);
FI;

EFLAGS ~ SS:[ESP-f 8]; (* Sets VM in interrupted routine *)
EIP~ PopO; " .
CS ~ PopO; (*CS behaves as in 8086, due to VM = 1 *)
throwaway ~ PopO; (* pop away EFLAGS already read *)
TempESP ~ PopO; .
TempSS ~ PopO;
ES ~ PopO; (* pop 2 words; throwaway high-order word *)
OS ~ PopO; (* pop 2 words; throwaway high-order word *)
FS ~.PopO; (* pop 2 words; throw away high-order word *)
GS ~ PopO; (* pop 2 words; throwaway high-order word *)

SS:ESP ~ TempSS:TempESP; .

(* Resume execution in Virtual 8086 mode *)

TASK-RETURN:
Examine Back Link Selector in TSS addressed by the current task

register:
Must specify global in the local/global bit, else #TS(new TSS selector);
Index must be within GOT limits, else #TS(new TSS selector);'
AR byte must specify TSS, else #TS(new TSSselector);
New TSS must be busy, else #TS(new TSS selector);
TSS must be present, else #NP(new TSS selector);

SWITCH-TASKS without nesting to TSS specified by back link selector;
Mark the task just abandoned as NOT BUSY;
Instruction pOinter must be within code segmel)t limit ELSE #GP(O);

STACK-RETURN:
IF OperandSize=32
THEN Third word on stack must be within stack limits, else #SS(O);
ELSE Second word on stack must be within stack limits, else #S~(O);
FI;
Return CS selector RPL must be ~ CPL, else #GP(Return selector);
IF return selector RPL . = CPL
THEN GOTO RETURN-SAME-LEVEL;
ELSE GOTO RETURN-OUTER-LEVEL;
FI;

RETURN-SAME-LEVEL:
IF OperandSize = 32
THEN

Top 12 bytes on stack must be within limits, else #SS(O);
Return CS selector (at eSP+4) must be non-nUll, else #GP(O);

ELSE '; .
Top 6 bytes on stack must be within limits, else #SS(O);·,

26-174

intel@ INSTRUCTION SET

Return CS selector (at eSP+2) must be non-null, else #GP(O);
FI;
Selector index must be within its descriptor table limits, else #GP

(Return selector);
AR byte must indicate code segment, else #GP(Return selector);
IF non-conforming
THEN code segment DPL must = CPL;
ELSE #GP(Return selector);
FI;
IF conforming
THEN code segment DPL must be ::; CPL, else #GP(Return selector);
Segment must be present, else #NP(Return selector);
Instruction pOinter must be within code segment boundaries, else #GP(O);
FI;
IF OperandSize = 32
THEN

Load CS:EIP from stack;
Load CS-register with new code segment descriptor;
Load EFLAGS with third doubleword from stack;
Increment eSP by 12;

ELSE
Load CS-register with new code segment descriptor;
Load FLAGS with third word on stack;
Increment eSP by 6;

FI;

RETURN-OUTER-LEVEL:
IF OperandSize=32
THEN Top 20 bytes on stack must be within limits, else #SS(O);
ELSE Top 10 bytes on stack must be within limits, else #SS(O);
FI;
Examine return CS selector and associated descriptor:

Selector must be non-null, else #GP(O);
Selector index must be within its descriptor table limits;

ELSE #GP(Return selector);
AR byte must indicate code segment, else #GP(Return selector);
IF non-conforming
THEN code segment DPL must = CS selector RPL;
ELSE #GP(Return selector);
FI;
IF conforming
THEN code segment DPL must be > CPL;
ELSE #GP(Return selector);
FI;
Segment must be present, else #NP(Return selector);

Examine return SS selector and associated descriptor:
Selector must be non-null, else #GP(O);
Selector index must be within its descriptor table limits

26-175

int'et INSTRUCTION SET

ELSE #GP(SS selector);: :
Selector RPL must equal the RPL of the return CS selector

ELSE #GP(SS selector);
AR byte must indicate a writable data segment, else #GP(SS selector);
Stack segment DPL must,eql,Jal the. RPL of the. return C.Sselector

ELSE #GP(SS selector);
SS must be present, else #NP(SS selector);

Instruction pOinter must be within code segment limit ELSE #GP(O);
IF OperandSize = 32
THEN ,"d·

Load CS:EIP from stack;
Load EFLAGS with\ialues at (eSP+8); ...

ELSE
Load CS:IP from stack;
Load FLAGS with values at (eSP+4);

FI;
Load SS:eSP from stack;
Set CPL to the RPL of the return CS selector; ..
Load the CS register with the CS descriptor;
Load the SS register with the SS descriptor;
FOR each of ES, FS, GS, and DS '
DO;

IF the current value of the register is not valid for the outer level;
THEN zero the register and clear the valid flag;
FI;
To be valid, the register setting must satisfy the following properties:·

Selector index must be within descriptor table limits;
AR byte must indicate data or readablecode.segment; ,
IF segment is data or non7,conforming code,
THEN DPL must be > CPL, or DPL must be < RPL;

OD;

Description

In Real Address Mode, the IRET i~struction pops the instruction pointer; the CS reg­
ister, and the flags register from the stack and resumes the interrupted rotltine .. '.

'f', '. ,,'

In Protected Mode, the act.ion of the IRET instruction depends on thy-, setting of the
nested task flag (NT) bit in the flag register. When the new flag image .is popp,edfrom
the stack, the IOPL bits in the flag register are changed only whc;:n CPLeqqals O .. }

If the NT flag is cleared, the IRET instruction returns ·from an interrupt procedure
without a task switch. The code returned to must be equally or less privileged than the
interrupt routine (as indicated by the RPL bits of the, CS ,selector popped .from the
stack). If the destination code is less privileged, the IRET instruc;tion also:pops the,stack
pointer and SS from the stack.

26-176

intel~ INSTRUCTION SET

If the NT flag is set, the IRET instruction reverses the operation of a CALL or INT that
caused a task switch. The updated state of the task executing the IRET instruction is
saved in its task state segment. If the task is reentered later, the. code that follows the
IRET instruction is executed. .

Flags Affected

All flags are affected; the flags register is popped from stack.

Protected Mode Exceptions

#GP, #NP, or #SS; as indicated under "Operation" above.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand being popped lies beyond address OFFFFH.
~ \ '

Virtual 8086 Mode Exceptions

#GP(O) fault if the I/O privilege level is less than 3; to permit emulation.

26-177

int:eL INSTRUCTION SET

Jcc - Jump if Condition is Met

Opcode Instruction Clocks Description

77 cb JA relB 3,1 Jump short if above (CF = 0 and ZF = 0)

73 cb JAE relB 3,1 Jump short if above or equal (CF=O)

72 cb JB relB 3,1 Jump short if below (CF = 1)

76 cb JBE relB 3,1 Jump short if below or equal (CF = 1 or ZF = 1)

72 cb JC relB 3,1 Jump short if carry (CF =1)

E3 cb JCXZ relB 8,5 Jump short if CX register is 0

E3 cb JECXZ relB 8,5 Jump short if ECX register is 0

74 cb JE relB 3,1 Jump short if equal (ZF = 1)

74 cb JZ relB 3,1 Jump stlort if 0 (ZF = 1)

7F cb JG relB 3,1 Jump short if greater (ZF = 0 and SF = OF)

70 cb JGE relB 3;1 Jump short if greater or equal (SF = OF)

7C cb JL relB 3,1 Jump short if less (SF < >OF)

7E cb JLE relB 3,1 Jump short if less or equal (ZF = 1 or
SF<>OF)

76 cb JNA relB 3,1 Jump short if not above (CF = 1 or ZF = 1)

72 cb JNAE relB 3,1 Jump short if not above or equal (CF = 1)

73 cb JNB relB 3,1 Jump short if not below (CF = 0)

77 cb JNBE relB 3,1 Jump short if not below or equal (CF = 0 and
ZF=O)

73 cb JNC relB 3,1 Jump short if not carry (CF = 0)

75 cb JNE relB 3,1 Jump short if not equal (ZF = 0)

7E cb JNG relB 3,1 Jump short if not greater (ZF = 1 or SF< >OF)

7C cb JNGE relB 3,1 Jump short if not greater or equal (SF< >OF)

70 cb JNL relB 3,1 Jump short if not less (SF = OF)

7F cb JNLE relB 3,1 Jump short if not less or equal (ZF = 0 and
SF=OF)

71 cb JNO relB 3,1 Jump short if not overflow (OF = 0)

7B cb JNP relB 3,1 Jump short if not parity (PF = 0)

79 cb JNS relB 3,1 Jump short if not sign (SF = 0)

75 cb JNZ relB 3,1 Jump short if not zero (ZF = 0)

70 cb JO relB 3,1 Jump short if overflow (OF = 1)

7A cb JP relB 3,1 Jump short if parity (PF = 1)

7A cb JPE relB 3,1 Jump short if parity even (PF = 1)

7B cb JPO relB 3,1 Jump short if parity odd (PF = 0)

78 cb JS relB 3,1 Jump short if sign (SF = 1)

74 cb JZ relB 3,1 Jump short if zero (ZF = 1)

OF 87 cw/cd JA re116/32 3,1 Jump near if above (CF = 0 and ZF = 0)

OF 83 cw/cd JAE re116/32 3,1 Jump near if <i;bove or equal (CF = 0)

OF 82 cw/cd JB re116/32 3,1 Jump near if below (CF = 1)

OF 86 cw/cd JBE re116/32 3,1 Jump near if below or equal (CF = 1 or ZF = 1)

OF 82 cw/cd JC re116/32 3,1 Jump near if carry (CF = 1)

OF 84 cw/cd JE re116/32 3,1 Jump near if equal (ZF = 1)

OF 84 cw/cd JZ re116/32 3,1 Jump near if 0 (ZF = 1)

OF 8F cw/cd . JG re116/32 3,1 Jump near if greater (ZF = 0 and SF = OF)

OF 80 cw/cd JGE re116/32 3,1 Jump near if greater or equal (SF = OF)

OF 8C cw/cd JL re116/32 3,1 Jump near if less (SF<>OF)

26-178

intel® INSTRUCTION SET

Opcode Instruction Clocks Description

OF 8E cw/cd JLE ,e116/32 3,1 Jump near if less.or equal (ZF=l or SF<>OF)

OF 86 cw/cd JNA ,e116/32 3,1 Jump near if not above (CF = 1 or ZF = 1)

OF 82 cw/cd JNAE ,e116/32 3,1 Jump near if not above or equal (CF; 1)

OF 83 cw/cd JN8 ,e116/32 3,1 Jump near if not below (CF = 0)

OF 87 cw/cd JN8E ,e116/32 3,1 Jump near if not below or equal (CF = 0 and
ZF=O)

OF 83 cw/cd JNC ,e116/32 3,1 Jump near if not carry (CF = 0)

OF 85 cw/cd JNE ,e116/32 3,1 Jump near if not equal (ZF = 0)

OF 8E cw/cd JNG ,e116/32 3,1 Jump near if not greater (ZF= 1 or SF<>OF)

OF 8C cw/cd JNGE ,e116/32 3,1 Jump near if not greater or equal (SF<>OF)

OF 80 cw/cd JNL ,e116/32 3,1 Jump near if not less (SF; OF)

OF 8F cw/cd JNLE ,e116/32 3,1 Jump near if not .Iess or equal (ZF = 0 and
SF=OF)

OF 81 cw/cd JNO ,e116/32 3,1 Jump near if not overflow (OF=O)

OF 88 cw/cd JNP ,e116/32 3,1 Jump near if not parity (PF = 0)

OF 89 cw/cd JNS ,e116/32 3,1 Jump near if not sign (SF = 0)

OF 85 cw/cd JNZ ,e116/32 3,1 Jump near if notzero (ZF=O)

OF 80 cw/cd JO ,eit6/32 3,1 Jump near if overflow (OF = 1)

OF 8A cw/cd JP ,e116/32 3,1, Jump near if parity (PF = 1)

OF 8A cw/cd JPE ,e116/32 3,1 Jump near if parity even (PF = 1)

OF 88 cw/cd JPO ,e116/32 3,1 Jump near if parity odd (PF = 0)

OF 88 cw/cd JS ,e116/32 3,1 Jump near if sign (SF = 1)

OF 84 coN/cd JZ ,e116/32 3,1 Jump near if 0 (ZF=l)

NOTES: The first clock count is for the true condition (branch taken); the second clock count is for the false condition
(branch not taken). ,e116/32 indicates that these instructions map to two; one with a 16-bit relative displacement,
the other with a 32-bit relative displacement, depending' on the operand-size attribute of the instruction.

Operation

IF condition
THEN

EIP ~ EIP + SignExtend(re/B/16/32);
IF OperandSi;ze = 16
THEN EIP ~ EIP AND OOOOFFFFH;
R; .

FI;

Description

Conditional jumps (except the JCXZ instruction) test the flags which have been set by a
previous instruction_ The conditions for each mnemonic are given in parentheses after
each description above_ The terms "less" and "greater" are used for comparisons of
signed integers; "above" and "below" are used for unsigned integers_

If the given condition is true, a jump is made to the location provided as the operanq,
Instruction coding is most efficient when the target for the conditional jump is in the
current code segment and within -128 to +127 bytes of the next instruction's first byte_
The jump can also target -32768 thru + 32767 (segment size attribute 16) or _231 thru

26-179

INSTRUCTION SET

+ 231 _1 (segment size attribute 3.2) relative to the next instruction's first byte. When the
target for .the conditional jump i~ in a different segment, use the opposite case of the
jump instruction (i.e., the JE and JNE instructions), and then access the target with an
unconditionaUar jump to the other segment. For example, you cannot code-

JZ FAR LABEL;

You must instead code-

JNZ BEYOND;
JMP FARLABEL;

BEYOND:

Because there can be several ways to interpret a particular state of the flags, ASM386
provides more than one mnemonic for most of the conditional jump opcodes. For exam­
ple, if you compared tWo characters in AX and want to jump if they are equal, use the JE
instruction; or, if you ANDed the AX register with a bit field mask and only want to
jump if the result is 0, use'the JZ instruction, a synonym for the JE instruction ..

The JCXZ instruction differs from other conditional jumps because it tests the contents
of the CX or ECX register for 0, not the flags. The JCXZ instruction is useful at the
beginning of a conditional loop that terminates with a conditional loop instruction (such
as LOOPNE. TARGET LABEL The JCXZ instruCtion prevents entering the loop with
the CX or ECX register equal to zero, which. would cause the loop to execute 64K or 26
times instead of zero times.

Flags Affected

None.

Protected Mode Exceptions

. #GP(O) if the offset jumped to is beyond the limits of the code segment.

Real Address Mode Exceptions

None ..

Virtual' 8086 Mode Exceptions

None.

26-180

intel@ INSTRUCTION SET

Notes

The JCXZ instruction takes longer to execute than a two-instruction sequence which
compares the count register to zero and jumps if the count is zero.

All branches are converted into 16-byte code fetches regardless of jump address or
cache ability.

26-181

INSTRUCTION SET

JMP-Jump
Opcode ..

EB cb
E9 cw

FF /4
EAcd
EA cd
EA cd
EA cd
FF /5
FF /5
FF /5
FF /5
E9 cd

FF /4
EA cp
EA cp
EA cp
EA cp
FF /5
FF /5
FF /5
FF /5

Instruction

JMP relB
JMP rel16

JMP rlm16
JMP ptr16:16
JMP ptr16:16
JMP ptr16:16
JMP ptr16:16
JMP m16:16
JMP m16:16
JMP m16:16
JMP m16:16
JMP rel32

JMP rlm32
JMP ptr16:32
JMP ptr16:32
JMP ptr16:32
JMP ptr16:32
JMP m16:32
JMP m16:32
JMP m16:32
JMP m16:32

Clocks

3
3

5/5
17pm=19
32
42+TS
43+TS
13,pm=18
31
41+TS
42+TS
3

5/5
13,pm=18
31
42+TS
43+TS
13,pm=18
31
41+TS
42+TS

NOTE: Values of ts are given by the following table:

Old Task

Description

Jump short
Jump near, displacement relative to next instruc­
tion
Jump near indirect
Jump intersegment, 4-byte immediate address
Jump to call gate, same privilege
Jump via task state segment
Jump via task gate
Jump rlm16:16 indirect and intersegment
Jump to call gate, same privilege
Jump via task state segment
Jump via task gate
Jump near, displacement relative to next instruc­
tion
Jump near, indirect
Jump intersegment, 6-byte immediate address
Jump to call gate, same privilege
Jump via task state segment
Jump via task gate
Jump intersegment, address at rim dword
Jump to call gate, same privilege
Jump via task state segment
Jump via task gate

New Task

to Inte1486'" CPU TSS to 80286 TSS toVM TSS

VM/lntel486 CPU/80286 TSS

Operation

.IF instruction = relative JMP
(* i.e. operand is re/B, re/16, or re/32 *)

THEN
EIP ~ EIP + re/B/16/32;
IF OperandSize = 16
THEN EIP ~ EIP AND OOOOFFFFH;
FI;

FI;

IF instruction = near indirect JMP
(* i.e. operand is r/m16 or r/m32 *)

THEN
IF OperandSize = 16
THEN

EIP ~ [r/m16j AND OOOOFFFFH;

199 180 177

26-182

intet INSTRUCTION SET

ELSE (* OperandSize = 32 *)
EIP ~ [r!m32;

FI;
FI;

IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or V86 mode *)
AND instruction = far JMP
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *)

THEN GOTO REAL-OR-V86-MODE;
IF operand type = m16:16 or m16:32
THEN (* indirect *)

IF OperandSize = 16
THEN

CS:IP ~ [m16:16j;
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *)

ELSE (* OperandSize = 32 *)
CS:EIP ~ [m16:32];

FI;
FI;
IF operand type = ptr16:16 or ptr16:32
THEN

IF OperandSize = 16
THEN

CS:IP ~ ptr16:16;
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *)

ELSE (* OperandSize· = 32 *)
CS:EIP ~ ptr16:32;

FI;
FI;

FI;

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *)
AND instruction = far JMP .

THEN
IF operand type = m16:16 or m16:32
THEN (* indirect *)

check access of EAdword;
#GP(O) or #SS(O) IF limit violation;

FI;
Destination selector is not null ELSE #GP(O)
Destination selector index is within its descriptor table limits ELSE #GP(selector)
Depending on AR byte of destination descriptor:

GOTO CONFORMING-CODE-SEGMENT;
GOTO NONCONFORMING-CODE-SEGMENT;
GOTO CALL-GATE;
GOTO TASK-GATE;
GOTO TASK-STATE-SEGMENT;

ELSE #GP(selector); (* illegal AR byte in descriptor *)
FI;

26-183

infel~ INSTRUCTION SET

CONFORMING-CODE-SEGMENT:
Descriptor DPL must be :5 CPL ELSE #GP(selector);
Segment must be present ELSE #NP(selector);
Instruction pointer must be within code-segment limit ELSE #GP(O);
IF OperandSize = 32
THEN Load CS:EIP from destination pointer;
ELSE Load CS:IP from destination pointer;
FI;
Load CS register with new segment descriptor;

NONCONFORMING-CODE-SEGMENT:
RPL of destination selector must be :5 CPL ELSE #GP(selector);
Descriptor DPL must be = CPL ELSE #GP(selector);
Segment must be present ELSE # NP(selector);
Instruction pointer must be within code-segment limit ELSE #GP(O);
IF OperandSize = 32
THEN Load CS:EIP from destination pOinter;
ELSE Load CS:IP from destination pointer;
FI;
Load CS register with new segment descriptor;
Set RPL field of CS register to CPL;

CALL-GATE:
Descriptor DPL must be ;:::CPL ELSE #Gp(gate selector);
Descriptor DPL must be ;::: gate selector RPL ELSE #GP(gate selector);
Gate must be present ELSE #NP(gate selector);
Examine selector to code segment given in call gate descriptor:

Selector must not be null ELSE #GP(O);
Selector must be within its descriptor table limits ELSE

#GP(CS selector);
Descriptor AR byte must indicate code segment

ELSE #GP(CS selector);
IF non-conforming
THEN code-segment descriptor DPL must = CPL
ELSE #GP(CS selector);
FI;
IF conforming
THEN code-segment descriptor DPL must be :5 CPL;
ELSE #GP(CS selector);
Code segment must be present ELSE #NP(CS selector);
Instruction pOinter must be within code-segment limit ELSE #GP(O);
IF OperandSize = 32
THEN Load CS:EIP from call gate;
ELSE Load CS:IP from call gate;
FI;

Load CS register with new code-segment descriptor;
Set RPL of CS to CPL

TASK-GATE:
Gate descriptor DPL must be ;::: CPL ELSE #GP(gate selector);

26-184

int:et INSTRUCTION SET

Gate descriptor DPLmust be ~ gate selector RPL ELSE #GP(gate selector);
Task Gate must be present ELSE #NP(gate selector);
Examine selector to TSS, given in Task Gate descriptor: .

Must specify global in the local/global bit ELSE #GP(TSS selector);
Index must be within GDT limits ELSE #GP(TSS selector);
Descriptor AR byte must specify available TSS (bottom bits 00001);

ELSE #GP(TSS selector);
Task State Segment must be present ELSE #NP(TSS selector);

SWITCH-TASKS (without nesting) to TSS;
Instruction pointer must be within code-segment limit ELSE #GP(O);

TASK-STATE-SEGMENT:
TSS DPL must be ~ CPL ELSE #GP(TSS selector);
TSS DPL must be ~ TSS selector RPL ELSE #GP(TSS selector);
Descriptor AR byte must specify available TSS (bottom bits 00001)

ELSE #GP(TSS selector);
Task State Segment must be pr~sent ELSE #NP(TSS selector);
SWITCH-TASKS (without nesting) to TSS;
Instruction pointer must be within code-segment limit ELSE #GP(O);

Description

The, . JMP instruction transfers control to a differ~nt· point in the· instructiolJ. stream
without recording return information.

The action of the various forms of the instruction are shown below.

Jumps with destinations of type r/m16,r/m32, re116, and rel32are near jumps and do not
involve changing the segment register value.

The JMP rel16 and JMP rel32 forms of the instruction add an offset to the address of the
instruction following the JMP to determine the destination. The rel16 form is used when
the instruction's operand-size attribute is 16 bits (segment size attribute 16 only); rel32 is
used when the operand-size attribute is 32 bits (segment size attribute 32 only). The
result is stored in the 32-bit EIP register. With re116, the upper 16 bits ofthe EIP register
are cleared, which results in an offset whose value does not exceed 16 bits.

TheJMP r/m16 and JMP r/m32 forms specify a i:egister or memory location from which
the absolute offset from the procedure is fetched. The orfset fetched from rim is 32 bits
for an operand-size attribute of 32 bits (r/m32), or 16 bits for an operand-size attribute of
16 bits (r/m16).

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or six-byte oper­
and as a long pointer to the destination. The JMP m16:16 al)d m16:32 forms fetch the
long pointer from the memory location specified (indirection). In Real Address Mode or
Virtual 8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits
for the EIP register (depending on the operand-size attribute). In Protected Mode, both

26-185

INSTRUCTION SET

long pointer forms consult the Access Rights (AR) byte in the descriptor indexed by the
selector part of the long pointer. Depending on the value of the AR byte, the jump will
perform one of the following types of control transfers:

• A jump to a code segment at the same privilege level

• A task switch

For more information on protected mode control, transfers, refer to Chapter .6 and
Chapter 7.

Flags Affected

All if a task ,switch takes place; none if no task switch occurs.

Protected Mode Exceptions

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the list above;

Near direct jumps: #GP(O)if procedure location is beyorid the code segmen.t limits;
#AC for unaligned memory reference if the current privilege level is 3.

Near indirect jumps: #GP(O) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments: #SS(O) for an illegal address in the SS segment; ,#GP if the
indirect offset obtained is beyond the code segment limits; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3. '

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would be outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as under Real Address Mode;#PF(fault-code) fora page fault; #AC
for unaligned memory reference if the current privilege level is 3.

Notes

All 'branches are converted into 16~byte code fetches regardless of jump address or
c'acheability.

26-186

intel® INSTRUCTION SET

LAHF-Load Flags into AH Register

Opcode

SF

Operation

Instruction

LAHF

AH ~ SF:ZF:xx:AF:xx:PF:xx:CF;

Description

Clocks

3

Description

Load: AH ~ flags SF ZF xx AF xx PF xx CF

The LAHF instruction transfers the low byte of the flags word to the AH register. The
bits, from MSB to LSB, are sign, zero, indeterminate, auxiliary, carry, indeterminate,
parity, indeterminate, and carry.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address M.ode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-187

int:et INSTRUCTION SET

LAR - Load Access Rights Byte

Opcode

OF 02/r
OF 02/r

Description

Instruction

LAR rI6,r/mI6
LAR r32,r/m32

Clocks

11/11
11/11

Description

r16 <- r/ml6 masked by FFOO
r32 <- r/m32 masked by OOFxFFOO

The LAR instruction stores a marked form of the second doubleword of the descriptor
for the source selector if the selector is visible at the current privilege level (modified by
the selector's RPL) and is a valid descriptor type within the descriptor limits. The des­
tination register is loaded with the high-order doubleword of the descriptor masked by
OOFxFFOO, and the ZF flag is set. The x indicates that the four bits corresponding to the
upper four bits of the limit are undefined in the value loaded by the LAR instruction. If
the selector is invisible or of the wrong type, the ZF flag is cleared.

If the 32-bit operand size is specified, the entire 32-bit value is loaded into the 32-bit
destination register. If the 16-bit operand size is specified, the lower 16-bits of this value
are stored in the 16-bit destination register.

All code and data segment descriptors are valid for the LAR instruction.

The valid special segment and gate descriptor types for the LAR instruction are given in
the following table:

Type Name Valid/Invalid

0 Invalid Invalid
1 Available 286 TSS Valid
2 LDT Valid
3 Busy 286 TSS Valid
4 286 call gate Valid
5 286/lnteI486'· task gate Valid
6 286 trap gate Invalid
7 286 interrupt gate Invalid
8 Invalid Invalid
9 Available Intel486 TSS Valid
A Invalid Invalid
B Busy Intel486 TSS Valid
C Intel486 call gate Valid
D Invalid Invalid
E Inlel486 trap gate Invalid
F Intel486 interrupt gate Invalid

Flags Affected

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the
ZF flag is cleared.

26-188'

inteL INSTRUCTION SET

Protected Mode Exceptions

#OP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or OS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the LAR instruction is unrecognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

26-189

intel® INSTRUCTION SET

LEA - Load Effective Address

Opcode

aD If
aD If
aD If
aD If

Operation

Instruction

LEA rl6,m
LEA r32,m
LEA rl6,m
LEA r32,m

Clocks·

IF OperandSize = 16 AND AddressSize = 16
THEN r16 ~ Addr(m);
ELSE

IF OperandSize = 16 AND AddressSize = 32
THEN

Description

Store effective address for m in register f16
Store effective address for m in register f32
Store effective address for m in register f16
Store effective address for m in register r32

r16 ~ Truncate_to_16bits(Addr(m));
ELSE

(* 32-bit address *

IF OperandSize = 32 AND AddressSize = 16
THEN

r32 ~ Truncate_to_16bits(Addr(m));
ELSE

IF OperandSize = 32 AND AddressSize = 32
THEN· r32 ~ Addr(m);
FI;

FI;
FI;

FI;

Description

The LEA instruction calculates the effective address (offset part) and stores it in the
specified register. The operand-size attribute of the instruction (represented by Oper­
andSize in the algorithm under "Operation" above) is determined by the chosen regis­
ter. The address-size attribute (represented by AddressSize) is determined by the USE
attribute of the segment containing the second operand. The address-size and operand­
size attributes affect the action performed by the LEA instruction, as follows:

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested
16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the
address are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.

26-190

intel®

Flags Affected

None.

Protected Mode Exceptions

INSTRUCTION SET

UD if the second operand is a register.

Real Address Mode Exceptions

Interrupt 6 if the second operand is a register.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

26-191

intel® INSTRUCTION SET

LEAVE - High Level Procedure Exit

Opcode

C9
C9

Operation

Instruction

LEAVE
LEAVE

IF StackAddrSize = 16
THEN

SP ~ BP;
ELSE (* StackAddrSize = 32 *)

ESP ~ EBP;
FI;
IF OperandSize = 16
THEN

BP ~ PopO;
ELSE (* Operand Size = 32 *)

EBP ~ PopO;
FI;

Description

Clocks

5
5

Description

Set SP to SP, then pop SP
Set ESP to ESP, then pop ESP

The LEAVE instruction reverses the actions of the ENTER instruction. By copying the
frame pointer to the stack pointer, the LEAVE instruction releases the stack space used
by a procedure for its local variables. The old frame pointer is popped into the BP or
EBP register, restoring the caBer's frame. A subsequent RET nn instruction removes any
arguments pushed onto the stack of the exiting procedure.

Flags Affected

None.

Protected Mode Exceptions

#SS(O) if the BP register does not point to a location within the limits of the current
stack segment.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

26-192

intel® INSTRUCTION SET

lGDT/LiDT -Load Global/Interrupt Descriptor Table Register

Opcode

OF 01 /2
OF 01 /3

Operation

Instruction

LGDT m16&32
LlDT m16&32

IF instruction = LlDT
THEN

IF OperandSize = 16

Clocks

11
11

Description

Load minto GDTR
Load minto IDTR

THEN IDTR.LimitBase ~ m16:24 (* 24 bits of base loaded*)
ELSE IDTR.LimitBase ~ m16:32
FI;

ELSE (* instruction = LGDT *)
IF Operand Size = 16
THEN GDTR.LimitBase ~ m16:24 (* 24 bits of base loaded *)
ELSE GDTR.LimitBase ~ m16:32;
FI;

FI;

Description

The LGDT and LIDT instructions load a linear base address and limit value from a
six-byte data operand in memory into the GDTR or IDTR, respectively. If a 16-bit
operand is used with the LGDT or LIDT instruction, the register is loaded with a 16-bit
limit and a 24-bit base, and the high-order eight bits of the six-byte data operand are not
used. If a 32-bit operand is used, a 16-bit limit and a 32-bit base is loaded; the high-order
eight bits of the six-byte operand are used as high-order base address bits.

The SGDT and SIDT instructions always store into all 48 bits of the six-byte data oper­
and. With the 80286 processor, the upper eight bits are undefined after the SGDT or
SIDT instruction is executed. With the Intel386 DX or Intel486 processors, the upper
eight bits are written with the high-order eight address bits, for both a 16-bit operand
and a 32-bit operand. If the LGDT or LlDT instruction is used with a 16-bit operand to
load the register stored by the SGDT or SIDT instruction, the upper eight bits are
stored as zeros.

The LGDT and LIDT instructions appear in operating system software; they are not
used in application programs. They are the only instructions that directly load a linear
address (i.e., not a segment relative address) in Protected Mode.

Flags Affected

None.

26-193

int'eL INSTRUCTION SET

Protected Mode Exceptions

#GP(O) if the current privilege level is not 0; #UD if the source operand is a register;
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH; Interrupt 6 if the source operand is a register.

Note: These instructions are valid in Real Address Mode to allow power-up initialization
for Protected Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

26-194

intel® INSTRUCTION SET

LGS/LSS/LDS/LES/LFS - Load Full Pointer

Opcode Instruction Clocks

C5 Ir LOS r16,m16:16 6/12
C5/r LOS r32,m16:32 6/12
OF B2/r LSS r16,m16:16 6/12
OF B21r LSS r32,m16:32 6/12
C4 Ir LES r16,m16:16 6/12
C4 Ir LES r32,m16:32 6/12
OF B41r LFS r16,m16:16 6/12
OF B41r LFS r32,m16:32 6/12
OF B5/r LGS r16,m16:16 6/12
OF B5/r LGS r32,m16:32 6/12

Operation

CASE instruction OF
LSS: Sreg is SS; (* Load SS register *)
LOS: Sreg is OS; (* Load OS register *)
LES: Sreg is ES; (* Load ES register *)
LFS: Sreg is FS; (* Load FS register *)
LGS: Sreg is OS; (* Load GS register *)

ESAC;
IF (OperandSize = 16)
THEN

r16 <c- [Effective Address]; (* 16"bit transfer *)
Sreg <c- [Effective Address + 2]; (* 16-bit transfer *)

Description

Load OS:r16 with pointer from memory
Load OS:r32 with pointer from memory
Load SS: r16 with pointer from memory
Load SS:r32 with pointer from memory
Load ES:r16 with pointer from memory
Load ES:r32 with pointer from memory
Load FS: r16 with pointer from memory
Load FS:r32 with pointer from memory
Load GS:r16 with pointer from memory
Load GS:r32 with pointer from memory

(* In Protected Mode, load the descriptor into the segment register *)
ELSE (* Operand Size = 32 *)

r32 <c- [Effective Address]; (* 32-bit transfer *)
Sreg <c- [Effective Address + 4]; (* 16-bit transfer *)
(* In Protected Mode, load the descriptor into the segment register *)

FI;

Description

The LGS, LSS, LDS, LES, and LFS instructions read a full pointer from memory and
store it in the selected segment register:register pair. The full pointer loads 16 bits into
the segment register SS, DS, ES, FS, or GS. The other register loads 32 bits if the
operand-size attribute is 32 bits, or loads 16 bits if the operand-size attribute is 16 bits.
The other 16- or 32-bit register to be loaded is determined by the r16 or r32 register
operand specified.

When an assignment is made to one of the segment registers, the descriptor is also
loaded into the segment register. The data for the register is obtained fromthedescrip­
tor table entry for the selector given.

26-195

infel~ INSTRUCTION SET

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS registers with­
out causing a protection exception. (Any subsequent reference to a segment whose cor­
responding segment register is loaded with a null selector to address memory causes a
#GP(O) exception. No memory reference to the segment occurs.)

The following is a listing of the Protected Mode checks and actions taken in the loading
of a segment register:

IF SS is loaded:
IF selector is null THEN #GP(O); FI;
Selector index must be within its descriptor table limits ELSE

#GP(selector);
Selector's RPL must equal CPL ELSE #GP(selector);
AR byte must indicate a writable data segment ELSE #GP(selector);
OPL in the AR byte must equal CPL ELSE #GP(selector);
Segment must be marked present ELSE #SS(selector);
Load SS with selector;
Load SS with descriptor;

IF OS, ES, FS, or GS is loaded with non-null selector:
Selector index must be within its descriptor table limits ELSE

#GP(selector);
AR byte must indicate data or readable code segment ELSE

#GP(selector) ;
IF data or nonconforming code
THEN both the RPL and the CPL must be less than or equal to OPL in

AR byte;
ELSE #GP(selector);
Segment must be marked present ELSE #NP(selector);

Load segment register with selector and RPL bits;
Load segment register with descriptor;

IF OS, ES, FS or GS is loaded with a null selector:
Load segment register with selector;
Clear descriptor valid bit;

Flags Affected

None.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; the second operand must be
a memory operand, not a register-if a register then #UD Fault; #GP(O) if a null
selector is loaded into SS; #PF(fault-code) for a page fault; #AC for unaligned memory
reference if the current privilege level is 3.

26,196

int'et INSTRUCTION SET

Real Address Mode Exceptions

The second operand must be a memory operand, not a register; Interrupt 13 if any part
of the operand would lie outside of the effective address space from 0 to OFFFFH. .

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-197

intel® INSTRUCTION SET

LLDT - Load Local Descriptor Table Register

Opcode

OF 00/2

Operation

Instruction:

LLDT r/m16 ,

LDTR ~ SRC;

Description

,Clocks'

11/11'

Description

",Load selector r/ml6 into LDTR

The LLDT instruction loads the Local Descriptor Table register (LDTR). The word
operand (memory or register) to the LLDT instruction should contain a selector to the
Global Descriptor Table (GDT). The GDT entry should be a Local Descriptor Table. If
so, then the LDTR is loaded from the entry. The descriptor registers DS, ES, SS, FS,
GS, and CS are not affected. The LDT field in the task state segment does not change.

The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor refer­
ences (except by the LAR, VERR, VERW or LSL instructions) cause a #GP fault.

The LLDT instruction is used in operating system software; it is not used in application
programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the current privilege level is not 0; #GP(seiector) if the selector operand does
not point into the Global Descriptor Table, or if the entry in the GDT is not a Local
Descriptor Table; #NP(selector) if the LDT descriptor is not present; #GP(O) for an
illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O)
for an illegal address in the SS segment; #PF(fault-code) for a page fault.

Real Address Mode Exceptions

Interrupt 6; the LLDT instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions'

Same exceptions as in Real Address Mode (because the instruction is not recognized, it
will not execute or perform a memory reference).

26c19,8

intel® INSTRUCTION SET

Note

The operand-size attribute has no effect on this instruction.

26-199

in1:el® INSTRUCTION SET

LMSW - Load Machine Status Word

Opcode

OF 01 /7

Operation

Instruction

LMSW r/m16

Clocks,

13/13

, Description:

Load r/m16 in machine status word

MSW ~ r/m16; (* 16 bits is stored in the machine status word *)

Description

The LMSW instruction loads the machine status word (part of the CRO register) from
the source operand. This instruction can be used to switch to Protected Mode; if so, it
must be followed by an intra segment jump to flush the instruction queue. The LMSW
instruction will not switch back to Real Address Mode.

The LMSW instruction is used only in operating system software. It is not used in appli­
cation programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the current privilege level is not 0; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from a to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Protected Mode; #PF(fault-code) for a page fault.

Notes

The operand-size attribute has no effect on this instruction. This instruction is provided
for compatibility with the 80286 processor; programs for the Intel486 processor should
use the MOV CRO, ... instruction instead. The LMSW instruction does not affect the PG
or ET bits, and it cannot be used to clear the PE bit.

26-200

intel® INSTRUCTION· SET

LOCK - Assert LOCK# Signal Prefix

Opcode

FO

Description

Instruction

LOCK

Clocks Description

Assert LOCK# signal for the next instruction

The LOCK prefix causes the LOCK# signal of the Intel486 processor to be asserted
during execution of the instruction that follows it. In a multiprocessor environment, this
signal can be used to ensure that the Intel486 processor has exclusive use of any shared
memory while LOCK# is asserted. The read-modify-write sequence typically used to
implement test-and-set on the Intel486 processor is the BTS instruction.

The LOCK prefix functions only with the following instructions:

BTS, BTR, BTC
XCHG
XCHG
ADD, OR, ADC, SBB, AND, SUB, XOR
NOT, NEG, INC, DEC
CMPXCHG, XADD

mem, reglimm
reg, mem
mem, reg
mem, reglimm
mem

An undefined apcode trap will be generated if a LOCK prefix is used with any instruc­
tion not listed above.

The XCHG instruction always asserts LOCK# regardless of the presence or absence of
the LOCK prefix.

The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Flags Affected

None.

Protected Mode Exceptions

#UD if the LOCK prefix is used with an instruction not listed in the "Description"
section above; other exceptions can be generated by the subsequent (locked) instruction.

Real Address Mode Exceptions

Interrupt 6 if the LOCK prefix is used with an instruction not listed in the "Description"
section above; exceptions can still be generated by the subsequent (locked) instruction.

inteL INSTRUCTION SET

Virtual 8086 Mode Exceptions

#UD if the LOCK prefix is used with an instruction not listed in the "Description"
section above; exceptions can still be generated by the subsequent (locked) instruction.

26-202

in1:el® INSTRUCTION SET

LODS/LODSB/LODSW/LODSD - Load String Operand

Opcode Instruction

AC LODS mB
AD LODS m16
AD LODS m32
AC LODSB
AD LODSW
AD LODSD

Operation

AddressSize = 16
THEN use SI for source-index
ELSE (* AddressSize = 32 *)

use ESI for source-index;
FI;
IF byte type of instruction
THEN

Clocks

5
5
5
5
5
5

AL ~ [source-index]; (* byte load *)

Description

Load byte r (E) SI] into AL
Load word [(E)SI] into P\)(
Load dword [(E)SI] into EP\)(
Load byte DS:[(E)SI] into AL·
Load word DS:[(E)SI] into P\)(
Load dword DS:[(E)SI] into EP\)(

IF OF = 0 THEN IncOec ~ 1 ELSE IncOec ~ -1; FI;
ELSE

IF OperandSize = 16
THEN

FI;

AX ~ [source-index]; (* word load *)
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ -2; FI;

ELSE (* OperandSize = 32 *)
EAX ~ [source-index]; (* dword load *)
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ -4; FI;

FI;

source-index ~ source-index + IncOec

Description

The LODS instruction loads the AL, AX, or EAX register with the memory byte, word,
or doubleword at the location pointed to by the source-index register. After the transfer
is made, the source-index register is automatically advanced. If the DF flag is 0 (the
CLD instruction was executed), the source index increments; if the DF flag is 1 (the
STD instruction was executed), it decrements. The increment or decrement is 1 if a byte
is loaded, 2 if a word is loaded, or 4 if a doubleword is loaded.

If the address-size attribute for this instruction is 16 bits, the SI register is used for the
source-index register; otherwise the address-size attribute is 32 bits, and the ESI register
is used. The address of the source data is determined solely by the contents of the ESI or
SI register. Load the correct index value into the SI register before executing the LODS
instruction. The LODSB, LODSW, and LODSD instructions are synonyms for the byte,
word, and doubleword LODS instructions.

26-203

INSTRUCTION SET

The LODS instruction can be preceded by the REP prefix; however, the LODS instruc­
tion is used more typically within a LOOP construct, because further processing of the
data moved into the EAX, AX, or AL register is usually necessary.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-204

intel® INSTRUCTION SET

LOOP/LOOPcond - Loop Control with CX Counter

Opcode

E2 cb
E1 cb
E1 cb
EO cb
EO cb

Operation

Instruction

LOOP ref8
LOOPE ref8
LOOPZ ref8
LOOPNE ref8
LOOPNZ ref8

Clocks

2,6
9,6
9,6
9,6
9,6·

Description

DEC count; jump short if count < > 0
DEC count; jump short if count < > 0 and ZF = 1
DEC count; jump short if count < > 0 and ZF = 1
DEC count; jump short if count < > 0 and ZF = 0
DEC count; jump short if count <> 0 and ZF=O

IF AddressSize = 16 THEN CountReg is CX ELSE CountReg is ECX; FI;
CountReg (- CountReg - 1;

IF instruction < > LOOP
THEN

IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN BranchCond (- (ZF = 1) AND (Count Reg <> 0);
FI;
IF (instruction = LOOPNE) OR (instruction = LOOPNZ)
THEN BranchCond (- (ZF =0) AND (CountReg <> 0);
FI;

FI;

IF BranchCond
THEN

IF OperandSize = 16
THEN

IP (- IP + SignExtend(re/8);
ELSE (* Operand Size = 32 *)

EIP (- EIP + SignExtend(re/8);
FI;

FI;

Description

The LOOP instruction decrements the count register without changing any of the flags.
Conditions are then checked for the form of the LOOP instruction being used. If the
conditions are met, a short jump is made to the label given by the operand to the LOOP
instruction. If the address-size attribute is 16 bits, the CX register is used as the count
register; otherwise the ECX register is used. The operand of the LOOP instruction must
be in the range from 128 (decimal) bytes before the instruction to 127 bytes ahead of the
instruction.

The LOOP instructions provide iteration control and combine loop index management
with conditional branching. Use the LOOP instruction by loading an unsigned iteration
count into the count register, then code the LOOP instruction at the end of a series of
instructions to be iterated. The destination of the LOOP instruction is a label that points
to the beginning of the iteration.

26-205

infel® INSTRUCTION SET

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the offset jumped to is beyond the limits of the current code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Notes

The unconditional LOOP instruction takes longer to execute th~n a two-instruction
sequence which decrements the count register and jumps if the count does not equal
zero.

All branches are converted into 16-byte code fetches regardless of jump address or
cacheability.

26-206

intel® INSTRUCTION SET

LSL - Load Segment Limit

Opcode Instruction

OF 03/r LSL rI6,r/mI6

OF 03/r LSL r32,r/m32

OF 03/r LSL rI6,r/mI6

OF 03/r LSL r32,r/m32

Description

Clocks

10/10

10/10

10/10

10/10

Description

Load: r16 <- segment limit, selector r/ml6 (byte
granular)
Load: r32 <- segment limit, selector r/m32 (byte
granular)
Load: r16 <- segment limit, selector rim 16 (page
granular)
Load: r32 <- segment limit, selector r/m32 (page
granular)

The LSL instruction loads a register with an unscrambled segment limit, and sets the ZF
flag, provided that the source selector is visible at the current privilege level and RPL,
within the descriptor table, and that the descriptor is a type accepted by the LSL instruc­
tion. Otherwise, the ZF flag is cleared, and the destination register is unchanged. The
segment limit is loaded as a byte granular value. If the descriptor has a page granular
segment limit, the LSL instruction will translate it to a byte limit before loading it in the
destination register (shift left 12 the 20-bit "raw" limit from descriptor, then OR with
OOOOOFFFH).

The 32-bit forms of the LSL instruction store the 32-bit byte granular limit in the 32-bit
destination register.

Code and data segment descriptors are valid for the LSL instruction.

The valid special segment and gate descriptor types for the LSL instruction are given in
the following table:

.
Type Name Valid/Invalid

0 Invalid Invalid
1 Available 80286 TSS Valid
2 LDT Valid
3 Busy 80286 TSS Valid
4 80286 call gate Invalid
5 80286/lnte1486 task gate Invalid
6 80286 trap gate Invalid
7 80286 interrupt gate Invalid
8 Invalid Invalid
9 Available Intel486 TSS Valid
A Invalid Invalid
B Busy Intel486 TSS Valid
C Intel486 call gate Invalid
D Invalid Invalid
E Intel486 trap gate Invalid
F Intel486 interrupt gate Invalid

Flags Affected

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the
ZF flag is cleared.

26-207

INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, pS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the LSL instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3.

26-208

inteL INSTRUCTION SET

l TR - Load Task Register

Opcode

OF 00/3

Description

InstructIon

LTR r/m16

Clocks

20/20

DescrIption

Load EA word into task register

The L TR instruction loads the task register from the source register or memory location
specified by the operand. The loaded TSS is marked busy. A task switch does not occur.

The LTR instruction is used only in operating system software; it is not used in applica­
tion programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #GP(O) if the current privi­
lege level is not 0; #GP(selector) if the object named by the source selector is not a TSS
or is already busy; #NP(selector) if the TSS is marked "not present"; #PF(fault-code)
for a page fault.

Real Address Mode Exceptions

Interrupt 6; the LTR instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

Notes

The operand-size attribute has no effect on this instruction.

26-209

intel® INSTRUCTION SET

MOV-Move Data

Opcode

88 Ir
891r
891r
8A Ir
8B Ir
8B Ir
8C Ir
8E Ir
AO
A1
A1
A2
A3
A3
BO+ rb
B8+ IW

B8+ rd
C610
C710
C710

Instruction

MOV rlmB,rB
MOV rlml6,rl6
MOV rlm32,r32
MOV rB,rlmB
MOV rl6,rlml6
MOV r32,rlm32
MOV rlmI6,Srfig*
MOV Sreg,rlml6
MOV AL,moffsB
MOV AX,moffsl6
MOV EAX,moffs32
MOV moffsB,AL
MOV moffsl6,AX
MOV moffs32,EAX
MOV regB,immB
MOV reg 16,imm 16
MOV reg32,imm32
MOV rlmB,immB
MOV rlml6,imml6
MOV rlm32,imm32

Clocks

1
1
1
1
1
1
3/3
3/9
1
1
1
1
1
1
1
1
1
1
1
1

Description

Move byte register to rim byte
Move word register to rim word
Move dword register to rim dword
Move rim byte to byte register
Move rim word to word register
Move rim dword to dword register
Move segment register to rim word
Move rim word to segment register
Move byte at (seg:offse~ to AL
Move word at (seg:offse~ to AX
Move dword at (seg:offse~ to EAX
Move AL to (seg:offse~
Move AX to (seg:offse~
Move EAX to (seg:offse~
Move immediate byte to register
Move immediate word to register
Move immediate dword to register
Move immediate byte to rim byte
Move immediate word to rim word
Move immediate dword to rim dword

NOTES: moffs8, moffsl6, and moffs32 all consist of a simple offset relative to the segment base. The 8, 16,
and 32 refer to the size of the data. The address-size attribute of the instruction determines the
size of the offset, either 16 or 32 bits.

*In protected mode, use 16-bit operand size prefix (a byte with the value 67H preceding the
instruction.)

Operation

DEST <f- SRC;

Description

The MOV instruction copies the second operand to the first operand.

If the destination operand is a segment register (DS, ES, SS, etc.), then data from a
descriptor is also loaded into the register. The data for the register is obtained from the
descriptor table entry for the selector given. A null selector (values 0000-0003) can be
loaded into the DS and ES registers without causing an exception; however, use of the
DS or ES register causes a #GP(O) exception, and no memory reference occurs.

A MOV into SS instruction inhibits all interrupts until after the execution of the next
instruction (which is presumably a MOV into ESP instruction).

Loading a segment register under Protected Mode results in special checks and actions,
as described in the following listing:

IF SS is loaded;
THEN

IF selector is null THEN #GP(O);
FI;

26-210

intel® INSTRUCTION SET

Selector index must be within its descriptor table limits else #GP(selector);
Selector's RPL must equal CPL else #GP(selector);

AR byte must indicate a writable data segment else #GP(selector);
DPL in the AR byte must equal CPL else #GP(selector);
Segment must be marked present else #SS(selector);
Load SS with selector;
Load SS with descriptor.

FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

Selector index must be within its descriptor table limits
else #GP(selector);

AR byte must indicate data or readable code segment else #GP(selector);
IF data or nonconforming code segment
THEN both the RPL and the CPL must be less than or equal to DPL in AR byte;
ELSE #GP(selector);
FI;
Segment must be marked present else #NP(selector);
Load segment register with selector;
Load segment register with descriptor;

FI;
IF DS, ES, FS or GS is loaded with a null selector;
THEN

Load segment register with selector;
Clear descriptor valid bit;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP, #SS, and #NP if a segment register is being loaded; otherwise,#GP(O) if the
destination is in a nonwritable segment; #GP(O) for an illegal memory operand effective
address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS
segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-211

INSTRUCTION SET

MOV - Move to/from Special Registers

Opcode Instruction Clocks

OF 22/r MOV CRO,r32 16
OF 20lr MOV r32,CRO/CR2/CR3 4
OF 22/r MOV CR2/CR3,r32 4
OF 21 Ir MOV r32,DRO-DR3 10
OF 21 Ir MOV r32,DR6/DR7 10

.OF 231r MOV r32,DRO-DR3 11
OF 231r MOV DRS/DR7,r32 11
OF 241r MOV r32,TR4rrRSrrRSrrR7 4
OF 2S/r MOV TR4rrRSrrRSrrR7,r32 4
OF 24/r MOV r32, TR3 3 '
OF 261r MOVTR3,r32 S

Operation

DEST~ SRC;

Description

Descriptlori

Move (register) to (control register)
Move (control registerf to (register)
Move (register) to (control register)
Move (debug register) to (register)
Move (debug register) to (register)
Move (register) to (debug register)
Move (register) to (debug register)
Move (test register) to (register)
Move (register) to (test register)

. Move (test register3) to (register)
Move (registers) to (test register3)

The above forms of the MOV instruction store or load the following special registers in
or from a general purpose register: .

• Control registers CRO, CR2, and CR3

• Debug Registers DRO, DRl, DR2, DR3, DR6, and DR7

• Test Registers TR3, TR4, TRS, TR6 and TR7

Thirty-two bit operands are always used with these instructions, regardless of the
operand-size attribute.

Flags Affected

The OF, SF, ZF, AF; PF, arid CF, flags are undefined. '

Protected, Mode Exceptions·

#GP(O) if the current privilege level is not O.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(O) if instruction execution is attempted.

26-212

intel® INSTRUCTION SET

Notes

The instructions must be executed at privilege level 0 or in real-address mode; otherwise,
a protection exception will be raised.

The reg field within the ModR/M byte specifies which of the special registers in each
category is involved. The two bits in the mod field are always 11. The rim field specifies
the general register involved.

Always set undefined or reserved bits to the value previously read.

26-213

INSTRUCTION SET

MOVS/MOVSB/MOVSW /MOVSD - Move Data from String to
String

Opcode

A4
AS
AS
A4
AS
AS

Operation

Instruction

MOVS mB,mB
MOVS m16,m16
MOVS m32,m32
MOVSB
MOVSW
MOVSD

Clocks

7
7
7
7
7
7

Description

Move byte [(E)SI] to ES:[(E)DI]
Move word [(E)SI] to ES:[(E)DI]
Move dword [(E)SI] to ES:[(E)DI]
Move byte DS:[(E)SI] to ES:[(E)DI]
Move word DS:[(E)SI] to ES:[(E)DI]
Move dword DS:[(E)SI] to ES:[(E)DI]

IF (instruction = MOVSD) OR (instruction has doubleword operands)
THEN OperandSize ~ 32;
ELSE OperandSize ~ 16;
IF AddressSize = 16
THEN use SI for source-index and DI for destination-index;
ELSE (* AddressSize = 32 *)

use ESI for source-index and EDI for destination-index;
FI;
IF byte type of instruction
THEN

[destination-index] ~ [source-index]; (* byte assignment *)
IF DF = 0 THEN IncOec ~ 1 ELSE IncDec ~ -1; FI;

ELSE
IF OperandSize = 16
THEN

[destination-index] ~ [source-index]; (* word assignment *)
IF OF = 0 THEN IncDec ~ 2 ELSE IncDec ~ -2; FI;

ELSE (* OperandSize = 32 *)
[destination-index] ~ [source~index]; (* doubleword assignment *)
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ -4; FI;

FI;
FI;
source-index ~ source-index + IncDec;
destination-index ~ destination-index + IncDec;

Description

The MOVS instruction copies the byte or word at [(E)SI] to the byte or word at
ES:[(E)DI]. The destination operand must be addressable from the ES register; no seg­
ment override is possible for the destination. A segment override can be used for the
source operand; the default is the DS register.

The addresses of the source and destination are determined solely by the contents of the
(E)SI and (E)DI registers. Load the correct index values into the (E)SI and (E)DI
registers before executing the MOVS instruction. The MOVSB, MOVSW, and MOVSD
instructions are synonyms for the byte, word, and doubleword MOVS instructions.

26-214

intel® INSTRUCTION SET

After the data is moved, both the (E)SI and (E)DI registers are advanced automatically.
If the DF flag is 0 (the CLD instruction was executed), the registers are incremented; if
the DF flag is 1 (the STD instruction was executed), the registers are decremented. The
registers are incremented or decremented by 1 if a byte was moved, 2 if a word was
moved, or 4 if a doubleword was moved.

The MOYS instruction can be preceded by the REP prefix for block movement of CX
bytes or words. Refer to the REP instruction for details of this operation.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside· of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in RealAddress Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-215

intel· INSTRUCTION SET

MOVSX - Move with Sign-Extend

Opcode

OF BE /r
OF BE /r
OF BF /r

Operation

Instruction

MOVSX r16,r/mB
MOVSX r32,r/mB
MOVSX r32,r/m16

DEST - SignExtend(SRC);

Description

Clocks

3/3
3/3
3/3

Description

Move byte to word with sign-extend
Move byte to dword, sign-extend
Move word to dword, sign-extend

The MOVSX instruction reads the contents of the effective address or register as a .byte
or a word, sign-extends the value to the operand-size attribute of the instruction (16 or
32 bits), and stores the result in the destination register_ .

Flags Affected

None.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is.3. . .

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-216

intel$ INSTRUCTION SET

MOVZX - Move with Zero-Extend

Opcode

OF 86/r
OF 86/r
OF 87/r

Operation

Instruction

MOVZX rI6,r/mB
MOVZX r32,r/mB
MOVZX r32,r/mI6

DEST - ZeroExtend(SRC);

Description

Clocks

3/3
3/3
3/3

Description

Move byte to word with zero-extend
Move byte to dword, zero-extend
Move word to dword, zero-extend

The MOVZX instruction reads the contents of the effective address or register as a byte
or a word, zero extends the value to the operand-size attribute of the instruction (16 or
32 bits), and stores the result in the destination register_

Flags Affected

None_

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Addre$s Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-217

int:eL INSTRUCTION SET

MUL- Unsigned Multiplication of AL or AX

Opcode

F6/4
F7/4
F7/4

Instruction

MULAL,rlm8
MUL AX,rlml6
MUL EAX,r/m32

. Clocks

13/18,13/18
13/26,13/26
13/42,13/42

Description

Unsigned multiply (AX <- AL * rim byte)
Unsigned multiply (DX:AX <- AX * rim word)
Unsigned multiply (EDX:EAX <- EAX * rim
dword)

NOTES: The Intel486 processor uses an early-out multiply algorithm. The actual number of clocks
depends on the position of the most significant bit in the optimizing multiplier. The optimization
occurs for positive and negative multiplier values. Because of the early-out algorithm, clock counts
given are minimum to maximum. To calculate the actual Olocks, use the following formula:

Actual clock = if m <). 0 then max(ceiling(log2 I m I), 3) + 10 clocks;
Actual clock = if m = 0 then 13 clocks

where m is the multiplier.

Operation

IF byte-size operation
THEN AX <- AL * rlmB
ELSE (* word or doubleword operation *)

IF OperandSize = 16
THEN DX:AX <- AX * rlm16
ELSE (* Operand Size = 32 *)

EDX:EAX <- EAX * rlm32
FI;

FI;

Description

The MUL instruction performs unsigned multiplication. Its actions depend on the size of
its operand, as follows:

• A byte operand is multiplied by the AL value; the result is left in the AX register.
The CF and OF flags are cleared if the AH value is 0; otherwise, they are set.

• A word operand is multiplied by the AX value; the result is left in the DX:AX
register pair. The DX register contains the high-order 16 bits of the product. The CF
and OF flags are cleared if the DX value is 0; otherwise, they are set.

• A doubleword operand is multiplied by the EAX value and the result is left in the
EDX:EAX register. The EDX register contains the high-order 32 bits of the product.
The CF and OF flags are cleared if the EDX value is 0; otherwise, they are set.

Flags Affected

The OF and CF flags are cleared if the upper half of the result is 0; otherwise they are
set; the SF, ZF, AF, and PF flags are undefined.

26-218

intel® INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-219

intel® INSTRUCTION SET

NEG - Two's Complement Negation

Opcode

F6/3
F73
F7/3

Operation

Instruction

NEG rlmB
NEG rlm16
NEG rlm32

Clocks

1/3
1/3
1/3

IF rim = 0 THEN CF ~ 0 ELSE CF ~ 1; FI;
rim ~ - rim

Description

Description

Two's complement negate rim byte
Two's complement negate rim word
Two's complement negate rim dword

The NEG instruction replaces the value of a register or memory operand with its two's
complement. The operand is subtracted from zero, and the result is placed in the
operand.

The CF flag is set, unless the operand is zero, in which case the CF flag is cleared.

Flags Affected

The CF flag is set unless the operand is zero, in which case the CF flag is cleared; the
OF, SF, ZF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-220

intel® INSTRUCTION SET

NOP-No Operation

Opcode

90

Instruction Clocks Description

No operation NOP

Description

The Nap instruction performs no operation. The Nap instruction is a one-byte instruc­
tion that takes up space but affects none of the machine context except the (E)IP
register.

The Nap instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-221

INSTRUCTION· SET

NOT - One's Complement Negation

Opcode

F6/2
F7/2
F7/2

Operation

Instruction

NOT rlmB
NOT rlm16
NOT rlm32

rim +--- NOT rim;

Description

Clocks

1/3
1/3
1/3

Description

Reverse each bit of rim byte
Reverse each bit of rim word
Reverse each bit of rim dword

The NOT instruction inverts the operand; every 1 becomes a 0, and vice versa.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3. .

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-222

INSTRUCTION SET

OR - Logical Inclusive OR

Opcode

OC ib
OD iw
OD id
80/1 ib
81 /1 iw
81 /1 id
83/1 ib
83/1 ib

08/r
09/r
09/r
OA /r
08/r
08/r

Operation

Instruction

ORAL,immB
OR M,imm16
OR EM,imm32
OR rlmB,immB
OR rlm16,imm16
OR rlm32,imm32
OR rlm16,immB
OR rlm32,immB

OR rlmB,rB
OR rlm16,r16
OR rlm32,r32
OR rB,rlmB
OR r16,rlm16
OR r32,rlm32

DEST ~ DEST OR SRC;
CF~O;

OF~O

Description

Clocks

1.
1
1
1/3
1/3
1/3
1/3
1/3

1/3
1/3
1/3
1/2
1/2
1/2

Description

OR immediate byte to AL
OR immediate word to M
OR immediate dword to EM
OR immediate byte to rim byte
OR immediate word to rim word
OR immediate dword to rim dword
OR sign-extended immediate byte with rim word
OR sign-extended immediate byte with rim
dword
OR byte register to rim byte
OR word register to rim word
OR dword register to rim dword
OR byte register to rim byte
OR word register to rim word
OR dword register to rim dword

The OR instruction computes the inclusive OR of its two operands and places the result
in the first operand. Each bit of the result is 0 if both corresponding bits of the operands
are 0; otherwise, each bit is 1.

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result; the AF flag is undefined.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for anillegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-223

inteL INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-224

intel® INSTRUCTION SET

OUT - Output to Port

Opcode Instruction

E6 ib OUT immB,AL

E7 ib OUT immB,AX

E7 ib OUT immB,EAX

EE OUT OX,AL

EF OUT OX,AX

EF OUT OX,EAX

NOTES: *If CPL ~ IOPL
"If CPL > IOPL

Operation

Clocks

16,pm= 11*'
31*',VM=29
16,pm=11*'
31",VM=29
16,pm= 11*'
31*',VM=29
16,pm= 10*'
30**,VM=29
16,pm= 10*'
30",VM=29
16,pm= la',
30",VM=29

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL))

Description·

Output byte AL to immediate port number

Output word AL to immediate port number

Output dword AL to immediate port number

Output byte AL to port number in OX

Output word AL to port number in OX

Output dword AL to port number in OX

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *)
IF NOT I-O-Permission (DEST, width(DESD)
THEN #GP(O);
FI;

FI;
[DEST] ~ SRC; (* I/O address space used *)

Description

The OUT instruction transfers a data byte or data word from the register (AL, AX, or
EAX) given as the second operand to the output port numbered by the first operand.
Output to any port from 0 to 65535 is performed by placing the port number in the DX
register and then using an OUT instruction with the DX register as the first operand. If
the instruction contains an eight-bit port ID, that value is zero-extended to 16 bits.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the current privilege level is higher (has less privilege) than the I/O privilege
level and any of the corresponding I/O permission bits in the TSS equals 1.

Real Address Mode Exceptions

None.

26-225

intet INSTRUCTION SET

Virtual 8086 Mode Exceptions

#GP(O) fault if any of the corresponding I/O permission bits in the TSS equals 1.

26-226

intel® INSTRUCTION SET

OUTS/OUTSB/OUTSW /OUTSD - Output String to Port

O~code Instruction

6E OUTS OX,r/m8

6F OUTS OX;r/m16

6F OUTS OX,r/m32

6E OUTSB

6F OUTSW

6F OUTSO

NOTES: *If CPL ::; IOPL
**If CPL > IOPL

Operation

IF AddressSize = 16
THEN use SI for source-index;
ELSE (* AddressSize = 32 *)

use ESI for source-index;
FI;

Clocks

17,pm=10*'
32**,VM=30
17,pm=10*'
32**,VM=30
17,pm=10*'
32**,VM=30
17,pm=10*'
32*',VM=30
17,pm= 10*'

.32**,VM=30
17,pm=10*'
32**,VM=30

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL))

Description

.. Output byte. [(E)Si] to port in OX

Output word [(E)SI] to port in OX

Output dword [(E)SI] to port in OX

Output byte OS:[(E)SI] to port in DX

Output word OS:[(E)SI] to port in DX

Output dword OS:[(E)SI] to port in OX

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *)
IF NOT I-a-Permission (DEST, width(DEST))
THEN #GP(O);
FI;

FI;
IF byte type of instruction
THEN

[DX] +- [source-index]; (* Write byte at DX I/O address *)
IF DF = a THEN IncDec +- 1 ELSE IncDec +- -1; FI;

FI;
IF OperandSize = 16
THEN

[DX] +- [source-index]; (* Write word at DX I/O address *)
IF DF = a THEN IncDec :-2 ELSE IncDec.+- -2; FI;

FI;
IF OperandSize = 32
THEN

[DX] +- [source-index]; (* Write dword at DX I/O address *)
IF DF = a THEN IncDec +- 4 ELSE IncDec +- -4; FI;
FI;

FI;
source-index +- source-index + IncDec;

26-227

int:et INSTRUCTION SET

Description

The OUTS instruction transfers data from the memory byte, word, or doubleword at the
source-index register to the output port addressed by the DX register. If the address-size
attribute for this instruction is 16 bits, the SI register is used for the source-index regis­
ter; otherwise, the address-size attribute is 32 bits, and the ESI register is used for the
source-index register.

The OUTS instruction does not allow specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load the correct value
into the DX register before executing the OUTS instruction.

The address of the source data is determined by the contents of source-index register.
Load the correct index value into the SI or ESI register before executing the OUTS
instruction.

After the transfer, source-index register is advanced automatically. If the DF flag is 0
(the CLD instruction was executed), the source-index register is incremented; if the DF
flag is 1 (the STD instruction was executed), it is decremented. The amount of the
increment or decrement is 1 if a byte is output, 2 if a word is output, or 4 if a doubleword
is output.

The OUTSB, OUTSW, and OUTSD instructions are synonyms for the byte, word, and
doubleword OUTS instructions. The OUTS instruction can be preceded by the REP
prefix for block output of CX bytes or words. Ref~r to the REP instruction for details on
this operation.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the current privilege level is greater than the I/O privilege level and any of the
corresponding I/O permission bits in TSS equals 1; #GP(O) for an illegal memory oper­
and effective address in the CS, DS, ES, FS, or GS segments;#SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 toOFFFFH.

26-228

intel® INSTRUCTION SET

Virtual 8086 Mode Exceptions

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault­
code) for a page fault; #AC for unaligned memory reference if the current privilege
level is 3.

26-229

intel~ INSTRUCTION 'SET

POP - Pop a Word from the Stack

OpcOde, "

8F /0
8F /0
58+ rw
58+ rd
1F
07
17
OF A1
OF AS

Operation

: Instruction',' '

POPm16
pOP m32
POP r16
pOP r32
POPDS
POP ES
pOP SS
POP FS
POPGS

IF StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

, Clocks

6
6
4
4
3
3
3
3
3

DEST~ (SS:SP); (* copy a word *)
SP ~ SP + 2;

ELSE (* OperandSize = 32 *)
DEST ~ (SS:SP); (* copy a dword *)
SP ~ SP + 4;

FI;

ELSE (* StackAddrSize = 32 *)
IF OperandSize = 16
THEN

DEST ~ (SS:ESP); (* copy a word *)
ESP ~ ESP + 2;

ELSE (* Operand Size = 32 *)

FI;
FI;

DEST ~ (SS:ESP); (* copy a dword *)
ESP ~ ESP + 4;

Description

Description :' ", ,I
"Pop top of stack into memory word

Pop top of stack into memory dword
Pop top of stack into word register
Pop top of stack into dword register
Pop top of stack into DS
Pop top of stack into ES
Pop top of stack into SS
Pop top of stack into FS
Pop top of stack into GS

';",',

The POP instruction replaces the previous contents of the memory, the register, or the
segment register operand with the word on the top of the Intel486 processor stack,
addressed by SS:SP (address-size attribute of 16 bits) or SS:ESP (address-size attribute
of 32 bits). The stack pointer SP is incremented by 2 for an operand-size of 16 bits or by
4 for an operand-size of 32 bits. It then points to the new top of stack.

The POP CS instruction is not an Intel486 processor instruction. Popping from the stack
into the CS register is accomplished with a RET instruction.

260230

intel® INSTRUCTION SET

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value
popped must be a selector. In protected mode, loading the selector initiates automatic
loading of the descriptor information associated with that selector into the hidden part
of the segment register; loading also initiates validation of both the selector and the
descriptor information.

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a protection exception. An attempt to reference a segment whose corresponding
segment register is loaded with a null value causes a #GP(O) exception. No memory
reference occurs. The saved value of the segment register is null.

A POP SS instruction inhibits all interrupts, including NMI, until after execution of the
next instruction. This allows sequential execution of POP SS and POP eSP instructions
without danger of having an invalid stack during an interrupt. However, use of the LSS
instruction is the preferred method of loading the SS and eSP registers.

A POP-to-memory instruction, which uses the stack pointer (ESP) as a base register,
references memory after the POP. The base used is the value of the ESP after the
instruction executes.

Loading a segment register while in protected mode results in special checks and actions,
as described in the following listing: .

IF SS is loaded:
IF selector is null THEN #GP(O);
Selector index must be within its descriptor table limits ELSE

#GP(selector);
Selector's RPL must equal CPL ELSE #GP(selector);
AR byte must indicate a writable data segment ELSE #GP(selector);
OPL in the AR byte must equal CPL ELSE #GP(selector);
Segment must be marked present ELSE #SS(selector);
Load SS register with selector;
Load SS register with descriptor;

IF OS, ES, FS or GS is loaded with non-null selector:
AR byte must indicate data or readable code segment ELSE

#GP(selector) ;
IF data or nonconforming code
THEN both the RPL and the CPL must be less than or equal to OPL in

AR byte
ELSE #GP(selector);
FI;
Segment must be marked present ELSE #NP(selector);
Load segment register with. selector;
Load segment register with descriptor;

IF OS, ES, FS, or GS is loaded with a null selector:
Load segment register with selector
Clear valid bit in invisible portion of register

26-231

infel® INSTRUCTION SET

Flags Affected

None.

Protected Mode Exceptions

#GP, #SS, and #NP if a segment register is being loaded; #SS(O) if the current top of
stack is not within the stack segment; #GP(O) if the result is in a nonwritable segment;
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

Back-to-back PUSH/POP instruction sequences are allowed without incurring an addi­
tional clock.

SSB bit will determine the size of Stack Addr Size

. Pop ESP instructions increments the stack pointer (ESP) before data at the old top of
stack is written into the destination.

26-232

intel® INSTRUCTION SET

POPA/POPAD - POp all General Registers

Opcode

61
61

Operation

Instruction

paPA
POPAO

Clocks

9
9

IF OperandSize = 16 (* instruction = POPA *)
THEN

DI ~PopO;
Sl ~ PopO;
BP ~ PopO;
increment SP by 2 (* skip next 2 bytes of stack *)
BX ~ PopO;
DX ~ PopO;
CX ~ PopO;
AX ~ PopO;

ELSE (* OperandSize = 32, instruction = POPAD *)
EDI ~ PopO;
ESI ~ PopO;
EBP ~ PopO;
increment SP by 4 (* skip next 4 bytes of stack *)
EBX ~ PopO;
EDX ~ PopO;
ECX ~ PopO;
EAX ~ PopO;

FI;

Description

Description

Pop 01, SI, BP, BX, OX, CX, and AX
Pop EOI, ESI, EBP, EOX, ECX, and EAX

The POPA instruction pops the eight 16-bit general registers. However, the SP value is
discarded instead of loaded into the SP register. The POPA instruction reverses a pre­
vious PUSHA instruction, restoring the general registers to their values before the
PUSHA instruction was executed. The first register popped is the DI register.

The POPAD instruction pops the eight 32-bit general registers. The ESP value is dis­
carded instead of loaded into the ESP register. The POPAD instruction reverses the
previous PUSHAD instruction, restoring the general registers to their values before the
PUSHAD instruction was executed. The first register popped is the EDI register.

Flags Affected

None.

26-233

int:eL INSTRUCTION SET

Protected Mode Exceptions

#SS(O) if the starting or ending stack address is not within the stack segment;
#PF(fault-code) for a page fault.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault.

26-234

int:eL INSTRUCTION SET

POPF/POPFD - POp Stack into FLAGS orEFLAGS Register

Opcode

9D
9D

Operation

Instruction

POPF
POPFD

Flags ~ PopO;

Description

. Clocks

9,pm=6
9,pm=6

Description

Pop top of stack FLAGS
Pop top of stack into EFLAGS

The POPF and POPFD instructions pop the word or doublewordon the top of the stack
and store the value in the flags register. If the operand-size attribute of the instruction is
16 bits, then a word is popped and the value is stored in the FLAGS register. If the
operand-size attribute is 32 bits, then a doubleword is popped and the value is stored in
the EFLAGS register.

Refer to Chapter 2 and Chapter 4 for information about the FLAGS. and EFLAGS
registers. Note that bits16 and 17 of the EFLAGS register, called the VM and RF flags,
respectively, are not affected by the POPF or POPFD instruction.

The I/O privilege level is altered only when executing at privilege levelO. The interrupt
flag is altered only when executing at a level at least as privileged as the I/O privilege
level. (Real-address mode is equivalent to privilege level 0.) If a POPF instruction is
executed with insufficient privilege, an exception does not occur, but theprivileged.bits
do not change.

Flags Affected

All flags except the VM and RF flags.

Protected Mode Exceptions

#SS(O) if the top of stack is not within the stack segment.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation.

26-235

iniaL INSTRUCTION SET

PUSH - Push Operand onto the Stack

Opcode

FF /6
FF /6
50+ /r
50+ /r
6A
68
68
DE
16
1E
06
OF AD
OF A8

Operation

Instruction

PUSH r/m16
PUSH r/m32
PUSH r16
PUSH r32
PUSH immB
PUSH imm16
PUSH imm32
PUSH CS
PUSH SS
PUSH DS
PUSH ES
PUSH FS
PUSH GS

IF StackAddrSize = 16
THEN

IF OperandSize = 16 THEN
SP ~ SP - 2;

Clocks

4
4
1
1
1
1
1
3
3
3
3
3
3

(SS:SP) ~ (SOURCE); (* word assignment *)
ELSE

SP ~ SP - 4;
(SS:SP) ~(SOURCE); (* dword assignment *)

FI;
ELSE (* StackAddrSize = 32 *)

IF OperandSize = 16
THEN

ESP ~ ESP - 2;
(SS:ESP) ~ (SOURCE); (* word assignment *)

ELSE
ESP ~ ESP - 4;
(SS:ESP) ~ (SOURCE); (* dword assignment *)

FI;
FI;

Description

Description

Push memory word
Push memory dword
Push register word
Push register dword
Push immediate byte
Push immediate word
Push immediate dword
Push CS
Push SS
Push DS
Push ES
Push FS
Push GS

The PUSH instruction decrements the stack·pointer by 2 if the operand-size attribute of
the instruction is 16 bits; otherwise, it decrements the stack pointer by 4. The PUSH
instruction then places the operand on the new top of stack, which is pointed to by the
stack pointer.

The PUSH ESP instruction pushes the value of the ESP register as it existed before the
instruction. This differs from the 8086, where the PUSH SP instruction pushes the new
value (decremented by 2).

26-236

intel® INSTRUCTION SET

Likewise, a PUSH-from-memory instruction, which uses the stack pointer (ESP) as a
base register, references memory before the PUSH. The base used is the value of the
ESP before the instruction executes.

Flags Affected

None.

Protected Mode Exceptions

#SS(O) if the new value of the SP or ESP register is outside the stack segment limit;
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

None; if the SP or ESP register is 1, the processor shuts down due to a lack of stack
space.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

When used with an operand in memory, the PUSH instruction takes longer to execute
than a two-instruction sequence which moves the operand through a register.

Back-to-back PUSH/POP instruction sequences are allowed without incurring an addi­
tional clock.

Selective pushes write only the top of the stack.

26-237

infel® INSTRUCTION SET

PUSHA/PUSHAD - Push all General Registers

Opcode

60
60

Operation

Instruction

PUSHA
PUSHAO

Clocks

11
11

IF OperandSize = 16 (* PUSHA instruction *)
THEN

Temp ~ (SP);
Push(AX);' .
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP); .
Push(SI);
Push(DI);

ELSE (* OperandSize = 32, PUSHAD instruction *)
Temp ~ (ESP);

'. Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);

. Push(ESI);
Push(EDI);

FI;

Description

Description

Push AX, CX, OX, BX, original SP, BP, SI, and 01
Push EAX, ECX, EOX, EBX, original ESP, EBP,
ESI, and EOI

The PUSHA and PUSHAD instructions save the 16-bit or 32-bit general registers,
respectively, on the Intel486 processor stack. The PUSHA instruction decrements the
stack pointer (SP) by 16 to hold the eight word values. The PUSHAD instruction decre­
ments the stack pointer (ESP) by 32 to hold the eight doubleword values. Because the
registers are pushed onto the stack in the order in which they were given, they appear in
the 16 or 32 new stack bytes in reverse order. The last register pushed is the DI or EDI
register.

Flags Affected

None.

26-238

intel® INSTRUCTION SET

Protected Mode Exceptions

#SS(O) if the starting or ending stack address is outside the stack segment limit;
#PF(fault-code) for a page fault.

Real Address Mode Exceptions

Before executing the PUSHA or PUSHAD instruction, the Intel486 DX processor shuts
down if the SP or ESP register equals 1, 3, or 5; if the SP or ESP register equals 7, 9, 11,
13, or 15, exception 13 occurs.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault.

26-239

int'et INSTRUCTION ,SET

PUSHF/PUSHFD - Push Flags Register onto the Stack

Opcode

9C
9C

Operation

Instruction

PUSHF
PUSHFD

IF OperandSize = 32
THEN push(EFLAGS);
ELSE push(FLAGS);
FI;

Description

;';.'Clocks

4,pm=3
4,pm=3

Description

Push FLAGS
Push EFLAGS

The PUSHF instruction decrements the stack pointer by 2 and copies the FLAGS reg­
ister to the new top of stack; the PUSHFD instruction decrements the stack pointer by 4,
and the EFLAGS register is copied to the new top of stack which is pointed to by
SS:ESP. Refer to Chapter 2 and to Chapter 4 for information on the EFLAGS register.

Flags Affected

None.

Protected Mode Exceptions

#SS(O) if the new value of the ESP register is outside the stack segment boundaries.

Real Address Mode Exceptions

None; the Intel486 processor shuts down due to a lack of stack space.

Virtual 8086 Mode Exceptions

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation.

26-240

intet INSTRUCTION SET

RCLjRCRjROLjROR - Rotate

Opcode

00/2
02/2
CO /2 ib
01 /2
03 /2
C1 /2 ib
01 /2
03/2
C1 /2 ib
00/3
02 /3
CO /3 ib
01 /3
03/3
C1 /3 ib
01 /3
03/3
C1 /3 ib
00 /0
02/0
CO /0 ib
01 /0
03/0
C1 /0 ib
01 /0
03/0
C1 /0 ib
00 /1
02/1
CO /1 ib
01 /1
03 /1
C1 /1 ib
01 /1
03/1
C1 /1 ib

Operation

Instruction

RCL r/mB,1
RCL r/mB,CL
RCL r/mB,immB
RCL r/mI6,1
RCL r/mI6,CL
RCL r/mI6,immB
RCL r/m32,1
RCL r/m32,CL
RCL r/m32,immB
RCR r/mB,1
RCR r/mB,CL
RCR r/mB,immB
RCR r/mI6,1
RCR r/mI6,CL
RCR r/mI6,immB
RCR r/m32,1
RCR r/m32,CL
RCR r/m32,immB
ROL r/mB,1
ROL r/mB,CL
ROL r/mB,immB
ROL r/mI6,1
ROL r/mI6,CL
ROL r/mI6,immB
ROL r/m32,1
ROL r/m32,CL
ROL r/m32,immB
ROR r/mB,1
ROR r/mB,CL
ROR r/mB,immB
ROR r/mI6,1
ROR r/mI6,CL
ROR r/mI6,immB
ROR r/m32,1
ROR r/m32,CL
ROR r/m32,immB

(* ROL - Rotate Left *)
temp ~ COUNT;
WHILE (temp < > 0)
DO

Clocks

3/4
8-30/9-31
8-30/9-31
3/4
8-30/9-31
8-30/9-31
3/4
8-30/9-31
8-30/9-31
3/4
8-30/9-31
8-30/9-31
3/4
8-30/9-31
8-30/9-31
3/4
8-30/9-31
8-30/9-31
3/4
3/4
2/4
3/4
3/4
2/4
3/4
3/4
2/4
3/4
3/4
2/4
3/4
3/4
2/4
3/4
3/4
2/4

tmpcf ~ high-order bit of (rim);
rim ~ rim * 2 + (tmpcf);
temp ~ temp. - 1;

aD;
IF COUNT = 1
THEN

IF high-order bit of rim < > CF
THEN OF ~ 1;
ELSE OF ~ 0;
FI;

ELSE OF ~ undefined;
FI;

26-241

Description

Rotate 9 bits (CF,r/m byte) left once
Rotate 9 bits (CF,r/m byte) left CL times
Rotate 9 bits (CF,r/m byte) left immB times
Rotate 17 bits (CF,r/m word) left once
Rotate 17 bits (CF,r/m word) left CL times
Rotate 17 bits (CF,r/m word) left immB times
Rotate 33 bits (CF,r/m dword) left once
Rotate 33 bits (CF,r/m dword) left CL times
Rotate 33 bits (CF,r/m dword) left immB times
Rotate 9 bits (CF,r/m byte) right once
Rotate 9 bits (CF,r/m byte) right CL times
Rotate 9 bits (CF,r/m byte) right immB times
Rotate 17 bits (CF,r/m word) right once
Rotate 17 bits (CF,r/m word) right CL times
Rotate 17 bits (CF,r/m word) right immB times
Rotate 33 bits (CF,r/m dword) right once
Rotate 33 bits (CF,r/m dword) right CL times
Rotate 33 bits (CF,r/m dword) right immB times
Rotate 8 bits rim byte left once
Rotate 8 bits rim byte left CL times
Rotate 8 bits rim byte left immB times
Rotate 16 bits rim word left once
Rotate 16 bits rim word left CL times
Rotate 16 bits rim word left immB times
Rotate 32 bits rim dword left once
Rotate 32 bits rim dword left CL times
Rotate 32 bits rim dword left immB times
Rotate 8 bits rim byte right once
Rotate 8 bits rim byte right CL times
Rotate 8 bits rim word right immB times
Rotate 16 bits rim word right once
Rotate .16 bits rim word right CLtimes
Rotate 16 bits rim word right immB times
Rotate 32 bits rim dword right once
Rotate 32 bits rim dword right CL times
Rotate 32 bits rim dword right immB times

(* ROR - Rotate Right *)
temp ~ COUNT;
WHILE (temp <> 0)
DO

tmpcf ~ low-order bit of (rim);

INSTRUCTION SET

rim ~ rim /2 + (tmpcf * 2width(r/m»);
temp ~ temp - 1;

DO;
IF COUNT = 1
THEN

IF (high-order bit of rim) < > (bit next to high-order bit of rim)
THEN OF ~ 1;
ELSE OF ~ 0;
FI;

ELSE OF ~ undefined;
FI;

Description

Each rotate instruction shifts the bits of the register or memory operand given. The left
rotate instructions shift all the· bits upward, except for the top bit, which is returned to
the bottom. The right rotate instructions do the reverse: the bits shift downward until the
bottom bit arrives at the top.

For the RCL and RCR instructions, the CF flag is part of the rotated quantity. The RCL
instruction shifts the CF flag into the bottom bit and shifts the top bit into the CF flag;
the RCR instruction shifts the CF flag into the top bit and shifts the bottom bit into the
CF flag. For the ROL and ROR instructions, the original value of the CF .flag is not a
part of the result,but the CFflag receives a copy of the bit that was shifted from one end
to the other.

The rotate is repeated the number of times indicated by the second operand, which is
either an immediate number or the contents of the CL register. To reduce the maximum
instruction execution time, the Intel486 processor does not allow rotation counts greater
than 31. If a rotation count greater than 31 is attempted, only the bottom five bits of the
rotation are used. The 8086 does not mask rotation counts. The Intel486 processor in
Virtual 8086 Mode does mask rotation counts.

The OF flag is defined only for the single-rotate forms of the instructions (second oper­
and is a 1). It is undefined in all other cases. For left shifts/rotates, the CF bit after the
shift is XORed with the high-order result bit. For right shifts/rotates, the high-order two
bits of the result are XORed to get the OF flag.

Flags Affected

The OF flag is affected only for single-bit rotates; the OF flag is undefined for multi-bit
rotates;.' the CF flag contains the value of the bit shifted into it; the SF, ZF, AF, and PF
flags are not affected.

26-242

int:eL INSTRUCTION SET

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-243

iniaL INSTRUCTION SET

REP/REPE/REPZ/REPNE/REPNZ- Repeat Following String
Operation

Opcode Instruction Clocks Description

F36C FiEP INSr/mB, OX 16+8(E)CX, Input (E)CX bytes from port OX into ES:[(E)OI)
pm=10+8(E)CX*1/
30 + 8(E)CX* ,
VM = 29 + 8(E)CX

F360 REP INS r/m16,OX 16+8(E)CX, Input (E)CX words from port OX into ES:[(E)OI)
pm=10+8(E)CX*1/
30 + 8(E)CX* ,
VM=29+8(E)CX

F360 REP INS r/m32,OX 16+8(E)CX, Input (E)CX dWords from pot OX into ES:[(E)OI)
pm= 10+8(E)CX*1/
30 + 8(E)CX* ,
VM=29+8(E)CX

F3 A4 REP MOVS mB,mB 5*3,13*4,12 +3(E)CX*5 Move (E)CX bytes from [(E)SI) to. ES:[(E)OI)
F3 A5 REP MOVS m16,m16 5*3,13*4,12 + 3(E)CX*5 Move (E)CX words from [(E)SI) to ES:[(E)OI)
F3 A5 REP MOVS m32,m32 5*3,13*4,12 +3(E)CX*5 Move (E)CX dwords from [(E)SI) to ES:[(E)OI)
F36E REP OUTS OX,r/mB 17+5(E)CX, Output(E)CX bytes from [(E)SI) to port DX

pm= 11 +5(E)CX*'/
31 +5(E)CX*
vm=30+5(E)CX

F36F REP OUTS OX,r/m16 17+5(E)CX, Output (E)CX words from [(E)SI) to port OX
pm=11 +5(E)CX*'/
31 +5(E)CX*
vm=30+5(E)CX

F36F REP OUTS OX,r/m32 17+5(E)CX, Output (E)CX dwords from [(E)SI) to port OX
pm= 11 +5(E)CX*1/
31 +5(E)CX*
vm=30+5(E)CX

F3 AC REP LOOS AL 5*3,7 +4(E)CX*6 Load (E)CX bytes from [(E)SI) to AL
F3 AO REP LOOS AX 5*3,7 + 4(E)CX*6 Load (E)CX words from [(E)SI) to AX
F3 AO REP LOOS EAX 5*3,7 + 4(E)CX*6 Load (E)CX dwords from [(E)SI) to EAX
F3 AA REP STOS mB 5*3,7+4(E)CX*6 Fill (E)CX bytes at ES:[(E)OI) with AL
F3 AS REP STOS m16 5*3,7 + 4(E)CX*6 Fill (E)CX words at ES:[(E)OI) with AX
F3 AS REP STOS m32 5*3,7 + 4(E)CX*6 Fill (E)CX dwords at ES:[(E)OI) with EAX
F3 A6 REPE CMPS mB,mB 5*3,7 + 7(E)CX*6 Find nonmatching bytes in ES:[(E)OI) and [(E)SI)
F3 A7 REPE CMPS m16,m16 5*3,7+7(E)CX*6 Find non matching words in ES:[(E)OI) and [(E)SI)
F3 A7 REPE CMPS m32,m32 5*3,7 + 7(E)CX*6 Find nonmatching dwords in ES:[(E)OI) and [(E)SI)
F3 AE REPE SCAS mB 5*3,7 + 5(E)CX*6 Find non-AL byte starting at ES:[(E)OI)
F3 AF REPE SCAS m16 5*3,7+5(E)CX*6 Find non-AX word starting at ES:[(E)OI)
F3 AF REPE SCAS m32 5*3,7+5(E)CX*6 Find non-EAX dword starting at ES:[(E)OI)
F2 A6' REPNE CMPS mB,mB 5*3,7 + 7(E)CX*6 Find matching bytes in ES:[(E)OI) and [(E)SI)
F2 A7 REPNE CMPS m16,m16 5*3,7 + 7(E)CX*6 Find matching words in ES:[(E)OI) and [(E)SI)
F2 A7 REPNE CMPS m32,m32 5*3,7 + 7(E)CX*6 Find matching dwords in ES:[(E)OI) and [(E)SI)
F2 AE REPNE SCAS mB 5*3,7 + 5(E)Cx*6 Find AL, starting at ES:[(E)OI)
F2 AF REPNE SCAS m16 5*3,7 + 5(E)CX*6 Find AX, starting at ES:[(E)OI)
F2 AF REPNE SCAS m32 5*3,7+5(E)CX*6 Find EAX, starting at ES:[(E)OI)

NOTES: *1 If CPL :5 IOPL
*2 If CPL > IOPL
*3 (E) CX=O
*4 (E) CX = 1
*5 (E) CX > 1
*6 (E) CX > 0

Operation

IF AddressSize = 16
THEN use CX for CountReg;
ELSE (* AddressSize = 32 *) use ECX for CountReg;
FI;

26-244

intel®
WHILE CountReg < > .0
DO

service pending interrupts (if any);
perform primitive string instruction;
CountReg <- CountReg - 1;

INSTRUCTION SET

IF primitive operation is CMPSB, CMPSW, SCASB, or SCASW
THEN

IF (instruction is REP/REPE/REPZ) AND (ZF = 0)
THEN exit WHILE loop
ELSE

IF (instruction is REPNZ or REPNE) AND (ZF= 1)
THEN exit WHILE loop;
FI;

FI;
FI;

00;

Description

The REP, REPE (repeat while equal), and REPNE (repeat while not equal) prefixes
are applied to string operation. Each prefix causes the string instruction that follows to
be repeated the number of times indicated in the count register or (for the REPE and
REPNE prefixes) until the indicated condition in the ZF flag is no longer met.

Synonymous forms of the REPE and REPNE prefixes are the REPZ and REPNZ pre­
fixes, respectively.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct.

The precise action for each iteration is as follows:

1. If the address-size attribute is 16 bits, use the CX register for the count register; if
the address-size attribute is 32 bits, use the ECX register for the count register.

2. Check the count register. If it is zero, exit the iteration, and move to the next
instruction.

3. Acknowledge any pending interrupts.

4. Perform the string operation once.

5. Decrement the CX or count register by one; no flags are modified.

6. Check the ZF flag if the string operation is a SCAS or CMPS instruction. If the
repeat condition does not hold, exit the iteration and move to the next instruction.
Exit the iteration if the prefix is REPE and the ZF flag is 0 (the last comparison was
not equal), or if the prefix is REPNE and the ZF flag is one (the last comparison
was equal).

7. Return to step 2 for the next iteration.

26-245

infel® INSTRUCTION SET

Repeated CMPS and SCAS instructions can be exited if the count is exhausted or if the
ZF flag fails the repeat condition. These two cases can be distinguished by using either
the JCXZ instruction, or by using the conditional jumps that test the ZF flag (the JZ,
JNZ, and JNE instructions).

Flags Affected

The ZF flag is affected by the REP CMPS and REP SCAS as described above.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Notes

Not all I/O ports can handle the rate at which the REP INS and REP OUTS instructions
execute.

Do not use the repeat prefix with the LOOP instruction. Proper Loop operation is not
guaranteed in this case.

The repeat prefix is ignored when it is used with all other non-string -instructions.

26-246

intel® INSTRUCTION SET

RET - Return from Procedure

Opcode

C3
CB
CB
C2 iw
CA iw
CA iw

Operation

Instruction

RET
RET
RET
RET imm16
RET imm16
RET imm16

IF instruction = near RET
THEN;

IF OperandSize = 16
THEN

IP ~ PopO;
EIP ~ EIP AND OOOOFFFFH;

ELSE (* OperandSize = 32 *)
EIP ~ POpO;

FI;

Clocks

5
13,pm=18
13,pm=33
5
14,pm=17
14,pm=33

Description

Return (near) to caller
Return (far) to caller, same privilege
Return (far), lesser privilege, switch stacks
Return (near). pop imm16 bytes of parameters
Return (far), same privilege, pop imm16 bytes
Return (far), lesser privilege, pop imm16 bytes

IF instruction has immediate operand THEN eSP ~ eSP + imm16; FI;
FI;

IF (PE = 0 OR (PE = 1 AND VM = 1))
(* real mode or virtual 8086 mode *)
AND instruction = far RET

THEN;
IF OperandSize = 16
THEN

IP ~ PopO;
EIP ~ EIP AND OOOOFFFFH;
CS ~ PopO; (* 16-bit pop *)

ELSE (* Operand Size = 32 *)
EIP ~ PopO;
CS ~ PopO; (* 32-bit pop, high-order 16-bits discarded *)

FI;
IF instruction has immediate operand THEN eSP ~ eSP + imm16; FI;

FI;

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *)
AND instruction = far RET

THEN
IF OperandSize=32
THEN Third word on stack must be within stack limits else #88(0);
ELSE Second word on stack must be within stack limits else #88(0);
FI;
Return selector RPL must be ;:: CPL EL8E #GP(return selector)
IF return selector RPL = CPL

26-247

intel® INSTRUCTION SET

THEN GOTO SAME-LEVEL;
ELSE GOTO OUTER-PRIVILEGE-LEVEL;
FI;

FI;

SAME-LEVEL:
Return selector must be non-null ELSE #GP(O)
Selector index must be within its descriptor table limits ELSE

#GP(selector)
Descriptor AR byte must indicate code segment ELSE #GP(selector)
IF non-conforming
THEN code segment DPL must equal CPL;
ELSE #GP(selector);
FI;
IF conforming
THEN code segment DPL must be :s; CPL;
ELSE #GP(selector);
FI;
Code segment must be present ELSE #NP(selector);
Top word on stack must be within stack limits ELSE #SS(O);
IP must be in code segment limit ELSE #GP(O);
IF OperandSize=32
THEN

Load CS:EIP from stack
Load CS register with descriptor
Increment eSP by 8 plus the immediate offset if it exists

ELSE (* Operand Size = 16 *)
Load CS:IP from stack
Load CS register with descriptor
Increment eSP by 4 piUS the immediate offset if it exists

FI;

OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32
THEN Top (16 + immediate) bytes on stack must be within stack limits

ELSE #SS(O);
ELSE Top (8 + immediate) bytes on stack must be within stack limits ELSE

#SS(O); .
FI;
Examine return CS selector and associated descriptor:

Selector must be non-null ELSE #GP(O);
Selector index must be within its descriptor table limits ELSE

#GP(selector)
Descriptor AR byte must indicate code segment ELSE #GP(selector);
IF non-conforming
THEN code segment DPL must equal return selector RPL
ELSE #GP(selector);
FI;
IF conforming

26-248

in1:el® INSTRUCTION SET

THEN code segment DPL must be :5 return selector RPL;
ELSE #GP(selector);
FI;
Segment must be present ELSE #NP(selector)

Examine return SS selector and associated descriptor:
Selector must be non-null ELSE #GP(O);
Selector index must be within its descriptor table limits

ELSE #GP(selector);
Selector RPL must equal the RPL of the return CS selector ELSE

#GP(selector);
Descriptor AR byte must indicate a writable data segment ELSE

#GP(selector);
Descriptor DPL must equal the RPL of the return CS selector ELSE

#GP(selector);
Segment must be present ELSE #NP(selector);

IP must be in code segment limit ELSE #GP(O);
Set CPL to the RPL of the return CS selector;
IF OperandSize = 32
THEN

Load CS:EIP from stack;
Set CS RPL to CPL;
Increment eSP by 8 plus the immediate offset if it exists;
Load SS:eSP from stack;

ELSE (* OperandSize = 16 *)
Load CS:IP from stack;
Set CS RPL to CPL;
Increment eSP by 4 plus the immediate offset if it exists;
Load SS:eSP from stack;

FI;
Load the CS register with the return CS descriptor;
Load the SS register with the return SS descriptor;
For each of ES, FS, GS, and DS
DO

IF the current register setting is not valid for the outer level,
set the register to null (selector <- AR <- 0);

To be valid, the register setting must satisfy the following properties:

aD;

Selector index must be within descriptor table limits;
Descriptor AR byte must indicate data or readable code segment;
IF segment is data or non-conforming code, 'THEN

DPL must be ;::: CPL, or DPL must be ;::: RPL;
FI;

Description

The RET instruction transfers control to a return address located on the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made to
the instruction that follows the CALL instruction. .

26-249

intel® INSTRUCTION SET

The optional numeric parameter to the RET instruction gives the number of stack bytes
(OperandMode = 16) or words (OperandMode = 32) to be released after the return
address is popped. These items are typically used as input parameters to the procedure
called.

For the intrasegment (near) return, the address on the stack is a segment offset, which is
popped into the instruction pointer. The CS register is unchanged. For the intersegment
(far) return, the address on the stack is a long pointer. The offset is popped first, fol­
lowed by the selector.

In real mode, the CS and IP registers are loaded directly. In Protected Mode, an inter­
segment return causes the processor to check the descriptor addressed by the return
selector. The AR byte of the descriptor must indicate a code segment of equal or lesser
privilege (or greater or equal numeric value) than the current privilege level. Returns to
a lesser privilege level cause the stack to be reloaded from the value saved beyond the
parameter block.

The DS, ES, FS, and GS segment registers can be cleared by the RET instruction during
an interlevel transfer. If these registers refer to segments that cannot be used by the new
privilege level, they are cleared to prevent unauthorized access from the new privilege
level.

Flags Affected

None.

Protected Mode Exceptions

#GP, #NP, or #SS, as described under "Operation" above; #PF(fault-code) for a page
fault.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would be outside the effective address space from
o to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

26-250

intel® INSTRUCTION SET

SAHF-Store AH into Flags

Opcode

9E

Operation

Instruction

SAHF

SF:ZF:xx:AF:xx:PF:xx:CF ~ AH;

Description

Clocks

2

Description

Store AH into flags SF ZF xx AF xx PF xx CF

The SAHF instruction loads the SF, ZF, AF, PF, and CF flags with values from the AH
register, from bits 7, 6, 4, 2, and 0, respectively.

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values form the AH register.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-251

INSTRUCTION SET

SAL/SAR/SHL/SHR - Shift Instructions

Opcode Instruction Clocks Description

DO /4 SAL rlmB,1 3/4 Multiply rim by1e by 2, once
D2/4 SAL rlmB,CL 3/4 Multiply rim by1e by 2, CL times
CO /4 ib SAL rlmB,immB 2/4 Multiply rim by1e by 2, immB times
D1 /4 SAL rlm16,1 3/4 Multiply rim word by 2, once
D3/4 SAL rlm16,CL 3/4 Multiply rim word by 2, CL times
C1 /4 ib SAL rlm16,immB 2/4 Multiply rim word by 2, immB times
D1 /4 SAL rlm32,1 3/4 Multiply rim dword by 2, once
D3/4 SAL rlm32,CL 3/4 Multiply rim dword by 2, CL times
C1 /4 ib SAL rlm32,immB 2/4 Multiply rim dword by 2, immB times
DO /7 SAR rlmB,1 3/4 Signed divide' rim by1e by 2, once
D2/7 SAR rlmB,CL 3/4 Signed divide' rim by1e by 2, CL times
CO /7 ib SAR rlmB,immB 2/4 Signed divide' rim by1e by 2, immBtimes
D1 /7 SAR rlm16,1 3/4 Signed divide' rim word by 2, once
D3/7 SAR rlm16,CL 3/4 Signed divide' rim word by 2, CL times
C1 /7 ib SAR rlm16,immB 2/4 Signed divide' rim word by 2, immB times
D1 /7 SAR rlm32,1 3/4 Signed divide' rim dword by 2, once
D3/7 SAR rlm32,CL 3/4 Signed divide' rim dword by 2, CL times
C1 /7 ib SAR rlm32,immB 2/4 Signed divide' rim dword by 2, immB times
DO /4 SHL rlmB,1 3/4 Multiply rim by1e by 2, once
D2/4 SHL rlmB,CL 3/4 Multiply rim by1e by 2, CL times
CO /4 ib SHL rlmB,immB 2/4 Multiply rim by1e by 2, immB times
D1 /4 SHL rlm16,1 3/4 Multiply rim word by 2, once
D3/4 SHL rlm16,CL 3/4 Multiply rim word by 2, CL times
C1 /4 ib SHL rlm16,immB 2/4 Multiply rim word by 2, immB times
D1 /4 SHL rlm32,1 3/4 Multiply rim dword by 2, once
D3/4 SHL rlm32,CL 3/4 Multiply rim dword by 2, CL times
C1 /4 ib SHL rlm32,immB 2/4 Multiply rim dword by 2, immB times
DO /5 SHR rlmB,1 3/4 Unsigned divide rim by1e by 2, once
D2/5 SHR rlmB,CL 3/4 Unsigned divide rim by1e by 2, CL times
CO /5 ib SHR rlmB,immB 2/4 Unsigned divide. rim by1e by 2, immB times
D1 /5 SHR rlm16,1 3/4 Unsigned divide rim word by 2, once
D3 /5 SHR rlm16,CL 3/4 Unsigned divide rim word by 2, CL times
C1 /5 ib SHR rlm16,immB 2/4 Unsigned divide rim word by 2, immB times
D1 /5 SHR rlm32,1 3/4 Unsigned divide rim dword by 2, once
D3/5 SHR rlm32,CL 3/4 Unsigned divide rim dword by 2, CL times
C1 /5 ib SHR rlm32,immB 2/4 Unsigned divide rim dword by 2, immB times

Not the same division as IDIV; rounding is toward negative infinity.

Operation

(* COUNT is the second parameter *)
(temp) ~ COUNT;
WHILE (temp < > 0)
DO

IF instruction is SAL or SHL
THEN CF ~ high-order bit of rim;
FI;
IF instruction is SAR or SHR
THEN CF ~ low-order bit of rim;
FI;
IF instruction = SAL or SHL
THEN rim ~ rim * 2;
FI;
IF instruction = SAR
THEN rim ~ rim /2 (*Signed divide, rounding toward negative infinity*);

infel® INSTRUCTION SET

FI;
IF instruction = SHR
THEN rim ~ rim /2; (* Unsigned divide *);
FI;
temp ~ temp - 1;

00;
(* Determine overflow for the various instructions *)
IF COUNT = 1
THEN

IF instruction is SAL or SHL
THEN OF ~ high-order bit of rim < > (CF);
FI;
IF instruction is SAR
THEN OF ~ 0;
FI;
IF instruction is SHR
THEN OF ~ high-order bit of operand;
FI;

ELSE OF ~ undefined;
FI;

Description

The SAL instruction (or its synonym, SHL) shifts the bits of the operand upward. The
high-order bit is shifted into the CF flag, and the low-order bit is cleared.

The SAR and SHR instructions shift the bits of the operand downward. The low-order
bit is shifted into the CF flag. The effect is to divide the operand by two. The SAR
instruction performs a signed divide with rounding toward negative infinity (not the
same as the IDIV instruction); the high-order bit remains the same. The SHR instruc­
tion performs an unsigned divide; the high-order bit is cleared.

The shift is repeated the number of times indicated by the second operand, which is
either an immediate number or the contents of the CL register. To reduce the maximum
execution time, the Intel486 processor does not allow shift counts greater than 31. If a
shift count greater than 31 is attempted, only the bottom five bits of the shift count are
used. (The 8086 uses all eight bits of the shift count.)

The OF flag is affected only if the single-shift forms of the instructions are used. For left
shifts, the OF flag is cleared if the high bit of the answer is the same as the result of the
CF flag (i.e., the top two bits of the original operand were the same); the OF flag is set
if they are different. For the SAR instruction, the OF flag is cleared for all single shifts.
For the SHR instruction, the OF flag is set to the high-order bit of the original operand.

Flags Affected

If count = 0, the flags are not affected.

26-253

intet INSTRUCTION SET

The CF flag is undefined for SHL and SHR instructions in which the shift lengths are
greater than the size of the operand to be shifted.

The OF flag is affected for single shifts; the OF flag is undefined for multiple shifts; 'the
CF, ZF, PF, and SF flags are set according to the result.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #ACfor unaligned memory reference
if the current privilege level is 3. .

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-254

int:et INSTRUCTION SET

SBB -Integer Subtraction with Borrow

Opcode

lC ib
10 iw
10 id
80 13 ib
81/3iw
81 13 id
8313 ib
83 13 ib
18 /r
19 /r
19 Ir
lA Ir
lB /r
lB Ir

Operation

Instruction Clocks

SBB AL,immB 1
SBB AX,imm16 1
SBB EAX,imm32 1
SBB rlmB,immB 1/3
SBB rlm16,imm16 1/3
SBB rlm32,imm32 1/3
SBe rlm16,immB 1/3
SBB rlm32,immB 1/3
SBB rlmB,rB 1/3
SBB rlm16,r16 1/3
SBB rlm32,r32 1/3
SBB rB,rlmB 1/2
SBB r16,rlm16 1/2
SBB r32,rlm32 1/2

Description

Subtract with borrow immediate byte from AL
Subtract with borrow immediate word from AX
Subtract with borrow immediate dword from EAX
Subtract with borrow immediate byte from rim byte
Subtract with borrow immediate word from rim word
Subtract with borrow immediate dword from rim dword
Subtract with borrow sign-extended immediate byte from rim word
Subtract with borrow sign-extended immediate byte from rim dword
Subtract with borrow byte register from rim byte
Subtract with borrow word register from rim word
Subtract with borrow dword register from rim dword
Subtract with borrow rim byte from byte register
Subtract with borrow rim word from word register
Subtract with borrow rim dword from dword register

IF SRC is a byte and DEST is a word or dword
THEN DEST = DEST - (SignExtend(SRC) + CF)
ELSE DEST ~ DEST - (SRC + CF);

Description

The SBB instruction adds the second operand (SRC) to the CF flag and subtracts the
result from the first operand (DEST). The result of the subtraction is assigned to the
first operand (DEST), and the flags are set accordingly.

When an immediate byte value is subtracted from a word operand, the immediate value
is first sign-extended.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH ..

26-255

inteL INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-256

intel® INSTRUCTION SET

SCAS/SCASB/SCASW /SCASD - Compare String Data

Opcode Instruction Clocks

AE SCAS mB 6
AF SCAS m16 6
AF SCAS m32 6
AE SCASB 6
AF SCASW 6
AF SCASO 6

Operation

IF AddressSize = 16
THEN use DI for dest-index;
ELSE (* AddressSize = 32 *) use EDI for dest-index;
FI;
IF byte type of instruction
THEN

Description

Compare bytes AL-ES:[OIJ, update (E)OI
Compare words AX-ES:[OIJ, update (E)OI
Compare dwords EAX-ES:[OIJ, update (E)OI
Compare bytes AL-ES:[OIJ, update (E)OI
Compare words AX-ES:[OIJ, update (E)OI
Compare dwords EAX-ES:[OIJ, update (E)OI

AL - [dest-index]; (* Compare byte in AL and dest *)
IF DF = 0 THEN IndDec ~ 1 ELSE IncDec ~ -1; FI;

ELSE
IF OperandSize = 16
THEN

FI;

AX - [dest-index]; (* compare word in AL and dest *)
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec ~ -2; FI;

ELSE (* OperandSize = 32 *)
EAX - [dest-index];(* compare dword in EAX & dest *)
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ -4; FI;

FI;

dest-index = dest-index + IncDec

Description

The SeAS instruction subtracts the memory byte or word at the destination register
from the AL, AX or EAX register. The result is discarded; only the flags are set. The
operand must be addressable from the ES segment; no segment override is possible.

If the address-size attribute for this instruction is 16 bits, the OI register is used as the
destination register; otherwise, the address-size attribute is 32 bits and the EOI register
is used.

The address of the memory data being compared is determined solely by the contents of
the destination register, not by the operand to the SeAS instruction. The operand vali­
dates ES segment addressability and determines the data type. Load the correct index
value into the OI or EOI register before executing the SeAS instruction.

26-257

INSTRUCTIQNSET

After the comparison is made, the destination register is automatically updated. If the
direction flag is 0 (the CLD instruction was executed), the destination register is incre­
mented; if the direction flag is 1 (the STn instruction was executed), it is decremented.
The increments or decrements are by 1 if bytes are compared, by 2 if words are com­
pared, or by 4 if doublewords are compared.

The SCASB, SCASW, and SCASD instructions are synonyms for the byte, word and
doubleword SCAS instructions that don't require operands. They are simpler to code,
but provide no type or segment checking.

The SCAS instruction can be preceded by the REPE or REPNE prefix for a block
search of CX or ECX bytes or words. Refer to the REP instruction for further details.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the ES segment;#PF(fault­
code) for a page fault; #AC for unaligned memory reference if the current privilege
level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-258

intel® INSTRUCTION SET

SETcc - Byte Set on Condition

Opcode Instruction Clocks

OF 97 SETA rlmB 4/3
OF 93 SETAE rlmB 4/3
OF 92 SETB rlmB 4/3
OF 96 SETBE rlmB 4/3
OF 92 SETC rlmB 4/3
OF 94 SETE rlmB 4/3
OF 9F SETG rlmB . 4/3
OF 9D SETGE rlmB 4/3
OF 9C SETL rlmB 4/3
OF 9E SETLE rlmB 4/3
OF 96 SETNA rlmB 4/3
OF 92 SETNAE rlmB 4/3
OF 93 SETNB rlmB 4/3
OF 97 SETNBE rlmB 4/3

OF 93 SETNC rlmB 4/3
OF 95 SETNE rlmB 4/3
OF 9E SETNG rlmB 4/3
OF 9C SETNGE rlmB 4/3
OF 9D SETNL rlmB 4/3
OF 9F SETNLE rlmB 4/3
OF 91 SETNO rlmB 4/3
OF 9B SETNP rlmB 4/3
OF 99 SETNS rlmB 4/3
OF 95 SETNZ rlmB 4/3
OF 90 SETO rlmB 4/3
OF 9A SETP rlmB 4/3
OF 9A SETPE rlmB 4/3
OF 98 SETPO rlmB 4/3
OF 98 SETS rlmB 4/3
OF 94 SETZ rlmB 4/3

Operation

IF condition THEN rlmB ~ 1 ELSE rlmB ~ 0; FI;

Description

Description

Set byte if above (CF = 0 and ZF = 0)
Set byte if above or equal (CF = 0)
Set byte if below (CF = 1)
Set byte if below or equal (CF = 1 or (ZF = 1)
Set if carry (CF = 1)
Set byte if equal (ZF = 1)
Set byte if greater (ZF = 0 and SF = OF)
Set byte if greater or equal (SF = OF)
Set byte if less (SF< >OF)
Set byte if less or equal (ZF = 1 or SF < > OF)
Set byte if not above (CF = 1 or ZF = 1)
Set byte if not above or equal (CF = 1)
Set byte if not below (CF = 0)
Set byte if not below or equal (CF = 0 and
ZF=O)
Set byte if not carry (CF = 0)
Set byte if not equal (ZF = 0)
Set byte if not greater (ZF = 1 or SF < > OF)
Set if not greater or equal (SF< >OF)
Set byte if not less (SF = OF)
Set byte if not less or equal (ZF = 0 and SF = OF)
Set byte if not overflow (OF = 0)
Set byte if not parity (PF = 0)
Set byte if not sign (SF = 0)
Set byte if not zero (ZF = 0)
Set byte if overflow (OF = 1)
Set byte if parity (PF = 1)
Set byte if parity even (PF = 1)
Set byte if parity odd (PF = 0)
Set byte if sign (SF = 1)
Set byte if zero (ZF = 1)

The SETcc instruction stores a byte at the destination specified by the effective address
or register if the condition is met, or a 0 byte if the condition is not met.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the result is in a non-writable segment; #GP(O) for an illegal memory oper­
and effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3.

26-259

int'eL INSTRUCTION SET

Real Address Mode Exceptions

Interrupt 13 if ::my part of the. operand would lie outside of the effective adoress space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

26-260

intel® INSTRUCTION SET

SGDT/SIDT -Store Global/Interrupt Descriptor Table Register

Opcode

OF 01 /0
OF 01 /1

Operation

Instruction

SGDT m
SIDTm

Clocks

10
10

DEST ~ 48-bit BASE/LIMIT register contents;

Description

Description

Store GDTR to m
Store IDTR to m

The SGOT and SlOT instructions copy the contents of the descriptor table register to
the six bytes of memory indicated by the operand. The LIMIT field of the register is
assigned to the first word at the effective address. If the operand-size attribute is 16 bits,
the next three bytes are assigned the BASE field of the register, and the fourth byte is
undefined. Otherwise, if the operand-size attribute is 32 bits, the next four bytes are
assigned the 32-bit BASE field of the register.

The SGOT and SlOT instructions are used only in operating system software; they are
not used in application programs.

Flags Affected

None.

Protected Mode Exceptions

Interrupt 6 if the destination operand is a register; #GP(O) if the destination is in a
nonwritable segment; #GP(O) for an illegal memory operand effective address in the CS,
OS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault; # AC for unaligned memory reference if the current privilege
level is 3.

Real Address Mode Exceptions

Interrupt 6 if the destination operand is a register; Interrupt 13 if any part of the oper­
and would lie outside of the effective address space from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-261

infel® INSTRUCTION SET

Compatibility Note

The 16-bit forms of the SGDT and. SIDT instructions are compatible with the 286 pro­
cessor, if the value in the upper eight bits is not referenced. The 286 processor stores 1's
in these upper bits, whereas the Intel386 DX and Intel486 processors store O's if the
operand-size attribute is 16 bits. These bits were specified as undefined by the SGDT
and SIDT instructions in the iAPX 286 Programmer's Reference Manual.

26-262

intaL INSTRUCTION SET

SHLD - Double Precision Shift Left

Opcode

OF A4
OF A4
OF A5
OF A5

Operation

Instruction

SHLD r/mI6,rI6,immB
SHLD r/m32.r32,immB
SHLD r/mI6,rI6,CL
SHLD r/m32,r32,CL

Clocks

2/3
2/3
3/4
3/4

Description

r/m16 gets SHL of r/m16 concatenated with r16
r/m32 gets SHL of r/m32 concatenated with r32
r/m16 gets SHL of r/m16 concatenated with r16
r/m32 gets SHL of r/m32 concatenated with r32

(* count is an unsigned integer corresponding to the last operand of the instruction, either an
immediate byte or the byte in register CL *)
ShiftAmt ~ count MOD 32;
inBits ~ register; (* Allow overlapped operands *)
IF ShiftAmt = 0
THEN no operation
ELSE

FI;

IF ShiftAmt :::: OperandSize
THEN (* Bad parameters *)

rim ~ UNDEFINED;
CF, OF, SF, ZF, AF, PF ~ UNDEFINED;

ELSE (* Perform the shift *)
CF ~ BIT[Base, OperandSize - ShiftAmt);

(* Last bit shifted out on exit *)
FOR i ~ OperandSize - 1 DOWNTO ShiftAmt
DO

BIT[Base, i) ~ BIT[Base, i - ShiftAmt);
OF;
FOR i ~ ShiftAmt - 1 DOWNTO 0
DO

BIT [Base, i) ~ BIT[inBits, i - ShiftAmt + OperandSize);
00;
Set SF, ZF, PF (rim);

(* SF, ZF, PF are set according to the value of the result *)
AF ~ UNDEFINED;

FI;

Description

The SHLD instruction shifts the first operand provided by the rim field to the left as
many bits as specified by the count operand. The second operand (r16 or r32) provides
the bits to shift in from the right (starting with bit 0). The result is stored back into the
rim operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the contents of the CL
register. These operands are taken MODULO 32 to provide a number between 0 and 31
by which to shift. Because the bits to shift are provided by the specified registers, the

26-263

intel® INSTRUCTION SET

operation is useful for multiprecision shifts (64 bits or more). The SF, ZF and PF flags
are set according to the value of the result. The CF flag is set to the value of the last bit
shifted out. The OF and AF flags are left undefined.

Flags Affected

If count = 0, the flags are not affected.

The SF, ZF, and PF, flags are set according to the result; the CF flag is set to the value
of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign
change occurred, otherwise it is cleared; after a shift of more than one bit position, the
OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which
does not affect any flags.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26,264

intel® INSTRUCTION SET

SHRD - Double Precision Shift Right

Opcode Instruction Clocks

OF AC SHRD r/m16,r16,immB 2/3
OF AC SHRD r/m32,r32,immB 2/3
OF AD SHRD r/m16,r16,CL 3/4
OF AD SHRD r/m32,r32,CL 3/4

Operation

Description

r/m16 gets SHR of r/m16 concatenated with r16
r/m32 gets SHR of r/m32 concatenated with r32
r/m16 gets SHR of r/m16 concatenated with r16
r/m32 gets SHR of r/m32 concatenated with r32

(* count is an unsigned integer corresponding to the last operand of the instruction, either an
immediate byte or the byte in register CL *)

ShiftAmt - count MOD 32;
inBits - register; (* Allow overlapped operands *)
IF ShiftAmt = 0
THEN no operation
ELSE

IF ShiftAmt ~ OperandSize
THEN (* Bad parameters *)

rim - UNDEFINED;
CF, OF, SF, ZF, AF, PF - UNDEFINED;

ELSE (* Perform the shift *)
CF - BIT[rlm, ShiftAmt - 1]; (* last bit shifted out on exit *)
FOR i - 0 TO OperandSize - 1 - ShiftAmt
DO

BIT [rim, i]- BIT[rlm, i - ShiftAmt];
OD;
FOR i - OperandSize - ShiftAmt TO OperandSize-1
DO

BIT[rlm,i] - BIT[inBits,i+ ShiftAmt - OperandSize];
OD;

(* SF, ZF, PF are set according to the value of the result *)
Set SF, ZF, PF (rim);
AF -UNDEFINED;

FI;
FI;

Description

The SHRD instruction shifts the first operand provided by the rim field to the right as
many bits as specified by the count operand. The second operand (r16 or r32) provides
the bits to shift in from the left (starting with bit 31). The result is stored back into the
rim operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the contents of the CL
register. These operands are taken MODULO 32 to provide a number between 0 and 31
by which to shift. Because the bits to shift are provided by the specified register, the

26-265

intel® INSTRUCTION SET

operation is useful for multi-precision shifts· (64 bits or more). The SF, ZF and PF flags
are set according to the value of the result. The CF flag is set to the value of the last bit
shifted out. The OF and AF flags are left undefined.

Flags Affected

If count = 0, the flags are not affected.

The SF, ZF, and PF flags are set according to the result; the CF flag is set to the value
of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign
change occurred, otherwise it is cleared; after a shift of more than one bit position, the
OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which
does not affect any flags.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; # AC for unaligned memory reference if the
current privilege level is 3.

26-266

inte!® INSTRUCTION SET

SLOT - Store Local Descriptor Table Register

Opcode

OF 00/0

Operation

Instruction

SLOT r/m16

r/m16 ~ LDTR;

Description

Clocks

2/3

Description

Store LDTR to EA word

The SLDT instruction stores the Local Descriptor Table Register (LDTR) in the two­
byte register or memory location indicated by the effective address operand. This regis­
ter is a selector that points into the Global Descriptor Table.

The SLDT instruction is used only in operating system software. It is not used in appli­
cation programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the SLDT instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The operand-size attribute has no effect on the operation of the instruction.

26-267

intel~ INSTRUCTION SET

SMSW - Store Machine Status Word

Opcode

OF 01 /4

Operation

Instruction

SMSW r/m16

r/m16 <c- MSW;

Description

Clocks

2/3 .

Description

Store machine status word to EA word

The SMSW instruction stores' the machine status word (part of the CROregister}in the
two-byte register or memory location indicated by the effective address operand.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3 ..

Notes

This instruction is provided for compatibility with the 80286 processor; programs for the
Intel486 processor should use the MOV ... , CRO instruction.

26-268

INSTRUCTION SET

STC - Set Carry Flag

Opcode

F9

Operation

CF~ 1;

Description

Instruction

STC

. Clocks

2

The STC instruction sets the CF fla~.

Flags Affected

The CF flag is set.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-269

Description

Set carry flag

intel® INSTRUCTION SET

sro - Set Direction Flag

Opcode

FD

Operation

DF~ 1;

Description

Instruction

STD

Clocks

2

Description

Set direction flag so (E)SI and/or (E)DI decre­
ment ,

The STD instruction sets the direction flag, causing all subs~quent string operations to
decrement the index registers, (E)SI and/or (E)DI, on which they operate.

Flags Affected

The DF flag is set.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

26-270

intel® INSTRUCTION SET

STI- Set Interrupt Flag

Opcode

FB

Operation

IF ~ 1

Description

Instruction

STI

Clocks

5

Description

Set interrupt flag; interrupts enabled at the end
of the next instruction

The STI instruction sets the IF flag. The processor then responds to external interrupts
after executing the next instruction if the next instruction allows the IF flag to remain
enabled. If external interrupts are disabled and you code the STI instruction followed by
the RET instruction (such as at the end of a subroutine), the RET instruction is allowed
to execute before external interrupts are recognized. Also, if external interrupts are
disabled and you code the STI instruction followed by the CLI instruction, then external
interrupts are not recognized because the CLI instruction clears the IF flag during its
execution.

Flags Affected

The IF flag is set.

Protected Mode Exceptions

#GP(O) if the current privilege level is greater (has less privilege) than the I/O privilege
level.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

Same as Protected Mode.

Note

In case of an NM1, trap, or fault following STl the interrupt will be taken before exe­
cuting the next sequential instruction in the code.

26-271

inteL INSTRUCTION SET

STOS/STOSB/STOSW /STOSD - Store String Data

Opcode Instruction Clocks Description

AA STOS mB 5 Store AL in byte ES:[(E)DI). update (E)DI
AB STOS m16 5 Store AX in word ES:[(E)DI). update (E)DI
AB STOS m32 5 Store EAX in dword ES:[(E)DI).update (E)DI
AA STOSB 5 Store AL in byte ES:[(E)DI). update (E)DI
AB STOSW 5 Store AX in word ES:[(E)DI], update (E)DI
AB STOSD 5 Store EAX in dword ES:[(E)DI). update (E)DI

Operation

IF AddressSize = 16
THEN use ES:DI for DestReg
ELSE (* AddressSize = 32 *) use ES:EDI for DestReg;
FI;
IF byte type of instruction
THEN

(ES:DestReg) ~ AL;
IF DF = 0
THEN DestReg ~ DestReg + 1;
ELSE DestReg ~ DestReg - 1;
FI;

ELSE IF OperandSize = 16
THEN

(ES:DestReg) ~ AX;
IF DF = 0
THEN DestReg ~ DestReg + 2;
ELSE DestReg ~ DestReg - 2;
FI;

ELSE (* Operand Size = 32 *)
(ES:DestReg) ~ EAX;
IF DF = 0
.THEN DestReg ~ DestReg + 4;
ELSE DestReg ~ DestReg - 4;
FI;

FI;
FI;

Description

The STOS instruction transfers the contents of the AL, AX, or EAX register to the
memory byte or word given by the destination register relative to the ES segment. The
destination register is tbe DI register for an address-size attribute of 16 bits or the EDI
register for an address-size attribute of 32 bits.

The destination operand must be addressable from the ES register. A segment override
is not possible.

26-272

intel® INSTRUCTION SET

The address of the destination is determined by the contents of the destination register,
not by the explicit operand of the STOS instruction. This operand is used only to vali­
date ES segment addressability and to determine the data type. Load the correct index
value into the destination register before executing the STOS instruction.

After the transfer is made, the DI register is automatically updated. If the DF flag is 0
(the CLD instruction was executed), the DI register is incremented; if the DF flag is 1
(the STD instruction was executed), the DI register is decremented. The DI register is
incremented or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a
doubleword is stored.

The STOSB, STOSW, and STOSD instructions are synonyms for the byte, word, and
doubleword STOS instructions, that do not require an operand. They are simpler to use,
but provide no type or segment checking.

The STOS instruction can be preceded by the REP prefix for a block fill of CX or ECX
bytes, words, or doublewords. Refer to the REP instruction for further details.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the ES segment; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-273

int:eL INSTRUCTION SET

STR - Store Task Register

Opcode

OF 00/1

Operation

Instruction

STR r/ml6

rim <,- task register;

Description

Clocks

2/3

Description

Store task register to EA word

The contents of the task register are copied to the two-byte register or memory location
indicated by the effective address operand.

The STR instruction is used only in operating system software. It is not used in applica­
tion programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code)for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the STR instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

Notes

The operand-size attribute has no effect on this instruction.

26-274

intel® INSTRUCTION SET

SUB -Integer Subtraction

Opcod~

2C ib
20 iw
2D id
80 /5 ib
81 /5 iw
81 /5 id
83 /5 ib
83 /5 ib
28/r
29/r
29/r
2A /r
2B /r
2B /r

Operation

Instruction Clocks

SUB AL,immB 1
SUB AX,imm16 1
SUB EAX,imm32 1
SUB rlmB,immB 1/3
SUB rlm16,imm16 1/3
SUB rlm32,imm32 1/3
SUB rlm16,immB 1/3
SUB rlm32,immB 1/3
SUB rlmB,rB 1/3
SUB rlm16,r16 1/3
SUB rlm32,r32 1/3
SUB rB,rlmB 1/2
SUB r16,rlm16 1/2
SUB r32,rlm32 1/2

IF SRC is a byte and DEST is a word or dword
THEN DEST = DEST - SignExtend(SRC);
ELSE DEST ~ DEST - SRC;
FI;

Description

Description

Subtract immediate byte from AL
Subtract immediate word from AX
Subtract immediate dword from EAX
Subtract immediate byte from rim byte
Subtract immediate word from rim word
Subtract immediate dword from rim dword
Subtract sign-extended immediate byte from rim word
Subtract sign-extended immediate byte from rim dword
Subtract byte register from rim byte
Subtract word register from rim word
Subtract dword register from rim dword
Subtract rim byte from byte register
Subtract rim word from word register
Subtract rim dword from dword register

The SUB instruction subtracts the second operand (SRC) from the first operand
(DEST). The first operand is assigned the result of the subtraction, and the flags are set
accordingly.

When an immediate byte value is subtracted from a word operand, the immediate value
is first sign-extended to the size of the destination operand.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-275

INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

intel® INSTRUCTION SET

TEST - Logical Compare

Opcode Instruction Clocks Description

A8 ib TEST AL,immB 1
A9 iw TEST AX,imml6 1
A9 id TEST EAX,imm32 1
F6 10 ib TEST rlmB,immB 1/2
F7 10 iw TEST rim 16,imm16 1/2
F7 10 id TEST rlm32,imm32 1/2
841r TEST rlmB,rB 1/2
85 Ir TEST rlml6,rl6 1/2
85 Ir TEST rlm32,r32 1/2

Operation

DEST : = LeftSRC AND RightSRC;
CF~ 0;
OF~O;

Description

AND immediate byte with AL
AND immediate word with AX
AND immediate dword with EAX
AND immediate byte with rim byte .
AND immediate word with rim word
AND immediate dword with rim dword
AND byte register with rim byte
AND word register with rim word
AND dword register with rim dword

The TEST instruction computes the bit-wise logical AND of its two operands. Each bit
of the result is 1 if both of the corresponding bits of the operands are 1; otherwise, each
bit is O. The result of the operation is discarded and only the flags are modified.

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-277

inteL INSTRUCTION SET

VERR, VERW - Verify a Segment for Reading or Writing

Opcode

OF 00/4
OF 00/5

Operation

Instruction

VERR r/m16
VERW r/m16.

Clocks

11/11
11/11

IF segment with selector at (rim) is accessible
with current protection level
AND ((segment is readable for VERR) OR

(segment is writable for VERW))
THEN ZF ~ 1;
ELSE ZF ~ 0;
FI;

Description

Description

Set ZF = 1 if segment can be read, selector in r/m16
Set ZF= 1 if segment can be written, selector in r/m16

The two-byte register or memory operand of the VERR and VERW instructions con­
tains the value·of a selector. The VERR and VERW instructions determine whether the
segment denoted by the selector is reachable from the current privilege level and
whether the segment is readable (VERR) or writable (VERW). If the segment is acces­
sible, the ZF flag is set; if the segment is not accessible, the ZF flag is cleared. To set the
ZF flag, the following conditions must be met:

• The selector must denote a descriptor within the bounds of the table (GDT or LDT);
the selector must be "defined."

• The selector must denote the descriptor of a code or data segment (not that of a task
state segment, LDT, or a gate).

• For the VERR instruction, the segment must be readable. For the VERW instruc­
tion, the segment must be a writable data segment.

• If the code segment is readable and conforming, the descriptor privilege level (DPL)
can be any value for the VERR instruction. Otherwise, the DPL must be greater than
or equal to (have less or the same privilege as) both the current privilege level and the
selector's RPL.

The validation performed is the same as if the segment were loaded into the DS, ES, FS,
or GS register, and the indicated access (read or write) were performed. The ZF flag
receives the result of the validation. The selector's value cannot result in a protection
exception, enabling the software to anticipate possible segment access problems.

Flags Affected

The ZF flag is set if the segment is accessible, cleared if it is not.

26-278

intel® INSTRUCTION SET

Protected Mode Exceptions

Faults generated by illegal addressing of the memory operand that contains the selector;
the selector is not loaded into any segment register, and no faults attributable to the
selector operand are generated.

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the VERR and VERW instructions are not recognized in Real Address
Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; # AC for unaligned memory reference if the
current privilege level is 3.

26-279

intet INSTRUCTION SET

WAIT..;.. Wait

Opcode

98

Description

Instruction

WAIT

Clocks

1-3

Description

Causes processor to check for iiumeric
exceptions.

WAIT causes the processor to check for pending unmasked numeric exceptions:before
proceding.

Flags Affected

None.

Protected Mode Exceptions

#NM if both MPimd TS in eRO are set.

Real Address Mode Exceptions

Interrupt 7 if both MP and TS in CRO are set.

Virtual 8086 Mode Exceptions

NM if both MP and TS in CRO are set.

Notes

Coding WAIT after an ESC instruction ensures that any unmasked floating-point excep­
tions the instruction may cause are handled before the processor has a chance to modify
the instruction's results.

FW AIT is an alternate mnemonic for WAIT .

. Information about when to use WAIT (FW AIT) is given in Chapter 18, in the section on
"Concurrent Processing."

26-280

intel® INSTRUCTION SET

WBINVD.-Write-Back and Invalidate Cache

Opcode

OF 09

Operation

Instruction

WBINVD

FLUSH INTERNAL CACHE

Clocks

5

SIGNAL EXTERNAL CACHE TO WRITE-BACK
SIGNAL EXTERNAL CACHE TO FLUSH

Description

DescrIptIon

Write-Back and Invalidate Entire Cache

The internal cache is flushed, and a special-function bus cycle is issued which indicates
that external cache should write-back its contents to main memory. Another special­
function bus cycle follows, directing the external cache to flush itself.

Flags Affected

None.

Protected Mode Exceptions

The WBINVD instruction is a privileged instruction; #GP(O) if the current privilege
level is not O.

Real Address Mode Exceptions

None.'

Virtual 8086 Mode Exceptions

#GP(O); the WBINVD instruction is a privileged instruction.

Notes

This instruction is implementation-dependent; its function may be implemented differ­
ently on future Intel processors.

It is the responsibility of hardware to respond to the external cache write-back and flush
indications.

This instruction is not supported on Inte1386 processors. See Section 3.11 for detecting
an Intel486 processor at runtime. See Section 12.2 on disabling the cache.

26-281

intel® INSTRUCTION SET

XADD - Exchange and Add

Opcode Instruction

OF COlr XADD rlmB,rB

OF C1/r XADD rlm16,r16

OF C1/r XADD rlm32,r32

Operation

TEMP ~ SRC + DEST
SRC ~ DEST
DEST ~ TEMP

Description

Clocks

3/4

3/4

3/4

Description

Exchange byte register and rIm byte; load sum
into rIm byte.
Exchange word register and rIm word; load sum
into rIm word.
Exchange dword register and rIm dword; load
sum into rIm dword.

The XADD instruction loads DEST into SRC, and then loads the sum of DEST and the
original value of SRC into DEST.

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are affected as if an ADD instruction had been
executed.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault~code) fora page fault; #NM if either EM or TS in CRO is
set; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH ..

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-282

intel® INSTRUCTION SET

Notes

This instruction can be used with a LOCK prefix. The Intel386 DX microprocessor does
not implement this instruction. If this instruction is used, you should provide an equiva­
lent code that runs on an Inte1386 DX processor as well. See Section 3.11 for detecting
an Intel486 processor at runtime.

26-283

intel® INSTRUCTION SET

XCHG - Exchange Register/Memory with Register

Opcode

90+ r
90+ r
90+ r
90+ r
861r
861r
871r
871r
871r
871r

Instruction

XCHGAX,r16
XCHG r16,AX
XCHG EAX,r32
XCHG r32,EAX
XCHG rlmB,rB
XCHG rB,rlmB
XCHG rlm16,r16
XCHG r16,rlm16
XCHG rlm32,r32
XCHG r32,rlm32

Operation

temp ~ DEST
DEST ~ SRC
SRC ~temp

Description

Clocks

3
3
3
3
3/5
3/5
3/5
3/5
3/5
3/5

Description

Exchange word register wiih AX
Exchange word register with AX
Exchange dword register with EAX .
Exchange dword register with EAX
Exchange byte register with EA byte
Exchange byte register with EA byte
Exchange word register with EA word
Exchange word register with EA word
Exchange dword register with EA dword
Exchange dword register with EA dword

The XCHG instruction exchanges two operands. The operands can be in either order. If
a memory operand is involved, the LOCK# signal is asserted for the duration of the
exchange, regardless of the presence or absence of the LOCK prefix or of the value of
the IOPL.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) if either operand is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Note

XCHG can be used for BSWAP for 16-bit data.

26-284

inteL INSTRUCTION SET

XLA T /XLA TB - Table Look-up Translation

Opcode

07
07

Operation

Instruction

XLAT mB
XLATB

IF AddressSize = 16
THEN

AL ~ (BX + ZeroExtend(AL))
ELSE (* AddressSize = 32 *)

Clocks

4
4

AL ~ (EBX + ZeroExtend(AL));
FI;

Description

Description

Set AL to memory byte OS:I(E)BX + unsigned ALl
Set AL to memory byte OS:I(E)BX + unsigned ALl

The XLAT instruction changes the AL register from the table index to the table entry.
The AL register should be the unsigned index into a table addressed by the OS:BX
register pair (for an address-size attribute of 16 bits) or the OS:EBX register pair (for an
address-size attribute of 32 bits).

The operand to the XLAT instruction allows for the possibility of a segment override.
The XLAT instruction uses the contents of the BX register even if they differ from the
offset of the operand. The offset of the operand should have been moved into the BX or
EBX register with a previous instruction.

The no-operand form, the XLATB instruction, can be used if the BX or EBX table will
always reside in the OS segment.

Flags Affected

None.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-285

intel® INSTRUCTION SeT

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-286

intel® INSTRUCTION SET

XOR - Logical Exclusive OR

Opcode

34 ib
35 iw
35 id
80 /6 ib
81 /6 iw
81 /6 id
83 /6 ib
83 /6 ib
30 /r
31 /r
31 /r
32/r
33/r
33/r

Operation

Instruction Clocks

XOR AL,imm8 1
XOR AX,imm16 1
XOR EAX,imm32 1
XOR rlm8,imm8 1/3
XOR rlm16,imm16 1/3
XOR rlm32,imm32 1/3
XOR rlm16,imm8 1/3
XOR rlm32,imm8 1/3
XOR rlm8,r8 1/3
XOR rlm16,r16 1/3
XOR rlm32,r32 1/3
XOR r8,rlm8 1/2
XOR r16,rlm16 1/2
XOR r32,rlm32 1/2

DEST ..- LeftSRC XOR RightSRC
CF..- 0
OF..- 0

Description

Description

Exclusive-OR immediate byte to AL
Exclusive-OR immediate word to AX
Exclusive-OR immediate dword to EAX
Exclusive-OR immediate byte to rim byte
Exclusive-OR immediate word to rim word
Exclusive-OR immediate dword to rim dword
XOR sign-extended immediate byte with rim word
XOR sign-extended immediate byte with rim dword
Exclusive-OR byte register to rim byte
Exclusive-OR word register to rim word
Exclusive-OR dword register to rim dword
Exclusive-OR byte register to rim byte
Exclusive-OR word register to rim word
Exclusive-OR dword register to rim dword

The XOR instruction computes the exclusive OR of the two operands. Each bit of the
result is 1 if the corresponding bits of the operands are different; each bit is 0 if the
corresponding bits are· the same. The answer replaces the first operand.

Flags Affected

The CF and OF flags are cleared; the SF, ZF, and PF flags are set according to the
result; the AF flag is undefined.

Protected Mode Exceptions

#OP(O) if the result is in a nonwritable segment; #OP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or OS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

26-287

infel® INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

26-288

Appendices

Opcode Map A

APPENDIX A
OPCODE MAP

The opcode tables that follow aid in interpreting Intel486 processor object code. Use
the high-order four bits of the opcodeas an index to a row of the opcode table; use the
low-order four bits as an index to a column of the table. If the opcode is OFH, refer to
the two-byte opcode table and use the second byte of the opcode to index the rows and
columns of that table.

A.1 KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an
uppercase letter, specifies the addressing method; the second character, a lowercase
letter, specifies the type of operand.

A.2 CODES FOR ADDRESSING METHOD

A Direct address; the instruction has no modR/M byte; the address of the operand is
encoded in the instruction; no base register, index register, or scaling factor can be
applied; e.g., far JMP (EA).

C The reg field of the modR/M byte selects a control register; e.g., MOY (OF20,
OF22).

D The reg field of the modRIM byte selects a debug register; e.g., MOY (OF21,OF23).

E A modR/M byte follows the opcode and specifies the operand. The operand is
either a general register or a memory address. If it is a memory address, the
address is computed from a segment register and any of the following values: a
base register, an index register, a scaling factor, a displacement.

F Flags Register.

G The reg field of the modR/M byte selects a general register; e.g., ADD (00).

I Immediate data. The value of the operand is encoded in subsequent bytes of the
instruction.

J The instruction contains a relative offset to be added to the instruction pointer
register; e.g., JMP short, LOOP. .

M The modR/M byte may refer only to memory; e.g., BOUND, LES, LDS, LSS, LFS,
LGS.

o The instruction has no modRIM byte; the offset of the operand is coded as a word
or double word (depending on address size attribute) in the instruction. No base
register, index register, or scaling factor can be applied; e.g., MOY (AO-A3).

A-1

intel® OPCODE MAP

R The mod field of the modRIM byte,may refer only to a general register; e.g., MOY
(OF20-0F24, OF26). .

S The reg field of the modRiM byte selects a segment register; e.g., MOY (8C,8E).

T The reg field of the modRiM byte selects a test register; e.g.,MOY (OF24,OF26).

X '. Memory addressed by the DS:SI register pair; e.g., MOYS, COMPS,OUTS,
LODS.

Y Memory addressed by the ES:DI register pair; e.g., MOYS, CMPS, INS, STOS,
SCAS.

A.3 CODES FOR OPERAND, TYPE

a Two one-word operands in memory or two double-word operands in memory,
depending on operand size attribute (used only by BOUND).

b Byte (regardless of operand size attribute)
. ,.,>

c ' Byte or word, depending on operand site attribute:

d Double, word (regardless of operand size attribute) .

p Thirty-two bit or 48-bit pointer, depending on operand size attribute.

s Six-bYte pseudo-descriptor

v Word or double word,. depending on operand size attribute.
. i . .

w Word (regardless of operand size attribute)

A.4 REGISTER CODES

Whenarioperand isa specific register encoded in the opcode, the' register is identified
by its name; e.g., AX, CL, or ESI. The name of the register indicates whether the
register is 32-, 16-, or 8-bits wide. A register identifier of the form eXX is used when the
width of the register depends on the operand size attribute; for example, eAX indicates
that the AX register is used when the operand size attribute is 16 and the EAX register
is used when theoperan:d size attribute is 32.

A-2

intel® OPCODE MAP

A-3

infel® OPCODE MAP

One-Byte Opcode Map

o 2 3 4 5 6 7

o
ADD PUSH POP

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv ES ES

ADC PUSH POP

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv SS SS

AND SEG DAA
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =ES 2

XOR SEG
=SS AM

Eb,Gb EV,Gv Gb,Eb Gb,Ev AL,lb eAX,lv
3

4
INC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5
PUSH general register

eAX eCX eDX eBX eSP eBP eSI eDI

PUSHA POPA BOUND ARPL SEG SEG Operand Address
GV,Ma EW,Gw =FS =GS Size Size 6

7
Short-displacement jump on condition (Jb)

JO JNO JB JNB JZ JNZ JBE JNBE

Immediate Grpl Grpl TEST XCHG

Eb,lb EV,lv Eb,lb Eb,Gb EV,Gv Eb,Gb EV,Gv
8

9 NOP
XCHG word or double-word register with eAX

eCX eDX eBX eSP eBP eSI eDI

MOV MOVSB MOVSW/D CMPSB CMPSW/D

AL,Ob eAX,Ov Ob,AL OV,eAX Xb,Yb XV,Yv Xb,Yb XV,Yv A

B
MOV immediate byte into byte register

AL CL DL BL AH CH DH BH

Shift Grp2 RET near LES LOS MOV

Eb,lb EV,lb Iw GV,Mp GV,Mp Eb,lb EV,lv
C

o
Shift Grp2

AAM AAD SALC XLAT
Eb,1 EV,1 Eb,CL EV,CL

LOOPNE LOOPE LOOP JCXZ IN OUT

Jb Jb Jb Jb AI,lb eAX,lb Ib,AL Ib,eAX
E

LOCK REPNE REP HLT CMC
Unary Grp3

REPE Eb Ev
F

A-4

OPCODE MAP

One-Byte Opcode Map

8 9 A B C D E F

o
OR PUSH 2-byte

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv CS escape

SBB PUSH POP

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv DS DS

SUB SEG
=CS DAS

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv
2

CMP SEG AAS
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =DS 3

DEC general register
4

eAX eCX eDX eBX eSP eBP eSI eDI

5
POP into general register

eAX eCX eDX eBX eSP eBP eSI eDI

PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D
Iv GvEvlv Ib GvEvlb Yb,DX YV,DX DX,Xb DX,Xv 6

7
Short-displacement jump on condition (Jb)

JS JNS JP JNP JL JNL JLE JNLE

MOV MOV LEA MOV POP

Eb,Gb EV,Gv Gb,Eb GV,Ev Ew,Sw GV,M SW,Ew Ev 8

CBW CWD CALL WAIT PUSHF POPF SAHF LAHF Ap Fv Fv 9

TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D

AL,lb eAX,lv Yb,AL YV,eAX AL,Xb eAX,Xv AL,Yb eAX,Yv A

B
MOV immediate word or double into word or double register

eAX eCX eDX eBX eSP eBP eSI eDI

ENTER RET far INT INT
IW,iB LEAVE 3 Ib INTO IRET

Iw
C

D ESC (Escape to coprocessor instruction set)

CALL JMP IN OUT

Jv JV AP Jb AL,DX eAX,DX DX,AL DX,eAX
E

CLC STC CLI STI CLD sm INC/DEC INC/DEC
Grp4 Grp5 F

A-5

OPCODE MAP

Two-Byte Opcode Map (first byte is OFH)

o 2 3 4 5 6 7

o Grp6 Grp7 LAR LSL LOADALL CLTS LOADALLD "Gv,Ew Gv,Ew

MOV MOV MOV MOV
Eb,Gb Gv,Ev Gb,Eb Ev,Gv

MOV MOV MOV MOV MOV MOV
Rd,Cd Rd,Dd Cd,Rd Dd,Rd Rd,Td Td,Rd 2

3

4

5

6

7

8
Long-displacement jump on condition (Jv)

JO JNO JB JNB JZ JNZ JBE JNBE

9
Byte Set on condition (Eb)

SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE

PUSH POP BT SHLD SHLD A step A step

FS FS Ev,Gv EvGvlb EvGvCL CMPXCHG CMPXCHG
XBTS IBTS

A

CMPXCHG CMPXCHG LSS BTR LFS LGS MOVZX

Eb,Gb Ev,Gv Mp Ev,Gv Mp Mp Gv,Eb Gv,Ew
B

XADD XADD
Eb,Gb Ev,Gv C

o

E

F

A-6

intel® OPCODE MAP

Two-Byte Opcode Map (first byte is OFH)

8 9 A B C D E F

o INVD WBINVD

2

3

4

5

6

7

Long-displacement jump on condition (Jv)

JS JNS JP JNP JL JNL JLE JNLE
8

Byte set on condition (Eb)

Eb Eb Eb Eb Eb Eb Eb Eb

9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE

PUSH POP BTS SHRD SHRD IMUL
GS GS EV,Gv EvGvlb EvGvCL GV,Ev A

Grp-8 BTC BSF BSR MOVSX

EV,lb EV,Gv GV,Ev GV,Ev GV,Eb GV,Ew
B

BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP
EAX ECX EDX EBX ESP EBP ESI EDI C

D

E

F

A-7

intaL OPCODEMAP

Opcodes determined by bits 5,4,3 of modR/M byte:

mod nnn RIM

000 001 010 011 100 101 110 111

1 ADD OR ADC SBB AND SUB XOR CMP

2 ROL ROR RCL RCR SHL SHR SHL SAR

3 TEST TEST NOT NEG MUL IMUL DIV IDIV
Ib/lv Ib/lv ALleAX ALleAX ALleAX ALleAX

4 INC DEC
Eb Eb

5 INC DEC CALL CALL JMP JMP PUSH
Ev Ev Ev Ep Ev Ep Ev

Opcodes determined by bits 5,4,3 of modR/M byte:

mod nnn RIM

000 001 010 011 100 101 110 111

6 SLDT STR LLDT LTR VERR VERW
Ew Ew Ew Ew Ew Ew

7 SGDT SIDT LGDT LlDT SMSW LMSW INVLPG Ms Ms Ms Ms Ew Ew

a BT BTS BTR BTC

A-a

Flag Cross-Reference B

APPENDIX B
FLAG CROSS-REFERENCE

B.1 KEY TO CODES

T instruction tests flag
M instruction modifies flag (either sets or resets depending on operands)
o instruction resets flag
1 instruction sets flag

instruction's effect on flag is undefined
R instruction restores prior value of flag
blank instruction does not affect flag

Instruction OF SF ZF AF PF CF TF IF OF NT RF

AM - - - TM - M
AAD - M M - M -
AAM - M M - M -
AAS - - - TM - M
ADC M M M M M TM
ADD M M M M M M
AND 0 M M - M 0
ARPL M
BOUND
BSF/BSR - - M - - -
BSWAP
BT /BTS/BTR/BTC - - - - - M
CALL
CBW
CLC 0
CLD 0
CLI 0
CLTS
CMC M
CMP M M M M M M
CMPS M M M M M M T
CMPXCHG M M M M M M
CWD
DAA - M M TM M TM
DAS - M M TM M TM
DEC M M M M M
DIV - - - - - -
ENTER
ESC
HLT
IDIV - - - - - -
IMUL M - - - - M
IN
INC M M M M M
INS T
INT 0 0
INTO T 0 0
INVD
INVLPG

B-1

infel® FLAG CROSS-REFERENCE

Instruction OF SF ZF AF PF CF TF IF OF NT RF

IRET R' R R R R R R R R T
Jcond T T T T T
JCXZ
JMP
LAHF
LAR M
LDS/LES/LSS/LFS/LGS
LEA
LEAVE ' .
LGDT/LiDT/LLDT/LMSW
LOCK
LODS T
LOOP
LOOPE/LOOPNE T
LSL M
LTR
MOV
MOV control, debug - - - - - -
MOVS'
MOVSX/MOVZX

I T

MUL M - - - - M
NEG M M M M M M
NOP
NOT
OR 0 M M - M 0
OUT
OUTS T
POP/POPA
POPF R R R R R R R R R R
PUSH/PUSHA/PUSHF
RCL/RCR 1 M TM
RCL/RCR c9unt - TM
REP/REPE/REPNE
RET '.

ROL/ROR 1 M M
ROL/ROR count - M
SAHF R R R R R
SAL/SAR/SHL/SHR 1 M M M - M M
SAL/SAR/SHL/SHR count - M M - M M
SBB M M " M M M TM

I····

SCAS M M M M M M T
SET cond ' T T T T T
SGDT /SI DT iSLDT /SMSW I·
SHLD/SHRD - M M - M M
STC 1
STD 1
STI 1
STOS T
STR
SUB M M M M 'M M
TEST 0 ,M M - M 0
VERRNERRW I M
WAIT

,

WBINVD
XADD M M M M M M
XCHG
XLAT
XOR 0 M M - M 0

..

B-2

Status Flag Summary C

APPENDIX C
STATUS FLAG SUMMARY

C.1 STATUS FLAGS' FUNCTIONS

Bit Name Function

0 CF Carry Flag-Set on high-order bit carry or borrow; cleared otherwise.

2 PF Parity Flag-Set if low-order eight bits of result contain an even number
of 1 bits; cleared otherwise.

4 AF Adjust Flag-Set on carry from or borrow to the low order four bits of
AL; cleared otherwise. Used for decimal arithmetic.

6 ZF Zero Flag - Set if result is zero; cleared otherwise.

7 SF Sign Flag - Set equal to high-order bit of result (0 is positive, 1 if
negative).

11 OF Overflow Flag-Set if result is too large a positive number or too. small a
negative number (excluding sign-bit) to fit in destination operand;
cleared otherwise.

C.2 KEY TO CODES

T instruction tests flag

M instruction modifies flag
(either sets or resets depending on operands)

o instruction resets flag

instruction's effect on flag is undefined

blank instruction does not affect flag

Instruction OF SF ZF AF PF CF

AAA - - - TM - M
AAS - - - TM - M

AAD - M M - M -
AAM - M M - M -

DAA - M M TM M TM
DAS - M M TM M TM

ADC M M M M M TM
ADD M M M M M M
XADD M M M M M M
SBB M M M M M TM
SUB M M M M M M

C-1

STATUS FLAG SUMMARY

Instruction OF. SF ZF AF PF CF
'.

CMP M M M M M M
CMPS M M M M M M
CMPXCHG M M M M M M
SCAS M M M M M M
NEG M M M M M M

DEC M M M M M
INC M M M M M

IMUL M ~ - - - M
MUL M - .:.. - - M

RCL)RCR 1 M TM
RCL)RCR count - TM
ROL)ROR 1 M M

, ROL)ROR count - M
SAL)SAR/SHL)SHR 1 M M M - M M
SAL)SAR/SHL)SHR count - M M - M M

SHLD/SHRD - M M - M M
BSF/BSR - - M - - -
. BT /BTS/BTR/BTC - - - - - M

AND 0 M M - M 0
OR 0 M M - M 0
TEST 0 M M - M 0
XOR 0 M M - M 0

C-2

Condition Codes o

APPENDIX D
CONDITION CODES

Note: The terms "above" and "below" refer to the relation between two unsigned values
(neither the SF flag nor the OF flag is tested). The terms "greater" and "less" refer to
the relation between two signed values (the SF and OF flags are tested).

0.1 DEFINITION OF CONDITIONS

(For conditional instructions Jcond, and SETcond)

Mnemonic Meaning
Instruction

Condition Tested
Subcode

0 Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B Below
0010 CF = 1

NAE Neither above nor equal

NB Not below
0011 CF = 0

AE Above or equal

E Equal
0100 ZF = 1 Z Zero

NE Not equal
0101 ZF = 0

NZ Not zero

BE Below or equal
0110 (CF or ZF) = 1

NA Not above

NBE Neither below nor equal
0111 (CF or ZF) = 0

A Above

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P Parity
1010 PF = 1

PE Parity even

NP No parity
1011 PF = 0

PO Parity odd

L Less
1100 (SF xor OF) = 1

NGE Neither greater nor equal

NL Not less
1101 (SF xor OF) = 0

GE Greater or equal

LE Less or equal
1110 ((SF xor OF) or ZF) = 1

NG Not greater

NLE Neither less nor equal
1111 ((SF xor OF) or ZF) = 0

G Greater

0-1

Instruction Format and E
Timing

APPENDIX E
INSTRUCTION FORMAT AND TIMING

This appendix is an excerpt from the Intel486 '" Processor Data Sheet.

E-1

in1'el@ INSTRUCTION FORMAT AND TIMING

10.0 INSTRUCTION SET SUMMARY

This section describes the Intel486 microprocessor
instruction set. Tables 10.1 through 10.3 list all in­
structions along with instruction encoding diagrams
and clock counts. Further details of the instruction
encoding are then provided in Section 10.2, which
completely describes the encoding structure and the
definition of all fields occurring within the Intel486
microprocessor instructions.

10.1 Intel486™ Microprocessor
Instruction Encoding and Clock
Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Tables 1 0.1
through 10.3 by the processor clock period (e.g.,
40 ns for a 25 MHz Intel486 microprocessor).

For more detailed information on the encodings of
instructions, refer to Section 10.2 Instruction Encod­
ings. Section 10.2 explains the general structure of
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction.

INSTRUCTION CLOCK COUNT ASSUMPTIONS

The Intel486 microprocessor instruction clock count
tables give clock counts assuming data and instruc­
tion accesses hit in the cache. A separate penalty
column defines clocks to add if a data access miss­
es in the cache. The combined instruction and data
cache hit rate is over 90%.

A cache miss will force the Intel486 microprocessor
to run an external bus cycle. The Intel486 microproc­
essor 32-bit burst bus is defined as r-b-w.

Where:

r = The number of plocks in the first cycle of a
burst read or the number of clocks per data
cycle in a non-burst read.

b = The number of clocks for the second and sub­
sequent cycles in a burst read.

w = The number of clocks for a write.

The fastest bus the Intel486 microprocessor can
support is 2 -1 - 2 assuming 0 wait states. The
clock counts in the cache miss penalty column as­
sume a 2-1-2 bus. For slower busses add r-2
clocks to the cache miss penalty for the first dword
accessed. Other factors also affect instruction clock
counts.

Instruction Clock Count Assumptions
1. The external bus is available for reads or writes

at all times. Else add clocks to reads until the
bus is available.

E-2

2. Accesses are aligned. Add three clocks to each
misaligned access.

3 .. Cache fills complete before subsequent access­
es to the same line. If a read misses the cache
during a cache fill due to a previous read or pre­
fetch, the read must wait for the cache fill to
complete. If a read or write accesses a cache
line still being filled, it must wait for the fill to
complete.

4. If an effective address is calculated, the base
register is not the destination register of the pre­
ceding instruction. If the base register is the
destination register of the preceding instruction
add 1 to the clock counts shown. Back-to-back
PUSH and POP instructions are not affected by
this rule.

5. An effective address calculation uses one base
register and does not use an index register.
However, if the effective address calculation
uses an index register, 1 clock may be added to
the clock count shown.

6. The target of a jump is in the cache. If not, add r
clocks for accessing the destination instruction
of a jump. If the destination instruction is not
completely contained in the first dword read,
add a maximum of 3b clocks. If the destination
instruction is not completely contained in the
first 16 byte burst, add a maximum of another
r+3b clocks.

7. If no write buffer delay, w clocks are added only
in the case in which all write buffers are full.
Typically, this case rarely occurs.

8. Displacement and immediate not used together.
If displacement and immediate used together, 1
clock may be added to the clock count shown.

9. No invalidate cycles. Add a delay of 1 clock for
each invalidate cycle if the invalidate cycle con­
tends for the internal cache/external bus when
the Intel486 CPU needs to use it.

10. Page translation hits in TLB. A TLB miss will add
13, 21 or 28 clocks to the instruction depending
on whether the Accessed and/or Dirty bit in nei­
ther, one or both of the page entries needs to
be set in memory. This assumes that neither
page entry is in the data cache and a page fault
does not occur on the address translation.

11. No exceptions are detected during instruction
execution. Refer to Interrupt Clock Counts Ta­
ble for extra clocks if an interrupt is detected.

12. Instructions that read multiple consecutive data
items (I.e. task switch, POPA, etc.) and miss the
cache are assumed to start the first access on a
16-byte boundary. If not, an extra cache line fill
may be necessary which may add up to (r+3b)
clocks to the cache miss penalty.

intel® INSTRUCTION FORMAT AND TIMING

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary

INSTRUCTION FORMAT CacheHl1 Penally If
Notes CacheMI ...

INTEGER OPERATIONS

MOV ~ Move:

r091 to rog2 1000100W 11 rogl rog21 1

rog2 to mgl 1000101w 11 rS 91 rog21 1

memory to reg 1000101w mod rog rim 1 1 2

reg to memory 1000100w mod reg r/ml 1

Immediate to reg 1100011 w 11000 reg I immediate data 1

or 1011w rog immediate data 1

Immediate to Memory 1100011 w
d I I displacement

mo 0 0 0 r m Immediate 1

Memory to Accumulator 1010000w full displacement 1 2

Accumulator to Memory 1010001w I full displacement 1

MOVSX/MOVZX ~ Move wllh Slgn/Zero Exlenslon

r092 to reg1 I 00001111 1 1011 zll w 111 reg1 rog21 3

memory to rsg I 00001111 1 1011 zll w 1 mod rog rim 1 3 2

z Inslrucllon

0 MOVZX
1 MOVSX

PUSH ~ Push

rog I 11111111 111 110 rogl 4

or 101010 rogl 1

memory 1 11111111 I mod 110 r/ml 4 1 1

immediate I 01101050 I immediate data 1

PUSHA ~ Push All I 01100000 1 11

POP ~ Pop

rog I 10001111 111 000 reg 1 4 1

or 101011 rog 1 1 2

memory I 10001111 1 mod 000 r/ml 5 2 1

POPA ~ PopAII I 01100001 1 9 7/15 16/32

XCHG ~ Exchange

r091 with rog2 1000011w 111 rog1 rog21 3 2

Accumulator with reg 10010 reg 1 3 2

Memory with reg 1000011w I mod reg r/ml 5 2

NOP ~ No Opsrallon 10010000 1 1

LEA ~ Load EA 10 Reglsler 10001101 1 mod reg r/ml
no index register 1
with index register 2

E·3

intel® INSTRUCTION FORMAT AND TIMING

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit
Penalty If

Notes CacheMI.B

INTEGER OPERA nONS (Ccntinued)

Instruct10n TTT

ADD = Add 000
ADC = Add with Carry 010
AND = Logical AND 190
OR = Logical OR 001
SUB = Sublract 101
sae = Subtract with Borrow 011
XOR = Logical Exclusive OR 110

re91 tor8g2 OOTTTOOw 11 re91 reg2! 1

reg2to reg1 OOTTTOlw 11 reg1 reg2! 1

memory to register OOTTTOlw mod reg rim! 2 2

register to memory OOTTTOOw mod reg rim! 3 6/2 U/L

immediate to register 100000sw 11 TTT reg I immediate register 1

immediate to accumulator 00TTT10w immediate data 1

immediate to memory I 100000sw mod TTT rIm I immediate data 3 6/2 U/L

Instruction TTT

INC = Increment 000
DEC = Decrement 001

reg I l111111w 111 TTT reg I 1

or 101TTT reg I 1

memory I lllllllw I mod TTT r/ml 3 6/2 U/L

Instruction TTT

NOT = Logical Ccmplement 010
NEG = Negate 011

reg I 1111011w 111 TTT reg ! 1

memory I 1111011w 1 mod TTT rim I 3 6/2 U/L

CMP = Compare

reg1 with reg2 0011100w 11 reg1 reg21 1

reg2 with reg1 0011101 w 11 regl reg21 1

memory with register 0011100w mod reg rim I 2 2

register with memory 0011101 w mod reg rim I 2 2

immediate with register 100000sw 11 111 rag I immediate data 1

immediate with acc. 0011110w immediate data 1

immediate with memory 100000sw mod 111 rIm I immediate data 2 2

TEST = Logical Compare

rog1 and reg2 I 1000010w 11 rog1 reg21 1

memory and register I 1000010w mod reg rim I 2 2

immediate and register I 1111011w 11 000 reg I immediate data 1

immediate and acc. I 1010100w immediate data 1

immediate and memory I 1111011 w mod 000 rIm I immediate data 2 2

E-4

INSTRUCTION FORMAT AND TIMING

Table 10 1 Intel486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit
Penalty II

Notes
CachoMlsa

INTEGER OPERATIONS (ContInued)

MUL ~ Multiply (unnlgnod)

acc. with register I 1111011 w 1.11 100 reg I
Multiplier·Syte 13/18 MN/MX,3

Word 13/26 MN/MX,3

Dward 13/42 MN/MX,3

acc. with memory I 1111011 w I mod 100 rlml

Multiplier-Byte 13/18 1 MN/MX,3

Word 13/26 1 MN/MX,3

Dward 13/42 1 MN/MX,3

IMUL ~ Intoger Multiply (nlgnod)

acc. with register I 1111011 w 111 101 reg I
Multiplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3

Dward 13/42 MN/MX,3

ace. with memory I 1111011 w I mod 101 r/mi
Multiplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3

Dword 13/42 MN/MX,3

reg1 with reg2 I 00001111 I 10101111 111 reg1 reg21

Multiplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3

Dward 13/42 MN/MX,3

register with memory I 00001111 I 10101 11 1 I mod reg r/mi
Multiplier-Byte 13/18 1 MN/MX,3

Word 13/26 1 MN/MX,3

Dward 13142 1 MN/MX,3

reg1 with imm. to reg2 I 0110105 1 111 reg1 r892 1 immediate data

Multiplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3

OWard 13/42 MN/MX,3

memo with imm. to reg. I 01101051 I mod reg rim I immediate data

Multiplier-Byte 13/18 2 MN/MX,3

Word 13/26 2 MN/MX,3

Dword 13/42 2 MN/MX,3

DIY ~ Divide (unnlgnod)

acc. by register I 1111011 w 111 110 reg I
Divisor-Byte 16

Word 24

Dword 40

acc. by memory I 1111011 w I mod 110 rlml

Divisor-Byte 16

Word 24

Dword 40

IDIV ~ Inleger Divide (algned)

ace. by register I 1111011 w 111 111 reg I
Divisor-Byte 19

Word 27

Dword 43

E-5

inteL INSTRUCTION FORMAT AND TIMING

Table 10.1.lnteI486™ Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT CacheHl1
Penally If

Not ••
CacheMlse

INTEGER OPERATIONS (Continued)

acc. by memory 1111 1011 w I mod 111 rim I
Divisor-Byte 20

Word 28

Dword 44

CBW/CWDE ~ ConYert Byte 10 Word/
Convert Word to Dword 1,00,10001 3

CWD/CDQ ~ Conyert Word 10 Dword/
1,001,0011 Convert Dword to 3

Quadword

Instruction TTT

ROL ~ Rotate Left 000
ROR ~ Rotate Right 001
RCL ~ Rotate through Carry Left 010
RCR ~ Rotate through Carry Right 011
SHL/SAL ~ Shift Logical/Arithmetic Left 100
SHR ~ Shift Logical Right 101
SAR ~ Shift Arithmetic Right 111

Nol Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

regbyl 1101000w It TTT reg I 3

memory by 1 1101000w mod TTT rim I 4 6

reg byCL 1101001 w 11 TTT reg I 3

memory by CL 1101001 w mod TTT r/ml 4 6

reg by immediate count 1100000w 11 TTT reg I immediate B-bit data 2

mam by immediate count 1100000w mod TTT rIm I immediate 8-bit data 4 6

Through Canry (RCL and RCR)

reg by 1 1101000w 111 TTT reg I 3

memory by 1 1101000w mod TTT r/ml 4 6

reg by CL 1101001 w 11 TTT reg I 8/30 MN/MX,4

memorybyCL 1101001 w mod TTT rim I 9/31 MN/MX,5

reg by immediate count 1100000w 11 TTT reg I immediate B-bit data 8/30 MN/MX,4

mam by immediate count 1100000w mod TTT rIm I immediate B-bit data 9/31 MN/MX,5

Instruction TTT

SHLD ~ Shift Left Double 100
SHRD ~ Shift Right Double 101

register with immediate 00001111 10TTT100 111 rog2 re91 I imm 8-bit data 2

memory by immediate 00001111 10TTT100 I mod reg rIm I imm B-bit data 3 6

register by CL 00001111 10TTT101 111 rog2 reg11 3

memorybyCL 00001111 10TTT10l I mod reg rim I 4 5

BSWAP ~ Byte Swap 00001111 11001 reg I 1

XADD ~ Exchange and Add

regl, reg2 I 00001111 1'100000W 111 rog2 reg11 3

memory,feg I 00001111 1'100000W I mod reg r/ml 4 6/2 U/L

CMPXCHG ~ Compar. and Exchange

rog1. rog2 I 00001111 1'0"000W 111 rog2 regll 6

memory, reg I 00001111 1'011000W I mod reg rim I 7/10 2 6

E-6

intel® INSTRUCTION FORMAT AND TIMING

Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Penalty II Notos Cacho Mls8

CONTROL TRANSFER (within segmont)

NOTE: Times are jump taken/not taken

Jece = Jump on eec

a·bit displacement I 0111 tttn I 8-bitdisp. I 3/1 T/NT,23

full displacemont I 00001111 I 1000t11n I full displacement 3/1 T/NT,23

NOTE: Times are jump taken/not taken

SETcccc = Set Byto on ecce (Tlmou aro ecce true/fnluo)

reg I 00001111 I 1001t11n 111 000 reg I 4/3

memory I 00001111 I 1001t11n I mod 000 rim I 3/4

Mnemonic
Condition IItn

ccce

0 OVerflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010

NB/AE Not Below! Above or Equal 0011

E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110

NBE/A Not Below or Equall Above 0111

S Sign 1000
NS Not Sign 1001
PIPE Parity/Parity Even 1010

. NP/PO Not ParitylParity Odd 1011
LlNGE Less Than/Not Greater or Equal 1100
NLiGE Not less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less Than or Equal/Greater Than 1111

LOOP ~ LOOP CX Tlmos I 11100010 8·bit disp. 7/6 L/NL,23

LOOPZ/LOOPE ~ Loop with I 11100001 a-bit disp. 9/6 LINL,23

Zoro/Equal

LOOPNZ/LOOPNE ~ Loop while I 11100000 e-bitdisp. 9/6 LlNL,23

NotZoro

JCXZ ~ Jump on CX Zoro I 11100011 B-bit disp. 8/5 TINT. 23

JECXZ ~ Jump on ECX Zero I 11100011 8-bit disp. 8/5 TINT. 23

(Address Size Prefix Differentiates JCXZ for JECXZ)

JMP = Unconditional Jump (within 80 mont)

Short 11101011 I B-bitdisp. I 3 7,23

Direct 11101001 I full displacement 3 7,23

Register Indirect 11111111 111 100 reg I 5 7,23

Memory Indirect 11111111 I mod 100 r/ml 5 5 7

CALL ~ Call (within segmont)

Direct 11101000 I full displacement 3 7.23

Register I~direct 11111111 111 010 reg I 5 7,23

Memory Indirect 11111111 I mod 010 r/ml 5 5 7

RET = Return from CALL (within 8ogment)

I 11000011 I 5 5

Adding Immediate to SP I 11000010 I 16·bit disp. I 5 5

E-7

INSTRUCTION FORMAT AND TIMING

Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit
Penalty"

Notes
C.cheMI ...

CONTROL TRANSFER (within .egment) (Continued)

ENTER = Enter Proceduro I 11001000 lIS-bit disp .. a·bit level

level = 0 14
level = 1 17
level (l) > 1 lH3l 8

LEAVE == Leave Procedure I 1100 1 001 I 5 1

MUL TlPLE·SEGMENT INSTRUCTIONS

MOV ~ Move

reg. to segment reg. I 1000 111 a 111 srag3 reg I 3/9 0/3 RV/P,9

memory to segment reg. I 1000 1110 I mod srag3 rim I 3/9 2/5 RV/P, 9

segment reg. to reg. 1 10001100 111 srag3 re91 3

segment reg. to memory I 10001100 I mod srag3 r/ml 3

PUSH ~ Push

segment reg. 1000sre921101 3
(ES, CS, 55, or OS)

segment reg. (FS or GS) 1 00001111 1,0 5r8930001 3

POP ~ Pop

segment reg. 1000SrOg2111 3/9 2/5 RV/P,9
(ES, 55, or OS)

segmonl reg. (FS or GS) 1 0000 1111 10 SrOg30011 3/9 2/5 RV/P,9

LOS = Load Pointer to DS 1 11000101 mod rog rim I 6/12 7/10 RV/P, 9

LES ~ Load Pointer to ES I 11000100 mod reg r/ml 6/12 7/10 RV/P, 9

LFS ~ Load Pointer to FS I 0000 1111 10 110 100 I mod reg r/ml· 6/12 7/10 RV/P, 9

LGS ~ Load Pointer to GS 1 a a a a 1111 10 110101 I mod reg rim I 6/12 7/10 RV/P, 9

LSS ~ Load Polntor to SS I 0000 1111 10 1100 1 a I mod rog rim I 6/12 7/10 RV/P, 9

CALL ~ Can

Direct intersegment I 100 110 10 I unsigned full offset, selector 18 2 R, 7, 22

to same level 20 3 P,9
thru Gate to same level 35 6 P,9
to inner level, no parameters 69 17 P,9
to inner level, x parameter (d) words 77+4X 17+" P,I',9
10TSS 37+TS 3 P, 10, 9
thru Task Gate 38+TS 3 P, 10, 9

Indirect intersegment I 11111111 I mod 01t r/ml 17 8 R,7

to same level 20 10 P,9
thru Gate to same level 35 13 P,9
to inner level, no parameters 69 24 P,9
to inner level, x parameter (d) words 77+4X 24+n P,I',9
toTSS 37+TS 10 P,10,9
thru Task Gate 38+TS 10 P, 10, 9

RET ~ Return from CALL

intersegment I 11001011 I 13 8 R,7

to same level 17 9 P,9
to outer level 35 12 P,9

intersegment adding I 1100 1010 I 16-bit disp. I
imm.toSP 14 8 R,7

to same level 18 9 P,9
to outer level 36 12 P,9

E·8

INSTRUCTION FORMAT AND TIMING

Table 10.1.lnteI486™ Microprocessor Integer Clocle Count Summary (Continued)

INSTRUCTION FORMAT CDcho Hit
Ponalty If

NotOl)
CDchoMloG

MULTIPLE·SEGMENT INSTRUCTIONS (Continued)

JMP ~ Unconditional Jump

Direct intersogment 1 11101010 I unsigned full offset, selector 17 2 R, 7, 22

to same level 19 3 P,9
thru Call Gate to same level 32 6 P,9

thruTSS 42+TS 3 P, 10,9
thru Task Gate 43+TS 3 P, 10,9

Indirect intersegment 1 11111111 1 mod 101 rim I 13 9 R, 7, 9

to same level 18 10 P,9
thru Call Gate to same level 31 13 P,9

thru TSS 41+TS 10 P, 10, 9

thru Task Gate 42+TS 10 P, 10, 9

BIT MANIPULATION

BT ~ Teat bit

register, immediate 1 00001111 1 10111010 111 100 reg I imrn. a-bit data 3

memory, immediate 1 00001111 1 10111010 1 mod 100 rim I imm. a-bit data 3 1

re91. rog2 1 00001111 110100011 111 reg2 rog1 I 3

memory, reg 1 00001111 1 10100011 1 mod reg r/ml B 2

Inatruction TIT

BTS ~ Test Bit and Set 101

BTA = Test Bit and Reset 110

BTC = Test Bit and Compliment 111

register, immediate 1 00001111 1 10111010 111 TTT reg I imm. a-bit data 6

memory, immediate 1 00001111 1 10111010 1 mod TTT rIm I imm. 8-bit data 8 2/0 U/L

r8g1, r092 100001111 1 10TTT011 111 rog2 rog11 6

memory, reg 1 00001111 1 10TTT011 1 mod reg r/ml 13 3/1 U/L

BSF = Scan BIt Forward

r091, r692 1 00001111 1 10111100 111 rog2 rog1) 6/42 MN/MX,12

memory, reg 1 00001 111 1 10111100 1 mod reg rim I 7/43 2 MN/MX,13

BSR = Scan Bit ReverBe

reg1, reg2 1 00001111 1 10111101 111 reg2 reg1) 6/103 MN/MX,14

memory, reg I 00001111 1 1011 1 101 I mod reg r/ml 7/104 1 MN/MX,15

STRtNG INSTRUCTIONS

CMPS = Compare Byte Word 1 1010011 w I B 6 16

LODS ~ Load Byte/Word 1 1010110w I 5 2

to ALI AX/EAX

MOVS ~ Move Byte/Word 1 1010010w I 7 2 16

SCAS ~ Scan Byte/Word I 1010111 w I 6 2

STOS ~ Store Byte/Word 1 1010 t 01 w I 5

from ALiAX/EX

XLAT = Translato String 1 11010111 I 4 2

E-9

infel® INSTRUCTION FORMAT AND TIMING

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Penally II Note. cacheM ...

REPEATED STRING INSTRUCTIONS

Repeated by Count in CX or ECX (C ~ Count in CX or ECX)

REPE CMPS ~ Compare String I 11110011 I 1010011 w I
(Find Non-Match)
C~O

5
C>O 7+7c 16,17

REPNE CMPS ~ Compare String I 11110010 I 1010011 w I
(Find Match)
C~O 5
C>O 7+7c 16,17

REP LODS ~ Load Siring I 11110011 I 1010110w I
C~O 5
C>O 7+40 16,18

REP MOYS ~ Moye SIring I 11110011 I 1010010w I
C~O 5
C~1 13 1 16
C>1 12+3c 16,19

REPE SCAS ~ Scan SIring I 11110011 I 1010111 w I
(Find Non-ALI AX/EAX)
C~O 5
C>O 7+5c 20

REPNE SCAS ~ Scan String I 11110010 I 1010111 w I
(Find AL/AX/EAX)
C~O 5
C>O 7+5c 20

REP STOS ~ Store String I 11110011 I 1010101w I
C~O 5
C>O 7+4c

FLAG CONTROL

CLC ~ Clear Carry Rag 11111000 2

STC ~ set carry Flag 11111001 2

CMC ~ Complement carry Flag 11110101 2

CLD ~ Cioar Direction Rag 11111100 2

STD ~ set Direction Rag 11111101 2

CLI ~ Clear Intorrupt 11111010 5
Enable Flag

STI ~ setlnterrupl 11111011 5
Enable Flag

LAHF ~ Load AH Into Rag 10011111 3

SAHF ~ Store AH Into Flags 10011110 2

PUSHF ~ Push Flags 10011100 4/3 RV/P

POPF ~ Pop Flogs 10011101 9/6 RV/P

DECIMAL ARITHMETIC

AAA ~ ASCII Adjust lor Add I 00110111 I 3

AAS ~ ASCII AdjuBtlor I 00111111 I 3
SUbtract

AAM ~ ASCII AdjuBllor I 11010100 I 00001010 I 15
Multiply

E-10

in1:el" INSTRUCTION FORMAT AND TIMING

Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT cache Hit Penalty II Notes cacheM.s

DECIMAL ARITHMETIC (Continued)

AAD ~ ASCII Adjust lor I 11010101 I 00001010 I 14
Dlvldo

DAA ~ Doclmal Adjust lor Add I 00100111 I 2

DAS ~ Doclmal Adjust lor Subtrect I 00101111 I 2

PROCESSOR CONTROL INSTRUCTIONS

HLT ~ Halt 111110100 I 4

MOY ~ Movo To and From ControllDebuglTest Roglsto ..

CRO from register I 00001111 00100010 11 000 reg I 17 2

CR2/CR3 from regisler I 00001111 00100010 11 eee reg I 4

Reg from CRO-3 I 00001111 00100000 11 eee reg I 4

DRO-3 from register 00001111 00100011 11 eee reg I 10

DR6-7 from register 00001111 00100011 11 eee reg I 10

Register from DR6-7 00001111 I 00100001 11 eee reg I 9

Register from DRO-3 00001111 I 00100001 11 eee reg I 9

TR3 from register 00001111 00100110 11 011 reg I 4

TR4-7 from register 00001111 00100110 11 eee reg I 4

Register from TR3 00001111 00100100 11 011 reg I 3

Register from TR4-7 00001111 00100100 11 eee reg I 4

CL TS ~ Clear Task Switched Flag 00001111 00000110 7 2

INYD ~ Invalldato Data Cache 00001111 00001000 4

WBINVD - Wrlto·Back and Invalldale I 00001111 00001001 5
Dataeacha

INVLPG ~ Invalidate TLB Entry

INVLPG memory I 00001111 I 00000001 I mod 111 rIm I 12111 H/NH

PREFIX BYTES

Addre .. Size Prallx I 01100111 I 1

LOCK ~ Bus Lock Prefix I 11110000 I 1

Operand Slzo Proflx I 01100110 I 1

Sogment Ovorrlde Proflx

CS: I 00101110 I 1

os: I 00111110 I 1

ES: I 00100110 I 1

FS: I 01100100 I 1

GS: I 01100101 I 1

SS: I 00110110 I 1

E-11

infel® INSTRUCTION FORMAT AND TIMING

Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Penally " Notes
CacheMIaa

PROTECTION CONTROL

ARPL ~, AdJuot Requested Privilege Level

From register I 01100011 111 regl reg21 9

From memory I 01100011 I mod reg rIm I 9 '

LAR ~ Load Accea Righta

From register I 00001111 I 00000010 111 regl reg21 11 3

From memory I 00001111 I 00000010 I mod reg rIm I 11 5

LGDT ~ Load Global Descriptor

Table register I 00001111 I 00000001 I mod 010 rIm I 12 5

UDT ~ Load Interrupt Descriptor

Table register I 00001111 I 00000001 I mod 011 rIm I 12 5

LLDT ~ Load Local Deacrlptor

Table register from reg, I 00001111 I 00000000 111 010 reg I 11 3

Table register from memo I 00001111 I 00000000 I mod 010 r/ml 11 6

LMSW ~ Load Machine Statua Word

From regiSter I 00001111 I 00,000001 111 110, reg I 13

From memory I 00001111 I 00000001 I mod 110 rIm I 13 1

LSL ~ Load Segment Urnll

From register I 00001111 I 00000011 111 regl reg21 10 3

From memory I 00001111 I 00000011 I mod reg rIm I 10 6

L TR ~ Load Talk Register

From Register I 00001111 I 00000000 11;1 OIl' reg I 20

From Memory I 00001111 I 00000000 I mod 011 rIm I' 20

SGDT ~ Store Global Deacrlptor Table

I 00001111 I 00000001 I mod 000 rIm I 10

SIDT ~ Store Interrupt Deacrlptor Table

I 00001111 I 00000001 I mod 001 rIm I 10

SLDT ~ Store Local Descriptor Table

To register I 00001111 I 00000000 111 000 reg I 2

To memory I 00001111 I 00000000 I mod 000 rIm I 3

SMSW ~ Store Machine Stotul Word

To register I 00001111 I 00000001 111 100 reg I 2

To memory I 00001111 I 00000001 I mod 100 rIm I 3

STR ~ Store Talk Register

To register, I 00001111 I 00000000 111 001 reg I 2

To memory I 00001111 I 00000000 I mod 001 rIm I 3

VERR - Veitly Read Acceas

Register I 00001111 I 00000000 111 100 rIm I 11 3

Memory I 00001111 I 00000000 I mod 100 rIm I 11 7

VERW ~ Verily Write Accell

Toreglsler I 00001111 I 00000000 111 101 reg I 11 3

To memory I 00001111 I 00000000 I mod 101 rIm I 11 7

E-,12

in1:el® INSTRUCTION FORMAT AND TIMING

Table 10.1. Intel486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION fORMAT Cache Hit Penalty I! Notes
CachaMlaa

INTERRUPT INSTRUCTIONS

INT n ~ Intorrupt Type n I 11001101 I type I INT+4/0 RV/P,'21

INT 3 ~ Intorrupt Type 3 I 11001100 I INT+O 21

INTO ~ Intorrupl4l! I 11001110 I
Overflow Rag SOt
Taken INT+2 21
Not Taken 3 21

BOUND - Intorrupt 51! Dotect I 01100010 I mod reg rim I
Value Out Range

If In range 7 7 21
If out of range INT+24 7 21

IRET ~ Intorrupt Rotum I 11001111 I
Real ModelVirtual Mode 15 B
Protected Mode

To same level 20 11 9
To outer level 36 19 9
To nested task (EFLAGS.NT ~ 1) TS+32 4 9,10

Extemallnterrupt INT+l1 21

NUl ~ Non-Ua.kablolntorrupt INT+3 21

Pagofault INT+24 21

YUB6 Excaptlono
eLI INT+8 21
STI INT+8 21
INTn INT+9
PUSHF INT+9 21
POPF INT+B 21
IRET INT+'9
IN

Fixed Port INT+50 21
Variable Port INT+51 21

OUT
Fixed Port INT+50 21
Variable Port INT+51 21

INS INT+50 21
OUTS INT+50 21
REP INS INT+51 21
REP OUTS INT+51 21

Task Switch Clock Counts Table

Method
Value forTS

Cache Hit Miss Penalty

VM/intel486 CPU/286 TSS To Intel486 CPU TSS 162 55
VM/intel486 CPU/286 TSS To 286 TSS 143 31
VMlIntel486 CPUl286 TSS To VM TSS 140 37

E-13

in1:el® INSTRUCTION FORMAT AND TIMING

Interrupt Clock Counts Table

Method

Real Mode

Protected Mode
Interrupt/Trap gate, same level
Interrupt/Trap gate, different level
Task Gate

Virtual Mode
Interrupt/Trap gate, different level
Task gate

Abbreviations
16/32
U/L
MN/MX
LlNL
RV/P
R
P
T/NT
H/NH

NOTES:

Definition
16/32 bit modes
unlocked/locked
minimum/maximum
loop/no loop
real and virtual mode/protected mode
real mode
protected mode
taken/not taken
hitlno hit

Cache Hit

26

44
71

37 + TS

82
37 + TS

Value for INT

Miss Penalty

2

6
17
3

17
3

1. Assuming that the operand address and stack address fall in different cache sets.
2. Always locked, no cache hit case.
3. Clocks = 10 + max(log2(lml),n)

m = multiplier value (min clocks for m = 0)
n = 3/5 for ±m

4. Clocks = (quotient(countloperand length) 1-7 + 9
= 8 if count s; operand length (8/16/32)

5. Clocks = {quotient(countloperand length)I-7+9
= 9 if count s; operand length (8/16/32)

6. Equal/not equal cases (penalty is the same regardless of lock).

Notes

9
9

9, 10

10

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets.
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame.
9. Add 11 clocks for each unaccessed descriptor load.

10. Refer to task switch clock counts table for value of TS.
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes.
For notes 12-13: (b = 0-3, non-zero byte number);

(i = 0-1, non-zero nibble number);
(n = 0-3, non bit number in nibble);

12. Clocks = 8+4 (b+ 1) + 3(i+ 1) + 3(n+ 1)
= 6 if second operand = 0

13. Clocks = 9+4(b+ 1) + 3(i+ 1) + 3(n+ 1)
= 7 if second operand = 0

For notes 14-15: (n = bit position 0-31)
14. Clocks = 7 + 3(32-n)

6 if second operand = 0
15. Clocks = 8 + 3(32-n)

7 if second operand = 0
16. Assuming that the two string addresses fall in different cache sets.
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare.
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load.
19. Cache miss penalty: add 4 clocks for every 16 bytes moved.

(1 clock for the first operation and 3 for the second)
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned.

(2 clocks each for first and second operations)
21. Refer to interrupt clock counts table for value of INT
22. Clock count includes one clock for using both displacement and immediate.
23. Refer to assumption 6 in the case of a cache miss.

E-14

infel® INSTRUCTION FORMAT AND TIMING

Table 10.2. Intel486TM Microprocessor I/O Instructions Clock Count Summary

Roal
Prolecled Protoctod

Virtual 86 INSTRUCTION FORMAT Mode Modo Notos Moda (CPL"IOPL) (CPL>IOPL) Mode

1/0 INSTRUCTIONS

IN = Input from:

Fixed Port 1",00, Ow I port number I 14 9 29 27

Variable Port 1",0" Ow I 14 8 28 27

OUT = Oulput 10:

Fixed Port 1",00" w port number I 16 11 31 29

Variable Port 1110111 w 16 10 30 29

INS = Inpul BytelWord 0110110w 17 10 32 30
from DX Port

OUTS = Output BytelWord 0110111w 17 10 32 30 1
to'DXPort

REP INS = Inpul String 11110011 011011 Ow I 16+8e 10+8e 30+8e 29+8e 2

REP OUTS = Oulpul String 11110011 0110111 wi 17+5e 11+5e 31+5e 30+5e 3

NOTES:
1. Two clock cache miss penalty in all cases.
2. c = count in CX or ECX.
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation.

E-15

in1:el® INSTRUCTION FORMAT AND TIMING

Table 10.3 Intel486TM Microprocessor Floating Point Clock Count Summary

CacheHl1 Concurrent

Penally II Execution
INSTRUCTION FORMAT Avg(Lower CacheMlaa Avg(Lower Notes

Range ... Range •••
Uppe' Range} Uppe, Range}

DATA TRANSFER

FLO ~ Real Load 10 ST(O}

32-bit memory 111011 oOllmod 000 '1m I s-i-b/disp. I 3 2

54-bit memory 111011 1011 mod 000 ,1m I s-i-b/disp. I 3 3

BO-bit memory 111011 0111 mod 101 ,1m I s-I-b/disp. I 6 4

ST(i} 111011 001111000 ST(i} I 4

FILD ~ Inlege, Load 10 ST(O}

16-bit memory 111011 llllmod 000 ,1m I s-l-b/disp. I 14.5(13-16} 2 4

32-bit memory 111011 0111 mod 000 ,1m I s-i-b/disp. I 11.5(9-12} 2 4(2-4)

64-bit memory 111011 1111 mod 101 ,1m I s-i-b/disp. I 16.8(10-18) 3 7.8(2-8)

FBLD ~ BCD Load 10 ST(O} 111011 1111 mod 100 rlml s-i-b/disp. I 75(70-103) 4 7.7(2-8)

FST ~ Slo,e Reall,om ST(O}

32-bit memory 111011 oo,jmod 010 r/ml s-i-b/disp. I 7 1

64-bit memory 111011 1011 mod 010 'Iml s·i·b/disp. I 8 2

ST(i) 111011 101111010 ST(i) I 3

FSTP ~ Sto'e Reall,om ST(O} and Pop

32-bit memory 111011 oOllmod 011 rim I s-I-b/disp. I 7 1

54-bit memory 111011 1011 mod 011 rlml s-I-b/disp. I 8 2

BO-bit memory 111011 0111 mod 111 rlml S-i-b/disp. I 6

ST(i) 111011 101111001 ST(i) I 3

FIST ~ Slo,e Inlege, I,om ST(O)

16-bit memory 111011 1111 mod 010 '/ml s-I-b/disp. I 33.4(29-34)

32-bit memory 111011 0111 mod 010 rim I s-i-b/disp. I 32.4(28-34)

FISTP ~ Slo,olnlege, I,om ST(O) and Pop

16-bit memory 11011 1111 mod 011 rim I s·l·b/disp. I 33.4(29-34)

32-bit memory 11011 olllmodOll rim I s-i-b/disp. I . 33.4(29-34)

54-bit memory 11011 1111 mod 111 rlml s-I-b/disp. I 33.4(29-34)

FBSTP ~ Sto,e BCD I,om 11011 1111 mod 110 rlml s-l-b/d/sp. I 175(172-176)
ST(O) and Pop

FXCH ~ Exchange ST(O) and ST(I) 11011 001111001 ST(i) I 4

COMPARISON INSTRUCTIONS

FCOM ~ Compa,e ST(O) wllh Real

32-bit memory 111011 0001 mod 010 rim I s-i-b/disp. I 4 2 1

64-bit memory 111011 100lmod 010 '/ml s·i·b/disp. I 4 3 1

ST(i) 111011 000111010 ST(i) I 4 1

FCOMP ~ Compa,e ST(O) with Real and Pop

32-bit memory 111011 oooimod 011 rlml s-i-b/disp. I 4 2 1

64-bit memory 111011 100lmod 011 r/ml s-i-b/disp. I 4 3 1

ST(i) 111011 000111011 ST(i) I 4 1

intel® INSTRUCTION FORMAT AND TIMING

Table 10.3. Intel486TM Microprocessor Floating Point Clock Count Summary (Continued)

CacheHl1
Concurrent
Execution

Penally If
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes

Range. _. Range •..
Upp~r Range) Upper Range)

COMPARISON INSTRUCTIONS (Continued)

FCOMPP ~ Compare ST(O) wllh 1"0,, "01,, 0 1 1 00 11 5 1

ST(l) and Pop Twice

FICOM ~ Compare ST(O) wllh Inleger

16-bit memory 1"0,, 1101 mod 010 rlml s-i-b/disp. I 18(16-20) 2 1

32-bit memory 1"0,, ololmod 010 rlml s-i-bfdisp. I 16.5(15-17) 2 1

FICOMP ~ Compare ST(O) wllh Inleger

16-bit memory 11011 1101 mod 011 rlml s-i-bfdisp. I 18(16-20) 2 1

32·bit memory 11011 010 mod all rlml s-j-b/disp. I 16.5(15-17) 2 1

FTST ~ Compare ST(O) wllh 0.0 11011 001 1110 01001 4 1

FUCOM = Unordered compare 11011 101 11100 ST(i) I 4 1

ST(O) wllh STm

FUCOMP ~ Unordered compare 11011 101 11101 ST(i>i 4 1

ST(O) with ST(I) and Pop

FUCOMPP =' Unordered compare 1" 011 0,01", a 1 00 11 5 1

ST(O) wllh ST(I) and Pop Twice

FXAM ~ Examine ST(O) 1,1011 00 ,1",0 a 1 all 8

CONSTANTS

FLDZ ~ Load + 0.0 Inlo ST(O) 1" a 11 001 1110 11101 4

FL01 ~ Load + 1.0 Inlo ST(O) 11011 001 1110 10001 4

FLDPI ~ Load" Inlo ST(O) 11011 001 1110 10111 8 2

FLDL2T ~ Load 1092(10) Inlo ST(O) 11011 001 1110 10011 8 2

FLDL2E ~ Load log:z{e) Inlo ST(O) 11011 001 1110 10101 8 2

FLDLG2 ~ Load log,o(2) Inlo ST(O) 11 011 001 1110 11 001 8 2

FLOLN2 ~ Load 109.(2) Inlo ST(O) 11011 001 1110 11 011 8 2

ARITHMETIC

FADD ~ Add Real wllh ST(O)

ST(O) +- ST(O) + 32·bil memory 111011 0001 mod 000 rlml s-i-b/disp. I .10(8-20) 2 7(5-17)

ST(O) +- ST(O) + 64·bit memory 111011 1001 mod 000 rlml s-i-b/disp. I 10(8-20) 3 7(5-17)

ST(d) +- ST(O) + ST(i) 111 011 dool11000 ST(i>i 10(8-20) 7(5-17)

FADDP ~ Add real wllh ST(O) and 111011 110111000 ST(i>i 10(8-20) 7(5-17)

Pop (ST(I) +- ST(O) + ST(I»

FSUB ~ Sublracl real from ST(O)

ST(O) +- ST(O) - 32·bit memory 111011 oooimod 100 rim I s~i-b/disp. I 10(8-20) 2 7(5-17)

ST(O) +- ST(O) - 64·bit memory 111011 1001 mod 100 rlml s-i-b/disp. I 10(8·20) 3 7(5-17)

ST(d) +- ST(O) - ST(i) 111011 dool1110d ST(i>i 10(8-20) 7(5-17)

FSUBP ~ Sublracl real from ST(O) 111011 11011110, ST(i) I 10(8-20) 7(5-17)

and Pop (ST(I) +- ST(O) - ST(I»

E·17

intel® INSTRUCTION FORMAT AND TIMING

Table 10.3.lnteI486TM Microprocessor Floating Point Clock Count Summary (Continued)

Cache Hit
Concurrent

Penally II
Execution

INSTRUCTION FORMAT Avg(Lower Cache Mis. Avg(Lower Notes
Range ... Range •. .

Upper Range) Upper Range)

ARITHMETIC (Continued)

FSUBR ~ Subtract real reveraed (Subtract ST(O) Irom real)

sT(O) - 32-blt memory - sT(O) 111011 000 I mod 101 rIm I s-I-b/dlsp_ I 10(8-20) 2 7(5-17)

sT(O) _ 64-blt memory - ST(O) It 1011 100lmod 101 rIm I s-i-b/disp. I 10(8-20) 3 7(5-17)

sT(d) - ST(I) - sT(O) 111011 doolll10d sT(I) 1 10(8-20) 7(5-17)

FSUBRP ~ Subtract real reveraed 111011 110111100 ST(I) 1 10(8-20) 7(5-17)

and Pop (ST(I) - ST(ij - ST(O))

FMUL ~ Multiply real with ST(O)

sT(O) _ sT(O) x 32-blt memory 111011 0001 mod 001 rlml s.i-b/disp. 1 11 2 8

sT(O) - sT(O) x 64-blt memory 11 (011 100lmod 001 rIm I s-i-b/disp. 1 14 3 11

ST(d) - sT(O) X sT(I) 111011 doolll001 ST(I) 1 16 13

FMULP ~ Multiply ST(O) with ST(I) 111011 110111001 sT(I) 1 16 13
and Pop (ST(I) _ ST(O) x ST(I))

FDIV ~ Divide ST(O) by Real

sT(O) _ sT(0)/32-blt memory 111011 0001 mod 110 rIm I s-I-b/dlsp. 1 73 2 70 3

sT(O) _ sT(O)/64-blt memory 111011 100lmod 110 rIm I s-I-b/dlsp. 1 73 3 70 3

ST(d) _ ST(O)/ST(I) 111011 dooll111 d ST(I) 1 73 70 3

FDIVP ~ Divide ST(O) by ST(I) and 111011 110111111 sT(I) 1 73 70 3

Pop (ST(I) - ST(O)/ST(I))

FDIVR ~ Divide real revereed (ReaI/ST(O))

sT(O) _ 32-blt memoryIST(O) 111011 0001 mod 111 rlml s-i-b/diSp. 1 73 2 70 3

ST(O) _ 64-blt memorylsT(O) 111011 100lmod 111 rIm I s-I-b/dlsp. 1 73 3 70 3

ST(d) <- ST(I)/ST(O) 111011 dOO 11111 d ST(I) 1 73 70 3

FDIVRP ~ Divide real reversed and 111011 110111110 sT(I) 1 73 70 3

Pop (ST(I) - ST(I)/ST(O))

FIADD ~ Add Integer to ST(O)

sT(O) _ ST(O) + 16'blt memory 111011 1101 mod 000 rIm I s-i-b/disp. 1 24(20-35) 2 7(5~17)

sT(O) _ sT(O) + 32-blt memory 111011 ololmod 000 rlml s-I-b/dlsp. 1 22.5(19-32) 2 7(5-17)

FISUB ~ Subtract Integer from ST(O)

sT(O) - sT(O) - 16-blt memory 111011 1101 mod 100 r/ml s-i-b/dlsp. 1 24(20-35) 2 7(5-17)

ST(O) - sT(O) - 32-blt memory 111011 010lmod 100 rlml s-i-b/dlsp. 1 22.5(19-32) 2 7(5-17)

FISUBR ~ Integer Subtract Reveraed

ST(O) -l6-blt memory - ST(O) 111011 1101 mod 101 rIm 1 s-I-b/dlsp. I 24(20-35) 2 7(5-17)

sT(O) - 32-blt memory - ST(O) 111011 ololmod 101 rIm I s-i-b/disp. 1 22.5(19-32) 2 7(5-17)

FIMUL ~ Multiply Integer with ST(O)

ST(O) _ ST(O) X 16-blt memory 111011 1101 mod 001 rIm I s-i-b/disp, 1 25(23-27) 2 8

ST(O) - ST(O) X 32-blt memory 111011 ololmod 001 rlml s-I-b/dlsp. 1 23.5(22-24) 2 8

FIDIV ~ Integer Divide

sT(O) _ ST(0)/16-blt memory 111011 1101 mod 110 rIm I s-i-b/disp, 1 87(85-89) 2 70 3

ST(O) _ sT(0)/32-M memory 111011 ololmod 110 rIm I s-i-b/disp. 1 85.5(84-86) 2 70 3

E-18

intel® INSTRUCTION FORMAT AND TIMING

Table 10.3.lnteI4BSTM Microprocessor Floating Point Clock Count Summary (Continued)

Cache Hit Concurrent

Penally II
Execution

INSTRUCTION FORMAT AvO (Lowor Cache Miss Avg(Lowor Notes
Range ••• Rango •••

Upper Rnngo) Upper Rango}

ARITHMETIC (Continued)

FIDIVR ~ Inloger Dlvldo Rovoroed

ST(O) l6-bit memoryIST(O) 111011 1101 mod 111 rim I s·i-b/disp. I 87(85-89) 2 70 3

ST(O) 32-bil memoryIST(O) 111011 0101 mod 111 rlml s-i-b/disp. I 85.5(84-86) 2 70 3

F5QRT ~ Square Rool 111011 00 111111 10101 85.5(83-87) 70

F5CALE ~ SOnlo 5T(0) by 5T(1) 111011 00 111111 11011 31(30-32) 2

FXTRACT = Extract componontn 111011 00 d 1111 010 a I 19(16-20) 4(2-4)
oIST(O)

FPREM ~ Partlnl Romlndor 111011 001 1111 10 a a I 84(70-138) 2(2-8)

FPREMl ~ Partlnl Romlndor (IEEE) 111011 001 1111 01011 94.5(72-167) 5.5(2-18)

FRNDINT ~ Round ST(O) 10 Inleger 111011 001 1111 1100 I 29.1 (21-30) 7.4(2-8)

FAB5 ~ Absolulo valuo 01 5T(0) 111011 001 1110 000 1 I 3

FCH5 ~ Chango olgn 01 5T(0) 111011 a 01111 10 000 a I 6

TRANSCENDENTAL

FC05 ~ Cooln. 01 5T(0) 111011 001 1111 11111 241 (193-279) 2 6,7

FPT AN ~ Partlallnngenl 01 5T(0) 111011 001 1111 00101 244(200-273) 70 6,7

FPATAN ~ Partlalarclangenl 111011 001 1111 0011 I 289(218-303) 5(2-17) 6

F51N ~ Sino 01 5T(0) 111011 001 1111 11101 241(193-279) 2 6,7

F51NC05 ~ Sino and coolno 01 5T(0) 111011 001 1111 10111 291 (243-329) 2 6,7

F2XMl ~ 25T(0) - 1 111011 001 1111 00 00 I 242(140-279) 2 6

FYL2X ~ 5T(1) x 1092(5T(0)) 111011 001 1111 000 11 311(196-329) 13 6

FYL2XPl ~ ST(l) x log2(5T(0) + 1.0) I 1 1 a 1 1 001 1111 '1001 I 313(171 -326) 13 6

PROCESSOR CONTROL

FINIT ~ Inltlnllzo FPU 111011 0111111 0 0011 I 17 4

FSTSW AX = Store nrotun word 111011 11 1111 10 00001 3 5
InloAX

FSTSW = Storo status word 111011 1011 mod 111 rlml s-i-b/disp. 1 3. 5
Into memory

FLDCW = Load control Yiord 111011 oOllmod i 01 r/ml s-j-b/diSp. I 4 2

FSTCW = Store control word 111011 oOllmod tll r/ml s-i-b/disp. 1 3 5

FCLEX = Cloar excoptlons 111011 01111110 00101 7 4

FSTENV = Store envlronmont 111011 oOllmod 110 r/ml s-i-b/disp. 1
Real and Vjrtual modes 16-bit Address 67 4
Real and Virtual modes 32-bit Address 67 4
Protected mode 16-bit Address 56 4
Protected mode 32-bit Address 56 4

FLDENV = Load environment 111011 o011mod 100 r/ml s-i-b/disp. I
Real and Virtual modes 16-bit Address 44 2
Real and Virtual modes 32-bit Address 44 2
Protected mode 16-bit Address 34 2
Protected mode 32-bit Address 34 2

E-19

INSTRUCTION FORMAT AND TIMING

Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued)

Cache Hit
Concurrent

Penalty If Execution
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes

Range ... Range ...
Upper Range) Upper Range)

PROCESSOR CONTROL (Continued)

FSAVE = Save olate 111011 1011 mod 110 rlml s-i-b/disp. I
Real and Virtual modes 16-bit Address 154 4
Real and Virtual modes 32-bit Address 154 4
Protected modo 16-bit Addross 143 4
Protected mode 32-bit Address 143 4

FRSTOR = Rontorc olDte 111011 1011 mod 100 rlml s-i-bl I
Real and Virtual modes 16-bit Address 131 23
Real and Virtual modes 32·bit Address 131 27
Protected mode 16-bit Address 120 23
Protected mode 32·bit Address 120 27

FINCSTP = Incremcnt Stock Pointer 111011 001 1111 01111 3

FDECSTP = Decrement Stnck Pointer 11 1 0 1 1 001 1111 01101 3

FFREE ~ Free ST(I) 111011 101 11000 ST(id 3

FNOP = No opcrotlonn 111011 001 1101 00001 3

WAtT ~ Walt unlll FPU raady I 10011011
(Minimum/Maximum) 1/3

NOTES:
1. If operand is 0 clock counts = 27.
2. If operand is 0 clock counts = 26.
3. If CW.PC indicates 24 bit precision then subtract 36 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction add 17 clocks.
5. If there is a numeric error pending from a previous instruction add 16 clocks.
6. The INT pin is polled several times while this instruction is executing to assure short interrupt latency.
7. If ABS(operand) is greater than rr/4 then add n clocks. Where n = (operand/(rr/4».

E·20

in~® INSTRUCTION FORMAT AND TIMING

10.2 Instruction Encoding

10.2.1 OVERVIEW

All instruction encodings are subsets of the general
instruction format shown in Figure 10.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the "mod rIm"
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex­
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod rIm
byte, specifies the address mode to be used. Certain
encodings of the mod rIm byte indicate a second

addressing byte, the scale-index-base byte, follows
the mod rIm byte to fully specify the addressing
mode.

Addressing modes can include a displacement im­
mediately following the mod rIm byte, or scaled in­
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 10.1 illustrates several of the fields that can
appear in an instruction, such as the mod field arid
the rIm field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 10.4 is a complete list of all fields ap­
pearing in the Intel486 Microprocessor instruction
set. Further ahead, following Table 10.4, are de­
tailed tables for each field.

ITTTTTTTT 1 TTTTTTTT 1 modTTT rIm 1 ss index base Id321161 8 I nonedata32 1 161 8 I none

l'-____ o~7----~0) I..? 6 5 3 2 0 J\ 7 6 5 3 2 0 J\) I..'--__ ""'f"' __;)
- 'T '----v----~-

opcode "mod rIm" "s_i_blt

(one or two bytes)
(T represents an

opcode bit.)

, byte byte J
~~.--------~--------~

address
displacement
(4, 2, 1 bytes

or none)

immediate
data

(4, 2, 1 bytes
or none)

Field Name

w
d
s
reg
mod rIm

ss
index
base
sreg2
sreg3
ttln

NOTE:

register and address
mode specifier

Figure 10.1. General Instruction Format

Table 10.4. Fields within Intel486TM Microprocessor Instructions

Description

Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits
Specifies Direction of Data Operation
Specifies if an Immediate Data Field Must be Sign-Extended
General Register Specifier
Address Mode Specifier (Effective Address 'can be a General Register)

Scale Factor for Scaled Index Address Mode
General Register to be used as Index Register
General Register to be used as Base Register
Segment Register Specifier for CS, SS, OS, ES
Segment Register Specifier for CS, SS, OS, ES, FS, GS
For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated

Tables 10.1-10.3 show encoding of individual instructions.

E-21

Number of Bits

1
1
1
3

2 for mod;
3 for rIm

2
3
3
2
3

4

infel® INSTRUCTION FORMAT AND TIMING

10.2.2 32-BIT EXTENSIONS OF THE
INSTRUCTION SET

With the Intel486 Microprocessor, the 8086/801861
80286 instruction set is extended in two orthogonal
directions: 32-bit forms of all 16-bit instructions are
added to support the 32-bit data types, and 32-bit
addressing modes are made available for all instruc­
tions referencing memory. This orthogonal instruc­
tion set extension is accomplished having a Default
(D) bit in the code segment descriptor, and by hav­
ing 2 prefixes .to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the 0 bit in
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that
code segment In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a 0 value of 0 is assumed internally by the
intel486 Microprocessor when operating in those
modes (for 16-bit default sizes compatible with the
8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value "opposite"
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa­
tions.

These 32-bit extensions are available in all Intel486
Microprocessor modes, including the Real Address
Mode or the Virtual 8086 Mode. In these modes the
default is always 16 bits, so prefixes are needed to
specify 32-bit operands or addresses. For instruc­
tions with more than one prefix, the order of prefixes
is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

E-22

10.2.3 ENCODING OF INTEGER
INSTRUCTION FIELDS

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi­
ately ahead.

10.2.3.1 Encoding of Operand Length (w) Field

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
wField During 16-Bit During 32-Blt

Data Operations Data Operations

0 8 Bits 8 Bits
1 16 Bits 32 Bits

10.2.3.2 Encoding of the General
Register (reg) Field

The .general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the "mod rim" byte, or as the rim
field of the "mod rim" byte.

Encoding of reg Field When w Field
is not Present In Instruction

Register Selected Register Selected
reg Field During 16-Blt During 32-Blt

Data Operations Data Operations

000 AX EAX
001 CX ECX
010 OX E'DX
011 BX EBX
100 SP ESP
101 BP EBP
110 SI ESI
111 01 EDI

intel® INSTRUCTION FORMAT AND TIMING

reg

000
001
010
011
100
101
110
111

reg

000
001
010
011
100
101
110
111

Encoding of reg Field When w Field
Is Present In Instruction

Register Specified by reg Field
During 16-Blt Data Operations:

Function of w Field

(whenw = 0) (when w = 1)

AL AX
CL CX
OL OX
BL BX
AH SP
CH BP
OH SI
BH 01

Register Specified by reg Field
During 32-Blt Data Operations

Function of w Field

(whenw = 0) (when w = 1)

AL EAX
CL ECX
OL EOX
BL EBX
AH ESP
CH EBP
OH ESI
BH EOI

10.2.3.3 Encoding of the Segment
Register (sreg) Field

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3·bit field, allowing the Intel486 Microprocessor FS
and GS segment registers to be specified.

2-Blt sreg2 Field

2-Blt
Segment

sreg2 Field
Register
Selected

00 ES
01 CS
10 SS
11 OS

E-23

3-Blt sreg3 Field

3-Blt
Segment

sreg3 Field
Register
Selected

000 ES
001 CS
010 SS
011 OS
100 FS
101 GS
110 do not use
111 do not use

10.2.3.4 . Encoding of Address Mode

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre·determined,'
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the "mod
rIm" byte, and a second byte of addressing informa·
tion, the "s-i·b" (scale-index-base) byte, can be
specified. .

The s-i-b byte (scale-index-base byte) is specified'
when using 32-bit addressing mode and the "mod
rIm" byte has rIm = 100 and mod = 00,01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the "mod rIm" byte,
also contains three bits (shown as TTT in Figure
10.1) sometimes used as an extension of the pri­
mary opcode. The three bits, however, may also be
used as a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu·
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the
"mod rIm" byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
"mod rIm" byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en·
codings of all 16-bit addressing modes and 32-bit
addressing modes.

in1:et INSTRUCTION FORMAT AND TIMING

Encoding of 16-bit Address Mode with "mod rIm" Byte

mod rIm Eff.ective Address mod rIm Effective Address

00000 DS:[BX+SI] 10000 DS: [BX + SI + d16]
00001 DS:[BX+DI] 10001 DS:[BX+DI+d16]
00010 SS:[BP+SI] 10010 SS:[BP+SI+d16]
00011 SS:[BP+DI] 10011 SS:[BP+DI+d16]
00100 DS:[SI] 10100 DS: [SI + d16]
00101 DS:[DI] 10101 DS:[DI+d16]
00110 DS:d16 10110 SS:[BP+d16]
00111 DS:[BX] 10 111 DS: [BX + d16]

01000 DS: [BX + SI + dS] 11000 register-see below
01001 DS:[BX + DI + dS] 11001 register-see below
01010 SS: [BP + SI + dS] 11 010 register-see below
01011 SS:[BP+ DI + dS] 11 011 register-see below
01100 DS:[SI+dS] 11100 register-see below
01 101 DS:[DI+dS] 11 101 register-see below
01 110 SS:[BP+dS] 11 110 register-see below
01 111 DS:[BX+dS] 11 111 register-see below

Register Specified by rIm Register Specified by rIm
During 16-Blt Data Operations During 32·Bit Data Operations

mod rIm
Function of w Field

mod rIm
Function of w Field

(whenw=O) (when w = 1) (whenw=O) (when w = 1)

11000 AL AX . 11 000 AL EAX
11001 CL CX 11 001 CL ECX
11 010 DL DX 11 010 DL EDX
11 011 BL BX 11 011 BL EBX
11 100 AH SP 11 100 AH ESP
11 101 CH BP 11 101 CH EBP
11 110 DH SI 11 110 DH ESI
11 111 BH DI 11 111 BH EDI

E-24

INSTRUCTION FORMAT AND TIMING

Encoding of 32-blt Address Mode with "mod rIm" byte (no "s-I-b" byte present):

mod rIm Effective Address mod rIm Effective Address

00000 DS:[EAX] 10000 DS: [EAX + d32]
00001 DS:[ECX] 10001 DS: [ECX + d32]
00010 DS:[EDXl. 10010 DS: [EDX + d32]
00011 DS:[EBX] 10011 DS: [EBX + d32]
00100 s-i-b is present 10100 s-i-b is present
00101 DS:d32 10101 SS: [EBP + d32]
00110 DS:[ESi] 10110 DS: [ESI + d32]
00111 DS:[EDI] 10 111 DS: [EDI + d32]

01000 DS:[EAX+dB] 11000 register-see below
01001 DS: [ECX + dB] 11 001 register-see below
01010 DS:[EDX+dB] 11 010 register-see below
01 011 DS:[EBX+dB] 11 011 register-see below
01100 s-i-b is present 11 100 register-see below
01 101 SS:[EBP+dB] 11 101 register-see below
01 110 DS: [ESI + dB] 11 110 register-see below
01 111 DS:[EDI+dB] 11 111 register-see below

Register Specified by reg or rIm Register Specified by reg or rIm
during 16-Bit Data Operations: during 32-Blt Data Operations:

mod rIm Function of w field
mod rIm Function of w field

._--- _. -

(when w=O) (when w= 1) (when w=O) (when w 1)

11000 AL AX 11000 AL EAX
11 001 CL CX 11 001 CL ECX
11 010 DL DX 11 010 DL EDX
11 011 BL BX 11 011 BL EBX
11 100 AH SP 11100 AH ESP
11 101 CH BP 11 101 CH EBP
11 110 DH SI 11110 DH ESI
11 111 BH DI 11 111 BH EDI

E-25

intel® INSTRUCTION.FORMATAND TIMING

Encoding of 32-bit Address Mode ("mod rIm" byte and "s_l_b" byte present):

mod base Effective Address

00000 OS: [EAX + (sc;aled index)]
00001 OS: [ECX + (scaled index)]
00010 OS: [EOX + (scaled index)]
00011 OS: [EBX + (scaled index)]
00100 S8: [ESP + (scaled index)]
00101 OS: [d32 + (scaled index)]
00110 OS:[ESI + (scaled index)]
00111 OS: [EDI + (scaled index)]

01000 OS: [EAX + (scaled index) + d8]
01001 DS: [ECX + (scaled index) + d8]
01010 OS: [EOX + (scaled index) + d8]
01011 OS:[EBX+(scaled index)+d8]
01100 SS: [ESP + (scaled index) + d8]
01101 SS: [EBP + (scaled index) + d8]
01110 OS: [ESI + (scaled index) + d8]
01 111 DS: [EOI + (scaled index) + d8]

10000 OS: [EAX + (scaled index) + d32]
10001 OS: [ECX + (scaled index) + d32]
10010 OS: [EOX + (scaled index) + d32]
10011 OS: I!:BX + (sca!ed ind(3x) + d32]
10100 SS: [ESP + (scaled index) + d32]
10101 SS: [EBP + (scaled index) + d32]
10110 OS: [ESI + (scaled index) + d32]
10111 OS: [EOI + (scaled index) + d32]

NOTE: .
Mod field in "mod rIm" byte; ss, index, base··fields in .
"s-i-b" byte.

E-26

·ss Scale Factor

00 x1
01 x2
10 x4
11 x8

Index Index Register

000 EAX
001 ECX
010 EOX
011 EBX
100

. rio index reg 0 0

101 EBP
110 ESI
111 EOI

""IMPORTANT NOTE:
Whim index field is 100, indicating "no index register," then
ss field MUST equal 00. If index is 100 and ss does not
equal ~O, the effective address is undefined.

intel® INSTRUCTION FORMAT AND TIMING

10.2.3.5 Encoding of Operation
Direction (d) Field

In many two-operand instructions the d field is pres­
ent to indicate which operand is. considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory <- - Register
"reg" Field Indicates Source Operand;
"mod r/m" or "mod ss index base" Indicates
Destination Operand

1 Register <- - Register/Memory
"reg" Field Indicates Destination Operand;
"mod r/m" or "mod ss index base" Indicates
Source Operand

10.2.3.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if
the size of the immediate data is B bits and is being
placed in a 16-bit or 32-bit destination.

Effect on Effect on •
s Immediate Immediate

DataS Data 16132

0 None None

1 Sign-Extend DataB to Fill None
16-8it or 32-8it Destination

10.2.3.7 Encoding of Conditional
Test (tttn) Field

For the conditional instructions (conditional jumps
and set on condition), tltn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1),
and tit giving the condition to test.

E-27

Mnemonic Condition

0 Overflow
NO No Overflow
B/NAE Below/Not Above or Equal
NB/AE Not Below/Above or Equal
E/Z Equal/Zero·
NEINZ Not Equal/Not Zero
BE/NA Below or EquallNot Above
NBE/A Not Below or Equal/Above
S Sign
NS Not Sign
PIPE Parity/Parity Even
NP/PO Not Parity/Parity Odd
LlNGE Less ThanlNot Greater or Equal
NL/GE Not Less Than/Greater or Equal
LE/NG Less Than or Equal/Greater Than
NLE/G Not Less or Equal/Greater Than

10.2.3.S Encoding of Control or Debug
or Test Register.(eee) Field

tttn

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

eeeCode Reg Name

000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field

eeeCode Reg Name

000 ORO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eeeCode Reg Name

011 TR3
100 TR4
101 TR5
110 TR6
111 TR7

Do not use any other encoding

2

3

4

5

11011

11011

11011

11011

11011·

INSTRUCTION FORMAT AND TIMING

Instruction

First Byte Second Byte

OPA ~ mod 1 lOps. rim
MF OPA mod OPS

,
, rIm

d P OPA 1 1 OPS 'ST(i)

0 0
.

, 1 1 1 1 I OP

0 1 1 1 1 1 I .'
OP

15-11 10 9 8 7 6 . '5 43210

10.2.4 ENCODING OF FLOATING POINT
INSTRUCTION FIELDS

Instructions for the FPU assume one of the five
forms shown in the following table. In. all cases, in,
structions are at least two bytes long and begin w,ith
the bit pattern 11011 S. '

OP = Instruction opcode, possible split into two
fields OPA and OPS

MF = Memory Format
00-32-bit real
01-32-bit integer
10-64-bitreal
11-16-bit inte'ger

P = Pop
O-Do not pop stack
1-Pop stack after operation

d = Destination
O-Destination is ST(O)
1-Destinationis ST(i)

R XOR d = O-Destination (op) Source
R XOR d = 1""'-source (op) Destination

ST(i) = Register stack element i
000 = Stack top
001 = Second stack element

•
•
•

1.11 =, Eighth stack element

mod (Mode field) and rIm (Register/Memory specifi­
er) have the same interpretation as the correspond­
ing fields of the integer instructions.

s-i-b (Scale Index Sase) byte and disp (displace­
ment) are optionally present in instructions that have
mod and rIm fields. Their presence depends on the
values of mod and rIm, as for integer instructions.

E-28

Optional
Fields

s-i-b I disp

s-i-b I disp'

,

Numeric Exception Summary F

APPENDIX F
NUMERIC EXCEPTION SUMMARY

The following table lists the instruction mnemonics in alphabetical order. For each mne­
monic, it summarizes the exceptions that the instruction may cause. When writing
numeric programs that may be used in an environment that employs numerics exception
handlers, assembly-language programmers should be aware of the possible exceptions
for each instruction in order to determine the need for exception synchronization.
Chapter 18 explains the need for exception synchronization.

Mnemonic Instruction IS I D Z 0 U P

F2XM1 2X-1 Y Y Y Y Y
FABS Absolute value Y
FADD(P) Add real Y Y Y Y Y Y
FBLD BCD load Y
FBSTP BCD store and pop Y Y Y
FCHS Change sign Y
FCLEX Clear exceptions
FCOM(P)(P) Compare real Y Y Y
FCOS Cosine Y Y Y Y Y
FDECSTP Decrement stack pointer
FDIV(R)(P) Divide real Y Y Y Y Y Y Y
FFREE Free register
FIADD Integer add Y Y Y Y Y Y
FICOM(P) Integer compare Y Y Y
FIDIV Integer divide Y Y Y Y Y Y
FIDIVR Integer divide reversed Y Y Y Y Y Y Y
FILD Integer load Y
FIMUL Integer multiply Y Y Y Y Y Y
FINCSTP Increment stack pointer
FINIT Initialize processor
FIST(P) Integer store Y Y Y
FISUB(R) Integer subtract Y Y Y Y Y Y
FLO extended or stack Load real Y
FLO single or double Load real Y Y Y
FLD1 Load + 1.0 Y
FLDCW Load Control word Y Y Y Y Y Y Y
FLDENV Load environment Y Y Y Y Y Y Y
FLDL2E Load log2e Y
FLDL2T . Load log21 0 Y
FLDLG2 Load log102 Y
FLDLN2 Load 10g.,2 Y
FLDPI Load 'IT Y
FLDZ Load + 0.0 y
FMUL(P) Multiply real Y Y Y Y Y Y
FNOP No operation
FPATAN Partial arctangent Y Y Y Y Y
FPREM Partial remainder y Y Y Y
FPREM1 IEEE partial (emainder Y Y Y Y
FPTAN Partial tangent Y Y Y Y Y
FRNDINT Round to integer Y Y Y Y
FRSTOR Restore state Y Y Y Y Y y Y
FSAVE Save state
FSCALE Scale y Y y Y Y Y

F-1

NUMERIC EXCEPTION SUMMARY

Mnemonic Instruction IS I D Z 0 U P

FSIN Sine Y Y Y Y Y
FSINCOS Sine and cosine Y Y Y Y Y
FSQRT Square root Y Y Y Y
FST(P) stack or Store real Y
extended
FST(P) single or double Store real Y Y Y Y Y Y
FSTCW Store control word
FSTENV Store environment
FSTSW (AX) Store status word
FSU8(R)(P) Subtract real Y Y Y Y Y Y
FTST Test Y Y Y
FUCOM(P)(P) Unordered compare real Y Y Y
FWAIT CPU Wait
FXAM Examine
FXCH Exchange registers Y
FXTRACT Extract Y Y Y Y
FYL2X Y·log2X Y Y Y Y Y Y Y
FYL2XP1 y. log2(X + 1) Y Y Y Y Y

IS - Invalid operand due to stack overflow/underflow
I - Invalid operand due to other cause
o - Denormal operand
Z - Zero-divide
o - Overflow
U - Underflow
P - Inexact result (precision)

F-2

· Code Optimization G

APPENDIX G
CODE OPTIMIZATION

The Intel486 processor is binary-compatible with the Intel386 DX and SX processors.
Only three new application-level instructions have been added, which are useful in spe­
cial situations. Any existing 8086/8088, 80286 and Intel386 processor applications will be
able to execute on the Intel486 processor immediately without any modification or
recompilation. Any compiler that currently generates code for the Intel386 processor
family will also generate code that will run on the Intel486 processor without any modi­
fications.

However, there are certain code-optimization techniques which will make applications
execute faster on the Intel486 processor with only minor or no change to their perfor­
mance on the Intel386 DX or SX processor, except possibly for code size differences.
These techniques have to do with instruction sequence selection and instruction sched­
uling to take advantage of the internal pipelined execution units of the Intel486 proces­
sor and the large on-chip cache.

G.1 ADDRESSING MODES

Like the Intel386 processors, the Intel486 processor needs an additional clock cycle to
generate an effective address when an index register is used. Therefore, if only one
indexing component is used (i.e., not both a base register and an index register), and
scaling is not necessary, then it is faster to use the register as a base rather than an index.
For example:

mov eax, [esil
mov eax, [esi*l

use esi as base
use esi as index, 1 clock penalty

If both base and index are used, or if scale indexing is necessary, then it is faster to use
the combined addressing mode, even though it will take an additional clock cycle to
execute.

When a register is used as the base component, an additional clock cycle is used if that
register is the destination of the immediately preceding instruction (assuming all instruc­
tions are already in the prefetch queue). So to get the best performance, the two instruc­
tions should be separated by at least one other instruction. For example:

add esi, eax
mov eax, [esil

esi is destination register
esi is base, 1 clock penalty

There are other hidden or implicit usages of destination and base registers, primarily the
stack pointer register ESP. The ESP register is the implicit base of all PUSH/POP/RET
instructions and it is the implicit destination for the CALL/ENTER/LEA VE/RET/
PUSH/POP instruction. Therefore a LEAVE instruction followed immediately by a

G-1

int'eL CODE OPTIMIZATION

RET instruction will use one additional clock. But if the LEAVE and RET are rear­
ranged so that they are separated by another instruction, then no such penalty is
entailed. (See other recommendations regarding the LEAVE instruction.)

It is not necessary to separate back-to-back PUSH/POP instructions .. The Intel486 pro­
cessor will allow this sequence without incurring an additional clock.

All such instruction rearrangements of the instructions will not affect the performance of
Intel386 processors.

The Intel486 processor will also take an additional clock to execute an instruction that
has both an immediate data field and a memory offset field. For example:

mov dword ptr foo, 1234h ; both immediate and memory offset
mov dword ptr baz, 1234h
mov [ebp-21ilIill, 1234h

When it is necessary to use constants, it would still be more efficient to use immediate
data instead of loading the constant into a register first. But if the same immediate data
is used more than once, then it would be faster to load the constant in a register and
then use the register multiple times. This optimization will not affect the performance of
Intel386 processors. The following sequence is faster than the one above, if all instruc­
tions are in the prefetch queue, and because the instructions are shorter, it will actually
make it easier to prefetch:

mov eax, 1234h
mov dword ptr foo, eax
mov dword ptr baz, eax
mov [ebp-21ilIill, eax

G.2 PREFETCH UNIT

The Intel486 processor prefetch unit will access the on-chip cache to fill the prefetch
queue whenever the cache is idle, and there is enough room in the queue for another
cache line (16 bytes). If the prefetch queue becomes empty, it can take up to three
additional clocks to start the next instrJlction. The pre fetch queue is 32 bytes in size (2
cache lines).

Because data accesses always have priority over prefetch requests, keeping the cache
busy with data access can lock out the prefetch unit.

Therefore it is important to arrange the instructions so that the memory bus is not used
continuously by a series of memory reference instructions. The instructions should be
rearranged so that there is a non-memory referencing instruction (such as a register/

G-2

intel® CODE OPTIMIZATION

register instruction) at least two clocks before the prefetch queue becomes exhausted.
This will allow the prefetch unit to transfer a cache line into the queue. For example:

Instruction Length

mov mem, 1234567h 10 bytes

mov mem, 1234567h 10 bytes

mov mem, 1234567h 10 bytes

mov mem, 1234567h 10 bytes

mov mem, 1234567h 10 bytes

add reg, reg 2 bytes

If the prefetch queue started out full, then by the third MOY instruction, there is
enough room for another cache line in the queue, but because the memory bus is con­
tinuously being used, there is no time for the transfer from the cache to the prefetch
queue. If a non-memory instruction is not inserted before or after the third MOY
instruction, the queue will be exhausted by the fourth MOY instruction. In this case, the
instructions should be rearranged so the ADD instruction is before or after the third
MOY instruction, to allow the cache to transfer another instruction line to the prefetch
unit.

No such rearrangements of the instructions will affect the performance of the Intel386
DX processor.

G.3 CACHE AND CODE ALIGNMENT

On the Intel386 DX processor, the destination of any JUMP/CALL/RET instructions
should be aligned on a O-mod-4 address, this helps the instruction prefetch unit in filling
the prefetch queue as quickly as possible, since fetches are done 4-bytesat a time on
aligned boundaries. On the InteI486 processor, because of the on-chip cache, any
instruction fetch will fetch 16 bytes to fill a cache line. Therefore better performance can
be obtained by aligning JUMP/CALL/RET destinations at O-mod-16 addresses.

However, aligning at O-mod-16 will cause the code to grow bigger, and the tradeoff
between execution speed and code size is important.

Therefore, it is recommended that only the function entry address (i.e., destination of
CALL instructions) be aligned on a O-mod-16 address; while all labels (i.e., destination
of JUMP instructions) will continue to be aligned on O-mod-4 addresses.

On the Intel486 processor, it takes up to five additional clocks to start execution of an
instruction if it is split across two 16-byte cache lines. For example, if a CALL instruction
ends at address OxOOOOOOOE and the next instruction is a multiple-byte instruction, then

G-3

intel® CODE OPTIMIZATION

upon return from the CALL, the processor must take five additional clocks to fill the
pre fetch queue if the target instruction is not already in the cache. Even if the target
instruction is already in the cache, it will take an additional 2 clocks to transfer it into
the prefetch unit.

So if the compiler knows the alignment of the destination, then it will be faster to insert
a filler instruction so that the multiple-byte instruction starts on an aligned address. This
can be done either by rearranging the instructions or actually inserting a Nap
instruction.

Such instruction· alignments will also improve the performance on the Intel386
processors.

G.4 NOP INSTRUCTIONS

Sometimes programs need filler between instructions to align them. On the Intel386 and
Intel486 processors, there is a one-byte Nap instruction which is really an exchange
EAX with EAX.

Other lengths can be executed in a single clock. The table below lists some.

i-byte inc reg will modify register ~nd flags
2-bytes mov reg, reg true NOP
3-bytes lea reg, 0[regl true NOP, use 8-bit displacement
5-bytes mov eax, 0 will modify eax register
5-bytes add eax, 0 will modify flags
b-bytes lea reg, 0[eaxl true NOP, use 32-bit displacement

Additionally, many of the Inte1386/InteI486 processor instructions have several forms
and lengths, using different-sized immediate data or different-sized memory offsets. Also
some instructions have shorter forms if the destination register is EAX/AX/AL.

Not all instructions with different forms will execute in the same clocks. An example
where different forms will execute in. different clocks is the PUSH/POP REG. instruc­
tions, if they are coded in theone-byte form, they will execute in one clock, but if coded
in the 2-byte form, they will execute in 4 clocks.

The Nap replacement instructions will also execute faster than the XCHG instruction
on Intel386 processors. Using different forms of the same instruction will not affect
performance on the Intel386 processor.

G-4

inteL CODE OPTIMIZATION

G.5 INTEGER INSTRUCTIONS

The Intel486 processor can execute most of the frequently-used instructions (such as
register load/store, register ALU operations, etc.) in one clock. However, unlike the
Intel386 processor, some of the memory operations now take more clocks than the cor­
responding register instructions. For example, the PUSH MEM instruction:

Instruction InteI386'" ox CPU Clocks Inte1486" CPU Clocks

mav reg, mem 4 1

push reg 2 . 1

push mem 5 4

So for the Intel486 processor, loading a value from memory into a register first and then
pushing that register will result in a net saving of 2 clocks; but for the Intel386 DX
processor, the same instruction sequence will result in a net loss of one clock. However,
in order to load the value into a register on the Intel486 processor, an empty register
must be found; if the action of loading the value will destroy a value in a register that
may be re-used later, then the saving may be negated by the loss of the re-usable value.

Another example is the LEAVE instruction:

Instruction Inte1386" OX CPU Clocks InteI486'" CPU Clocks

mav esp, ebp 2 1

papebp 4 1 + 1 (esp. penalty)

leave 4 5

Again, for the Intel486 processor, doing the MOV/POP sequence will result in a net
saving of 2 clocks over the LEAVE instruction; while on the Intel386 DX processor, the
LEAVE instruction is both faster and shorter. However, because the first MOV instruc­
tion uses ESP as the destination register, and the POP instruction also implicitly uses the
ESP register as a base (as mentioned above), this sequence will result in a one clock
penalty unless the two instructions are separated by another instruction. If it is possible
to rearrange the instructions so the MOV/POP instructions are separated by a useful
instruction, then the net savings over a LEAVE instruction is 3 clocks on the Intel486
processor.

Because the Intel486 processor can operate with operands in registers faster than out of
memory Gust like most other architectures), it is important to have good register alloca­
tion and value tracking optimizations in any compiler. On the other harid, there is no

G-5

CODE OPTIMIZATION

savings in loading up every value before using it, as in a RISe architecture. The Intel486
processor can perform reg, mem type ALU operations as fast as load/op/store sequences.
For example, for the assignment

meml = meml + mem2

the following instruction sequences could be used, with varying total clock counts on the
Intel386 DX and SX processor, but identical clock counts on the Intel486 processor:

Instruction InteI386'" OX CPU Clocks InteI486'" CPU Clocks

maveax, mem1 4 1

mav ebx, mem2 4 1

add eax, ebx 2 1

mav mem1, eax 2 1

maveax, mem1 4 1

add eax, mem2 6 2

mav mem1, .eax 2 1

mav eax, mem1 4 1

add mem2, eax 7 3

The MOVZX is another example where the Intel486 processor can execute faster using
simple instructions, if the destination is a register that is also byte addressable. For
example, loading a -byte value:

Instruction InteI386'" OX CPU Clocks InteI486'" CPU Clocks

mavzx eax, mem1 6 3 + 1 (OFh prefix)

xar eax, eax 2 1

mavb ai, mem1 4 1

So for the Intel486 processor, clearing the register first and then loading the byte value
may result in a net saving of two clocks (depending on whether the prefixdecode clock
can be overlapped with the previous instruction, see Section G.8 on Prefix opcodes),
while there is no difference in performance on the Inte1386 DX processor.

G.6 CONDITION COD.ES

In some high level languages, it is sometimes necessary to convert the result of a boolean
condition (e.g., equality, greater-than or less-than, etc.) into a true or false (i.e., 0/1)
value. The Intel386 and Intel486 pro~essors normally maintain the results of. compari­
sons in the flags register, so in order to convert the result of a comparison .into a true!
false value, it is necessary to convert the flags settings into an integer value.

G-6

CODe OPTIMIZATION

The Intel386 and Intel486 processors have a set of SETcc instructions which will do such
conversions, however, the SETcc instructions take 3 or 4 clocks to execute on the
Intel486 processor depending on whether the condition being tested for is true or false.
Specifically while comparing unsigned values for greater-than or less-than, there is an
optional sequence to use. For example, if "x" and "y" are both unsigned values, and "x"
is loaded into register eax and "y" is loaded in register ecx, then the code for "(x < y)"
could be generated in several ways:

Instruction InteI386'" OX CPU Clocks InteI486'" CPU Clocks

cmp eax, ecx 2 1
mov eax, 0 2 1
jnb L 1 ?+m/3 3/1
mov eax,1 2 1
L1:
cmp eax, ecx 2 1
setb al 4/5 4/3
movsx eax, al 3 3
cmp eax, ecx 2 1
sbb eax, eax 2 1
neg eax 2 1

So using the SEE instruction to capture the flags setting of an unsigned compare gives
the fastest performance, without breaking the prefetch pipeline because there are no
jumps involved. Note that although this is specific for the "(x < y)" condition, it is
possible to transform other tests to this form by either negating the condition or by
exchanging the operands.

Such condition code instruction replacements will also improve the performance on the
Intel386 CPUs.

G.7 STRING INSTRUCTIONS

Like the Intel386 DX processor, the Intel486 processor executes string instructions
slower than the load/store instructions. For example, the LaDS instruction:

Instruction InteI386'" OX CPU Clocks Inte1486'" CPU Clocks

mov eax, [esi] 4 1

add esi, 4 2 1

lods 5 4

The LaDS instruction does more than the individual May instruction, it also updates
the ESI register. However, if it is not necessary to have the register updated, then the
May instruction will result in a net saving of 3 clocks on both the Intel386 DX and the
Intel486 processors. The minor tradeoff is that the LaDS instruction is shorter than the
May instruction.

G-?

inteJ® CODE OPTIMIZATION

Also in a non-REPeated usage, individual MOY instructions will always be faster than
the string MOYS instruction. And even in a REPeated loop, if the loop is small enough,
it will be faster to use individual load/store instructions than to set up for a REPeated
MOYS. The tradeoff again is speed vs. code space, with the REP MOYS loop being
shorter but slower. However, as discussed above, a long sequence of load/store instruc­
tions will prevent the prefetch unit from filling the prefetch queue and slow the· proces­
sor, so the recommendation is not to move more than 16 bytes with load/store
instructions before a non-memory instruction to allow the prefetch unit to access the
cache.

Similar optimizations can also be made for the STOS and other string instructions. Such
string instruction replacements will also improve the performance on the Intel386
processor.

G.B FLOATING-POINT INSTRUCTIONS

As with the Intel386 processor!Intel387 math coprocessor combination, the floating
point unit of the processor is a separate execution unit and it operates in parallel with
the integer unit, even though they are physically, on the same chip. Therefore any
instruction sequence that allows the two independent units to execute in parallel will be
faster.

Floating point instructions should not be placed one immediately after another. The
instructions should be rearranged so that two floating point instructions are separated by
other non-floating point instructions so the two units can execute in parallel. Pay partic­
ular attention to the clock counts of the floating point instruction, so sufficient number
of integer instructions could be executed without causing the floating point unit to wait
before the next floating point instruction is issued. Such rearrangements of the instruc­
tions will also improve the performance on the Intel386 processor/lntel387 math copro­
cessor, however, the clock counts used by the processor is much lower than the clock
counts used by the Intel387 math coprocessor for the same floating point instructions.

As a reminder, any simple arrangements or movement of floating point values should not
be done via the floating point unit, but rather through the integer unit with integer
instructions. Also FW AlT's are never required around simple floating point instructions.

G.g PREFIX OPCODES

On either processor, all prefix opcodes, including OFh, segment override, operand size!
addressing, bus-lock, repeat, etc. require an additional clock to decode. This clock can be
overlapped with the execution of the previous instruction if it takes more than one clock
to execute.

Therefore it will be faster to expand 16-bit operands to a full 32-bits and then operate on
the 32-bit value instead of using the 66h prefix to operate on 16-bit operands.

If prefix opcodes must be used, try to rearrange the instructions so that the instruction
with the prefix is after an instruction that takes multiple clocks to execute.

G-8

intel® CODE OPTIMIZATION

An additional reason for not using 16-bit operands is that if the destination of one
instruction is a 16-bit register, and the immediately following instruction uses that regis­
ter as a 32-bit operand, then there is a one clock penalty. Again, the two instructions
should be separated by another instruction to avoid the penalty.

G.10 OVERLAPPED CLOCKS

As mentioned above, there are several situations where an instruction will take an extra
clock to execute, but some of these extra clock penalties can overlap with one another.
So an instruction that uses multiple features mentioned above will not necessarily have a
total penalty that is the sum of the individual penalties.

In particular, the following combinations will overlap:

• Having an index register and an immediate field with a memory offset field will only
cost a one clock penalty.

• Having a prefix opcode and using the result register of the previous instruction as a
base will only cost a one clock penalty.

• Having a prefix opcode after a multicclock instruction will not cost any additional
clock penalty.

G.11 MISCELLANEOUS USAGE GUIDELINES

The instruction set of the Intel386 processors was designed with certain programming
practices in mind. Many of these practices remain relevant in assembly-language pro­
gramming for the Intel486 processor, and may be of interest in compiler design as well.

• Use the EAX register when possible. Many instructions are one byte shorter when
the EAX register is used, such as loads and stores to memory when absolute
addresses are used, transfers to other registers using the XCHG instruction, and
operations using immediate operands.

• Use the D-data segment when possible. Instructions which deal with the D-space are
one byte shorter than instructions which use the other data segments, because of the .
lack of a segment-override prefix.

• Emphasize short one-, two-, and three-byte instructions. Because instructions for the
Intel486 processor begin and end on byte boundaries, it has been possible to provide
many instruction encodings which are more compact than those for processors with
word-aligned instruction sets. An instruction in a word-aligned instruction set must be
either two or four bytes long (or longer). Byte alignment reduces code size and
increases execution speed.

• Access 16-bit data with the MOVSX and MOVZX instructions. These instructions
sign-extend and zero-extend word operands to doubleword length. This eliminates the
need for an extra instruction to initialize the high word.

• For faster interrupt response, use the NMI interrupt when possible.

G-9

int'et CODE OPTIMIZATION

• In,place of using an ENTER instruction at lexical level 0, use a code sequence like:

PUSH EBP
MOV EBP, ESP
SUB ESP, BYTE_COUNT

This executes in seven clock cycles, rather than ten.

The following techniques may be applied as optimizations to enhance the speed of a
system after its basic functions have been implemented:

• The'jump instnictibl1S cdme ill two fcirms:on.e' form has an eight-bit immediate for
relative jumps in the range from 128 bytes back to 127 bytes forward, the other forIIJ.
has a full 32-bit displacement. Many assemblers use the lorig form in situations where
the short form can be used. When it is clear that the short form may be used, explic­
itly specify the destination operand as being byte length. This tells the asseinbler to
use the. short, form. If ,~heassembler does not support this function, it will generate an
error. Note that some assemblers perform this optimization automatically.

• Use: the ESP register ;to reference the stack in the deepest level of subroutines. Don't
bother setting up the EBP register and stack frame ..

• For fastest task switching, perform task switching in softw~re. This allows a smaller
processor state to be saved and restored. See Chapter 7 for a' discussion of
multitasking.

• Use the LEA instruction for adding registers together. When a base register and
index register are used with the 'LEA instruction, the destination 'is loaded with their

" SUIp. The contents of the index register may be scaledby 2, 4,or 8.

e Use the LEA: instruction for adding a constant t<fa: register. Whena base registerand
a displacerrient are used with the LEA instruction, the destination is loaded with their
sum~ The LEA instruction can be used with ,a base, register, ingex register, scale
factor,at;lQ ,displacem,.ent. ' ..' , " .

• Use integer move instructkins'to tr'ansfer floating~poirit data.

• Use the form ot ~he RET iJ;lstruction which takes an immediate value for byte-cpunt,
rath'er than 'an AI)D ESP Instruction. It ,saves one Clock cycle an<i three bytes on
every subroutine calL '., . " .' . .

•. ,Whe.nseveral,references are made to. a variable addressed with a displacement, load
the displacement, into a register.

• The PUSH arid POP instructions, when u~ed~ith an operand in'memoiy,take two
,,more Clock cyc~es. to execute than' an equivalent. two-instruction sequence which
moves the operand through a general register before pushirig it on the stack. '.'

\ .,

• Tpe L.OOP instruction takes two more clocj{ cyc,;les to exe~ute than the equivalent
decrement. and conditional jump. instructions., , ' ,

• The JECXZ instruction takes one more' clock cycle to execute than the equivalent
compare and conditional jump. instructions.

G-10

intaL CODE OPTIMIZATION

Use ADD reg, reg instead of SHL reg, 1. The opcode length is the same, but the add will
execute in one clock instead of three for the shift instruction. The flags are affected in
the same way by both instructions, except that the add instruction sets the auxilliary
carry flag (AF), while the shift instruction leaves it undefined.

Also, use ADC reg, reg instead of RCL reg, 1. As with in the previous case, the opcodes
have identical lengths, but the add executes in the one clock versus three clocks for the
rotate. However, note that RCL reg, 1 only affects OF and CF, while the add will
additionally change SF, ZF, AF, and P.

The above also applies to the Intel386 CPU. Due to the different clock counts on the
Intel386 CPU, the achievable speed improvement will be much less. Note that the sub­
stitutions given above do not negatively affect performance on the 286, since clock
counts for replaced and replacing instruction is identical on that CPU.

G-11

Revision History H

APPENDIX H
REVISION HISTORY

Revision of the InteI486T" Microprocessor Family Programmer's Reference Manual contains
many updates and improvements to the original version. A revision summary of major
changes is listed below.

The sections significantly revised since version -001 are:

Section 3.11

Section 4.1.1

Section 5.3.4

Section 6.2.2

Section 6.5

Figure 6-9

Table 6-4

Table 7-1

Table 7-2

Table 9-2

Section 9.9.14

Table 9-7

Figure 10-2

Section 10.2

Figure 11-1

The instructions INVD and WBINVD were included for clarification
and the CPU detection code was updated in Figure 3-23.

Clarified that the POPF and POPFD instructions have no affect on
the RF and VM flags.

Stated the absenc.e of the Dirty bit in the· page directory.

Included B-bit clarification in the description of expand-down data
segment ranges.

Clarified that only a CALL instruction can use' gates to transfer to
more privileged levels.

Corrected by adding EFLAGS as part of the new stack.

Corrected Combined Effect columns for page directory 'and page
table protection.

Corrected Exceptions and Error Code' References made during a
Task Switch.

Clarified the NT flag as not changed due to JUMP.

Changed description to show Faults from prefetching have a higher
priority than NMI's.

Clarified the state of the page table and page directory access bits
following a page level fault.

Corrected note 2 by stating the restartibility of an invalid-TSS excep­
tion is conditional.

Clarified that the most significant bits are used to disable modes.

Added Inte1486' SX microprocessor initialization.

. Added GD bit, changed breakpoint addresses to linear and Glarified
hardwired bits must remain undefined.

H-1

intellll> REVISION HISTORY

Section 11.2.2 Description of the GD bit has been added.

Section 11.3.1.2 Clarified explimation that breakpoint reporting is independent of the
GE/LE bit settings.

Section 12.3;1 Specification change for PCD and PWT bits.

Section 15.1.2 Corrected the Top of STack bits of the Status word.

Section 15.1.3 Described the rounding-control bits of the FPU Control Word as
also affecting non-arithmetic instructions .. '

Figure 15-5 Clarified the presence of an Opcode for the CS selector.

Added Figure 15-5 describing opcode field;'

Table 16-9 Added pseudodenormals to table.·

Table 16-10 Deleted pseudodenormals as being part of the unsupported formats.

Table 16-11 Corrected final state of C2 for Remainder instructions and Trigono-
metric instructions.' . .

Section 16.2.3 Added description of the masked response returned by an FYL2X
instruction as a result of division by zero.

Section 19~2.3.2 Added Intel486 SX CPU software emulation.

Table 22·1 Defined more completely the description of Exceptions and
Interrupts.

Table 22·2 Corrected vector 6 description.

Section 24.1 Clarified the B-bit as also controlling the upper ADD range for
expanded down.

Section 24.4.2 Described the ESP register to be unreliable when switching from
32-bit to 16-bitcode then back to 32 bit.

Section 25.1 Clarified the ET-bit as being hardwired to 1 upon reset.

Section 26.1.3 Replaced B bit with D bit.

Table 26·2 . CorreCted effective address column.

Tl;lble 26·3 Corrected effective address column~

Section 26.2.2.2 Clarified m as a memory operand, and clarified the use of extended
registers for m8 and m16.

H-2

intet

Instruction Set

REVISION HISTORY

Clarified the AF flag as undefined for the AND instruction.

Flags clarified for BSF and BSR instructions.

For BT, BTC, BTR and BTS instructions the affect of the high-order
bits in the immediate bit offset are clarified.

Added explanation for a CALL indirect-thru-memory In CALL
instruction description.

Opcode for CMPXCHG instruction has been changed.

The OF flag has been clarified as undefined for the DAA instruction.

Corrected table describing the DIVinstructions use of registers.

Clarified C1 flag to. be zero for FCOM/FCOMP/FCOMPP
instructions.

The CF and OF flags have been clarified for the IMUL instruction.

Corrected one of the INC opcodes.

Changed rim to m for INS instruction.

Corrected interrupt-to-inner-privilege description of INT/INTO
instructions.

Clarified Intel486 microprocessor detection for INVD and INVLPG
instructions.

Gate descriptor types 6, 7, E and F have been redefined for the LAR
instruction.

For LGS/LSS/LDS/LES/LFS instructions, a #UD fault has been
described in protected mode;

Opcode has been corrected forLMSW instruction.

Added CMPXCHG and XADD instructions to list of LOCK usable
instructions.

Clarified use of MOV r/m16, Sreg instruction for use in protected
mode.

Corrected the clocks for the MUL instruction.

Clarified a POP-to-memory instruction and a POP eSP instruction.

H-3

intel®

Appendix A

Appendix E

Table 10.1

Table 10.2

Table 10.3

Appendix G

Section G.ll

REVISION HISTORY

Clarified a POP-to-memory instruction and a POP eSP instruction.

Clarified a PUSH-from-memory instruction.

The opcode for REP LODS has been corrected along with the des­
tinations. Added note to NOT use the repeat prefix with the loop
instruction.

The CF flag has been clarified for SHL and. SHR instructions.

The description of the SBB and SUB instructions has been clarified.

The description of SETcc has been corrected for opcode OF96H and
OF9FH. .

Opcode for STI instruction has been corrected and Virtual Mode
Exceptions have been defined.

Operation of XADD instruction has been fixed.

Added note that XCHG may be used in place of BSWAP for 16-bit
data and fixed clock count.

Duplicate opcodes for TEST Ib/lr and SHL have been deleted.

Position 82 (MOVB) on one-byte opcode map has been deleted.

Opcodes for MOV Td, Rd and MOV Rd, Td have been corrected.

Added CWDE and CDQ instructions to CBW and CWD.

Corrected instruction format of REP LODS, REP MOVS and REP
STOS instructions.

Corrected instruction format of LTR instruction.

Corrected instruction format of REP INS and REP OUTS
instructions.

Corrected instruction format of FSTP 32-bit instruction.

Corrected instruction format of FUCOMPP, FSUBR ST(d), FDIV
64-bit, FDIV ST(d), andFDIVR ST(d) instructions.

Designation of ADD instead of SHL instruction and ADC instead of
RCL instruction has been added.

H-4

Glossary

GLOSSARY

Abort: An exception which is completely unrecoverable, such as stack exception during
an attempt to invoke an exception handler.

Address: See Logical Address,. Linear Address, and Physical Address.

Address Space: The range of memory locations which may be accessed by an address.

Address-Size Prefix: An instruction prefix which selects the size of address offsets. Off­
sets may be 16- or 32-bit. The default address size is specified by the D bit in the code
segment for the instruction. Use of the address-size prefix selects the non-default size.

Address Translation: The process of mapping addresses from one address space to
another. Segmentation and paging both perform address translation.

Base Address: The address of the beginning of a data structure, such. as a segment,
descriptor table, page, or page table. .

Base Register: A register used for addressing an operand relative to an address held in
the register.

Base: (1) A term used in logarithms and exponentials. In both contexts, it is a number
that is being raised to a power. The two equations (y = log base b of x) and (by=x) are
the same. (2) A number that defines the representation being used for a string of digits.
Base 2 is the binary representation; base 10 is the decimal representation; base 16 is the
hexadecimal representation. In each case, the base is the factor of increased significance
for each succeeding digit (working up from the bottom). (3) See BaseAddress.

BCD: Binary Coded Decimal; a format for representing numbers in base 10. One byte is
used for each digit of the number, with bit positions 0 to 3 specifying the value for the
digit. The auxiliary carry flag isused to perform BCD arithmetic. The FPU supports a
packed form of BCD, in which 18 digits and.a sign bit are contained in an 80-bit
operand.

Bias: A constant that is added to the true exponent of a real number to obtain the
exponent field of that number's floating-point representation in the FPU. To obtain the
true exponent, you must subtract the bias from the given exponent. For example, the
single real format has a bias of 127 whenever the given exponent is nonzero, If the 8-bit
exponent field contains 10000011 (binary), which is 131 (decimal), the true exponent is
131-127, or + 4. Also known as an excess representation, in this case excess -127.

Biased Exponent: The exponent as it appears in a floating-point representation of a
number. The biased exponent is interpreted as an unsigned, positive number. In the
above example, 131 is the biased exponent.

Glossary-1

infel® GLOSSARY

Binary Coded Decimal: A method of storing numbers that retains a base 10 representa­
tion. Each decimal digit occupies 4 full bits (one hexdecimal digit). The hexadecimal
values A through F (1010 to 1111) are not used. The Intel486 processor supports a
packed decimal format that consists of 9 bytes of binary coded decimal (18 decimal
digits) and one sign byte.

Binary Point: An entity just like a decimal point, except that it exists in floating-point
binary numbers. Each binary digit to the right of the binary point is multiplied by an
increasing negative power of two.

Bit Field: A sequence of up to 32 bits which may start at any bit position of any byte
address. The Intel486 processor has instructions for efficient operations on bit fields.

Bit String: A sequence of up to 232-1 bits which may start at any bit position of any byte
address. The Inte1486 processor has instructions for efficient operations on bit strings.

Breakpoint: An aid to program debugging in which the programmer specifies forms of
memory access which generate exceptions. The exceptions invoke debugging software.
The Intel486 processor supports software and hardware breakpoints. A software break­
point is an instruction inserted into the program being debugged. When the INT 3
instruction is executed, a breakpoint occurs. A hardware breakpoint is set up by pro­
gramming the debugging registers. The contents of the debugging registers specify the
address, size, and type of reference for as many as four breakpoints. Unlike. software
breakpoints, hardware breakpoints can be applied to data.

Byte: An 8-bit quantity of memory; the smallest unit of memory referenced by an
address.

C3-CO: The four "condition code" bits of the FPU status word. These bits are set to
certain values by the compare, test, examine, and remainder functions ofthe FPU.

Cache: A small, fast memory which holds the active parts of a larger, slower memory.

Cache Flush: An operation which marks all cache lines as invalid. The Intel486 proces­
sorhas instructions for flushing internal and external caches.

Cache Line: The smallest unit of storage which can be allocated in a cache. The internal
cache of the Intel486 processor has a line size of 128 bits.

Cache Line Fill: An operation which loads an entire cache line using multiple read cycles
to main memory.

Cache Miss: A request for access to memory which requires actually reading main
memory.

Call Gate: A gate descriptor for invoking a procedure with a CALL or JUMP
instruction.

Glossary·2

in~® GLOSSARY

Characteristic: A term used for some non-Intel computers, meaning the exponent field
ofa floating-point number.

Chop: In the FPU, to set one or more low-order bits of a real number to zero, yielding
the nearest representable number in the direction of zero.

Code Segment: An address space which contains instructions; an executable segment. An
instruction-fetch cycle must address a code segment. The type of information held in a
segment is specified in its segment descriptor.

Condition Code: The four bits of the FPU status word that indicates the results of the
compare, test, examine, and remainder functions of the FPo.

Conforming Segment: A code segment which executes with the RPL of the segment
selector or the CPL of the calling program, whichever is less privileged.

Context Switch: See Task Switch.

Control Word: A 16-bit FPU register that the user can set, to determine the modes of
computation the FPU will use and the exception interrupts that will be enabled.

Coprocessor: An extension to the base architecture and instruction set of a processor.
The Intel387 numerics coprocessor is used to add floating-point arithmetic instructions
and registers to the Intel386 processor. Coprocessors allow present-day systems to enjoy
the architectural enhancements which will be available in future processor chips.

CPL: See Current Privilege Level.

CPU: Central Processor Unit. See Processor.

Current Privilege Level (CPL): The privilege level of the program which is executing.
Normally, the privilege level is loaded from a code segment descriptor. It is loaded into
the CS segment register, where it is visible to software as the two lowest bits of the
register. When execution is transferred to a conforming code segment, the privilege level
does not change. In this case, the CPL may be different from the privilege level specified
in the descriptor (DPL).

Data Segment: An address space. which contains data. As many as four data segments
may be in use without reloading the segment registers. The type of information held in a
segment is specified in its segment descriptor.

Data Structure: An area of memory defined for a particular use by hardware or soft­
ware, such as a page table or taskstate segment (TSS).

Debug Registers: A set of registers used to specify as many as four hardware break­
points. Unlike breakpoint instructions, which only can be used for code breakpoints, the
debug registers can specify breakpoints in either code or data.

Glossary-3

intel® GLOSSARY

Denormal: A special form of floating-point number. On the FPU, a denormal is defined
as a number that has a biased exponent of zero. By providing a significand with leading
zeros, the range of possible negative exponents can be extended by the number of bits in
the significand. Each leading zero is a bit of lost accuracy, so the extended exponent
range is obtained by reducing significance.

Descriptor Privilege Level (DPL): The privilege level applied to a segment. The DPL is a
field in the segment descriptor.

Descriptor Table: An array of segment descriptors. There are two kinds of descriptor
tables: the Global Descriptor Table (GDT) and an arbitrary number of Local Descriptor
Tables (LDTs).

Device Driver: A procedure or task used to manage a peripheral device, such as a disk
drive. . .

Displacement: A constant used in calculating effective addresses. A displacement modi­
fies the address independently of any scaled indexing. A displacement often is used to
access operands which have a fixed relation to some other address, such as a field of a
record in an array.

Double Extended: IEEE Std 754 term for the FPU's extended format, with more expo­
nent and significand bits than the double format and an explicit integer bit in the
significand.

Double Format: A floating-point format supported by the FPU that consists of a sign, an
ll-bit biased exponent, an implicit integer bit, and a 52-bit significand, a total of 64
explicit bits.

Doubleword: A 32-bit quantity of memory. The Intel486 processor allows 32-bit double­
words to begin at any byte address, but a performance penalty is taken when a double­
word crosses the boundary between two doublewords in physical memory.

DPL: See Descriptor Privilege Level.

Effective Address: The address produced from addressing-mode calculations. A base
register, scaled index, and displacement may be used in the calculations.

Environment: The 14 or 28 (depending on addressing mode) bytes of FPU registers
affected by the FSTENV and FLDENV instructions. It encompasses the entire state of
the FPU, except for the 8 registers of the FPU stack. Included are the control word,
status word, tag word, and the instruction, opcode, and operand information provided by
interrupts.

ESC Instruction: An instruction encoding used for coprocessor instructions.

Glossary-4

intel® GLOSSARY

Exception: A forced call to a procedure or a task which is generated when the processor
fails to interpret an instruction or when an INT n instruction is executed. Causes of
exceptions include division by zero, stack overflow, undefined opcodes, and memory­
protection violations. Exceptions are faults, traps, aborts, and software-initiated
interrupts.

Exception Pointers: In the FPU, the indication used by exception handlers to identify the
cause of an exception. This data consists of a pointer to the most recently executed ESC
instruction and a pointer to the memory operand of this instruction, if it had a memory
operand of this instruction, if it had a memory operand. An exception handler can use
the FSTENV and FSA VE instructions to access these pointers.

Expand-Down Segment: A type of data segment in which the meaning of the segment
limit is reversed. All other segments accept legal offsets from the base address to the
base address plus the segment limit. An expand-down segment accepts legal addresses in
two ranges: from 0 to one byte below the base address, and from one byte past the
segment limit to the top of the address space.

Exponent: (1) Any number that indicates the power to which another number is raised.
(2) The field of a floating-point number that indicates the magnitude of the number.
This would fall under the above more general definition (I), except that a bias some­
times needs to be subtracted to obtain the correct power.

Extended Format: The FPO's implementation of the double extended format of IEEE
Std 754. Extended format is the main floating-point format used by the FPU. It consists
of a sign, a IS-bit biased exponent, and a significand with an explicit integer bit and 63
fractional-part bits.

External Cache: A cache memory provided outside of the processor chip. External
caches can be added to any kind of processor which has external main memory. The
Intel486 processor has instructions and page-table entry bits which are used to control
external caches from software.

Far Pointer: A reference to memory which includes both a segment selector and an
offset. Used to access memory when the segment selector has not been loaded into the
processor, for example when making a procedure call from one segment to another.

Fault: An exception which is reported at the instruction boundary immediately before
the instruction which generated the exception. When a fault is generated, enough of the
state of the processor is restored to permit another attempt to execute the instruction
which generated the fault. The fault handler is called with a return address which points

. to the faulting instruction, rather than the instruction which follows the faulting instruc­
tion. After the handler fixes the source of the exception, such as a segment or page
which is not present in memory, the program is restarted,

Flat Model: A memory organization in which all segments are mapped to the same range
of linear addresses. This organization removes segmentation from the environment of
application programs to the greatest degree possible.

Glossary-5

inte!® GLOSSARY

Floating-Point Operand: A representation for a number expressed as a base, a sign, a
significand, and a signed exponent. The value of the number is the signed product of its
significand and the base raised to the power of the exponent. Floating-point representa­
tions are more versatile than integer representations in two ways. First, they include
fractions. Second, their exponent parts allow a much wider range of magnitude than
possible with fixed-length integer representations.

Floating-Point Unit (FPU): The part of the Intel486 processor which contains the
floating-point registers and performs the operations required by floating-point
instructions ..

FPU: See Floating-Point Unit.

Flush: See Cache Flush.

Gate Descriptor: A segment descriptor which can be the destination of a call or jump. A
gate descriptor can be used to invoke a procedure or task in another privilege level.
There are four types of gate descriptors: call gates, trap gates, interrupt gates, and task
gates.

GDT: See Global Descriptor Table.

Global Descriptor Table (GDT): An array of segment descriptors for all programs in a
system: There is only one GDT in a system.

Gradual Underflow: A method of handling the floating-point underflow error condition
that minimizes the loss of accuracy in the result. If there is a denormal number that
represents the correct result, the denormal is returned. Thus, digits are lost only to the
extent of denormalization. Most computers return zero when underflow occurs, losing all
signficant digits. .

Handler: A procedure or task which is called as a result of an exception or interrupt.

Hit: See Cache Hit.

IDT: See Interrupt Descriptor Table.

IEEE Standard 754: A set of formats and operations which apply to floating-point num­
bers. The formats cover 32-, 64-, and 80-bitoperand sizes. The standard was developed
by the Institute for Electrical and Electronics Engineeers (IEEE). The FPU supports all
operand sizes covered by the standard.

Immediate Operand: Data encoded in an instruction.

Implicit Integer Bit: A part of the significand in the single real and double real floating­
point formats that is not explicitly given. In these formats, the entire given significand is
considered to be the right of the binary point. A single implicit integer bit to the left of
the binary point is always one, except in one case. When the exponent is the minimum
(biased exponent is zero), the implicit integer bit is zero.

Glossary-6

intel® GLOSSARY

Indefinite: A special value that is returned by floating-point functions when the inputs
are such that no other sensible answer is possible. For each floating-point format these
exits one quiet NaN that is designated as the indefinite value. For binary integer formats,
the negative number furthest from zero is often considered the indefinite value. For the
FPU packed decimal format, the indefinite value contains all 1's in the sign byte and the
uppermost digits byte.

Index: A number used to access a table. An index is scaled (multiplied by shifting left) to
account for the size of the operand. The scaled index is added to the base address of the
table to get the address of the table entry.

Inexact: IEEE Std 754 term for the FPU's precision exception.

Infinity: A floating-point result that has greater magnitude than any integer or any real
number. It is often useful to consider infinity as another number, subject to special rules
of arithmetic. All three Intel floating-point formats provide representations for + infinity
and -infinity.

Initialization: The process of setting up the programming environment following reset.
The processor begins execution in real-address mode. A few processor registers have
defined states following reset, which permit execution to begin. Initial states of the seg­
ment registers allow memory to be accessed, even though no segment selectors have
been loaded. The DR7 register (debug control register) is clear, so no breakpoint will
occur during initialization. The real mode program can set up data structures such as
descriptor tables and page tables, then transfer execution to a program running in pro­
tected mode.

Instruction Prefetch: Reading instructions into the processor from sequentially higher
addresses in advance of execution; a technique for overlapping the execution of
instructions.

Instruction Restart: An ability to make a second attempt to execute an instruction which
generates an exception. Instruction restart is necessary for supporting virtual memory.
When an application makes reference to a segment or page which is not present in
memory, the application must be suspended in a way which allows restarting after the
operating system has brought the segment or page into physical memory. Instruction
restart restores enough of the processor state to allow the exception handler to be called
with a. return address pointing to the instruction which generated· the exception, rather
than the instruction following it.

Integer: A number (positive, negative, or zero) that is finite and has no fractional part.
Integer can also mean the computer representation for such a number: a sequence of
data bytes interpreted in a standard way. It is perfectly reasonable for integers to be
represented in a floating-point format; this is what the FPU does whenever an integer is
pushed onto the FPU stack.

Glossary-7

intel® GLOSSARY

Integer Bit: A part of the significand in floating-point formats. In these formats, the
integer bit is the only part of the significand considered to be to the left of the binary
point. The integer bit is always one, except in one case: when the exponent is the mini­
mum (biased exponent is zero), the integer bit is zero. In the extended format the
integer bit is explicit; in the single format and double format the integer bit is implicit;
i.e., is not actually stored in memory.

Internal Cache: A cache memory on the processor chip. The Intel486 processor has 8K
bytes of internal cache memory.

Interrupt: A forced transfer of program control caused by a hardware signal or execution
of the INT n instruction. Interrupt handlers called by software are processed like
exceptions.

Interrupt Descriptor Table (IDT): An array of gate descriptors for invoking the handlers
associated with exceptions and interrupts. A handler may be invoked by a task gate,
interrupt gate, or trap gate.

Interrupt Gate: A gate descriptor used to invoke an interrupt handler. An interrupt gate
is different from a trap gate only in its effect on the IF flag. An interrupt gate clears the
flag (disables interrupts) for the duration of the handler.

Invalid: Unallocated. Invalid cache lines do not cause cache hits. Valid cache lines have
been loaded with data and may cause cache hits.

Invalid Operation: The exception condition for the FPU that covers all cases not covered
by other exceptions. Included are FPU stack overflow and underflow, NaN inputs, illegal
infinite inputs, out-of-range inputs, and inputs in unsupported formats.

Label: An identifier used to name places in the source code of a program, so that
statements can refer to those places. Places named by labels include procedure entry
points, beginning of blocks of data, and base addresses for descriptor tables;

LDT: See Local Descriptor Table.

Linear Address: A 32-bit address into a large, unsegmented address space. If paging is
enabled, it translates the linear address into a physical address. If paging is not enabled,
the linear address is used as the physical address.

Local Descriptor Table (LDT): An array of segment descriptors for one program. Each
program may have its own LDT, a program may share its LDT with another program,or
a program may have no LDT, in which case, it uses the global descriptor table (GDT).

Locked Instructions: Instructions which read and write a destination in memory without
allowing other devices to become bus masters between the read cycle and the write cycle.
This. mechanism is necessary for supporting reliable communications among multiproces­
sors. The mechanism is invoked using the LOCK instruction prefix. Only certain instruc­
tions may be locked, and only when they have destination operands in memory (other
uses of the LOCK prefix generate an invalid-opcode exception).

Glossary-8

intel® GLOSSARY

Logical Address: The number used by application programs to reference virtual memory.
This number consists of two parts: a segment selector (16 bits) and an offset (32 bits).
The segment selector is used to specify an independent, protected address space (seg­
ment). The offset is used as an address within that segment. Segmentation translates the
logical address into a linear address.

Long Integer: An integer format supported by the FPU that consists of a 64-bit two's
complement quantity.

Long Real: An oldertetm for the FPU's 64-bit double format.

Main Memory: The large memory, external to the processor, used for holding most
instruction code and data. Generally built from cost-effective DRAM memory chips.
May be used with the internal cache of the processor and an optional external cache.

Mantissa: A term used with some non-Intel computers for the significand of a floating­
point number.

Masked: A term that can apply to each of the six FPU exceptions I, D, A, 0 U, P. An
exception is masked if a corresponding bit in the FPU control word is set to one. If an
exception is masked, the FPU will not generate an interrupt when the exception comli­
tion occurs; it will instead provide its own exception recovery.

Memory Management: Support for simplified models of memory; a process consisting of
address translation and protection checks. There are two forms of memory management,
segmentation and paging. Segmentation provides protected, independent address spaces
(segments). Paging .provides access to data structures larger than the available memory
space by keeping them partly in memory and partly on disk.

Microprocessor: See Processor.

Miss: See Cache Miss.

Mode: (1) One of the FPU status word fields "rounding control" and "precision control"
which programs can set, sense, save, and restore to control the execution of subsequent
arithmetic operations. (2) See Real-Address Mode, Protected Mode, . Virtual-8086 Mode,
Supervisor Mode, User Mode. .

ModR/M Byte: A byte following an instruction opcode which is used to specify instruc­
tion operands.

MPU: Micro-Processor .Unit. See Processor.

Multiprocessing: Using more than one processor in a system. The Intel486 processor
supports two kinds of multiprocessing: coprocessors, which are special-purpose
performance-enhancing extensions to the architecture and instruction set, and multiple
general-purpose processors, such as additional Intel486 processors.

Glossary·9

intet GLOSSARY

Multisegmented Model: A memory organization in which different segments are mapped
to, different ranges of linear addresses . .This organization uses segmentation to protect
data structures from damage caused by program errors. For example, the stack can be
kept from growing into memory occupied by instruction code.

Multitasking: Timesharing a processor among several programs, executing some number
of instructions from each. The Intel486 processor has instructions and data structures
whiCh support multitasking.

NaN: An abbreviation for "Nota Number"; a floating-point quantity that does not rep­
resent any numeric or infinite quantity. NaN's should be returned by functions that
encounter serious errors. If created during a sequence of calculations, they are transmit­
ted to the final answer and can contain information about where the error occurred.

Near Pointer: A reference to memory without a segment selector; an offset. Used to
access memory when the segment selector has already been loaded into the processor,
for example when one procedure calls another within the same segment.

Normal: The representation of a number in a floating-point format in which the signifi­
cand has an integer bit one (either explicit or implicit).

Normalize: Convert a denormal floating-point representation of a number to a normal
representation.

Offset: A 16- or 32-bit number which specifies a memory location relative to the base
address of a segment. A program's code segment descriptor specifies whether 16- or
32-bit offsets are the default. An address-size prefix specifies use of the non-default size:

Operand: Data in a register or in memory which an instruction reads or writes (or both).

Operand-Size Prefix: An instruction prefix which selects the sizes of integer operands.
Operands may be 8- and 16-bit, or they may be 8- and 32-bit. The default operand size is
specified by the D bit in the descriptor for the code segment which contains the instruc­
tion. Use of the operand-size prefix selects the non-default size.

Overflow: A floating-point exception condition in which the correct answer is finite, but
has magnitUde too great to be represented in the destination format. This kind of over­
flow (also called numeric overflow) is not to be confused with stack overflow.

Packed BCD: Packed Binary Coded Decimal; a format for representing numbers in base
10. One byte is used for each two digits of the number, with bit positions 0 to 3 specifying
the value for the less significant digit and bit positions 4 to 7 specifying the value for the
more significant digit. Packed BCD is one of the data types supported by the FPU.

Packed Decimal: An integer format supported,by the FPU. A packed decimal number is
alO-byte quantity, with nine bytes of 18 binary coded decimal digits and one byte for the
sign.

Glossary-10

intel® GLOSSARY

Page Directory: The first-level page table. The paging hardware of the Intel486 proces­
sor uses two levels of page tables, where the physical address produced by the first-level
page table is the base address of the second-level page table. The use of two levels allows
the second-level tables to be paged to disk.

Page Directory Base Register (PDBR): A processor register which holds the base address
of the page directory; same as the CR3 register. Because the contents of the PDBR
register are loaded from the task state segment (TSS) during a task switch, each task can
have its own page directory, so each can have a different mapping of virtual pages to
physical pages.

Page: A 4K-byte block of neighboring memory locations; the unit of memory used by
paging hardware.

Page Table: A table which maps part of a linear address to a physical address. The
paging hardware of the Intel486 processor uses two levels of page tables, where the
physical address produced by the first-level page table is the base address of the second­
level page table. The use of two levels allows the second-level tables to be paged to disk.

Page Table Entry: A 32-bit data structure in memory used for paging. It includes the
physical address for a page and the page's protection information. It is set up by oper­
ating system software and accessed by paging hardware.

Paging: A form of memory management used to simulate a large, unsegmented address
space using a small, fragmented address space and some disk storage. Paging provides
access to data structures larger than the available memory space by keeping them partly
in memory and partly on disk.

PDBR: See Page Directory Base Register.

Physical Address: The address which appears on the local bus. The Intel486 processor
has a 32-bit physical address, which may be used to address as much as 4 gigabytes of
memory.

Physical Memory: The address space on the local bus; the hardware implementation of
memory. Memory is addressed as 8-bit bytes, but it is implemented as 32-bit double­
words which start at addresses which are multiples of four (addresses which are clear in
their two least significant bits). The Intel486 processor may have up to 4 gigabytes of
physical memory.

Precision: The effective number of bits in the significand of the floating-point represen­
tation of a number.

Precision Control: An option, programmed through the FPU control word, that allows
all FPU arithmetic to be performed with reduced precision. Because no speed advantage
results from this option, its only use is for strict compatibility with IEEE Std 754 and
with other computer systems.

Glossary-11

intel® GLOSSARY

Precision Exception: An FPU exception condition that results when a calculation does
not return an exact answer. This exception is usually masked and ignored; it is used only
in extremely critical applications, when the user must know if the results are exact. The
precision exceptions is called inexact in IEEE Std 754.

Privilege Level: A protection parameter applied to segments and segment selectors.
There are four privilege levels, ranging from 0 (most privileged) to 3 (least privileged).
Level 0 is used for critical system software, such as the operating system. Level 3 is used
for application programs. Some system software, such as device drivers, may be put in
intermediate levels 1 and 2.

Processor: The part of a computer system which executes instructions; also called micro­
processor, CPU, or MPU.

Protected Mode: An execution mode in which the full 32-bit architecture of the proces­
sor is available.

Protection: A mechanism which can be used to protect the operating system and appli­
cations from programming errors in applications. Protection can be used to define the
address spaces accessible to a program, the kind of memory references which may be
made to those address spaces, and the privilege level required for access. Any violation
of these protections generates a general-protection exception. Protection can be applied
to segments or pages.

Pseudo-Descriptor: A 48-bit memory operand accessed when a descriptor table base
register is loaded or stored.

Pseudozero: One of a set of special values of the extended real format. The set consists
of numbers with a zero significand and an exponent that is neither all zeros nor all ones.
Pseudozeros are not created by the FPU but are handled correctly when encountered as
operands.

Quadword: A 64-bit operand. The COQ instruction can be used to convert a doubleword
to a quadword. A quadword held in the EOX and EAX registers may be the dividend
used with a doubleword divisor.

Quiet NaN: A floating-point NaN in which the most significant bit of the fractional part
of the significand is one. By convention, these NaN's can undergo certain operations
without causing an exception.

Re-entrant: Allowing a program to call itself; recursive. For certain kinds of problems,
such as operations performed on hierarchical data structures, procedures which call
themselves are simple and efficient solutions. On the Intel486 processor, procedures may
be re-entrant, however tasks are not. A task may not call itself because it has only one
task state segment (TSS) for storing the processor state. Procedures store the processor
state on the stack, so they may be re-entrant to an arbitrary number of levels.

Glossary-12

int'et GLOSSARY

Real-Address Mode: An execution mode which provides an emulation of the architecture
of an 8086 processor; also called "real mode." In this mode the Intel486 processor
appears as a fast 8086 processor. The architectural extensions for protection and multi­
tasking are not available in this mode. Following reset initialization, the Intel486 proces­
sor begins execution in real mode.

Real: Any finite value (negative, positive, or zero) that can be represented by a(possibly
infinite) decimal expansion. Reals can be represented as the points of a line marked off
like a ruler. The term can also refer to a floating-point number that represents a real
value.

Requested Privilege Level (RPL): The privilege level applied to a segment selector. If the
RPL is less privileged than the current privilege level (CPL), access to a segment takes
place at the RPL level. This keeps privileged software from being used by an application
to interfere with the operating system or other applications. For example, a privileged
program which loads memory from disk should not be permitted to overwrite the oper­
ating system as a result of a call from an application. With RPL, the attempt to access
the memory space of the operating system takes place with the privleges of the
application.

Reset: See Initialization.

RPL: See Requested Privilege Level.

Segment: An independent, protected address space. A program may have as many as
16,383 segments, each of which can be up to 4 gigabytes in size.

Segment Descriptor: A 64-bit data structure in memory used for segmentation. It
includes the base address for a segment, its size (limit), its type, and protection informa­
tion. It is set up by operating system software and accessed by segmentation hardware.

Segment-Override Prefix: An instruction prefix which overrides the default segment
selection. There are six segmenFoverride prefixes, one each for the CS, SS, DS, ES, FS,
and GS segments.

Segment Selector: A 16-bit number used to specify an address space (segment). Bit
position 3 to 15 are used as an index into a descriptor table. Bit position 2 specifies
whether the global descriptor table (GDT) or local descriptor table (LDT) is used. Bit
positions 0 and 1 are the requested privilege level (RPL), which may lower the priority of
access, as an additional protection check.

Segmentation: A form of memory management used to provide multiple independent,
protected address spaces. Segmentation aids program debugging by reporting program­
ming errors when they first occur, rather than when their effects become apparent.
Segmentation makes programs provided to the end-user more reliable by limiting the
damage which can be caused by undetected errors. Segmentation increases the address
space available .to a program by providing up to 16,383 segments, each of which can be
up to 4 gigabytes in size.

Glossary-13

intel® GLOSSARY

Set-Associative: A form of cache organization in which the location of a data block in
main memory constrains, but does not completely determine, its location in the cache.
Set-associative organization is a compromise between direct-mapped organization, in
which· data from a given address in main memory has only one possible cache location,
and fully-associative organization, in which data from anywhere in main memory can be
put anywhere in the cache. An "n-way set-associative" caphe allows data from a given
address in main memory to be cached in any of n locations. Both the Translation Looka­
side Buffer (TLB) and the integral cache of the Intel486 processor have a four-way
set-associative organization.

Short Integer: An integer format supported by the FPU that consists of a 32-bit two's
complement quantity. Short integer is not the shortest FPU integer format-the 16-bit
word integer is.

Short Real: An older term for the FPU's 32-bit single format.

SIB Byte: A byte following an instruction opcode and modR/M bytes which is used to
specify a scale factor, index, and base register.

Sign Extension: Conversion of data to a larger format, where empty bit positions are
filled with the value of the sign. This form of conversion preserves the value of signed
integers. See Zero Extension.

Signaling NaN: A floating-point NaN that causes an invalid-operation exception when­
ever it enters into a calculation or comparison, even an unordered comparison.

Significand: The part of a floating-point number that consists of the most significant
nonzero bits of the number, if the number were written out in an unlimited binary
format. The significand is composed of an integer bit and a fraction. The integer bit is
implicit in the single format and double format. The significand is considered to have a
binary point after the integer bit; the binary point is then moved according to the value
of the exponent.

Single Extended: A floating-point format, required by the IEEE Std 754, that provides
greater precision than single; it also provides an explicit integer bit in the significand.
The FPU's extended format meets the single extended requirement as well as the double
extended requirement. .

Single Format: A floating-point format supported by the FPU, which consists of a sign,
an 8-bitbiased exponent, an implicit integer bit, and a 23-bit significand-a total of 32
explicit bits.

Stack Fault: A special case of the invalid-operation exception which is indicated by a one
in the SF bit of the status word. This condition usually results from stack underflow or
overflow in the FPU.

Stack Frame: The space used on the stack by a procedure. The stack frame includes
parameters, return addresses, saved registers, temporary storage, and any other stack
space the procedure uses.

Glossary,14

intel® GLOSSARY

Stack Segment: A data segment which is used to hold a stack. A stack segment may be
expand-down, which allows the segment to be resized toward lower address. The type of
information held in a segment is specified in its segment descriptor.

Status Word: A 16-bit FPU register that can be manually set, but which is usually con­
trolled by side effects to FPU instructions. It contains condition codes, the FPU stack
pointer, busy and interrupt bits, and exception flags.

String: A sequence of bytes, word, or doublewords which may start at any byte address in
memory. The Intel486 processor has instructions for efficient operations on strings.

Supervisor Mode: The privilege level applied to operating system pages. Paging only
recognizes two privilege levels: supervisor mode and user mode. A program executing
from a segment at privilege level 0, 1, 2 is in supervisor mode.

Table: An array of records in memory having equal size.

Tag Word: A 16-bit FPU register that it automatically maintained by theFPU. For each
space in the FPU stack, it tells if the space is occupied by a number; if so, it gives
information about what kind of number.

Tag Word: A 16-bit FPU register that it automatically maintained by the FPU. For cach
space in the FPU stack, it tells if the space is occupied by a number; if so, it gives
information about what kind of number.

Tag: The part of a cache line which holds the address information used to determine if a
memory operation is a hit or a miss on that cache line.

TaskRegister: A register which holds a segment selector for the current task. The selec­
tor references a task state segment (TSS). Like the segment registers, the TR register
has a visible part and an invisible part. The visible part holds the segment selector, and
the invisible part holds information cached from the segment descriptor for the TSS.

Task State Segment (TSS): A segment used to store the processor state during a task
switch. If a separate I/O address space is used, the TSS holds permission bits which
control access to the I/O space. Operating systems may define additional structures
which exist in the TSS. .

Task Switch: A transfer of execution between tasks; a context switch. Unlike the proce­
dure calls, which save only the contents of the general registers, a task switch saves most
of the processor state. For example, the registers used for address translation are
reloaded, so that each task can have a different logical-to-physical address mapping.

Task: A program running, or waiting to run, in a multitasking system.

Temporary Real: An older term for the FPU's 80-bit extended format.

Tiny: Of or pertaining to a floating-point number that is so close to zero that its expo­
nent is smaller than smallest exponent that can be represented in the destination format.

Glossary-15

intaL GLOSSARY

TLB: See Translation Lookaside Buffer.

Top: The three-bit field of the status word that indicates which FPU register is the
current top of stack.

Trimscendental: One of a class of functions for which polynomial fo~mulas are always
appropriate, never exact for more than isolated values. The FPU supports trigonometric,
exponential, and logarithmic functions; all are transcendental.

Translation Lookaside Buffer (TLB): The on-chip cache for page table entries. In typical
systems, about 99% of the references to page table entries can be satisfied by informa­
tion in the TLB.

Trap: An exception which is reported at the instruction boundary immediately following
the instruction which generated the exception.

Trap Gate: A gate descriptor used to invoke an exception handler. A trap gate is differ­
ent from an interrupt gate only in its effect on the IF flag. Unlike an interrupt gate,
which clears the flag (disables interrupts) for the duration of the handler, a trap gate
leaves the flag unchanged.

TS8: See Task State Segment.

Two's Complement: A method of representing integers. If the uppermost bit is zero, the
number is considered positive, with the value given by the rest of the bits. If the .upper­
most bit is one, the number is negative, with the value obtained by subtracting (2M count)

from all the given bits. For example, the 8-bit number 11111100 is -4, obtained by
subtracting 28 from 252.

Unbiased Exponent: The true value that tells how far and in which direction to move the
binary point of the significand of a floating-point number. For example, if a single­
format exponent is 131, we subtract the Bias 127 to .obtain the unbiased exponent + 4.
Thus, the real number being represented is the significand with the binary point shifted
4 bits to the right.

Underflow: An exception condition in which the correct answer is nonzero, but has a
magnitude too small to be represented as a normal number in the destination floating­
point format. IEEE Std 754.specifies that an attempt be made to represent the number
asa denormal. This. denormalization may result in a loss of significant bits from the
significand., This kind of underflow (also called numeric overflow) is not be confused
with stack overflow.

Unmasked: A term that can apply to each of the six FPU exceptions: I, D, Z, 0, U, P.
An exception is unmasked if a corresponding bit in the FPU control word is set to zero.
If an exception is unmasked, the FPU will generate an interrupt whent he exception
condition occurs. You can provide an interrupt routine that customizes your exception
recovery.

Glossary-16

intel® GLOSSARY

Unnormal: An extended real representation in which the explicit integer bit of the sig­
nificand is zero and the exponent is nonzero. Unnormal values are not supported by the
FPU. This includes several formats that are recognized by the 8087 and 287 coproces­
sors; they cause the invalid-operation exception when enc·ountered as operands.

Unsupported Format: Any number representation that is not recognized by the FPU.
This includes several formats that are recognized by the 8087 and 287 coprocessors;
namely: pseudo-NaN, pseudoinfinity, and unnormal.

USE16: An assembly language directive for specifying 16-bit code and data segments.

USE32: An assembly language directive for specifying 32-bitcode and data segments.

User Mode: The privilege level applied to application pages. Paging only recognizes two
privilege levels: supervisor mode and user mode. A program executing from a segment at
privilege level 3 is in user mode.

V86 Mode: See Virtual-8086 Mode.

Valid: Allocated. Valid cache lines have been loaded with data and may cause cache hits.
Invalid cache lines do not cause cache hits.

Vector: A number used to identify the source of an exception or interrupt. A vector i~
used to index into the IDT table for a gate descriptor. The gate descriptor is used to call
the handler for the exception or interrupt.

Virtual Memory: The memory model for application programs; a simplified organization
for memory supported by memory management hardware and operating system soft­
ware. On the Intel486 processor, virtual memory is supported by segmentation and pag­
ing. Segmentation is a mechanism for providing multiple independent, protected address
spaces. Paging is a mechanism for providing access to data structures larger them physical
memory by keeping them partly in memory and partly on disk.

Virtual-8086 Mode: An execution mode which provides an emulation of the architecture
of an 8086 processor. Unlike real-address mode, virtual-8086 mode is compatible with
multitasking; a protected mode operating system may be used to run a mix of protected
mode and virtual-8086 mode tasks.

Word: A 16-bit quantity of memory. The Intel486 processor allows 16-bit words to begin
at any byte address, but a performance penalty is taken when a word crosses the bound­
ary between two doublewords in physical memory.

Word Integer: An integer format supported by the Intel486 processor that consists of a
16-bit two's complement quantity.

Write-Back: A form of caching in which memory writes load only the cache memory.
Data propagates to main memory when a write-back operation is invoked.

Glossary·17

int"eL GLOSSARY

Write-Through: A form of caching in which memory writes load both the cache memory
and main memory.

Zero Divide: An exception condition in which floating-point inputs are finite, but the
correct answer, even with an unlimited exponent, has infinite magnitude.

Zero Extension: Conversion of data to.a larger format, where empty bit positions are
filled with zero. This form of conversion preserves the value of unsigned integers. See
Sign Extension.

Glossary-18

Index

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

I

INDEX

AAA (ASCII adjust AL after addition), flag
cross-reference, B-1
instruction description, 3-10
instruction format and timing, E-lO
instruction specification, 26-18
one-byte opcode map, A-4
status flag summary, C-l

AAD (ASCII adjust AX before division),
flag cross-reference, B-1
instruction description, 3-11
instruction format and timing, E-ll
instruction specification, 26-19
one-byte opcode map, A-4
status flag summary, C-l

AAM (ASCII adjust AX after multiplication),
flag cross-reference, B-1
instruction description, 3-11
instruction format and timing, E-10
instruction specification, 26-20
one-byte opcode map, A-4
status flag summary, C-l

AAS (ASCII adjust AL after. subtraction),
flag cross-reference, B-1
instruction description, 3-11
instruction format and timing, E-I0
instruction specification, 26-21
one-byte opcode map, A-4, A-5
status flag summary, C-l

aborts,
exception conditions, 9-13
exception description, 9-2
exception processor-detected, 9-1

absolute address, and JMP instruction, 3-24
AC flag (alignment check mode - bit 18),

system flag description, 4-2
accessed bit,

page table entries, 5-21
segment register loading, 3-39

ADC (add integers with carry),
flag cross-reference, B-1
instruction description, 3-7
instruction specification, 26-22
modR/M byte opcodes, A-8
one-byte opcode map, A-4
status flag summary, C-1

ADD (add integers),
flag cross-reference, B-1
instruction description, 3-7
instruction specification, 26-24
modR/M byte opcodes, A-8
one-byte opcode map, A-4
status flag summary, C-l

address-size prefix, instruction format, 2-16
addressable domain, restrictions to, 6-23
addressing-mode,

FPU architecture, 19-1
instruction specifier, 2-16

AF (auxiliary carry flag), status flag, 2-14
AH (8-bit general register),

and AAA instruction, 3-10
and AAD instruction, 3-11
and AAM instruction, 3-11
and AAS instruction, 3-11
register description, 2-8

AHOLD input, and self test, 10-1
AL (8-bit general register),

and AAA instruction, 3-10
and AAD instruction, 3-11
and AAM instruction, 3-11
and AAS instruction, 3-11
and binary arithmetic instructions, 3-6
and CBW instruction, 3-6
and CMPXCHG instruction, 3-43
and DAA instruction, 3-10
and DIY instruction, 3-9
and immediate operands, 2-18
and LODS instruction, 3-30
and MOY instruction, 3-2
and MUL instruction, 3-8
and SCAS instruction, 3-29
and STOS instruction, 3-30
and XLATB instruction, 3-42
register description, 2-8

alignment,
and LOCK prefix, 13-2
and pseudo-locking, 13-3
of data type addresses, 2-4

alignment-check exception,
and AC flag, 4-2
and Intel486 processor, 2-24

alignment-check fault, Interrupt 17 (alignment
check), 9-23

AM bit (alignment mask-bit 18), system
control flag, 4-7

ANaN indefinite, and stack exception, 16-20
AND (logical and),

flag cross-reference, B-1
instruction description, 3-12
instruction specification, 26-26
mod RIM byte opcodes, A-8
one-byte opcode map, A-4
status flag summary, C-2

architecture, Intel486 Floating Point Unit
(FPU),15-1

arithmetic instructions,
and EFLAGS register, 2-13
and immediate operands, 2-18
and nonarithmentic instructions, 16-2

Index-1

in1:el® INDEX

ARPL (adjust RPL field of selector),
flag cross-reference, B-1
instruction format and timing, E-12
instruction specification, 26-27
one-byte .opcode map, A-4
pointer integrity, 6-22

ASM386/486 assembler,
and FPU numeric applications, 18-4
and FPU register addressing modes, 15-1
and Intel486 Floating Point Unit(FPU),

14-6
automatic exception handling, numeric

exceptions, 16-18
automatic locking, and LOCK#; 13-3
A VL field, I/O addressing, 8-1
AX (16-bit general register),

and CMPXCHG instruction, 3-43
and CWD instruction, 3-4
and CWDE instruction, 3-6
and DIV instruction, 3-9
and MUL instruction, 3-8
and SCAS instruction, 3-29
andSTOS instruction, 3-30
register description, 2-8

B bit, and Intel 8087 compatibility, 15-2
base,

effective-address computation, 2-22
segment descriptors, 5-10

base address,
and effective address, 2-21
and segment descriptor, 2~2
and segment descriptors, 5-10
and segmented address space, 2-3

BCD (binary coded decimal), data type, 2-6
benign exceptions, and Interrupt 8 (double

fault), 9-16
BH (8-bit general register), register

description, 2-8
bidirectional port, and input/output, 8-1
binary arithmetic instructions, and application

programming, 3-6
binary integers, FPUdata type, 15-11
bit block transfer, and double-shift

instructiorts,3-19
bit field, data type, 2-6
bit string, data. type, 2-6
BL (8-bit general register), r~gister

description, 2-8
block I/O instructions,

INS (input string from port), 8-5
OUTS (output string from port), 8-6

block-structured language,
instructions, 3-30
lexical level, 3-32

Boolean expressions, and byte-set~on-condition
instructions, 3-22

BOUND (check array index against bounds),
flag cross-reference, B-1
general description, 3-27

instruction format and timing, E-13
instruction specification, 26-29
one-byte opcode map, A-4

bounds-check exception, and Intel486
. processor, 2-23

bounds-check fault, Interrupt 5 (bounds
check), 9-15

BP (16-bit general register), register
description, 2-8

breakpoint exception,
debugging support, 11-1
and Intel486 processor, 2-23

breakpoint instruction, debugging support,
11-1 .

breakpoint trap, Interrupt 3 (breakpoint
instruction), 9~14, 11-9

breakpoints, and debug registers, 4-8, 11-5
BSF (bit scan forward),

flag cross-reference, B-1
instruction description, 3-12
instruction format and timing,Ec9
instruction specification, 26-31
status flag summary, C-2
two-byte opcode map, A-7 BSR (bit scan

reverse),
flag cross-reference, B-1
instruction description, 3-12
instruction forinat and timing, E-9
instruction specification, 26-33
status flag summary, C-2
two-byte opcode map, A-7

BSWAP (byte swap),
flag cross-reference, B-1
instruction description, 3-46
instruction format and timing, E-6
instruction specification, 26-35
two-byte opcode map, A-7

BT (bit test),
flag cross-reference, B-1
instruction description, 3-12
instruction format and timing, E-9
instruction specification, 26-36
modR/M byte opcodes, A-8
status flag summary, C-3
two-byte opcode map, A-6

BTC (bit test and complement),
flag cross-reference, B-1
instruction description, 3-12
instruction specification, 26-38
status flag summary, C-3
two-byte opcode map, A-7

BTR (bit test and reset),
flag cross-reference, B-1
instruction description, 3-12
instruction. specification, 26-40

. modR/M byte opcodes, A-8
status flag summary, C-3
two-byte opcode map, A-6

Index-2

infel®
BTS (bit test and set),

flag cross-reference, B-1
instruction description, 3-12
instruction specification, 26-42
modR/M byte opcodes, A-8
status flag summary, C-3
two-byte opcode map, A-7

bus masters,
and LOCK prefix, 13-2
and processor communication, 13-1

busy bit,
and re-entrant task switching, 7-12
and TSS descriptor, 7-3

BX (16-bit general register), register
description, 2-8

byte, data type, 2-3

C programs, and FPU numeric applications,
18-1

C-386/486, and FPU numeric applications,
18-1

cache,
associative memories and tag, 12-1
consistency and mUltiprocessing systems,

13-1
consistency and· multiprocessor systems,

12-1
control bits and page table entries, 5-22
disabling bits and internal cache, 12-2
external cache, 12-1
hit and associative memory tag, 12-1
initialization testing, 10-10
internal cache, 12-1
line fill and cache lines, 12-2
lines and internal cache, 12-1
miss and associative memory tag, 12-1
structure, 10-10
test operations, 10-13
test registers, 10-12

cache management,
instructions (system programming), 4-9
INVD (invalidate cache), 12-3
PCD bits (page-level cache disable), 12-4
WBINVD (write-back and invalidate

cache), 12-3
caching,

and I/O data, 8-4
and page-level management, 12-3
and write-back, 12-2
and write-through, 12-2
enable and initialize, 10-4

CALL (call procedure),
flag cross-refe.rence, B-1
general description, 3-24
instruction format and timing, E-7, E-8
instruction specification, 26-44
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5

INDEX

call gates, and control transfers, 6-11
carry flag instructions, and CF flag, 3-37
CBW (convert byte to word),

flag cross-reference, B-1
instruction description, 3-6
instruction format and timing, E-6
instruction specification, 26-51
one-byte opcode map, A-4, A-5

CD bit (cache disable - bit 30), system control
flag, 4-6 .

CDQ (convert doubleword to quadword),
instruction description, 3-4
instruction specification, 26-64

CF (carry flag), status flag, 2-14
CF flag,

and binary arithmetic instructions, 3-6
and carry flag instructions, 3-37
and DEC instruction, 3-6
and INC instruction, 3-6

CH (8-bit general register), register
description, 2-8

CL (8-bit general register),
and shift instructions, 3-13
register description, 2-8

CLC (clear carry flag),
flag cross-reference, B-1
instruction format and timing, E-10
instruction specification, 26-52
one-byte opcode map, A-5

CLD (clear direction flag),
flag cross-reference, B-1
instruction format and timing, E-10
instruction specification, 26-53
one-byte opcode map, A-5

CLI (clear interrupt-enable flag),
and INTR interrupts, 9-3
flag cross-reference, B-1
instruction format and timing, E-lO
instruction specification, 26-54
one-byte opcode map, A-5
sensitive instructions, 8-6

CLTS (clear task-switched flag in CRO), .
flag cross-reference, B-1
instruction format and timing, E-11
instruction specification, 26-55
privileged instruction, 6-19
two-byte opcode map, A-6

CMC (complement carry flag),
flag cross-reference, B-1
instruction format and timing, E-lO
instruction specification, 26-56
one-byte opcode map, A-4

CMP (compare two operands),

Index-3

flag cross-reference, B-1
instruction description, 3-8
instruction format and timing, E-4
instruction specification, 26-57
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

iniaL INDEX

CMPS (compare strings),
flag cross-reference, B-1
instruction description, 3-29
instruction format and timing, E-9
instruction specification, 26-59
status flag summary, C-2

CMPSB (compare bytes),
instruction specification, 26-59
one-byte opcode map, A-4

CMPSD (compare doublewords),
instruction specification, 26-59 .
one-byte opcode map, A-4

CMPSW (compare words),
instruction specification, 26-59
one-byteopcode map, A-4

CMPXCHG (compare and exchange),
flag cross-reference, B-1
instruction description, 3-48
instruction format and timing, E-6
instruction specification, 26-62
status flag summary, C-2
two-byte opcode map, A-6

code segments,
and CS register, 2-11
and data access, 6-8
and segment descriptors, 5-13

comparison instructions, floating-point
instructions, 17-4

compatibility,
Intel486 Floating Point Unit (FPU), 14-1
initialization, 10-1
Inte1386/InteI387 DX processor differences,

25-1
Intel 286/Inte1287 processor differences,

25-2
Intel 8086/8087 processor differences, 25-10

concurrent processing, IU and FPU, 18-12
condition codes, and EFLAGS register, 2-13
conditional branching example, numeric

programming, 20-1
conforming segment, and control transfer

restrictions, 6-9
constant instructions, floating-point

instructions, 17-6
contributory exceptions, and Interrupt 8

(double fault), 9-16 .
control instructions, floating-point instructions,

17-6
control registers, of Intel486 processor, 2-8
control transfers,

and call gates, 6c 11
and gate descriptors, 6-11
instructions and application programming,

3-23
restrictions to, 6-9

coprocessor-not-available exception, and EM
con trol flag, 4-7

coprocessor-segment overrun abort, Interrupt
9 (Intel reserved), 9-17

copy-on-write strategy, and user-mode write
protect, 6-24

CPL (current privilege level),
and control transfer restrictions, 6-9
and CS segment register, 6-6
and data access restrictions, 6-7

CRO (system control register),
and AC flag, 4-2
and paging, 2-2, 5-2
and PG bit, 5-.18 .
register description, 4-5

CR1 (system control register), register
description, 4-5

CR2 (system control register), register
description, 4-5

CR3 (system control register),
and page frame address, 5-18
and page-directory register (PDBR), 4-6
register description, 4-5

CS (segment register),
and code segment, 2-11
and CPL (current privilege level), 6-6
and far control transfer instructions, 3-40
register description, 2-10

CWD(convert word· to doubleword),
flag cross-reference, B-1
instruction description, 3-4
instruction format and timing, E-6
instruction specification, 26-64
one-byte opcode map, A-4, A-5

CWDE (convert word to doubleword
extended),

instruction descriptiori, 3-6
instruction specification, 26-51

CX (16-bit general register), register
description, 2-8

D bit, segment descriptors, 5-12
DAA (decimal adjust AL after addition),

flag cross-reference, B-1
instruction description, 3-10
instruction format and timing, E-11
instruction specification, 26-65
one-byte opcode map, A-4
status flag summary, C-1

DAS (decimal adjust AL after subtraction),
flag cross-reference, B-1 .
instruction description, 3-10
instruction format and timing, E-11
instruction specification, 26-66
one-byte opcode map, A-4, A-5
status flag summary, C-1

data access,
code segments shared data, 6-8
restrictions to, 6-7

Index-4

intel® INDEX

data bus, and doubleword transfers, 2-6
data movement instructions,

and application programming, 3-1
and LOCK prefIx, 13-2 .

data segment,
and DS register, 2-11
and ES register, 2-11
and FS register, 2-11
and OS register, 2-11
and segment descriptor, 5-13
descriptor and writable bit, 6-3

data transfer instructions, floating-point
instructions, 17-2

data type,.
BCD,2-6
bit field, 2-6
bit string, 2-6
byte, 2-3
doubleword, 2-4
far pointer, 2-6
floating-point, 2-6
integer, 2-6
near pointer, .2-6
ordinal, 2-6
packed BCD, 2-6
string, 2-6
word,2-3

data type encoding, and unsupported formats,
16-13

data types and formats, Intel486 Floating
Point Processor (FPU), 15-9

data-breakpoint trap, Interrupt 1 (debug
exceptions), 9-14, 11-6

debug address registers (DRO-DR3),
debugging support, 11-1
for breakpoint linear address, 11-2

debug control register (DR7),
debugging support, 11-1
for breakpoint memory access, 11-2

debug exception,
and Intel486 processor, 2-23
and RF flag, 4-3, 9-4
and TF flag, 4-3

debug interrupt vector, debugging support,
11-1 .

debug status register (DR6),
conditions sampled, 11-4
debugging support, 11-1

debugging,
Intel486 processor facilities, 11-1
instructions for system programming, 4-9

DEC (decrement by one),
and CF flag, 3-6
flag cross-reference, B-1
instruction description, 3-8
instruction specification, 26-67
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

decimal arithmetic instructions, and
application programming, 3-10

decimal integers, FPU data type, 15-12
default segment, assignment of, 2-19
defining data, ASM386/486, 18-4
demand-paged virtual memory, and paging, 5-2
denormal real numbers, FPU data formats,

16-1
denormal-operand exception,

denormal operand, 16-22
numeric exceptions, 16~ 17.
pseudodenormal numbers, 16-13

descriptor table addressing, instructions
(system programming), 4c9

descriptor table base registers,
ODTR register, 5-16
IDTR register, 5-16
segment descriptors, 5-16

descriptor validation,
VERR (verify for read), 6-21
VERW (verify for write), 6-21

destination operand,
for binary arithmentic instructions, 3-6
for floating-point instructions, 17-1
for two-operand instructions, 2-17

device drivers, and privilege levels, 6-6
device-not-available fault,

and Intel486 processor, 2-23
Interrupt 7 (device not available), 9-15

DF (direction flag),
direction flag control instructions, 3-37
EFLAOS register, 2-13

DH (8-bit general register), register
description, 2-8

DI (16-bit general register), register
description, 2-8

direct load instructions, and segment registers,
5-7

directed rounding,· FPU rounding control,
15-16

direction flag control instructions, and DF
flag, 3-37

dirty bits, and page table entries, 5-21
displacement,

effective address, 2-21
instruction format, 2-16

display, stack frame pointer set, 3-30
DIV (unsigned divide),

flag cross-reference, B-1
general description and flags, 3-9
instruction format and. timing, E-5
instruction specification, 26-68
modRiM byte opcodes, A-8

Index-5

INDEX

divide-by-zero, numeric exceptions, 16-17
divide-error .exception, and Intel486 processor,

2-23.
divide-error fault, Interrupt 0 (divide error),

9-14' . '. ..
division by zero, and zero-divide exception,

16-21
DL (8-bit general register), register
description, 2-8
double real, numeric data type; 14-6
double-shift instructions,

and bit block transfer, 3-19
and string insertion/extraction, 3-19

doubleword; .
data type, 2"4
data bus transfers,. 2-6

DPL (descriptor privilege level),
and control transfer restrictions, 6-9
and data access restrictions, 6-7
and segment descriptors, 6-6
and segment privilege level,.5-14

DS (segment register),
and application program, 2-12
and data segment, 2" 11
register description, 2-10

DX (16-bit general register),
and CWD instruction, 3-4
regist~rdescription, 2-8. .

dynamic storage, and ENTER instruction, 3-30

E bit (expansion direction bit), and segment
descriptor, 6-4

EAX (32-bit general register), .
and binary arithmetic instructions, 3-6
and CDQ instruction, 3-4
and CMPXCHG instruction, 3-43
and CWDE instruction, 3~6
and DIV,instruction, 3-9
and immediate operands, 2-18
and IMUL instruction, 3-8
and LODS instruction, 3-30
and MOV instruction, 3-2
and MUL instruction,' 3-8
and PUSHA instruction, 3-3
and SCAS instruction, 3-29
and STOS instruction, 3-30
register description, 2-8

EBP (32-bit general register),
and ENTER instructiori; 3-31

. and LEAVE instruction, 3-35
and PUSHA instruction, 3-3
register description, 2-8

EBX (32-bit general register),
and LEA instruction, 3-41
and PUSHA instruction, 3-3
and XLATB instruction, 3-42
register description, 2-8 .

ECX (32-bit general register); .
and JECXZ instruction; 3-26 .
and loop instructions, 3-25

and LOOPE instruction, 3-26
and LOOPNE instruction, 3-26
and .LOOPNZ instruction, 3-26
and LOOPZ instruction, 3-26
and MOVS instruction, 3-29
and PUSHA instruction, 3-3
and three-operand instructions, 2-18
register description, 2-8

EDI (32-bit general register),
and LEA instruction, 3-41
and MOVS instruction, 3-29
and PUSHA instruction, 3-3
and STOS instruction, 3-30
for string destination operand, 3-29
registe~ description, 2-8

EDX (32-bit general register),
and CDQ instruction, 3-4
and IMUL instruction, 3-8
and PUSHA instruction, 3-3
register description, 2-8

effective address, components of, 2~21
EFLAGS register,

AC flag (alignment check mode-bit 18),
4"2

and arithmetic instructions; 2-13·
and condition codes, 2-13
and conditional transfer instructions, 3-24
and DF (direction flag), 2-13
and flag control instructions, 3-35
and I/O protection, 8-6
and IRET instruction, 3-24
and mode bits, 2-13
and string instructions, 2-13
and system programming, 4~2
as register operand, 2-19
IF flag (interrupt-enable flag- bit 9), 4-3
10PL flag (I/O privilege level- bits 12 and

13),4-3 .
NT flag (nested task-bit 14),4-3
RF flag (resume flag- bit 16), 4-3
TF flag (trap flag-bit 8), 4-3' .
VM flag (virtual-8086 mode- bit 17), 4-3

EIP register,
and CALL instruction, 3-24
and conditional jump instructions, 3-25
and current code segment, 2-14
and instruction prefetching, 2-15
and RET instruction, 3-24 .

EM bit (emulate coprocessor), numerics.
environment configuration, 19-.2

EM (emulation - bit ~), syst~m, control flag,
4-7

ENTER (make stack frame·for procedure),
flag cross-reference" B-1
general description, 3-30
instruction format and timing, £-8'
instruction specification, 26-70
one-byte opcode map, A"5

Index-6

intel®

ERROR#, and NE control flag, 4-7
error codes,

and exception handler, 9-13
summary of, 9-24

ES register,
and application program, 2-12
and data segment, 2-11
segment register, 2-10

ESCAPE instructions, and Intel486 Floating
Point Unit (FPU), 14-5

ESI (32-bit general register),
and LEA instruction, 3-41
and LaDS instruction, 3-30
and MaYS instruction, 3-29
and PUSHA instruction, 3-3
for string source operand, 3-29
register description, 2-8

ESP (32-bit general register),
and ENTER instruction, 3-31
and LEAVE instruction, 3-35
and POP instruction, 3-3
and paPA instruction, 3-4
and PUSH instruction, 3-2
and PUSHA instruction, 3-3
and RET instruction, 3-24
register description, 2-8

ET (extension type-bit 4), system control
flag, 4-7

exact arithmetic, and Intel486 Floating Point
Unit (FPU), 14-4

exception handling example, numeric
programming, 20-1

exception vector, identifying number, 9-1
exceptions,

alignment-check exception, 2-24
and instruction prefetching, 2-15
and instruction restart, 9-2
and page mapping, 2-2
and task switching, 7-1
and trap gates, 6-11
bounds-check exception, 2-23
breakpoint exception, 2-23
conditions causing, 9-13
debug exception, 2-23
description of, 2-23
device-not-available exception, 2-23
divide-error exception, 2-23
for basic programming model, 2-23
FPU simultaneous response, 19-4
in real-address mode, 22-2, 22-5
overflow exception, 2-23
processing priority, 9-5, 16-26
processor-detected, 9-1
programmed software interrupts, 9-1
summary of, 9-24
synchronization, 18-13,18-14

INDEX

executable-segment descriptor, readable bit,
6-3

explicit operand,
description of, 2-17
in memory, 2-19

extended format, and Intel486 Floating Point
Unit (FPU), 14-6

extended real, numeric data type, 3-38, 14-6
external bus, and I/O instruction execution,

8-1
external cache,

Intel486 processor, 12-1
and write-back cache, 12-2
and write-through cache, 12-2

F2XMl (computer 2x-l),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-72
numeric exception .summary, F-l

FABS (absolute value),
condition code interpretation; 15-4
instruction format and timing, E-19
instruction specification, 26-74
numeric exception summary,F-l

FADD (add),
condition code interpretation, 15c4
instruction format and timing, E-17
instruction specification, 26-75·
numeric exception summary, F-l

FADDP (add),
instruction format and timing, E-17
instruction specification, 26-75
numeric exception summary, F-l

Far CALL, general description., 3-40
far form, RET (return from procedure), 6-17
far pointer, data type, 2-6
Far RET, general description, 3-40
far transfer, and unconditional trqnsfer

instructions, 3-23
faults,

exception conditions, 9-13
exception description, 9-2
processor-detected exception, 9-1

FBLD (load binary coded decimal),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-77
numeric exception summary, F-l

FBSTP (store binary coded decimal and pop),
condition code interpretation, 15-4
instruction. format and timing, E-16
instruction specification, 26-79
numeric exccption summary, F-l

FCHS (change sign),

Index-7

condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-80
numeric exception summary, F-l

FCLEX (clear exceptions),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-81
numeric exception summary, F-1

FCOM (compare real),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction speCification, 26-82
numeric exception summary, F-1

FCOMP (compare real), '
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-82
numeric exception summary, F-1

FCOMPP (compare real),
condition code interpretation, 15-4
instruction format and timing; E-17
instruction specification, 26"82
numeric exception summary,F-l

FCOS (cosine),
condition code interpretation; 15-4
instruction format and timing, E-19
instruction specification, 26-84
numeric exception summary, F-l

FDECSTP (decrement stack-top pointer),
instruction format and timing, E-20
instruCtion specification, 26"86
numeric exception summary; F-1

FDIV (divide),
condition code interpretation, 15-4
instruction format and timing, E-18'
instruction specification, 26-87
numeric exception summary, F-1

FDIVP (divide),
instruction format and timing, E-18
instruction speCification, 26-87
numeric exception summary, F-l

FDIVPR (reverse divide),
instruction format and timing, E~ 18
instruction specification, 26-89
numeric exception summary, F-l

FDIVR (reverse divide), ,
condition code interpretation, 15-4
instruction format and timing, E-18
instruction speCification, 26c89
numeric exception summary, F-l

FERR#,
and NE control flag, 4-7
and software exception handling, 16-19

FFREE (free floating-point register),
instruction format and timing, E-20
instruction speCification, 26-91
numeric exception summary, F-l

FIADD (add),
instruction format and, timing" E-18
instruction speCification, 26-75
numeric exception summary, F-l

INDEX

FICOM (compare integer),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-92
numeric exception summary, F-1

FICOMP (compare integer),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction, speCification, 26-92
numeric exception summary, F-1

FIDIV (divide),
instruction format and timing, E-18
instruction specification, 26-87
numeric exception summary, F-1

FIDIVR (reverse divide),
instruction,format and timing, E-19
instruction speCification, 26-89
numeric exception summary,F-1

FILD (load integer),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction speCification, 26-94
numeric exception summary, ,F-1

FIMUL (multiply),
instruction format and timing, E-18
instruction specification, 26-109
numeric exception summary, F-1

FINCSTP (increment stack-top pointer),
condition code interpretation, 15-4
instruction format and timing, E-20
instruction specification, 26-96
numeric exception summary, F-1

FINIT (initialize floating-point unit),
condition code interpretation, 15-4
instruction format and timing,E-19 '
instruction specification, 26-97
numeric exception summary, F-l'

FIST (store integer),
condition code interpretation, 15-4
instruction format and timing, E-16 ,
instruction specification, 26-99 '
numeric exception summary, F-l

FISTP (store integer),
instruction format and timing,E-16
instruction speCification, 26-99
numeric exception summary, F-l

FISUB (subtract),
instruction format and timing, E-18
instruction specification, 26-138
numeric exception summary,F-l

FISUBR (reverse subtract),
instruction format and timing, E-18
instruction specification, 26-140
numeric exception summary, F-l

flag control instructions, and application
programming, 3-35

Index-8

intel®

flat address space, memory organization
model, 2-2, 2-3

flat model,
and segmentation, 5-3
segment/page translation, 5-23

flat model initialization, segmentation, 10-5
FLD1 (load constant),

instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-l

FLD (local real),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-101
numeric exception summary, F-1

FLDCW (load control word),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-105
numeric exception summary, F-1

FLDENV (load FPU environment),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-107
numeric exception summary, F-1

FLDL2E (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

FLDL2T (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

FLDLG2 (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

FLDLN2 (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

FLDPI (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

FLDZ (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

floating-point, data type, 2-6
floating-point detection code, 3-42
floating-point instructions,

comparison instructions, 17-4
constant instructions, 17-6
control instructions, 17-6
data transfer instructions, 17-2
destination operands, 17-1
nontranscendental instructions, 17-2
source operands, 17-1
transcendental instructions, 17-4

INDEX

floating-point numerics configuration, 19-2
floating-point numerics, instructions (system

programming), 4-9
floating-point to ASCII conversion example,

numeric programming, 20-7
floating-poi nt-error fault, Interrupt 16

(floating-point error), 9-23
FMUL (multiply),

condition code interpretation, 15-4
instruction format and timing, E-18
instruction specification, 26-109
numeric exception summary, F-l

FMULP (multiply),
instruction format and timing, E-18
instruction specification, 26-109
numeric exception summary, F-l

FNCLEX (clear exceptions), instruction
specification, 26-81

FNINIT (initialize floating point unit), and
FPU initialization, 19-2

FNINIT (initialize floating-point unit),
instruction specification, 26-97

FNOP (no operation),
instruction format and timing, E-20
instruction specification, 26-111
numeric exception summary, F-1

FNSAVE (store FPU state), instruction
specification, 26-123

FNSTCW (store control word), instruction
specification, 26-133

FNSTENV (store FPU environment),
instruction specification, 26-134

FNSTSW (store status word), instruction
specification, 26-136

forking, See copy-an-write strategy
FPATAN (partial arctangent),

condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-112
numeric exception summary, F-1

FPREM1 (partial remainder),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-116
numeric exception summary, F-1

FPREM (partial remainder),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-114
numeric exception summary, F-1

FPTAN (partial tangent),
condition code interpretation, 15-4
instruction format and timing; E-19
instruction specification, 26-118
numeric exception summary, F-1

FPU control word, and numerical exception
masking, 15-5

FPU data formats,
and other entities, 16-1
and special numeric values, 16-1

Index-9

intel®
FPU data type,

binary integers, 15-11
decimal integers, 15-12
real numbers, 15-12

FPU register addressing modes, and
ASM386/486 assembler, 15-1

INDEX

instruction specification, 26-134
numeric exception summary, F-2

FSTP (store real),

FPU register stack, and numeric registers, 15-1
FPU status word, and Integer Unit, 15-2

condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-131
numeric exception summary, F-2

FSTSW (store status word),
FPU tag word, and numeric registers, 15-6
FRNDINT (round to integer),

condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-120
numeric exception summary, F-1

FRS TOR (restore FPU state),
condition code interpretation, 15-4
instruction format and timing, E-20
instruction specification, 26-121
numeric exception summary, F-1

FS register,
and application program, 2-12
and data segment, 2-11
segment register, 2-10

FSAVE (store FPUstate),
condition code interpretation, 15-4
instruction format and timing, E-20
instruction specification, 26-123

FSCALE (scale),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-125
numeric exception summary, F-1

FSIN (sine),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-126
numeric exception summary, F-2

FSINCOS (sine and cosine),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-128
numeric exception summary, F-2

FSQRT (square root),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-130
numeric exception summary, F-2

FST (store real),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-131
numeric exception summary, F-2

FSTCW (store control word),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-133
numeric exception summary, F-2

FSTENV (store FPU environment),
condition code interpretation, 15-4
instruction format and timing, E-19

condition code interpretation, 15"4
instruction format and timing, E-19
instruction specification, 26-136
numeric exception summary, F-2

FSUB (subtract),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-138
numeric exception summary, F-2

FSUBP (subtract),
instruction format and timing, E-17
instruction specification, 26-138
numeric exception summary, F-2

FSUBPR (reverse subtract),
instruction format and timing, E-18
instruction specification, 26-140
numeric exception summary, F-2

FSUBR (reverse subtract),
condition code interpretation, 15-4
instruction format and timing, E-18
instruction specification, 26-140
numeric exception summary, F-2

FTST (test),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-142
numeric exception summary, F-2

FUCOM (unordered compare real),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-144
numeric exception summary, F-2

FUCOMP (unordered compare real),
condition code interpretation, 15-4
instruction format and timing, E~ 17
instruction specification, 26-144
numeric exception summary, F-2

FUCOMPP (unordered compare real),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-144
numeric exception summary, F-2

FWAIT (wait),
instruction specification, 26-146
numeric exception summary, F-2

FXAM (examine real),

Index-10

condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-147
numeric exception summary, F-2

intel@ INDEX

FXCH (exchange register contents),
condition code interpretation, 15-4
instruction specification, 26-149
numeric exception summary, F-2

FXTRACT (extract exponent and significand),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-151
numeric exception summary, F-2

FYL2X (computey x log2x),
condition code interpretation, 15-4
instruction format and timing, E-19
instructioJ,1 specification, 26-153
numeric exception summary, F-2

FYL2XPI (compute y x log2 (x + 1»,
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-155
numeric exception summary, F-2

G bit (granularity bit), and segment descriptor,
6-4

gate descriptors, and control transfers
protection, 6-11

GD (global debug), 11-4
GDTR (global descriptor table register),

descriptor table base registers, 5-16
register description, 4-4

general registers,
and IMUL instruction, 3-8
and POP A instruction, 3-4
and PUSHA instruction, 3-3
as register operand, 2-19
of Intel486 processor, 2-8

general-detect fault, Interrupt 1 (debug
exceptions), 9-14, 11-8

general-protection exception,
and multi-segment model, 5-5
and privilege levels, 6-5
and protected flat model, 5-4

global descriptor table (GDT),
segment descriptor tables, 5-15
segment translation, 5-5

gradual underflow, and denormal values, 16-4
granularity bit,

and TSS descriptor, 7-4
segment descriptors, 5-10

GS register,
and application program, 2-12
and data segment, 2-11
segment register, 2-10

handler, for exceptions and interrupts, 9-1
high word, for doubleword data type, 2-4
high-level languages, and FPU numeric

applications, 18-1
HLT (halt),

flag cross-reference, B-1
instruction format and timing, E-ll
instruction specification, 26-157

instructions (system programming), 4-11
one-byte opcode map, A-4
privileged instruction, 6-19

Intel486 DX2 CPU, 1-1, 1-6
Intel486 Floating Point Processor (FPU),

applications, 14-4
architecture, 15-1
concurrent processing, 18-12
data types and formats, 15-9
history of, 14-1
Intel486 processor, 14-1
infinity operands, 16-8
initialization, 19-2
Intel387 DX emulation, 19-3
NaN (not-a-number) operands, 16-8
number system, 15-9
numerics environment configuration, 19-2
performance, 14-1
precision control, 15-16
programming interface, 14-5
rounding control, 15-15
system programming, 19-1
zero operands, 16-6

Intel486 Integer Unit (IU),
concurrent processing, 18-12
operation with FPU, 14-2

Intel486 processor,
control registers, 2-8, 4-5
CPUjd code, 3-42
debug registers, 4-8
debugging facilities, 11-1
external cache, 12-1
features, 1-1 gate descriptors, 6-11
general registers, 2-8
initialization, 10-3
Intel486 Floating Point Processor (FPU),

14-1
I/O instructions, 8-4
initialization, 10-1
input/output, 8-1
internal cache, 12-1
memory-management registers, 4-4
mixing 16-bit and 32 bit code, 24-1
multitasking mechanism, 7-1
operating modes, 1-2
operating status, 2-13
real-address mode, 22-1
segment registers, 2-8
software emulation, 19-3
status registers, 2-8
system flags, 4-2
system instructions, 4-9
system registers, 4-1
task linking, 7-11
task switching, 7-7
test registers, 4-8
virtual-8086 mode, 23-1

Index-11

INDEX

Intel487SX CPU,' ,
CPUjd code, 3-42
initialization, 10-3 ,
software emulation, 19-3

I/O address space,
and IOPL flag, 4-3,
and physical memory, 8-2
Intel486 processor, 8-1

I/O instructions, ,
and Intel486 processor, 8-4
and I/O privilege level, 8-6,

I/O operations, and s~nsitive instructions, 6-19
I/O permission bit map, and TSS (task state

segment),8-7
I/O port for operand selection, 2-17
I/O privilege level, , ,:

and I/O instruction 'access, 8-6
and 10PL flag, 4-3

IDEC (decrement by one),modR/M byte
opcodes, A-8

IDIV (signed divide);
flag cross-reference, B-1
instruction description, 3-10
instruction format and timing, E-5
instruction specification, 26-158
modRIM byte opcodes, A-8

IDT (interrupt descriptor table),
exception/interrupt vectors, 9-5
interrur.t gates, 9-7
LIDT (load IDT register), ,9-7
task gates, 9-7
trap gates, 9-7
types of, 9-7 ,

IDTR (interrupt descriptor table register)"
descriptor table hase registers, 5-16
register description, 4-5

IEEE Standard 754, and unsupported formats,
16-13., ",

IEEE Standard 854, "
and Intel486 Floating Point Processor

(FPU), 14-1, "
and invalid arithmetic operation, 16-21,'
and standard underflow/overflow exception

handler, 16-27
IF flag (interrupt~eriableflag- bit 9),

mask INTRinterrupts, 9-3 '
system flag descriptIOn, 4-3 IGNNE#,
and NE control flag, 4c 7
and software exception handling" 16-20

immediate operand, instruction format, 2-16
implicit operand, description of, 2-17
implied load instructions, and segment

registers, 5-7
IMUL (signed multiply),

flag cross-reference, B-1'
general description and flags, 3-8 '
instruction format and timing, E~5,
instruction specification; 26-160,
modR/M byte opcodes, A-8
one-byte opcode map; A-5.

status flag summary,C-2
two-byteopcode map, A-7

IN (input from port),
flag cross-reference, B-1
instruction format and timing, E-15
instruction specification, 26-162
one-byte opcode map, A-4, A-5
register I/O instructions, 8-5
sensitive instructions, 8-6

INC (increment by one),
and CF flag, 3-6
flag cross-reference, B-1
instruction description, 3-7
instruction specification, 26-164
modRIM byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C~2

inconsistent stack pointer, and page fault, 9"23
indefinite value, and numeric data type, 16-12
index component,

and segment selectors; 5-9
for effective address, 2-21

inexact exception,
and inexact (precision), 16-26
and underflow exception, 16-26

inexact result (precision),
and inexact exception; 16-26
numeric exceptions, 16-18

infinity operands, and Intel486 Floating Point
Processor (FPU), 16-8

initialization, '
and Intel486 processor, 10-1 ' ,
Intel486 Floating Point Processor (FPU);'

19-2
inner protection rings, and stack switching,

6-15
input port, and input/output. 8-1
input/output,

and Intel486 process,or, 8"1
instructions (system programming), 4-9

INS (input from port to string),
block I/O instructions, 8-5
flag cross-reference, B-1
instruction format and timing, E-15
instruction specification, 26-165
sensitive instructions, 8~6

INSB (input from port to string),
instruction specification, 26-165
one-byte opc;ode map, A-4, A-5

INSD (input from port to string),
instruction specification, 26-165
one-byte opcode map, A-4, A-5

instruction,
and default segment selection,.2-19
and ope,rand selection, 2-17
first initialization execution, 10-4

Index-12

intel® INDEX

instruction address breakpoint fault, Interrupt·
1 (debug exceptions), 9-14

instruction format,
addressing-modc specifier, 2-16
and opcode, 2-16
and prefix, 2-16
and register specifier, 2-16
displacement, 2-16
for basic programming model, 2"15
immediate operand, 2-16
SIB (scale, index, base) byte, 2-16

instruction prefetching,
and EIP register, 2-15
and exception generation, 2-15
and parity checking,2-1~
and PLOCK#, 13-1
and pseudo-locking, 13-4

instruction restart,
and exceptions, 9-2
and interrupts, 9-2

. and paging, 5-2 ..
instruction7breakpoint fault, Interrupt 1

(debug exceptions), .11-6 ,
instructions, in real-address mode, 22-2
instructions (application programming),

binary arithmetic instructions, .3-6
block-structured language instructions, 3-30
control transfer instructions, 3-23.
data movement instructions, 3-1
data registers, 2-12
decimal arithmetic instructions, 3-10
flag control instructions, 3-35
logical instructions, 3-11
miscellaneous instructions, 3-41
numeric instructions, 3-38
segment register instructions, 3-39
string operations, 3-27 .,.

instructions (operating system),
privileged instructions, 6-19
sensitive instructions, 6-19

instructions (system programming),
cache management, 4-9
debugging, 4-9 '
descriptor table addressing, 4-10
floating-pont numerics, 4-9
HLT instruction, 4-11
input and output, 4-9
interrupt control, 4-9
LOCK instruction, 4cll
multitasking, 4-10
pointer parameter verification, 4-9
system control, 4-9

INSW (input from port to string),
instruction specification, 26-165
one-byte opcode map, A-4, A-5

INT (call to interrupt procedure),
flag cross-reference,. B-1
for interrupt generation, 2-24
general description, 3-26
instruction format and timing, E-13

instruction specification, 26-167
one-byte opcade map, A-5

integer, data type description, 2-6
integer instructions, overview of, 3-1
Integer Unit, and FPU status word, 15-2
Intel386 DX processor,

and data breakpoint matching, 11-4
and Interrupt 9 (Intel reserved), 9-17
and MP control flag, 4~ 7
processor differences, 21-4
real-address mode, 22-1

Intel386 DX processor programs, and Intel486
processor, 21-1

Intel387 DX coprocessor,
and ET control flag, 4-7
emulation and Intel486 Floating Point

Processor (FPU), 19-3
Intel 80186 processor,. real-address mode, 22-1
Intel 80188 processor, real-address mode, 22-1
Intel 286 processor,

LMSWinstruction; + 11
MP control 'flag, 4-7
processor differences,. 21-2
programs·,andlnteI486 processor, 21-1
protected mode, 21-1 .
real-address mode, 22-1
running tasks, 21-2
segment descriptors, 21-1
SMSW instruction, 4-11
TSS compatibility, 7-2

Intel 8086 processor,
real-address mode, 22-1
virtual-8086 mode, 4-3

Intel 8087 processor, compatibility and B bit,
15-2 .

Intel 8088 processor, real-address mode, 22-1
Intel 8259A Programmable Interrupt·

Controller;·and interrupt vector, 9-1
Intel 860 processor, alignment-check

exception, 4-2
internal cache,

and cache lines, 12-2 ,
and write-through cache, 12-2
Intel486 processor, 12c1
operation of, 12-2
self-modifying code, 12-3

Interrupt 0 (divide error), divide-error fault,
9-14 .

Interrupt 10 (iilValid TSS),invalis-TSS fault,
9-17

Interrupt 11 (segment not present), segment­
not-present fault, 9-18 .

Interrupt 12 (stack exception), stack fault, 9-19
Interrupt 13 (general protection), protection

violations, 9-20
Interrupt 14 (page fault), page Jault, 9-21
Interrupt 16 (floating-point error), floating- .

point-error fault, 9-23
Interrupt 17 (alignment check), alignment-·

check fault, 9-23

Index-13

INDEX

Interrupt 1 (debug exceptions),
data address breakpoint trap, 9-14
data-breakpoint trap, 11-6
general detect .iault,9-14
general-detect fault, 11-8
instruction address breakpoint fault, 9-14
instruction-breakpoint fault, 11-6
single-step trap, 9-14, 11-8
task-switch breakpoint trap, 9-14
task-switch trap, 11-8

Interrupt 3 (breakpoint), breakpoint trap,
9-14, 11-9

Interrupt 4 (overflow), overflow trap, 9-15
Interrupt 5 (bounds check), bounds-check

fault, 9-15
Interrupt 6 (invaJidopcode), invalidcopcode

fault, 9-15
Interrupt 7 (device not available), device-not­

available fault, 9"15
Interrupt 8 (double fault), multiple faults, 9-16
Interurpt 9 (Intel reserved), coprocessor­

segment overrun abort, 9-17
interrupt acknowledge, automatic locking, 13-3
interrupt control, instructions (system program

ming),4-9
interrupt gates,

and interrupts, 6-11
IDT descriptors, 9-7

interrupt procedures,
and interrupt tasks, 9-7
and stack, 9-9
flag usage, 9-11
protection, 9-11
returning from; 9-9 .

interrupt requests (INTR interrupts), and IF
flag, 4-3

interrupt tasks,
and interrupt procedures, 9-7
and task gate, 9-11

interrupt vector,
identifying number, 9-1
software initialization, 10-3

interrupts,
and instruction restart, 9-2
and interrupt gates, 6-11
and task switching, 7-1
description, 2-23
enable/disable, 9-3
for basic programming model, 2-23
in real-address mode, 22-2
maskable source, 9-1
processing priorities, 9-5
unmaskable source, 9-1
with INTinstruction, 2-24

INTO (interrupt on overflow),
flag cross-reference, B-1
general description, 3-26
instruction format and timing, E-13
instruction specification, 26-167
one-byte opcode map, A-5

INTR interrupts, and IF flag, 9-3 invalid
arithmetic operation, and IEEE
Standard, 16-21, 854

invalid operation,
and numeric exceptions, 16-20
numeric exceptions, 16-17

invalid-opcode fault, Interrupt 6 (invalid
opcode), 9-15

invalid-operation exception,
and NaN (not-a-number) operands, 16-10
and QNaN real indefinite, 16-11

invalid-TSS fault, Interrupt 10 (invalid TSS),
9-17

INVD (invalidate cache),
cache management instructions, 12-3
flag cross-reference, B-1
instruction format and timing, E-11
instruction specification, 26-172
two-byte opcode map, A-7

INVLPG (invalidate TLB entry),
flag cross-reference, B-1
instruction format and timing, E-11
instruction specification, 26-173

IOPL flag (I/O privilege level- bits 12 and
13),

description, 4-3
system flag

IRET (interrupt return),
flag cross-reference, B-2
general description, 3-24
instruction format and timing, E-13
instruction specification, 26-174
one-byte opcode map, A-5

IRETD (interrupt return), instruction
specification, 26"174

JB, two-byte opcode map, A-6
Jb (short-displacement jump on condition),

one-byte opcode map, A-4, A-5
JBE,

one-byte opcode map, A-4
two-byte opcode map, A-6

Jcc (jump if condition is met),
flag cross-reference; B-2
instruction format and timing, E-7
instruction specification, 26-179
status flags, 3-7

JCXZ,
flag cross-reference, B-2
instruction format and timing, E-7
one-byte opcode map, A-4

JECXZ (jump if ECX zero),
general description, 3-26
instruction format and timing, E~7

JL,
one-byte opcode map, A-4, A-5
two-byte opcode map, A-7

JLE,
one-byte opcode map, A-4, A-5
two-byte opcode map, A-7

Index-14

infel®
JLNE, one-byte opcode map, A-4
JMP (jump),

flag cross-reference, B-2
instruction description, 3-23
instruction format and timing, E-7, E-9
instruction specification, 26-183
modR/M byte opcodes, A-8
one-byte opcode map, A-5

JNB,
one-byte opcode map, A-4
two-byte opcode map, A-6

JNBE,
one-byte opcode map, A-4
two-byte opcode map, A-6

JNL,
one-byte opcode map, A-5
two-byte opcode map, A-7

JNLE,
one-byte opcode map, A-5
two-byte opcode map, A-7

JND,
one-byte opcode map, A-4
two-byte opcode map, A-6

JNP,
one-byte opcode map, A-4, A-5
two-byte opcode map, A-7

INS
o~e-byte opcode map, A-4, A-5
two-byte opcode map, A-7

JNZ,
one-byte opcode map, A-4
two-byte opcode map, A-6

10,
one-byte opcode map, A-4
two-byte opcode map, A-6

JP,

JS,

one-byte opcode map, A-4, A-5·
two-byte opcode map, A-7

one-byte opcode map, A-4, A-5
two-byte opcode .map, A-7

JV,
one-byte opcode map, A-5
two-byte opcode map, A-6, A-7

JZ,
one-byte opcode·map, A-4
two-byte opcode map, A-6

KEN#, and peD bit (page-level cache
disable), 12-4

LAHF (load flags into AH),
flag cross-reference, B-2
instruction description, 3-37
instruction format and timing, E-lO
instruction specification, 26-188
one-byte opcode map, A-5

LAR (load access rights byte),.
flag cross-reference, B-2
instruction format and timing, E-12

INDEX

instruction specification, 26-189
pointer validation instructions, 6-20
two-byte opcode map, A-6

LDS (load pointer using DS),
flag cross-reference; B-2
general description, 3-40
instruction format and timing, E-8
instruction specification, 26-196
one-byte opcode map, A-4

LDT switching, and task switching, 7-1
LDTR (local descriptor table register), .

register description, 4-4
LEA (load effective address),

flag cross-reference, B-2
general description, 3-46
instruction format and timing, E-3
instruction specification, 26-191
one-byte opcode map, A-4, A-5

LEAVE (high level procedure exit),
flag cross-reference, B-2
general description, 3-35
instruction format and timing, E-8-
instruction specification, 26-193
one-byte opcode map, A~5

LEN bits, and debug breakpoints, 11-5
LES (load pointer using ES),

flag cross-reference, Bc2
general description, 3-40
instruction format and timing, E-8
instruction specification, 26-196 .
one-byte opcode map, A-4

lexical level, .
and block-structured languages, 3-32
and ENTER instruction, 3-30

LFS (load pointer using FS), _
flag cross-reference, B-2
general description, 3-40
instruction format and timing, E-8 .
instruction specification,· 26-196
two-byte opcode map, A-6

LGDT (load global/IDTR),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-194
modR/M byteopcodes, A-8
privileged instruction, 6-19

LGS (load pointer using GS),
flag cross-reference, B-2
general description, 3-41
instruction format and timing, E-8
instruction specification, 26-196
two-byte opcode map, A-6

LIDT (load lOT register),

Index-15

and IDT (interrupt descriptor table), 9-7
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-194
modR/M byte opcodes, A-8
privileged instruction, 6-19

limit, and segment descriptors, 5-10
limit checking, segment descriptors, 6-4
linear address,

and logical address, 2-1
and page translation, 5-17, 5-18
and physical space mapping, 7-13
and segment translation, 5-5
and segmentation, 2-2, 5-2
and task address mapping, 7-13

LLDT (load LDTR),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification,.26-199 .
modRIM byte opcodes, A-8
privileged instruction, 6-19

LMSW (load machine status word),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-201
Intel 286 processor, 4-11
modRIM byte opcodes, A-8
privileged instruction, 6-19

local descriptor table (LDT),
segment descriptor tables, 5-15
segment translation, 5-5

LOCK#, ..
and automatic locking,13-3
and critical memory operations, 13-1
and LOCK instruction, 4-11
and LOCK prefiX, 13~2 .

LOCK (assert LOCK# prefiX),
and CMPXCHG instruction, 3-43
and XADD instruction, 3-43 .
and XCHG instruction, 3-2
flag cross-reference, B-2
instruction specification, 26"202
one-byte opcode map, A-4

LOCK instruction, .
and LOCK#, 4~11 .
instructions (system programming), 4-11

LOCK prefiX, and LOCK#, 13-2 .
locked bus cycles, and multiprocessing, 13-1'
LODS (load string opetand),

flag cross-reference, B-2
general description, 3-30
instruction format and timing"E-9
instruction specification, 26-204

LODSB (load string operand), .
instrucion specification, 26-204
one-byte opcode map, AA, A-5

LODSD (load string operand),
instrucion specification, 26-204
one-byte opcode map, A-4, A-5

LODSW (load' string operand),
instruction specification, 26-204
one-byte opcode map, A-4, A-5

logical address,
and segment translation, 2-2, 5-5
and segmentation, 5-2
task address mapping, 7-14

INDEX

use of, 2-1
logical instructions, and application

programming, 3-11
long integer, numeric data type, 3-38; 14-6
LOOP (loop control with CX counter),

flag cross-reference, B-2
general description, 3-25
instruction format and timing, E-7
instruction specification, 26-206
one-byte opcode map, A-4

LOOPE (loop while equal),
flag cross-reference, B-2
general description, 3-26
instruction format and timing, E-7
one-byte opcode map, A-4

LOOPNE (loop while not equal),
flag cross-reference, .B-2
general description, 3-26
instruction format and. timing, E-7
one-byte opcode map, A-4

LOOPNZ (loop while not zero),
general description, 3-26
instruction format and timing, E-7

LOOPZ (loop while zero),
general description, 3"26
instruction format and timing, E-7

low word, for doubleword data type, 2-4
LSL (load segment limit),

flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26"208
pointer validation instructions, 6-20.
two-byte opcode map, A-6

LSS (load pointer using SS),
flag cross-reference, B-2
~eneral . description, 3-4 ~ .
mstructIOn' format and tlmmg, E-8
instruction specification, 26-196
two-byte opcode map, A-6

LTR (load task register), '
and task register description, 7-6
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-210
modRIM byte opcodes, A-8
privileged instruction, 6-19

M/IO#,
and I/O address space, 8-2
and I/O instructions, 8-4

maskable interrupts, and vector assignment,
9-1

memory,
access types, 2-10
for operand selection, 2-17
model choice, 2-2
model description, 2-1

memory management, .

Index-16

and page translation,S" 17
and paging, 2"1, 5-1·

INDEX

and segment registers, 5-6
and segmentation, 2-1, 5-1
and segments, 2-1
description of, 2-1

memory operand offset, and modR/M byte,
2-19

memory reference types, and segment
registers, 5-7

memory-management registers,
and system programming, 4-4
GDTR (global descriptor table register),

4-4
IDTR (interrupt descriptor table register),

4-5
LDTR (local descriptor table register), 4-4
TR (task register), 4-5

memory-mapped I/O, and physical memory,
8-3

miscellaneous instructions, and application
programming, 3-41

mixing 16-bit and 32-bit code, Intel486
processor, 24-1

mode bits, and EFLAGS register, 2-13
modR/M byte,

and effective-address computation, 2-20
for memory operand offset, 2-19

MOV (move data),
and default segment selection, 2-19
flag cross-reference, B-2
instruction description, 3-1
instruction format and timing, E-3, E-8;

E-11 .
instruction specification, 26-211, 26-213
mask exceptions and interrupts, 9-4
one-byte opcode map, A-4, A-5
two-byte opcode map, A-6

MOV to/from CRO (move to control register
0), privileged instruction, 6-19

MOV to/from DRn (move to debug register
n), privileged instruction, 6-19

MOV to/from TRn (move to test register n),
privileged instruction, 6- 19

MOVB (move data), one-byte opcode map,
A-4

MOVS (move data from string to string),
flag cross-reference, B-2
general description, 3-29
instruction format and timing, E-9
instruction specification, 26-215

MOVSB (move data from string to string),
instruction specification, 26-215
one-byte opcode map, A-4

MOVSD (move data from string to string),
instruction specification, 26-215
one-byte opcode map, A-4

MOVSW.(move data from string to string),
instruction specification, 26-215
one-byte opcode map, A-4

MOVSX (move with sign extension),
flag cross-reference, B-2
general description, 3-6
instruction format and timing, E-3
instruction specification, 26-217
two-byte opcode map, A-7

MOVZX (move with zero extension),
flag cross-reference, B-2
general description, 3-6
instruction format and timing, E-3
instruction specification, 26-218
two-byte opcode map, A-6

MP bit (monitor coprocessor), numerics
environment configuration, 19-2

MP (math present-bit 1), system control flag,
4-7

MUL (unsigned multiply),
flag cross-reference, B-2
general description and flags, 3-8
instruction format and timing, E-4
instruction specification, 26-219
modR/M byte opcodes, A-8
status flag summary, C-2

multi-segment model,
and general-protection exception, 5-5
and segmentation, 5-4

multi-segment model initialization, segmcnta
tion, 10-5

multiple faults, Interrupt 8 (double fault), 9-16
multiprocessor systems,

and cache consistency, 12-1
and cache consistency, 13-1
and processor communication, 13-1

multitasking,
and Intel486 processor, 7-1
and task initialization, 10-6
instructions (system programming), 4-10
segment-level protection, 6-1

NaN (not-a-number) operands,
and Intel486 Floating Point Processor

(FPU),16-8
and invalid-operation exception, 16-10

NE bit (numeric exception),
numerics environment configuration, 19-2

. system control flag, 4-7
near form, RET (return from procedure), 6-17
near pointer, data type, 2-6
near transfer, and unconditional transfer

instructions, 3-23 .
NEG (two's complement negation),

flag cross-reference, B-2
instruction description, 3-8
instruction specification, 26-221
modRlM byte opcodes, A-8
status flag summary, C-2

NMI interrupt,
and assigned vector, 9-1
and protected mode initialization, 10-4
and software initialization, 10-3

Index-17

in1:el® INDEX

mask further NMI interrupts, 9-3
no-wait, control instructions, 17-8
nontranscendental instructions, floating-point

instructions, 17-2
NOP (no operation),

flag cross-reference, B-2
instruction description, 3-46
instruction format and timing,E-6
instruction specification, 26-222

NOT (one's complement negation),
flag cross-reference, B-2
instruction description, 3-11
instruction specification, 26-223
modR/M byte opcodes, A-8 .

NT flag (nested task-bit 14), system flag
description, 4-3

null error code, and exception handler, 9-13
number system, Intel486 Floating Point

Processor (FPU), 15-9 .
numeric data pointers, and exception handlers,

15-7
numeric data type,

and indefinite value, 16-12
double real, 14-6
encoding of, 16-12
extended real, 14-6
long integer, 14-6
packed decimal, 14-6
short integer, 14-6
single real, 14-6
word integer, 14-6

numeric data types, Intel486 Floating Point
Processor (FPU), 14-6

numeric exceptions,
denormalized operand, 16-17
divide-by-zero, 16-17
handling of, 16-18, 19-3
inexact result (precision), 16-18
invalid operation, 16-17
numeric overflow, 16-17
numeric underflow, 16-18

numeric instruction pointers, and exception
handlers, 15-7

numeric instructions,
and application programming, 3-38
Intel486 Floating Point Processor (FPU),

14-7
numeric libraries, and FPU numeric

applications, 18-1
numeric overflow,

and overflow exception, 16-23
numeric exceptions, 16-17

numeric programming, .
ASM386/486 examples, 20-1
conditional branching cxample, 20-1
exception handling example, 20-1
floating-point to ASCII conversion

example, 20-7
trigonometric .calculation, 20-7

numeric underflow,
and underflow exception, 16-25
numeric exceptions, 16-18

numerical exception masking, and FPU control
word, 15-5

numerical registers, Intel486 Floating Point
Processor (FPU), 15-1

numerics detection code, 3-42
numerics environment configuration, Intel486

Floating Point Processor (FPU), 19-2
NW (not write-through - bit 29), system

control flag, 4-6

O/U# bit, stack exception, 16-20
OF flag, and binary arithmetic instructions, 3-6
OF (overflow flag), status flag, 2-14
offset,

for memory operand, 2-19
for segmented address space, 2-3

opcode, and instruction format, 2c16
operand selection, for basic programming

model, 2-17
operand size, of instruction prefix, 2-16
operand size prefix, instruction format, 2-16
operating modes, of Intel486 processor, 1-2
operating status, Intel486 processor, 2-.13
OR (logical inclusive or),

flag cross-reference, B-2
instruction description, 3-12
instruction specification, 26-224
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

ordinal, data type, 2-6
OUT (output to port),

flag cross-reference, B-2
instruction format and timing, E-15
instruction specification, 26-226
one-byte opcode map, A-4, A-5
register I/O instructions, 8-5
sensitive instructions, 8-6

output port, and input/output, 8-1
OUTS (output string), sensitive instructions,

8-6
OUTS (output string to. port),

block I/O instructions, 8-6
flag cross-reference, B-2
instruction format and timing, E-15
instruction specification, 26-228

OUTSB (output string to port),
instruction specification, 26-228
one-byte opcode map, A-4, A-5

OUTSD (output string to port),
instruction specification, 26-228
one-byte opcode map, A-4, A-5

OUTSW (output string to port),
instruction specification, 26-228
one-byte opcode map, A-4, A-5

Index-1B

int'eL INDEX

overflow exception,
and Intel486 processor, 2-23
and numeric overflow, 16-23

overflow trap, Interrupt 4 (overflow), 9-15

packed BCD, data type, 2-6
packed decimal, numeric data type, 14-6
page, combining protection with segment, '6-25
page directory, and page translation, 5-17
page directory register (PDBR),

and CR3, 4-6
and CR3 register, 5-18

page directory update, automatic locking, 13-3
page fault,

and Interrupt 8 (double fault), 9-16
and page table entries, 5-20
and page translation, 5-17
during task switching, 9-22
Interrupt 14 (page fault), 9-21
page frame address,
with inconsistent stack pointer1 9-23

page level management, caching, 12-3
page protection, overriding, 6-24
page table update, automatic locking, 13-3
page tables,

and combined protection, 6-24
'and page translation, 5-17, 5-18, 5-20
and protection parameters, 6-23

page translation,
and memory management, 5-17
and physical address, 5-17
and segment translation, 5-23
linear address, 5-17

paging,
and I/O address space, 8-1
and linear address space, 2-2
and memory management, 2~1, 5-1
and page-level protection, 6-22
and PG bit, 5-18
demand-paged virtual memory, 5-2
description, 5-2
exception handling, 2-24
initialization, 10-6

parity checking, and instruction prefetching,
2-15

PCD bit (page-level cache disable),
cache control, 5-22
cache management bits, 12-4
system control flag, 4-6

PE (protection enable - bit 0),
and protected mode initialization, 10-4
system control flag, 4-8

PF (parity flag), status flag, 2-14
PG (paging-bit 31),

system control flag, 4-6
to enable paging, 5-18

physical address,
description, 2-1
and linear address, 2-1
and page translation, 5-17

and PG bit, 5-18
and segmentation, 5-2

physical memory,
and I/O address space, 8-2
and memory-mapped I/O, 8-3
description, 2-1

PL/M-386/486, and FPU numeric applications,
18-2

PLOCK#,
and instruction prefetching, 13-1
and pseudo-locking, 13-3

PMUL, one-byte opcode map, A-4
pointer integrity,

and ARPL (adjust requested privilege
. level), 6-22
and RPL (requested privilege level), 6-22

pointer parameter verification, instructions
(system programming), 4-9 '

pointer validation instructions,
and protection, 6-20
LAR (load access rights), 6-20
LSL (load segment limit), 6-20

POP (pop word from stack),
flag cross-reference, B-2
general description, 3-3
instruction format and timing, E-3, E-8
instruction specification, 26-231
mask exceptions and interrupts, 9-4
one-byte opcode map, A-4, A-5 .
two-byte opcode map, A-6, A-7 .

POPA (pop all general registers),
flag cross-reference, B-2
general description, 3-4
instruction format and timing, E-3
instruction specification, 26-234
one-byte opcode map, A-4

POPAD (pop all general registers), instruction
specification, 26-234

POPF (pop stack into flags),
flag cross-reference, B-2
instruction description, 3-38
instruction format and timing, E-lO
instruction specification, 26-236
one-byte opcode map, A-4, A-5

POPFD (pop stack into flags), instruction
specification, 26-236

position-independent code, and segmentation,
5-1

power-up,
and RESET signal, 10-1
and self test, 10-1 ,

precision control, Intel486 Floating Point
Processor (FPU), 15c16

prefix, and instruction format, 2-16
present bit,

and page table entries, 5-20
and TSS descriptor, 7-4

Index-19

int"et INDEX

privilege levels, segment descriptors, 6-5
privileged instruction,

CLTS (clear task-switched flag), 6-19
HLT (halt processor), 6-19
LGDT (load GDT register), 6-19
LIDT (load IDT register), 6-19
LLDT (load LDT register), 6-19
LMSW (load machine status word), 6-19
LTR (load task register), 6-19
MOV to/from CRO (move to control

register 0), 6-19
MOV to/from DRn (move to debug register

n),6-19
MOV to/from TRn (move to test register

n),6-19
procedure return, and gate descriptors, 6-17
process synchronization, and XCHG

instruction, 3-2
processor communication, and multiprocessing

systems, 13-1
processor detection code, to distinguish

processors, 22-11
processor state,

after reset, 10-1
and TSS (task state segment), 7-2

programmed exceptions, software interrupts;
9-1

protected flat model, and segmentation, 5-4
protected mode,

Intel486 operating mode, 1-2
initialization switching, .10-4
Intel 286 processor, 21-1
software initialization, 10-5

protection,
and control·transfer restrictions, 6-9
and data access restrictions, 6'7
and gate descriptors, 6-11
and input/output, 8-6
and pointer validation instructions, 6-20
and segment descriptors, 6-2
page-level protection, 6-22
segment-level protection, 6-1

protection mechanism,
and IOPL flag, 4-3 .
and memory. organization model, 2-2
and privilege levels, 6-5
and read-only acces, 6-24
read/write access, 6-24

protection parameters, and page-table entries,
6-23

protection violations, Interrupt 13 (general
protection), 9-20

pseudo-locking,
and instruction prefetching, 13-4
and multiprocessing, 13-1
and PLOCK#, 13-3

pseudodenormal numbers,
and Intel486 processor, 16-13
denormal exception, 16-13

PUSH (push operand onto stack),
flag cross-reference, B-2
instruction description, 3-2
instruction format and timing, E-3, E-8
instruction specification, 26c237
modR/M byte opcodes, A-8 .
one-byte opcode map, A-4, A-5
two-byte opcode map, A-6, A-7

PUSHA (push all general registers),
flag cross-reference, B-2
general description, 3-3
instruction format and timing, E-3
instruction specification, 26-239
one-byte opcode map, A-4

PUSHAD (push all general registers),
instruction specification, 26-239

PUSHF (push flags onto stack),
flag cross-reference, B-2
instruction' description, 3-38
instruction format and timing, E-1O
instruction specification, 26-241
one-byte opcode map, A-4, A-5

PUSHFD (push flags onto stack), instruction'
specification, 26-241 . ,

PWT bit (page-level write-through),
cache control, 5-22
cache management bits, 12-4
system control flag, 4-6

QNaN real indefinite,
and invalid operation exception, 16-11
and quiet NaN (not-a-number), 16-11'

quadwords, description, 3-4
quiet NaN (not-a-number), and QNaN real

indefinite, 16-11

RCL (rotate through carry left),
flag cross-reference, B-2
instruction description, 3-16
instruction specification, 26-242
modR/M byte opcodes, A-8
status flag summary, C-2

RCR (r;otate through carry right);
flag cross-reference, B-2
instruction description,. 3-16
instruction specification, 26~242
mod¥-IM byte opcodes, A-8
status flag summary, C-2

re-entrant code, and tasks, 7-3
re-entrant procedure, description, 7-1
re-entrant task switching, and busy bit, 7-12
read access, and accessed bit, 5-21
read-only access, and protection mechanism,

6-24
read/write access, protection mechanism, 6-24

Index-20

intel® INDEX

read/write bit, and page table entries, 5-22
readable bit, executable-segment descriptor,

6-3
real numbers, FPU data type, 15-12
real-address mode,

address translation, 22-1
entering and leaving, 22-4
Intel486 operating mode, 1-2
Intel486 processor, 22-1
Inte1386 DX processor, 22-1
Inte1386 DX processor differences, 22-9
Intel 80186 processor, 22-1
Intel 80188 processor, 22-1
Intel 286 processor, 22-1
Intel 286 processor differences, 22-9
Intel 8086 processor, 22-1
Intel 8086 processor' differences, 22-5
Intel 8088 processor, 22-1
software initialization, 10-2
switch to protected mode, 22-4

records and structure decIaratives,
ASM386/486, 18-4

register I/O instructions,
IN (input from port), 8-5
OUT (output from port), 8-5

register specifier, instruction format, 2-16
registers, '

and real-address mode, 22-2
for application programming, 2-8
for operand selection, 2-17
for system programming, 4-1

relative address, and JMP instruction, 3-23
REP INS, instruction format and timing,E-15
REP LODS, instruction format and timing,

E-lO .
REP MOYS, instruction format and timing,

E-lO
REP OUTS, instruction format and timing,

E-15
REP prefix, and MOYS instruction, 3-29
REP (repeat),

instruction description, 3-28
instruction speCification, 26-245
one-byte opcode map, A-4

REP STOS, instruction format and timing,
E-lO

REPE CMPS, instruction format and timing,
E-lO

REPE (repeat while equal),
instruction description, 3-28
instruction specification, 26-245
one-byte opcode map, A-4

REPE SCAS, instruction format and timing,
E-IO

repeat, instruction prefix, 2-16
repeat prefix, instruction format, 2-16

REPNE CMPS (compare strings), instruction
format and timing, E-lO

REPNE (repeat while not equal),
instruction description, 3-28
instruction speCification, 26-245
one-byte opcode map, A-4

REPNE SCAS, instruction format and timing,
E-lO .

REPNZ (repeat while not zero),
instruction description, 3-28
instruction specification,· 26-245

REPZ (repeat while zero),
instruction description, 3-28
instruction specification, 26-245

requester privilege level, segment selectors, 5-9
reset, and processor state, 10-1
reset initialization, and RESET signal, 1O~ 1
RESET signal, and reset initialization, 10-1
RET (return from procedure),

far form description, 6"17.
general description, 3-24
instruction format and timing, E-7, E-8
instruction specification, 26-248
near form description, 6-17
one-byte opcode map, A-4, A-5

RF flag (resume flag),
debugging support,11-1
mask debug faults, 9-4
system flag description, 4-3

robot arm kinemetics, example, 20-23
ROL (rotate left), .

flag cross-reference, B-2
instruction description, 3-16
instruction speCification, 26-242
modRiM byte opcodes, A-8
status flag summary, C-2

ROR (rotate right),
flag cross-reference, B-2
instruction description, 3-16
instruction specification, 26-242
modRiM byte opcodes, A-8
status flag summary, C-2

round-off errors, and Intel486 Floating Point
Processor (FPU), 14-4

rounding control, Intel486 Floating Point
Processor (FPU), 15-15

RPL (requested privilege level),
and data access restrictions, 6-7
and pointer integrity, 6-22
and segment selectors, 6-6

S bit, segment descriptors, 5-12
SAHF (store AH into flags),

instruction description, 3-37
instruction format and timing, E-lO
instruction specification, 26-252

Index-21

intet®
one-byte opcode map, A-4, A-5

SAL (shift arithmetic left),
instruction description, 3-13
instruction specification, 26-253
status flag summary, C-2

SAR (shift arithmetic right),
instruction description, 3-14
instruction specification, 26-253
modR/M byte opcodes, A-8
status flag summary, C-2

SBB (integer subtraction with borrow),
flag cross-reference, B-2
instruction description, 3-7
instruction specification, 26-256
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-1

SCAS(compare string data),
flag cross-reference, B-2
instruction format and timing, E-9
instruction specification, 26-258

, status flag summary, C-2
SCAS (scan string data), instruction

description, 3-29
SCASB (compare string data),

instruction specification, 26-258
one-byte opcode map, A-4, A-5

SCASD (compare string data),
instruction specification, 26-258
one-byte opcode map, A-4, A-5

SCASW (scan string data),
instruction specification, 26-258
one-byte opcode map, A-4, A-5

segment, c\escription, 5-1
segment descriptors,

and base, 5-10
and flat model, 5-3
and granularity bit, 5-10
and Intel 80286 processor, 21-1
and limit, 5-10
and logical address translation, 2-2
and protection, 6-2
and S bit, 5-12
and segment selectors, 5-10,5-8
and segment translation, 5-5
and segment-present bit, 5-14
and type, 5-12
and type field, 5-13
automatic locking, 13-3
code segments, 5-13
D bit, 5-12
data segments, 5-13
descriptor table base registers, 5-16
DPL (descriptor privilege level), 5-14, 6-6
segment descriptor tables, 5-15

segment level protection,
and PE control flag, 4-8
segmentation, 6-1

INDEX

segment limits, and protected flat model, 5-4
segment override prefix, instruction format,

2-16
segment privilege level, DPL (descriptor

privilege level), 5-14
segment register instructions, and application

programming, 3-39
segment registers,

and segment selectors, 2-10
and segment translation, 5-6
as register operand, 2-19
of Intel486 processor, 2-8

segment selectors,
and index, 5-9
and requester privilege level, 5-9
and RPL (requested privilege level), 6-6
and segment descriptors, 5-10
and segment registers, 2-10
and segment translation, 5-8
and table indicator bit, 5-9
for segmented address space, 2-3

segment translation,
and page translation, 5-23
and segment selectors, 5-8'
and segmentation, 5-5

segment-not-present fault, Interrupt 11
(segment not present), 9-18

segment-present bit, segment descriptors, 5-14
segmentation,

and combined protection with page, 6-25
and default assignment, 2-19
and default selection, 2-20
and exceptions handling, 2-24
and explicit memory operands, 2-19
and flat model, 5-3
and flat model initialization, 10-5
and I/O address space, 8-1
and instruction prefix override, 2-16
and linear address, 5-2
and logical address, 5-2
and memory management, 2-1,5-1
and memory organization model, 2-2, 2-3
and model selection, 5-3
and multi-segment model, 5-4
and multi-segmented model initialization,

10-5
and override prefix for segment selection,

2-19, 2-20
and physical address, 5-2
and position-independent code, 5-1
and protected flat model, 5-4
and segment translation, 5-5
and segment-level protection, 6-1

self test, and power-up, 10-1
self-modifying code, internal cache, 12-3
semaphores,

Index-22

and CMPXCHG instruction, 3-43
and LOCK prefix, 13-2
and XCHG instruction, 3-2

intel® INDEX

sensitive instructions,
and I/O operations, 6-19
CLI (clear interrupt-enable flag), 8-6
IN (input), 8-6
INS (input string), 8-6

. OUT (output), 8-6
OUTS (output string), 8-6
STI (set interrupt-enable flag), 8-6

SETB, two-byte opcode map, A-6
SETBE, two-byte opcode map, A-6
SETcc (byte set on condition),

and status flags, 3-7
flag cross-reference, B-2
general description, 3-22
instruction format and timing, E-7
instruction specification, 26-260

SETL, two-byte opcode map, A-7
SETLE, two-byte opcode map, A-7
SETNB, two-byte opcode map, A-6
SETNBE, two-byte opcode map, A-6
SETNL, two-byte opcode map, A-7
SETNLE, two-byte opcode map, A-7
SETNO, two-byte opcode map, A-6
SETNP, two-byte opcode map, A-7
SETNS, two-byte opcode map, A-7
SETNZ, two-byte opcode map, A-6
SETa, two-byte opcode map, A-6
SETP, two-byte opcode map, A-7
SETS, two-byte opcode map, A-7
SETZ, two-byte opcode map, A-6
SF flag, and binary arithmetic instructions, 3-6
SF (sign flag), status flag, 2-14
SGDT (store global/IDTR),

flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-262
modR/M byte opcodes, A-8

sharing data, using 16-bit and 32-bit
environments, 24-3

SHL (shift left),
instruction description, 3-13
instruction specification, 26-253
modR/M byte opcodes, A-8

SHLD (shift left double precision),
flag cross-reference, B-2
instruction description, 3-16
instruction specification, 26-264
status flag summary, C-2
two-byte opcode map, A-6

short integer, numeric data type, 14-6
SHR (shift right),

instruction description, 3-13
instruction specification, 26-253
modRiM byte opcodes, A-8

SHRD (shift right double precision),
flag cross-reference, B-2
instruction description, 3-16
instruction specification, 26-266
status flag summary, C-2
two-byte opcode map, A~ 7

SIB (scale/index/base byte), instruction format,
2-16

SIDT (store global/IDTR),
flag cross-reference, B-2 .
instruction format and timing, E-12
instruction specification, 26-262
modR/M byte opcodes, A-8

sign extension, description, 3-4
single real, numeric data type, 14-6
. single-step trap, Interrupt 1 (debug

exceptions), 9-14, 11-8 .
size limit, and segment descriptor, 2-2
SLDT (store LDTR),

flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-268
modR/M byte opcodes, A-8

SMSW instruction, and Intel 286 processor,
4-11

SMSW (store machine status word),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-269
modR/M byte opcodes, A-8

software exception handling, numeric
exceptions, 16-18

software initialization,
and real-address mode, 10-2
in protected mode, 10-5

software interrupts, programmed exceptions,
9-1

source operands,
floating-point instructions, 17-1
for binary arithmentic instructions, 3-6
for two-operand instructions, 2-17

spawning, See copy-on-write strategy
special numeric values, FPU data formats,

16-1
SS register,

and stack segment, 2-11
segment register, 2-10

stack, and interrupt procedures, 9-9
stack exception, numeric exceptions, 16-20
stack fault, Interrupt 12 (stack exception), 9-19
stack frame, description of, 3-30
stack frame pointer set, display, 3-30
stack operations, and default segment
selection, 2-19
stack overflow, stack exception, 16-20 .
Stack Pointer (ESP) Register, description of,

2-12
stack segment, and SS register, 2-11
Stack Segment (SS) Register, description of,

2-12

Index-23

intel® INDEX

stack switching, and gate descriptors, 6-13
stack underflow, stack exceetion, 16-20
Stack-Frame Base Pointer (EBP) Register,

description of; 2-13
standard underflow/overflow exception

handler, and IEEE Standard, 16-27
status flags,

and lec instruction, 3-7
and SETcc instruction, 3-7

status registers, of Intel486 processor, 2-8
STC (set carry flag),

flag cross-reference,· B-2
instruction format and timing, E-lO
instruction specification, 26-270
one-byte opcode map, A-5

STD (set direction flag),
flag cross-reference, B-2
instruction format and timing, E-lO
instruction specification, 26-271
one-byte opcode map, A-5

STI (set interrupt flag),
flag cross-reference, B-2
instruction format and timing, E-lO
instruction specification, 26-272
one-byte opcode map, A-5

STI (set interrupt-enable flag),
and INTR interrupts, 9-3
sensitive instructions, 8-6

STOS (store string data),
flag cross-reference, B-2
general description, 3-30
instruction format and timing, E-9
instruction specification, 26-273

STOSB (stOl:e string data),
instruction specification, 26-273
one-byte opcode map, A-4, A-5

STOSD (store string data),
instruction specification, 26-273
one-byte opcode map, A-4, A-5

STOSW (store string data),
instruction specification, 26-273
one-byte opcode map, A-4, A-5

STR (store task register),
and task register description, 7-6
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-275
modR/M byte opcodes, A-8

string, data type, 2-6
string insertion/extraction, and double-shift

instructions, 3-19
string instructions, and EFLAGS register, 2-13
string operations,

and application programming, 3-27
and default segment selection, 2-19

SUB (integer subtract),
flag cross-reference, B-2
instruction specification, 26-276
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5

status flag summary, C-l
SUB (subtract integers), instruction

description, 3-7
supervisor level, and addressable domain

restriction, 6-23
synchronization, exceptions, 18-13, 18-14
system control, instructions (system

programming), 4-9
system control flag,

AM (alignment mask-bit 18), 4-7
CD (cache disable-bit 30), 4-6
EM (emulation-bit 2), 4-7
ET (extension type-bit 4), 4-7
MP (math present-bit 1),4-7
NE (numeric error- bit 5), 4-7
PCD (page-level cache disable-CR3 bit 4),

4-6
PE (protection enable - bit 0), 4-8
PG (paging-bit 31), 4-6
PWT (page-level writes transparent - CR3

bit 3), 4-6
TS (task switched-bit3), 4-7
WP (write protect - bit 16), 4-7

system control flags, and CRO register, 4-5
system flags, and system programming, 4-2
system programming, and Intel486 Floating

Point Processor (FPU), 19-1
system tables,

and protected mode initialization, 10-4
and software initialization, 10-3

T bit (trap bit of TSS),
and BT bit, 11-4
and debugging support, 11-1

table .indicator bit, segment selectors, 5-9
tag, and cache associative memories, 12-1
task, description, 7-1
task address mapping, logical to physical

space, 7-14
task address space, descripion, 7-13
task creation, See copy-an-write strategy
task gate descriptor, and protected task

reference, 7-6
task gates,

and IDT descriptors, 9-7
and task switching, 6-11, 7-1

task linking,
and Intel486 processor, 7-11
and TSS (task state segment), 7-11
modification of, 7-13

task state segment,
and stack switching, 6-15
and TSS descriptor, 7-2
description, 7~1
descriptors and task switching, 7-1

task switching,
and exceptions, 7-1
and Intel486 processor, 7-7
and interrupts, 7-1
and LDT switching, 7-1

Index-24

inteL INDEX

and page fault, 9-22
and task gates, 6-11, 7-1
and task state segment descriptors, 7-1

task-switch breakpoint trap, Interrupt 1
(debug exceptions), 9-14

task-switch trap, Interrupt 1 (debug
exceptions), 11-8

tasks,
and NT flag, 4-3
and re-entrant code, 7-3
initialization, 10-6

TEST (logical compare),
flag cross-reference, B-2
instruction description, 3-23
instruction format and timing, E-4
instruction specification, 26-278
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

test registers, and translation lookaside buffer
(TLB),4-8

TF flag (trap flag),
debugging support, 11-1
system flag description, 4-3

three-operand instructions,
and ECX register, 2-18
description of, 2-18

TLB (translation lookaside buffer),
initialization testing, 10-6
structure of, 10-7
test operations, 10-10
test registers, 10-8

top-of-stack (TOS),
and ESP register, 2-12
and PUSH instruction, 3-2

TR4 (test status register), cache test register,
10-13

TR6 (test command register), TLB test
register, 10-8

TR7 (test data register), TLB test register,
10-9

TR (task register),
and current TSS, 7-4
register description, 4-5

transcendental instructions, floating-point
instructions, 17-4

transferring control, in 16-bit and 32-bit
environments, 24-3

translation lookaside buffer (TLB),
and page translation, 5-18, 5-22
and test registers, 4-8

trap gates,
and exceptions, 6-11
and IDT descriptors, 9-7

traps,
exception conditions, 9-13
exception description, 9-2
exception processor-detected, 9-1

trigonometric calculation, numeric
programming, 20-7

TS (task switched - bit3), system control flag,
4-7

TSS Busy bit, automatic locking, 13-3
TSS (task state segment),

and I/O permission bit map, 8-7
and Intel 286 processor compatibility, 7-2
and processor state information, 7-2
and task linking, 7-11

two-operand instructions, description of, 2-17
type, segment descriptors, 5-12
type checking,

and protection mechanism, 6-24
segment descriptors, 6-3

type field, segment descriptors, 5-13

underflow exception,
and de normal values, 16-3
and inexact exception, 16-26
and numeric underflow, 16-25

unordered, comparison instructions, 17-4
unsegmented model, creation of, 2-10
unsupported formats, and data type encoding,

16-13
user level, and addressable domain restriction,

6-23
user mode (privilege level 3), and alignment­

check exception, 4-2
user mode write protect, and copy-on-write

strategy, 6-24
user/supervisor bit, and page table entries,

5-22

vector, exception/interrupt identification, 9-1
VERR (verify segment for read),

descriptor validation, 6-21
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-279
modR/M byte opcodes, A-8

VERW (verify segment for write),
descriptor validation, 6-21
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-279
modR/M byte opcodes, A-8

virtual memory,
and memory model, 2-1
description, 5-14

virtual-8086 mode,
address translation, 23-2
and VM flag, 4-3
bus lock, 23-14
entering and leaving, 23-5
Intel486 operating mode, 1-2
Intel486 processor, 23-1
I/O protection, 8-6
Inte1386 DX processor differences, 23-15
Intel 286 processor differences, 23-13

Index-25

intel®
Intel 8086 processor differences, 23-10
Intel 8086 processor programs, 23-1
paging tasks, 23-4
registers and instructions, 23-1
task protection, 23-5
task structure, 23-3
virtual I/O, 23-9

VM flag (virtual-8086 mode - bit 17), system
flag description, 4-3

wait, control instructions, 17-8
WAIT (wait),

flag cross-reference, B-2
instruction format and timing, E-20
instruction specification, 26-281
one-byte opcode map, A-4, A-5

WBINVD (write-back and invalidate cache),
cache management instructions, 12-3
flag cross-reference, B-2
instruction format and timing, E-ll
instruction specification, 26-282
two-byte opcode map, A" 7

word, data .type, 2-3
word integer, numeric data type, 14-6
WP (write protect - bit 16), system control

flag, 4-7
writable bit, and data-segment descriptor, 6-3
write access,

and accessed bit, 5-21
and dirty bit, 5-21

write protection, and user-mode pages, 6-24
write-back, and caching, 12-2
write-through,

and caching, 12-2
and external cache, 12-2
and internal cache, 12-2

INDEX

XADD (exchange and add),
flag cross-reference, B-2
instruction description, 3-48
instruction format and timing, E-6
instruction specification; 26-283
status flag summary, C-1
two-byte opcode map, A-6

XCHG (exchange),
automatic locking, 13-3
flag cross-reference, B-2
instruction description, 3-2
instruction format and timing, E-3
instruction specification, 26-285
one-byte opcode map, A-4

XLAT (table look-up translation),
flag cross-reference, B-2
instruction format and timing, E-9
instruction specification, 26-286
one-byte opcode map, A-4

XLATB (table look-up translation),
instruction description, 3-42
instruction specification, 26-286

XOR (logical exclusive or),
flag cross-reference, B-2
instruction description, 3-12
instruction specification, 26-288
modR/M byte opcodes, A-8
one-byte opcode map, A-4
status flag summary, C-2

zero operands, and Intel486 Floating Point
Processor (FPU), 16-6

zero-divide exception, and division by zero,
16-21

ZF flag, and binary .arithmetic instructions, 3-6
ZF (zero flag), status flag, 2-14

Index-26

ALABAMA

~ncig' ~~~Fe'vard South
Suite 104·'
Huntsville 35802
Tel: (800) 628-8686
FAX: (205) 883-3511

ARIZONA

tlntel Corp.
410 North 44th Street
Suite 500 ~
Phoenix 85008
Tel: (800) 628-8686
FAX: (602) 244-0446

CALIFORNIA

Intel Corp.
3550 Watt Avenue
SUite 140
Sacramento 95821
Tel: (800) 628-8686
FAX: (916) 488-1473

tlntel Corp.
9655 Granite Ridge Dr.
3rd Floor, Suite 4A
San Diego 92123
Tel: (800) 628-8686
FAX: (619) 467-2460

Intel Corp.
1781 Fox Drive
San Jose 95131
Tel: (800) 628-8686
FAX: (408) 441-9540

·tlnlol Corp
1551 N. Tu[;lin Avenue
Suilo 800
5[1nl[l Ana 92701
Tol: (800) 628-8686
TWX: 910-595-1114
FAX: (714) 541-9157

tlntet Corp.
15260 Ventura Boulevard
Suite 360
Sherman Oaks 91403
Tel: (800) 628-8686
FAX: (818) 995-6624

COLORADO

*tlntel Corp.
600 S. Cherry SI.
Suite 700
Denver 80222
Tel: (800) 628-8686
TWX: 910-931-2289
FAX: (303) 322-8670

CONNECTICUT

tlntel Corp.
103 Mill Plain Road
Danbury 06811
Tel: (800) 628-8686
FAX: (203) 794-0339

FLORIDA

tlntel Corp.
800 Fairway Drive
Suite 160
Deerfield Beach 33441
Tel: (800) 628-8686
FAX: (305) 421-2444

Intel Corp.
2250 Lucien Way
Suite 100, Room 8
Maitland 32751
Tel: (800) 628-8686
FAX: (407) 660-1283

'Sales and Service Office
'Field Application Location

NORTH AMERICAN SALES OFFICES
GEORGIA NEW YORK *tlntel Corp.

tlntel Corp. *Inlel Corp.
5000 Quorum Drive
Suite 750

20 Technology Parkway 850 Crosskeys Office Park Dallas 75240
Suite 150 Fairport 14450 Tel: (800) 628-8686
Norcross 30092 Tel: (800) 628-8686
Tel: (800) 628-8686 TWX: 510-253-7391 *tlntel Corp.
FAX: (404) 605-9762 FAX: (716) 223-2561 20515 SH 249

tlntel Corp. Suite 401
IDAHO 300 Westage Business Center Houston 77070

Intel Corp. Sulle 230 Tel: (800) 628-8686

9456 Fairview Ave., Suite C Fishkill 12524 TWX: 910-881-2490

Boise 83704 Tel: (800) 628-8686 FAX: (713) 988-3660

Tel: (800) 628-8686 FAX: (914) 897-3125
FAX: (208) 377-1052 *tlntei Corp. UTAH

ILLINOIS
2950 Express Dr., South

tlntel Corp. Suite 130
*tlntel Corp. Islandia 11722 428 East 6400 Soulh

Tel: (800) 628-8686 Suite 135
Woodfield Corp. Center III Murray 84107
300 N. Martingale Road TWX: 510-227·6236

FAX: (516) 348-7939 Tel: (800) 628-8686
Suite 400 FAX: (801) 268-1457
Schaumburg 60173
Tel: (800) 628-8686 OHIO
FAX: (708) 706-9762 *Inlel Corp. WASHINGTON

INDIANA
56 Milford Dr., Suite 205

tlntel Corp. Hudson 44236

tlntel Corp. Tel: (800) 628-8686 2800 1561h Avenue S.E.
FAX: (216) 528-1026 Suite 105

8910 Purdue Road Bellevue 98007
Suite 350 *tlntel Corp. Tel: (800) 628-8686
Indianapolis 46268 3401 Park Center Drive FAX: (206) 746-4495
Tel: (800) 628-8686 Suite 220
FAX: (317) 875-8938 ~:rrtoci~~~~-8686 WISCONSIN
MARYLAND TWX: 810-450-2528

*tlntel Corp.
FAX: (513) 890-8658 Intel Corp.

400 N. Executive Dr.
100tO Junction Dr. OKLAHOMA Suite 401
Suite 200 Brookfield 53005
Annapolis Junction 2070t ~nJg~ 1frg'roadway

Tel: (800) 628-8686
Tel: (800) 628-8686 FAX: (414) 789-2746
FAX: (410) 206-3678 Suite 115

Oklahoma City 73162
MASSACHUSETTS Tel: (800) 628-8686

CANADA
*tlntel Corp.

FAX: (405) 840-9819

Westford Corp. Center OREGON
5 Carlisle Road BRITISH COLUMBIA
2nd Floor tlntel Corp.
Westford 01886 15254 N.W. Greenbrier Pkwy. Intel Semiconductor of
Tel: (800) 628-8686 Building B Canada, Ltd.
TWX: 710-343-6333 Beaverton 97006 999 Canada Place
FAX: (508) 692-7867 Tel: (800) 628-8686 Suite 404, #11

TWX: 910-467-8741 Vancouver V6C 3E2
MICHIGAN FAX: (503) 645-8181 Tel: (800) 628-8686

tlntel Corp. PENNSYLVANIA
FAX: (604) 844-2813

7071 Orchard Lake Road
*tlntel Corp. Suite 100 ONTARIO

West Bloomfield 48322 925 Harvest Drive

Tel: (800) 628-8686 Sulle 200 tlntel Semiconductor of
FAX: (313) 851-8770 Blue Bell 19422 Canada, Ltd.

Tel: (800) 628-8686 2650 Queensview Drive
MINNESOTA

FAX: (215) 641-0785 Suite 250
Ottawa K2B 8H6

tlntel Corp. SOUTH CAROLINA Tel: (800) 628-8686
3500 W. 80th SI. Intel Corp. FAX: (613) 820-5936
Suite 360

~~~:o~~~1t~~:.~~g~ 
7403 Parklane Rd., Suite 3 tlntel Semiconductor of Columbia 29223 
Tel: (800) 628-8686 Canada, Ltd. 

TWX: 910-576-2867 FAX: (803) 788-7999 190 Attwell Drive 
FAX: (612) 831-6497 Suite 500 

Intel Corp. Rexdale M9W 6H8 
NEW JERSEY 100 Executive Center Drive Tel: (800) 628-8686 

Intel Corp. 
Suite 109, 8183 FAX: (416) 675·2438 
Greenville 29615 

2001 Route 46, Suite 310 Tel: (800) 628-8686 
QUEBEC Parsippany 07054-1315 FAX: (803) 297-3401 

Tel: (800) 628-8686 
tlntel Semiconductor of FAX: (201) 402-4893 TEXAS 
Canada, Ltd. 

*tlntel Corp. tlntel Corp. 1 Rue Holiday 
lincroft Office Center 8911 N. Capital of Texas Hwy. Suite 320 
125 Half Mile Road Suite 4230 Tour East 
Red Bank 07701 Austin 78759 Pt. Claire H9R 5N3 
Tel: (800) 628-8686 Tel: (800) 628-8686 Tel: (800) 628-8686 
FAX: (908) 747-0983 FAX: (512) 338-9335 FAX: 514-694-0064 

CGlSALE/111293 



NORTH AMERICAN DISTRIBUTORS 
ALABAMA Arrow/Schwaber Electronics Wyle Laboratories Avnet Computer Arrow/Schwaber Electronics 

Arrow/Schweber Electronics 
26707 W. Agoura Road 15370 Barranca Pkwy. 55 Federal Road, #103 4250 E. Rivergreen Pkwy., #E 
Calabasas 91302 Irvine 92713 Danbury 06810 Duluth 30136 

1015 Henderson Road Tel: (818) 880·9686 Tel: (714) 753·9953 Tel: (203) 797·2880 Tel: (404) 497·1300 Huntsville 35806 
Tel: (205) 837·6955 

FAX: (818) 772·8930 FAX: (714) 753·9877 FAX: (203) 791·9050 FAX: (404) 476·1493 

FAX: (205) 721·1581 Arrow/Schwaber Electronics Wyle Laboratories Hamilton Hallmark Avnet Computer 
Hamilton Hallmark ' 48834 Kato Road, Suite 103 15360 Barranca Pkwy., #2QO 125 Commerce Court, Unit 6 3425 Corporate Way, #G 
4890 ~niversity Square, #_1 Fremont 94538 Irvine 92713 Cheshire 06410 Duluth 30136 
HuntsviJre 35816 Tel: (510) 490·9477 Tel: (714) 753·9953 Tel: (203) 271·2844 Tel: (404) 623·5452 
Tel: (205) 837·8700 Arrow/Schwaber Electronics FAX: (714) 753·9877 FAX: (203) 272·1704 FAX: (404) 476·0125 
FAX: (205) 830·2565 6 Cromwell # 1 00 Wyle Laboratories Pioneer Standard Hamilton Hallmark 

~~oSb~;prg~ate Dr., #120 
Irvine 92718 
Tol: (714) 838·5422 

2951 Sunrise Blvd., #175 2 Trap Falls Road 3425 Corporate Way, #G & #A 
Rancho Cordova 95742 Shelton 06484 Duluth 30136 

Huntsville 35805 FAX: (714) 454·4206 Tel: (916) 638·5282 Tel: (203) 929·5600 Tel: (404) 623·5475 
Tel: (205) 830-9526 

Arrow/Schweber Electronics FAX: (916) 638·1491 FAX: (404) 623·5490 
FAX: (205) 830·9557 

Pioneer Technologies Group 
95t 1 Ridgehaven Court 

Wyle Laboratories FLORIDA Pioneer Technologies Group San Diego 92123 
4835 University Square, #5 Tel: (619) 565·4800 9525 Chesapeake Drive 

Anthem Electronics 
4250 C. Rivergreen Parkway 

Huntsville 35805 FAX: (619) 279·8062 San Diego 92123 Duluth 30136 
Tel: (205) 837·9300 Tel: (619) 565·9171 598 South Northlake Blvd., #1024 Tel: (404) 623·1003 
FAX: (205) 837·9358 Arrow/Schweber Electronics FAX: (619) 365·0512 Altamonte Springs 32701 FAX: (404) 623·0665 

1180 Murphy Avenue Tel: (813) 797·2900 
Wyle Laboratories San Jose 95131 Wyle Laboratories FAX: (813) 796·4880 Wyle Laboratories 
7800 Governers Drive Tel: (408) 441·9700 3000 Bowers Avenue 6025 The Corners Pkwy., #111 
Tower Building, 2nd Floor FAX: (408) 453·4810 Santa Clara 95051 Arrow/Schwebel' Electronics Norcross 30092 
Huntsville 35806 Tel: (408) 727·2500 400 Fairway Drive, #102 Tel: (404) 441·9045 
Tel: (205) 830·1119 Avnet Computer FAX: (408) 727·5896 Deerfield Beach 33441 FAX: (404) 441·9086 
FAX: (205) 830·1520 3170 Pullman Street Tel: (305) 429·8200 

Costa Mesa 92626 Wyle Laboratories FAX: (305) 428·3991 
ARIZONA Tel: (714) 641·4150 17872 Cowan Avenue ILLINOIS 

Anthem Electronics FAX: (714) 641·4170 Irvine 92714 Arrow/Schweber Electronics 
Tel: (714) 863·9953 37 Skyline Drive, #3101 Anthem Electronics 

1555 W. 10th Place, #101 Avnet Computer FAX: (714) 263·0473 Lake Mary 32746 . 1300 Remington Road, Suite A 
Tempe 85281 1361B West 190th Street Tel: (407) 333·9300 Schaumberg 60173 
Tel: (602) 966·6600 Gardena 90248 Wyle Laboratories FAX: (407) 333·9320 Tel: (708) 884-0200 
FAX: (602) 966·4826 Tel: (800) 426·7999 26010 Mureau Road, #150 FAX: (708) 885·0480 
Arrow/Schweber Electronics . FAX: (310) 327·5389 Calabasas 91302 Avnet Computer 
2415 W. Erie Drive Tel: (818) 880·9000 3343 W. Commercial Boulevard . Arrow/Schweber Electronics 
Tempe 85282 Avnet Computer FAX: (818) 880·5510. ~:~ea~~~;d~~~t~ifci9 1140 W. Thorndalo Rd. 
Tel: (602) 431·0030 755 Sunrise Boulevard, #150 Itasca 60143 
FAX: (602) 252·9109 Roseville 95661 Zeus Arrow Electronics Tel: (305) 730·9110 Tol: (700) 250·0500 

Tel: (916) 781·2521 6276 San Ignacio Ave., #E FAX: (305) 730·0368 
Avnet Computer FAX: (916) 781·3819 San Jose 95119 Avnot Computor 
1626 S. Edwards Drive Tel: (408) 629·4789 Avnet Computer 1124 Thorndalo Avonuo 
Tempe 85281 Avnet Computer FAX: (408) 629·4792 3247 Tech Drive North Bensenville 60106 
Tel: (602) 902·4600 1175 Bordeaux Drive, #A SI. Petersburg 33716 Tel: (708) 860·8572 
FAX: (602) 902·4640 Sunnyvale 94089 Zeus Arrow Electronics Tel: (813) 573·5524. FAX: (708) 773·7976 

Hamilton Hallmark 
Tel: (408) 743·3454 22700 Sav; Ranch Pkwy. FAX: (813) 572·4324 

4637 S. 36th Place 
FAX: (408) 743·3348 Yorba Linda 92687-4613 Hamilton Hallmark 

Tel: (714) 921·9000 Hamilton Hallmark 1130 Thorndale Avenue 
Phoenix 85040 Avne! Computer 

FAX: (714) 921·2715 3350 N.W. 53rd 51., #105·107 Bensenville 60106 
Tel: (602) 437-1200 21150 Califa Street Ft. Lauderdale 33309 Tel: (708) 860·7780 
FAX: (602) 437·2348 Woodland Hills 91376 Tel: (305) 484·5482 FAX: (708) 860·8530 
Wyle Laboratories Tel: (818) 594·8301 COLORADO FAX: (305) 484·2995 
4141 E. Raymond FAX: (818) 594·8333 MTI Systems 
Phoenix 85040 Hamilton Hallmark Anthem Electronics Hamilton Hallmark 1140 W. Thorndale Avenue 
Tel: (602) 437-2088 3170 Pullman Street 373 Inverness Drive South 10491 72nd SI. North Itasca 60143 
FAX: (602) 437·2124 Costa Mesa 92626 Englewood 80112 Largo 34647 Tel: (708) 250·8222 

Tel: (714) 641·4100 Tel: (303) 790·4500 Tel: (813) 541·7440 FAX: (708) 250·8275 . 
CALIFORNIA FAX: (714) 641·4122 FAX: (303) 790-4532 FAX: (813) 544·4394 

Pioneer Standard 
Anthem Electronics Hamilton Hallmark Arrow/Schweber Electronics Hamilton HaJimark 2171 Executive Dr., #200 
9131 Oakdale Ave. 1175 Bordeaux Drive, #A 61 Inverness Dr. East,. #105 7079 University Boulevard Addison 60101 
Chatsworth 91311 Sunnyvale 94089 Englewood 80112 Winter Park 32792 Tel: (708) 495·9680 
Tel: (818) 775-1333 Tel: (408) 435·3500 Tel: (303) 799·0258 Tel: (407) 657·3300 FAX: (708) 495·9831 
FAX: (818) 775·1302 FAX: (408) 745·6679 FAX: (303) 373·5760 FAX: (407) 678·4414 
Anthem Electronics Wyle Laboratories 
1 Oldfield Drive Hamilton Hallmark Hamilton Hallmark Pioneer Technologies'Group 2055 Army Trail Road, #140 
Irvine 92718-2809 4545 Viewridge Avenue 12503 E. Euclid Drive, #20 337 Northlake alvd., #1000 Addison 60101 
Tel: (714) 768·4444 San Diego 92123 Englewood 80111 Alta Monte Springs 32701 Tel: (800) 853·9953 
FAX: (714) 768·6456 Tel: (619) 571-7540 Tel: (303) 790·1662 Tel: (407) 834·9090 FAX: (708) 620-1610 

Anthem Electronics 
FAX: (619) 277-6136 FAX: (303) 790·4991 FAX: (407) 834·0865 

580 Menlo Drive, #8 Hamilton Hallmark Hamilton Hallmark Pioneer Technologies Group INDIANA 
Rocklin 95677 21150 Calila 51. 710 Wooten Road, #102 674 S. Military Trail 

Arrow/Schweber Electronics Tel: (916) 624·9744 Woodland Hills 91367 Colorado Springs 80915 Deerfield Beach 33442 
FAX: (916) 624·9750 Tel: (818) 594·0404 Tel: (719) 637·0055 Tel: (305) 428·8877 7108 Lakeview Parkway West Or. 

Anthem Electronics FAX: (818) 594·8234 FAX: (719) 637·0088 FAX: (305) 481·2950 Indianapolis 46268 
Tel: (317) 299·2071 

9369 Carroll Park Drive Hamilton Hallmark Wyle Laboratories Pioneer Technologies Group FAX: (317) 299·2379 
San Diego 92121 580 Menlo Drive, #2 451 E. 124th Avenue 8031-2 Phillips Highway 
Tel: (619) 453·9005 Rocklin 95762 Thornton 80241 Jacksonville 32256 Avnet Computer 
FAX: (619) 546-7893 Tel: (916) 624·9781 Tel: (303) 457·9953 Tel: (904) 730·0065 485 Gradle Drive 
Anthem Electronics FAX: (916) 961·0922 FAX: (303) 457·4831 Carmel 46032 
1160 Ridder Park Drive Wyle Laboratories Tel: (317) 575·8029 

San Jose 95131 Pioneer Standard 1000 112 Circle North FAX: (317) 844·4964 

Tel: (408) 452·2219 5850 Canoga Blvd., #400 CONNECTICUT SI. Petersburg 33716 
FAX: (408) 441·4504 Woodland Hills 91367 Tel: (813) 530·3400 Hamilton Hallmark 

Tel: (818) 883·4640 Anthem Electronics FAX: (813) 579·1518 4275 W. 96th 
Arrow Commercial Systems Group 

Pioneer Standard 
61 Mattatuck Heights Road Indianapolis 46268' 

1502 Crocker Avenue Waterburg 06705 . Tel: (317) 872·8875 
Hayward 94544 217 Technology Dr., #110 Tel: (203) 575·1575 GEORGIA FAX: (317) 876·7165 
Tel: (510) 489·5371 Irvine 92718 FAX: (203) 596·3232 
FAX: (510) 48~·9393 Tel: (714) 753·5090 Arrow Commercial Systems Group Pioneer Standard 

Arrow Commercial Systems Group Pioneer Technologies Group Arrow/Schweber Electronics 3400 C. Corporate Way 9350 Priority Way West Dr. 
12 Beaumont Road Duluth 30136 Indianapolis 46250 

14242 Chambers Road 134 Rio Robles Wallingford 06492 Tel: (404) 623·8825 Tel: (317) 573·0880 
Tustin 92680 San Jose 95134 
Tel: (714) 544·0200 Tel: (408) 954-9100 

Tel: (203) 265·7741 FAX: (404) 623·8802 FAX: (317) 573·0979 

FAX: (714) 731·8438 FAX: (408) 954·9113 
FAX: (203) 265·7988 

CG/SALE/111293 



NORTH AMERICAN DISTRIBUTORS (Contd.) 
KANSAS Hamilton Hallmark MISSOURI NEW YORK Pioneer Technologies Group 

Arrow/Schwaber Electronics 
100 Centennial Drive 

Arrow/Schwaber Electronics Anthem Electronics 2200 Gateway Clr. Blvd, #215 

~:~~~g~) °J:l~~430 Morrisville 27560 
9801 Legler Road 2380 Schuetz Road 47 Mall Drive Tel: (919) 460-1530 
Lenexa 66219 FAX: (508) 532-9802 St. Louis 63141 Commack 11725 FAX: (919) 460-1540 
Tel: (913) 541·9542 Tel: (314) 567-6888 Tel: (516) 864·6600 
FAX: (913) 541·0328 Pioneer Standard FAX: (314) 567·1164 FAX: (516) 493-2244 

Avnst Computer 
44 Hartwell Avenue 

Avnet Computer Arrow/Schwaber Electronics OHIO 
Lexington 02173 

15313 W. 95th Street Tel: (617) 861·9200 741 Goddard Avenue 3375 Brighton Henrietta Arrow Commercial Systems Group 
Lenexa 61219 FAX: (617) 863-1547 Chesterfield 63005 Townline Rd. 284 Cramer Creek Court 
Tel: (913) 541-7989 Tel: (314) 537-2725 Rochester 14623 

Dublin 43017 
FAX: (913) 541-7904 Wyle Laboratories FAX: (314) 537-4248 Tel: (716) 427-0300 

Tel: (614) 889-9347 15 Third Avenue FAX: (716) 427·0735 
Hamilton Hallmark Burlington 01803 Hamilton Hallmark FAX: (614) 889·9680 
10809 Lakeview Avenue Tel: (617) 272-7300 3783 Rider Trail South Arrow/Schweber Electronics 
Lenexa 66215 FAX: (617) 272·6809 Earth C~ 63045 20 Oser Avenue Arrow/Schweber Electronics 
Tel: (913) 888·4747 Tel: (314 291·5350 Hauppauge 11788 6573 Cochran Road, #E 
FAX: (913) 888·0523 MICHIGAN FAX: (314) 291·0362 Tel: (516) 231-1000 Solon 44139 

FAX: (516) 231-1072 Tel: (216) .248-3990 

KENTUCKY Arrow/Schweber Electronics NEW HAMPSHIRE ~~~e~~t~~~~:~ay 
FAX: (216) 248-1106 

Hamilton Hallmark 
19880 Haggerty Road 

Avnet Computer Arrow/Schweber Electronics Livonia 48152 Hauppauge 11788 
1847 Mercer Road, #G Tel: (800) 231-7902 2 Executive Park Drive Tel: (516)434·7443 

8200 Washington Village Dr. 
Lexington 40511 FAX: (313) 462-2686 Bedford 03102 Centerville 45458 
Tel: (800) 235·6039 Tel: (800) 442·8638 

FAX: (516) 434·7426 Tel: (513) 435·5563 
FAX: (606) 288-4936 ~876t2~?hSt~~':t, S.W., #5 

FAX: (603) 624·2402 ~~~g\~~~~~!eRd. 
FAX: (513) 435·2049 

MARYLAND 
Grandville 49418 

NEW JERSEY Rochester 14623 Avnet Computer 
Tel: (616) 531·9607 Tel: (716) 272-9110 7764 Washington Village Dr. 

Anthem Electronics FAX: (616) 531·0059 Anthem Electronics FAX: (716) 272-9685 Dayton 45459 
7168A Columbia Gateway Drive 

~~~~~ ~oa~g~~e~rook Rd. #120 
26 Chapin Road, Unit K Hamilton Hallmark

Tel: (513) 439·6756
Columbia 21046 Pine Brook 07058 FAX: (513) 439-6719
Tel: (410) 995·6640 Tel: (201) 227-7960 933 Motor Parkway

Novi 48375 Hauppauge 11788 Avnet Computer FAX: (410) 290·9862 Tel: (313) 347-1820 FAX: (201) 227-9246
Tel: (516) 434-7470 30325 Bainbridge Rd., Bldg. A

Arrow Commercial Systems Group FAX: (313) 347·4067 Arrow/Schweber Electronics FAX: (516) 434-7491 Solon 44139
200 Perry Parkway Hamilton Hallmark 4 East Stow Rd., Unit 11 Hamitton Hallmark Tel: (216) 349-2505
Gaithersburg 20877 44191 Plymouth oaks Blvd., #1300 Marlton 08053 1057 E. Henrietta Road FAX: (216) 349-1894
Tol: (30t) 670·1600 Plymouth 48170 Tel: (609) 596-8000 Rochester 14623 FAX: (301) 670·0f88 Tel: (313) 416·5800 FAX: (609) 596-9632 Tel: (716) 475-9130 Hamilton Hallmark

Arrow/Schwober Electronics FAX: (313) 416-5811 Arrow/Schweber Electronics FAX: (716) 475·9119 7760 Washington Village Dr.
Dayton 45459 9800J Patuxont Woods Dr. Hamilton Hallmark 43 Route 46 East Hamilton Hallmark Tel: (513) 439·6735 Columbia 21046 Pine Brook 07058

Tel: (30f) 596·7800 41650 Garden Brook Rd., #100
Tel: (201) 227·7880

3075 Veterans Memorial Hwy. FAX: (513) 439·6711
Novi 49418 Ronkonkoma 11779 FAX: (301) 995·6201 Tel: (313) 347·4271 FAX: (201) 538·4962 Tel: (516) 737-0600 Hamilton Hallmark

Avnet Computer FAX: (313) 347-4021 Avnet Computer FAX: (516) 737·0838 5821 Harper Road
7172 Columbia Gateway Dr., #G Pioneer Standard l·B Keystone Ave., Bldg. 36 MTI Systems Solon 44139
Columbia 21045 4505 Broadmoor S.E. Cherry Hill 08003 1 Penn Plaza Tel: (216) 49B-l100
Tel: (301) 995-3571 Grand Rapids 49512 Tel: (609)424-8961 250 W. 34th Street

FAX: (216) 248-4803
FAX: (301) 995-3515 Tel: (616) 698-1800 FAX: (609) 751-2502 New York 10119 Hamilton Hallmark
Hamilton Hallmark FAX: (616) 698·1831 Hamilton Hallmark Tel: (212) 643-1280 777 Dearborn Park Lane, #L
10240 Old Columbia Road Pioneer Standard 1 Keystone Ave., Bldg. 36 FAX: (212) 643-1288 Worthington 43085
Columbia 21046 13485 Stamford Cherry Hill 08003 Pioneer Standard Tel: (614) 888-3313
Tel: (410) 988·9800 Livonia 46150 Tel: (609) 424-0110 68 Corporate Drive FAX: (614) 888·0767
FAX: (410) 381-2036 Tel: (313) 525-1800 FAX: (609) 751·2552 Binghamton 13904
North Atlantic Industries FAX: (313) 427-3720 Hamilton Hallmark Tel: (607) 722-9300 MTI Systems

FAX: (607) 722·9562 23404 Commerce Park Rd.
Systems Division 10 Lanidex Plaza West Beachwood 441.22

7125 River Wood Dr. MINNESOTA Parsippani 07054 Pioneer Standard Tel: (216) 464·6688
Columbia 21046

Anthem Electronics Tel: (201) 515-5300 60 Crossway Park West FAX: (216) 464-3564
Tel: (301) 312·5800 7646 Golden Triangle Drive FAX: (201) 515-1601 Woodbury, Long Island 11797
FAX: (301) 312-5850

Eden Prairie 55344 MTI Systems
Tel: (516) 921-8700 Pioneer Standard

Pioneer Technologies Group Tel: (612) 944-5454 43 Route 46 East
FAX: (516) 921·2143 4433 Interpoint Boulevard

15810 Gaither Road FAX: (612) 944-3045 Pinebrook 07058 Pioneer Standard Dayton 45424
Gaithersburg 20877 Arrow/Schweber Electronics Tel: (201) 882-8780 840 Fairport Park Tel: (513) 236·9900

Tel: (301) 921-0660 FAX: (201) 539-6430 Fairport 14450 FAX: (513) 236·8133

FAX: (301) 670·6746 10100 Viking Drive, #100 Tel: (716) 381-7070 Eden Prairie 55344 Pioneer Standard FAX: (716) 381·5955 Pioneer Standard
Wyle Laboratories Tel: (612) 941-5280 14·A Madison Rd. 4800 E. 131st Street
7180 Columbia Gateway Dr. FAX: (612) 942·7803 Falrtield 07006 Zeus Arrow Electronics Cleveland 44105
Columbia 21046 Avnet Computer Tel: (201) 575·3510 100 Midland Avenue Tel: (216) 587-3600
Tel: (410) 312-4844 FAX: (201) 575·3454 Port Chester 10573 FAX: (216) 663·1004
FAX: (410) 312-4953 10000 West 76th Street Tel: (914) 937·7400

Eden Prairie 55344 Wyle Laboratories FAX: (914) 937-2553·

MASSACHUSETTS
Tel: (612) 829-0025 20 Chapin Road, Bldg. 10-13 OKLAHOMA
FAX: (612) 944·2781 Pinebrook 07056 NORTH CAROLINA

Anthem Electronics Hamilton Hallmark Tel: (201) 882·8358 Arrow/Schweber Electronics
Arrow/Schweber Electronics

36 Jonspin Road 9401 James Ave South, #140 FAX: (201) 882·9109 12101 E. 51st Street, #106

Wilmington 01887 ~~~~~~n21t8~1~~~gb
5240 Greensdairy Road Tulsa 74146

Tel: (508) 657·5170 NEW MEXICO
Raleigh 27604 Tel: (918) 252·7537

FAX: (508) 657·6008 FAX: (612) 881-9461
Tel: (919) 876·3132 FAX: (918) 254-0917

Alliance Electronics, Inc. FAX: (919) 878-9517

Arrow/Schweber Electronics Pioneer Standard 10510 Research Ave. Avnet Computer Hamilton Hallmark
25 Upton Dr. 7625 Golden Triange Dr., #G Albuquerque 87123 2725 Millbrook Rd., #123 5411 S. 125th E. Ave., #305
Wilmington 01887 Eden Prairie 55844 Tel: (505) 292·3360 Raleigh 27604 Tulsa 74146
Tel: (508) 658-0900 Tel: (612) 944-3355 FAX: (505) 275·6392 Tel: (919) 790-1735 Tel: (918) 254-6110
FAX: (508) 694·1754 FAX: (612) 944-3794 FAX: (919) 872-4972 FAX: (918) 254-6207

Avnet Computer
Avnet Computer Wyle Laboratories 7801 Academy Rd. Hamilton Hallmark Pioneer Standard
100 Centennial Drive 1325 E. 79th Street, #1 Bldg. 1, Suite 204 5234 Greens Dairy Road 9717 E. 42nd St., #105
Peabody 01960 ~~~~rn\n21t8~3~~~~~ Albuquerque 87109 Raleigh 27604 Tulsa 74146
Tel: (508) 532-9886 Tel: (505) 828-9725 Tel: (919) 878·0819 Tel: (918) 665·7840
FAX: (508) 532-9660 FAX: (612) 853-2298 FAX: (505) 828·0360 FAX: (919) 878-8729 FAX: (918) 665·1891

CG/SALEJ111293

OREGON

Almac Arrow Electronics
1885 N.W. 169th Ptace
Beaverton 97006
Tel: (503) 629·8090
FAX: (503) 645·0611

Anthem Electronics
9090 S.W. Gemini Drive
Beaverton 97005
Tel: (503) 643·1114
FAX: (503) 626·7928

Avnst Computer
9750 Southwest Nimbus Ave.
Beaverton 97005
Tel: (503) 627·0900
FAX: (502) 526·6242

Hamilton Hallmark
9750 S.W. Nimbus Ave.
Beaverton 97005
Tel: (503) 526·6200
FAX: (503) 641·5939

Wyle Laboratories
9640 Sunshine Court
Bldg. G, Sune 200
Beaverton 97005
Tel: (503) 643·7900
FAX: (503) 646·5466

PENNSYLVANtA

Anthem Electronics
355 Business Center Dr.
Horsham 19044
Tel: (215) 443·5150
FAX: (215) 675·9875

~r~e~~~~~~t~rive, #320
Mers 16046
Tel: (412) 772·1888
FAX: (412) 772·1890

Pioneer Technologies Group
259 Kappa Drive
Pittsburgh 15238
Tel: (412) 782·2300
FAX: (412) 963·8255

Pionear Technologies Group
500 Enterprise Road
Keith Valley Business Center
Horsham 19044
Tel: (713) 530·4700

~:e~8~~:~O~~~1
Marlton 08053·3185
Tel: (609) 985·7953
FAX: (609) 965·6757

TEXAS

Anthem Electronics
651 N. Plano Road, #401
Richardson 75081
Tel: (214) 236·7100
FAX: (214) 236-0237

Arrow/Schweber Electronics
11500 Metric Blvd., #160
AusUn 76758
Tel: (512) 8354180
FAX: (512) 832·5921

NORTH AMERICAN DISTRIBUTORS (Contd.)
Arrow/Schweber Electronics UTAH Hamilton Hallmark Avnst Computer
3220 Commander Dr.

Anthem Electronics 2440 S. 179th Street Canada System Engineering Group
Carrollton 75006 New Berlin 53146 151 Superior Blvd.
Tel: (214) 360·6464 1279 West 2200 South Tel: (414) 797-7644 Mississuaga LST 2L 1
FAX: (214) 246·7208 Salt Lake City 64119 FAX: (414) 797·9259 Tel: (416) 795·3635

Tel: (601) 973·8555 FAX: (416) 677·5061
Arrow/Schweber Electronics FAX: (601) 973·8909 Pioneer Standard
10699 Kinghurst Dr .. #100 Arrow/Schweber Electronics

120 Bishop Way #163 Avnet Computer Houston 77099 Brookfield 53005
Tel: (713) 5304700 1946 W. Perkway Blvd. Tel: (414) 764·3460 190 Colonado Road

Salt Lake City 84119 FAX: (414) 76()'3613 Nepean K2E 7J5
Avnet Computer Tet: (601) 973·6913 Tel: (613) 727·2000
4004 BettUne, SUite 200 FAX: (601) 972·0200 Wylo laboratories FAX: (613) 226-1184
Dallas 75244 Avnet Computer W226 N555 Eastmound Drivo
Tel: (214) 306·8181 Waukesha 53186 Hamilton Hallmark
FAX: (214) 308·6129

1100 E. 6600 South, #150 Tel: (414) 521·9333 151 Superior Blvd., Unit 1·6 Salt Lake City 84121 FAX: (414) 521·9496 Mlssissauga LST 2L1
Avnet Computer Tel: (B01) 261>-1115 Tel: (416) 564·6060
1235 North Loop West, #525 FAX: (601) 266·0362 ALASKA FAX: (416) 564·6033
Houston 77008 Hamilton Hallmark
Tel: (713) 667·8572 1100 East 6600 South, #120 Avnet Computer Hamilton Hallmark
FAX: (713) 661·6651 Salt Lake City 64121 1400 West Benson Blvd., #400 190 Colonade Road
Hamilton Hallmark Tel: (601) 266-2022 ~~I:~3~~e2n~O:99 Nepean K2E 7J5
12211 Technology Blvd. FAX: (601) 263·0104 FAX: (907) 277·2639 Tel: (613) 226·1700
Austin 787'Z7 . Wyle Laboratories FAX: (613) 226·1184
Tel: (512) 256·6648 1325 West 2200 South, #E

CANADA Zentronics FAX: (512) 256·3777
f.1:sl~~~'7~~~J~ 5600 Keaton Crescent, #1

Hamilton Hallmark Misslssauga LSR 3S5
11420 Page Mill Road FAX: (601) 972·2524 ALBERTA Tel: (416) 507·2600
Dallas 75243

WASHtNGTON ~~~: 2~rGt~!~~ Northeast
FAX: (416) 507·2631

Tel: (214) 553·4300
FAX: (214) 5534395 Almac Arrow ElectroniCS Calga'Y T2E 6Z2 Zentronlcs
Hamilton Hallmark 14360 S.E. Eastgate Way Tel: (403) 291-3264 155 Colonnade Rd., South
6000 Westglen Bellevue 98007 FAX: (403) 250·1591 #17 :

Tel: (206) 643-9992 Nepean K2E 7Kl Houston 77063 FAX: (206) 643·9709 Zentronics Tel: (613) 226-8840 Tel: (713) 761-6100 6615 6th Street N.E., #100 FAX: (613) 226-8352 FAX: (713) 953·6420 Anthem Electronics Calga'Y T2E 7H .

Pioneer Standard
19017· 120th Ave .. N.E. #102 Tel: (403) 295·8838

1826-0 Kramer Lane Bothell 96011 FAX: (403) 295-11714 QUEBEI:: Tel: (206) 463·1700 Austin 78758 FAX: (206) 486·0571 BRtTtSH COLUMBtA Tel: (512) 6354000 Arrow/Schweber Eloctronlcs
·FAX: (512) 635·9629 Avnet Computer Almac Arrow Electronics ~b~a~~:~~~5Blvd.
Pioneer Standard

17761 N.E. 76th Place 8544 Baxter Place
Redmond 96052 Burnaby VSA 4T6 Tel: (514) 421-7411

13765 Beta Road Tel: (206) 867·0160 Tel: (604) 421·2333 FAX: (514) 421·7430 Dallas 75244
Tel: (214) 263-3166

FAX: (206) 887'0~61 FAX: (604) 421·5030

FAX: (214) 490·6419 Hamilton Hallmark Hamilton Hallmark Arrow/Schweber ElectroniCS
8630 154th Avenue 8610 Commerce Court .. 500 Boul. St . .Jean·Baptlste Ave.

Pioneer Standard Redmond 96052 Burnaby VSA 4N6
Quebec H2E 5R9

10530 Rockley Road, #100 Tel: (206) 861-6697 Tel: (604) 420·4101
Tel: (416) 871-7500

Houston 77099 FAX: (206) 867·0159 FAX: (604) 420·5376 FAX: (418) 871·8616
Tel: (713) 495·4700
FAX: (713) 495·5642 Wyle laboratorIes Zentronics Avnet Computer

15365 N.E. 90th Street ~l:~!~d~~~oMd .. #106 m~~~e"nr~~3rrp8 Wyte Laboratories Redmond 98052
1810 Greenville Avenue Tel: (206) 86H 150 Tel: (604) 273·5575 Tel: (514) 335·2483
Richardson 75081 FAX: (206) 881-1567 FAX: (604) 273·2413 FAX: (514) 335·2481
Tel: (214) 235·9953
FAX: (214) 644·5064 WISCONSIN ONTARtO Hamilton Hallmark
Wyle Laboratories Arrow/Schweber Electronics Arrow/Schweber Electronics 7575 Transcanada Highway

#600 4030 West Braker Lane, #330 200 N. Patrick, #100 1093 Meyerslde, Unit 2 SI. Laurent H4T 2V6 Austin 76758 Brookfield 53045 Mlsslssauga LST 1 M4 Tet: (514) 335·1000 Tel: (512) 345·6853 Tel: (414) 792·0150 Tet: (416) 670·7769 FAX: (514) 335·2461 FAX: (512) 345·9330 FAX: (414) 792·0156 FAX: (416) 670·7761

Wyle Laboratories Avnet Computer Arrow/Schweber Electronics Zentronlcs
11001 South Wilcrest, #100 20875 Crossroads Circle, #400 36 Antares Or .• Unit 100 520 McCaffrey
Houston 77099 Waukesha 53186 . Nepean K2E 7W5 St. Laurent H4T 1 N3
Tet: (713) 879·9953 Tel: (414) 784-6205 Tel: (613) 226-6903 Tel: (514) 737·9700
FAX: (713) 879·6540 FAX: (414) 764·6006 FAX: (613) 723·2016 FAX: (514) 737·5212

CGlSALEJI11293

FINLAND

Intel Finland OY
Ruosllantie 2
00390 Helsinki
Tel: (358) 0544644
FAX: (358) 0 544 030

FRANCE

Intel Corporation SAR.L.
1, Rue Edison-BP 303
78054 St. Quentin-en-Vvelines
Cedex
Tel: (33) (1) 30577000
FAX: (33) (1) 30 64 60 32

EUROPEAN SALES OFFICES
GERMANY

Intel GmbH
Dornacher Strasse 1
85622 Feldkirchen/Muenchen
Tel: (49) 089/90992-0
FAX: (49) 089/9043948 ' .

ISRAEL

Intel Semiconductor Ltd.
Atidim Industrial Park-Neve Sharet
P.O. Box 43202
Tel-Aviv 61430
Tel: (972) 03 498080
FAX: (972) 03491870

ITALY

Intel Corporation Italia S.'p.A.
Milanofiori Palazzo E '
20094 Assago
Milano
Tel: (39) (2) 575441
FAX: (39) (2) 3498464

NETHERLANDS,

Intel Semiconductor B.V.
Postbus 84130
3009 CC Rotterdam
Tel: (31) 1040711.11
FAX: (31) 104554688

RUSSIA

~r~~:~~~h~~~~~:a ~a'
121357 Moscow
Tel: 007-095-4439785
FAX: 007-095-4459420
TLX: 612092 smail suo

SPAIN

Intel Iberia S.A.
Zubaran,28
28010 Madrid
Tel: (34) (1) 308 2552
FAX: (34) (1) 410 7570

SWEDEN

Intel Sweden A.B.
Dalvagen 24
171 36 Solna
Tel: (46) 8 705 5600
FAX: (46) 8 278085

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way
SWindon, Wiltshire SN3 1 RJ
Tel: (44) (0793) 696000
FAX: (44) (0793) 641440

EUROPEAN DISTRIBUTORS/REPRESENTATIVES
AUSTRIA GERMANY ""lasi Elettronica SPAIN UNITED KINGDOM

t*Elbatex GmbH "'Avnet Electronic 2000
P.1. 00839000155
Viale Fulvia Testi, N.280 "'ATD Electronica "Arrow Electronics Eitnergasse 6 Stahlgruberring 12 20126 Milano Avenue de la Industria, 32, 2B 8t. Martins Business Centre A-1231 Wien 81829 Muenchen Tel: (39) 2 661431 28100 Alcobendas Cambridge Road Tel: (43) 1816020' Tel: (49) 89 45110-01 FAX: (39) 2 66101385 Madrid Bedford - MK42 OlF

FAX: (43) 181652141 FAX: (49) 89 45110129 Tel: (34) (1) 661 6551 Tel: (44) 234 270272
tSpoerle Electronic *Jermyn GmbH

tOmnilogic Telcom FAX: (34) (1) 661 6300 ' FAX: (44) 234 211434
Heillgenst. SIr. 62 1m Dachsstueck 9 Via lorenteggio 270/A
A-1190 Wien 65549 limburg

20152 Milano
~~3!~~~3~~t~?a~r~_2 *Avnet EMG Ltd.

Tel: (43) 1 318 72 700 Tel: (49) 6431 5080
Tel: (39) 2 48302640 Jubilee House

FAX: (43) 1 36922 73 FAX: (49) 6431 508289
FAX: (39) 2 43802010 28100 Alcobendas Jubilee Road

Madrid Letchworth
BELGIUM tMetrologie GmbH NETHERLANDS Tel: (34) (1) 6611142 Hertsfordshire - 5GB 1 QH

t"'lnelco Distribution
Steinerstrasse 15 FAX: (34) (1) 661 5755 Tel: (44) 462 488 500
81369 Muenchen tDatelcom B.V. FAX: (44) 462 488 567

Avenue des Croix de Guerra 94 Tel: (49) 89 724470 Meidoornkade 22
1120 Bruxelles FAX: (49) 89 72447111 3993 AE Houten SWEDEN "'Bytech Components
Tel: (32) 2 244 2811 Tel: (31) 3403 57222 12a Cedarwood
FAX: (32) 2 216 3304 "Proelectron Venriebs 'GmbH , FAX: (31) 3403 57220 tAvnet Computer AS Chineham Business Park

"'Diode Bel~um Max-Planck-Strasse 1-3 Box 184 4 Crockford Lane
Kelbe~ II, inervas'traat, 14/B2 63303 Draieich' "'Diode Components 5·123 -23 Farsta Basingstoke
1930 ventem Tel: (49) 6103 304343 Coltbaan 17 Tel: (46) 8 705 18 00 Hants RG121RW
Tel: (32) 2 725 46 60 FAX: (49) 6103 304425 3439 NG Nieuwegein FAX: (46) 8 735 2373 Tel: (44) 256 707 107
FAX: (32) 2 725 45 11 tAein Elektronik GmbH

Tel: (31) 3402 9 1234
.. Avnet Nonec AB

FAX: (44) 256 707.162
FAX: (31) 3402 3 59 24

DENMARK ~~~~3~e~tt'Zt:p 66
Box 1830

~B~:C~t;Xi~t~~~ntre t*Koning en Hartman 5-171 27 Solna
*Avnet Nortec AlS Tel: (49) 2153 7330 Energieweg 1 Tel: (46) 8705 1800 Eastern Road
Transformervej 17 FAX: (49) 2153 733513 2627 AP Oelft FAX: (46) 8B3 6918 Bracknell
DK-2730 Herlev Tel: (31) 15609906 Berks - RG12 2PW
Tel: (45) 42842000 GREECE FAX: (31) 15619194 "'lIT Multikomponent AB Tel: (44) 344 55 333 '
FAX: (45) 4492 1552

tErgodata
Ankdammsgatan 32 FAX: (44) 344 867 270

t"'lTT Multikomponenl AS NORWAY
Box 1330

Aigiroupoleos 2A S-l71 26 Solns "'Datrontech Naverland 29 176 76 Kalithea *Avnet Nortec A/8 Tel: (46) 8 830020 4244 Birchett Road :. DK-2600 Gloslrup Tel: (30) 1 9510922 Postboks 123 FAX: (46) 8 27 13 03 Aldersh"ot Tel: (45) 42456645 FAX: (30) 1 95 93 160 N-1364 Hvalslad Hants-GUll lLU FAX: (45) 4245 7624

':i~~~~~~~~~3~~;~r~~Tv. 150
Tel: (47) 284 6210 Tel: (44) 252313155

SWITZERLAND
FINLAND FAX: (47) 284 6545 FAX: (44) 252 341939

t*OY Fintronic AB
Athens 17671

tComputer System Integration AlS tElbatexAG *Jermyn Electronics Tel: (30) 1 9242072 Hardstr.7 Pyynmie,3 FAX: (30) 1 924 1066 Postbox 198 CH-5430 Wettingen
Vestry Estate

02230 Espoo ~~~O(~~ S~~~tt:~ 411
Otford Road

Tel: (358) 0 687 331 Tel: (41) 56 27 50 00 Sevenoaks
FAX: (358) 0 887 33 343 IRELAND FAX: (47) 638 45 310 FAX: (41) 27 1924 Kenl TN14 5EU

t"'Micro Marketing tFabrimex AG
Tel: (44) 732 743 743

FRANCE Taney Hall PORTUGAL ~~~~~a~~~ch
FAX: (44) 732 451 251

*Arrow Electronique Eglinton Terrace
*ATD Electronica lOA tMetrologie VA

73-79 Rue des Solets Dundrum Tel: (41) 1 3668686

~~~~d~~:~ SlIIc 585 Dublin 14 Edificio Altejo FAX: (41) 1 3832379 
94663 Rungis Cedex Tel: (353) (1) 2989400 Rua 3 piso 5-sala 505 

High Wycombe 
Tel: (33) (1) 4978 4978 FAX: (353) (1) 298 9828 Urbanlzacao de Matinha tlMIC Microcomputer 
FAX: (33) (1) 4978 0596 1900 Lisboa Zurichstrasse 

Bucks - HP11 2E 

Tel: (351) (1) 8580191/2 Tel: (44) 494 526 271 
*Avnet 

ISRAEL CH-8185 Winkel-Ruti FAX: (44) 494 421 860 FAX: (351) (1) 858 7841 Tel: (41) (1) 8620055 
79, rue Pierre Semard t*Eastronics Limited FAX: (41) (1) 8620266 "'MMD/Rapid Ltd. 92322 Chatillon Rozanis 11 ~~:tb~'.O~~~i~b~~CS'a~~~~~e~~s 3A Tel: (33) (1) 4965 2500 P.O.B. 39300 t*lndustrade AG 

Rapid Silicon 
FAX: (33) (1) 4965 2769 Tel Baruch 1900 L1sboa Hertistrasse 31 

3 Bennet Court 
Tel: (351) (1) 847 2202 Bennet Road 

tMetrologie Tel-Aviv 61392 CH-8304 WaJliselien Reading 
Tour d'Asnleres Tel: (972) 3 6458 777 FAX: (351) (1) 847 2197 Tel: (41) (1) 8328111 Berks - RG2 OOX 
4, Avenue Laurent Cery FAX: (972) 3 6458 666 FAX: (41) (1) 8307550 Tel: (44) 734 750 697 
92606 Asnieres Cedex SOUTH AFRICA FAX: (44) 734313255 
Tel: (33) (1) 4060 9000 ITALY 

t'EBE TURKEY FAX: (33) (1) 4791 0561 
*Intesl Div. Della Deutsche PO Box 912-1222 

*Tekelec Divisione lIT Industries GmbH Silverton 0127 *Empa Electronic 
Cite des Bruyeres PJ.06550110156 178 Erasmus Street Florya Is Merkezl 
5, Rue Carle Vernet-8P 2 Milanofiori Palazzo 85 Meyerspark Basyol londra Asfalti 
92310 Savres 20094 Assago (Milano) Pretoria 0184 f:f~gt,I(~a5~~a~g~~ rei: (33) (1) 4623 2425 Tel: (39) 2 824701 Tel: (27) 128037680-93 
FAX: (33) (1) 4507 2191 FAX: (39) 2 8242631 FAX: (27) 128038294 FAX: (90) (1) 599 3061 

~Componentsc 
tSyslems' CG/SALEI111293 



AUSTRALIA 

Intel Australia Pty. Ltd. 
Unit 13 
Allambie Grove Business Park 
25 Frenchs Forest Road East 
Frenchs Forest, NSW, 2086 
Sydney 
Tel: 61-2-975-3300 
FAX: 61-2-975-3375 

Intel Australia Ply. Ltd. 
711 High Street 
1st Floor 
East Kw. Vic., 3102 
Melbourne 
Tel: 61-3-610-2141 
FAX: 61-3-619 7200 

BRAZIL 

Intel Semlcondutores do Brasil 
Rua Florida, 1703·2 and CJ.22 
CEP 04565-001 Sao Paulo 
SP Brazil 
Tel: 55-11-530-2296 
FAX: 55-11-531-5765 

CHINA/HONG KONG 

Intel PAC Corporation 
Room 517-518 
China World Tower 
1 Jian Guo Men Wai Avenue 
Beijing 100004 
Republic of China 
Tel: 661-505-0366 
FAX: 661-505-0363 

INTERNATIONAL SALES OFFICES 
Intel Semiconductor Ltd. * Intel Japan K.K.* Intel Japan KK.* SINGAPORE 
32/F Two Pacific Place Hachioji ON Bldg. TK Gotanda Bldg. 9F 
88 Queensway 4-7-14 Myojin-machi 8-3-6 Nishi Gotanda Intel Singapore Technology, Ltd. 
Central Hachioji-shl, Tokyo 192 Shinagawa, Tokyo 141 101 Thomson Road #08-05 
Hong Kong Tel: 0426-48-8770 Tel: 03-3493-6061 United Square 
Tel: (652) 844-4555 FAX: 0426-48-6775 FAX: 03-3493-5951 Singapore 1130 
FAX: (652) 668-1969 Tel: (65) 250-7611 

Intel Japan KK '* 
KOREA 

FAX: (65) 250-9256 
Kawa·asa Bldg. 

INDIA 2-11-5 Shin-Yokohama 
Kohoku·ku, Yokohama·shl Intel Korea, Ltd. TAIWAN 

Intel Asia Electronics, Inc. Kanagawa, 222 16th Floor, Life Bldg. 
4/2, Samrah Plaza Tel: 045-474-7660 61 Yoido-dong, Youngdeungpo·Ku Intel Technology Far East ltd. 
St. Mark's Road FAX: 045-471-4394 Seoul 150·0lD Taiwan Branch 
Bangalore 560001 Tel: (2) 764-6166 8th Floor, No. 205 
Tel: 91·80·215065 Intel Japan K.K.'* FAX: (2) 784-6096 Bank Tower Bldg. 
FAX: 91-80-215067 Ryokuchi·Eki Bldg. Tung Hua N. Road 
TLX: 953-845-2646 INTL IN 2-4-1 terauchi Taipei 

i~r:o~6~~~-i_~ib~saka 560 
MEXICO Tel: 666-2-5144200 

FAX: 686-2-717-2455 
JAPAN FAX: 06-663-1064 Intel Tecnologia de Mexico 686-2-719-6164 

SA de C.V. 
Intel Japan K.K. Intel Japan K.K. Av. Mexico No. 2798-9B, S.H. 
5-6 Tokodai, Tsukuba-shi Shinmaru Bldg. 44680 Guadalajara, Jal. 
Ibaraki, 300-26 1-5-1 Marunouchi Tel: 011-523-640-1259 
Tel: 0296-47-6511 Chiyoda-ku, Tokyo 100 FAX: 011-523-642-7661 
FAX: 0296-47-6450 Tel: 03-3201-3621 

FAX: 03-3201-6650 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA GUATEMALA SES Computers & Technologi~s Okaya Koki SOUTH AFRICA 

Dafsys Consulting SA Pvt. Ud. 2-4-18 Sakae 
Abinitio 11/18, SNS Chambers Naka·ku, Nagoya·shi 460 Electronic Building Elements Chacabuco, 90-6 Piso 11 Calle2-Zona9 239 Palace Upper Orchards Tel: 052-204-8315 1069-Buenos Aires Guatemala City 178 Erasmus St. 

Tel. & FAX: 54.1334.1871 
Sankey Road, Sadashivanagar FAX: 052-204-8380 (off Watermeyet SI.) Tel: 5022-32-4104 Bangalore 560 080 

FAX: 5022-32-4123 Tel: 91-812-348481 Ryoyo Electro Corp. Meyerspark, Pretoria, 0184 
AUSTRALIA FAX: 91-612-343665 Konwa Bldg. Tel: 011-2712-603-7680 

FAX: 011-2712-803-8294 
NJS Electronics Australia INDIA 1-12-22 Tsukiji 
lA/37 Ricketts Road SES Computers & Technologies Chuo-ku, Tokyo 104 
Mount Waverley, VIC 3149 Priya International Limited Pvt. Ud. Tel: 03-3546-5011 
Tel: 61-3-558-9666 0-6, II Floor Arvind Chambers FAX: 03-3546-5044 TAIWAN 
FAX: 61-3-556-9929 Devatha Plaza 194, Andheri-Kurla Road 

NSD-Australia 
131/132 Residency Rd. Andheri (East) 

KOREA Micro Electronics Corporation Bangalore 560 025 Bombay 400 069 
205 Middleborough Rd. Tel: 91-80-214027, 91-60-214395 Tel: 91-22-6341564, 91-22-6341667 12th Floor, Section 3 
Box Hill, Victoria 3128 FAX: 91-60-214105 FAX: 91-22-4937524 Samsung Electronics 285 Nanking East Road 
Tel: 03 8900970 Samsung Main Bldg. Taipei, R.O.C. 
FAX: 03 8990619 Priya International Limited SES Computers & Technologies 150 Taepyung-Ro-2KA, Chung-Ku Tel: (666) 2-7196419 

Apeejay House, 4th Floor Pvt. Ud. Seoul 100-102 FAX: (866) 2-7197916 
BRAZIL 130 Apollo Street 60S-A, Ansal Chambers II c.p.a. Box 8780 

Hitech Bombay 400 023 No.6. Bhikaji Camaplace Tel: (622) 751-3660 Acer Sertek Inc. 

Luis Carlos Berrini, 801 CJ121 Tel: 91-22-2660949, 91-22-2665822 New Delhi 110 066 TWX: KORSST K 27970 15th Floor, Section 2 
Tel: 91-11-6661663 FAX: (822) 753-9065 Chien Kuo North Rd. 04571, Sao Paulo. SP Brazil Priya International Limited FAX: 91-11-6640471 Taipei 18479 R.O.C. Tel: 5511-536-0355 Flat No.8, 10th Floor Tong Baek Electronic Co., Ltd. Tel: 886-2-501-0055 FAX: 5511-240-2650 Akashdeep Building 16-58 Hangang-ro 3-ga TWX: 23756 SERTEK 

Microlinear Barakhamba Rd. JAMAICA Yongsan-gu, Seoul FAX: (686) 2-5012521 
Avenida Wilhelm Winter. 345 New Delhi 110 001 Tel; 82-2-715-6623 
Distrito Industrial· Jundiai, SP Tel: 91-11-3314512, 91-11-3310413 Me Systems FAX: 82-2-715-9374 

13213-000 FAX: 91-11-3719107 10-12 Grenada Crescent 
Tel: 5511-732-6111 Kingston 5 URUGUAY 

FAX: 5511-732-2892 Priya International Limited Tel: (609) 926-0104 SAUDI ARABIA 
5·J, Century Plaza FAX: (609) 929-5678 

ME Systems, Inc. Interiase 
CHILE 560-562 Mount Road, Teynampet Blvr. Espana 2094 

Madras 600 018 642 N. Pastoria Ave. 11200 Montevideo 
Sisteco Tel: 91-44-451031, 91-44-451597 JAPAN Sunnyvale. CA 94080 Tel: 5962-49-4600 
Vecinal 40- Las Candes FAX: 91-44·813549 

Asahi Electronics Co. Ltd. 
U.S.A. FAX: 5962-49-3040 

Santiago Tel: (406) 732-1710 
Tel: 562-234-1644 Priya International Limited KMM Bldg. 2-14·1 Asano FAX: (406) 732-3095 
FAX: 562-233-9695 No. 10, II Floor, Minerva House Kokurakita-ku TLX: 494-3405 ME SVS 

94 Sarojini Devi Rd. Kitakyushu-shi 802 VENEZUELA 
CHINA/HONG KONG Secunderabad 500 003 Tel: 093-511-6471 

Tel: 91-642-813120, 91-642-613549 FAX: 093-551-7661 SINGAPORE Unixel CA Novel Precision Machinery Co., Ltd. 
Room 728 Trade Square Priya International Limited Oia Semicon Systems, Inc. Electronic Resources Pte, Ltd. 4 Transversal de Monte Cristo 
681 Cheung Sha Wan Road Lords, III Floor Flower Hill Shinmachi Higashi-kan 17 Harvey Road Edt. AXXA, Piso 1, of. 1 &2 
Kowloon, Hong Kong 7/1 Lord Sinha Road 1-23 Shinmachi, Setagaya·ku #03·01 Singapore 1336 Centro Empresarial Boleita 
Tel: (652) 360-8999 Calcutta 700 071 Tokyo 154 Tel: (65) 263-0686 Caracas 
TWX: 32032 NVTNL HX Tel: 91-33-222378, 91-33-222379 Tel: 03-3439-1600 TWX: RS 56541 ERS Tel: 582-238-7749 
FAX: (652) 725-3695 FAX: 91-33-224684 FAX: 03-3439-1601 FAX: (65) 269-5327 FAX: 582-238-1616 

*Field A,..,plication Location CG{SALEJll1293 



ALABAMA 

Birmingham 
Huntsville 

ALASKA 

Anchorage 

ARIZONA 

Phoenix'" 
Tucson 

ARKANSAS 

Little Rock 

CALIFORNIA 

Bakersfield 
Brea 
Carson'" 
Fresno 
Livermore 
Mar Del Rey 
Ontario'" 
Orange 
Sacramento* 
San Diego* 
San Francisco* 
Santa Clara* 
Ventura 
Sunnyvale 
Walnut Creek* 
Woodland HilIs* 

COLORADO 

Colorado Springs 
Denver 
Englewood* 

CONNECTICUT 

Glastonbury* 

DELAWARE 

New Castle 

FLORIDA 

Ft. Lauderdale 
Heathrow 
Jacksonville 
Melbourne 
Pensacola 
Tampa 
West Palm Beach 

ARIZONA 

Computervision Customer 
Education ' 
2401 W. Behrend Dr., Suite 17 
Phoenix 85027 
Tel: 1-800-234-8806 

MINNESOTA' 

3500 W. 80th Street 
Suite 360 

~~~:o~\n2~tZ~5~~~~ 

*Carry-in locations

NORTH AMERICAN SERVICE OFFICES
COMPUTERVISION

Intel Corporation's North American Preferred Service Provider
Central Dispatch: 1-S00,S76-SERV (1-S00-S76-737S)

GEORGIA MICHIGAN NORTH DAKOTA

Atlanta'" Ann Harbor Bismark
Savannah Benton Harbor
West Robbins Flint OHIO

Grand Rapids·

HAWAII Leslie Cincinnati-
Uvonia* Columbus

Honolulu St. Joseph ~1e°~ndence* Troy" Mid~e Heights·
ILLINOIS

MINNESOTA Toledo*

Buffalo'" Bloomington'" OREGON Calumer City Caruth Chicago Beaverton'"
Lansing'

MISSOURI Oak Brook PENNSYLVANIA
Springfield

~:~g~71~d* INDIANA 51. Louis'"

Carmel'" NEVADA East Erie
Ft. Wayne Pittsburgh*

Minden Wayne'"

KANSAS Las Vegas
Reno SOUTH CAROLINA

Overland Park* Charleston
Wichita NEW HAMSHIRE

Cherry Point
Manchester* Columbia

KENTUCKY Fountain Inn

Lexington
NEW JERSEY

SOUTH DAKOTA
Louisville Edison*
Madisonville ,Hamlon Town* Sioux Falls

Parsippany*
LOUISIANA TENNESSEE

NEW MEXICO
Bartlett Baton Rouge

Metarie Albuquerque Chattanooga
Knoxville

MAINE NEW YORK Nashville

Brunswick Albany*
Amherst*

TEXAS

Dewitt* Austin
MARYLAND Fairport* Bay City

Frederick
Farmingdale* Beaumont

Linthicum*
New York City* Canyon

College Station
Rockville* NORTH CAROLINA Houston*

Irving*
MASSACHUSETTS Brevard San Antonio

Charlotte Tyler
Boston* . Greensboro
Natick* Haveluch UTAH
Norton* Raleigh
Springfield Wilmington Salt Lake City*

CUSTOMER TRAINING CENTERS
ILLINOIS

Computervision Customer
Education
1 Oakbrook Terrace
Suite 600
Oakbrook 60181
Tel: 1-800·234·8806

MASSACHUSETTS

Computervislon Customer
Education
11 Oak Park Drive
Bedford 01730
Tel: 1·800·234·8806

SYSTEMS ENGINEERING OFFICES
NEW YORK

2950 Expressway Dr., South
Islandia 11722
Tel: (506) 231-3300

VIRGINIA

Charlottesville
Glen Allen
Maclean'"
Norfolk
Virginia Beach

WASHINGTON

Bellevue""
Olympia
Renton
Richland
Spokane
Verdale

WASHINGTON D.C.·

WEST VIRGINIA

St. Albans

WISCONSIN

Brookfield*
Green'Bay
Madison
Wausau

CANADA

Calgary*
Edmonton
Halifax
London·
Montreal*
Ottawa
Toronto*
Vancouver, BC*
Winnipeg
Regina
-St. John

CG/SALE/111293

f.U-1i ~j1f .. (1. f' "'1r\'! D I '.'!"['. !.\'~1 ~ .~ l,~~·\J!_:-.!EJ..::J/ IS!;L ~n~ 11 ~31

WJi(~J ©Qtif~@Jliilti,§JV
>g,~ L~~~)~~ijJ (~Il~Jji' ®:0'!1h\¥&~
iYJQJ) @gt:S ~:~U u®
~i;.IOtf,) (~n~Ji5..l) (~L""\ (Vi'@'~l2A~U Ui-V

ITJ~\~1)/.\it::-ft
lj'_n-'L.~ ~~-y'!"

Jl-ai@J Dn§lillJ [©1\,
~J~ ''IT@ilwf.FJi) ''IT~fL~lrl
ill'itif1i.liJ1) JXQ@~?2i~

J}i:.&;;\JNf~J]
lliil,,~J (~(g)-,j §J§.l.i'i~lfb1.Q) :,';\i~,,>~~j1,
U 'I illj~:~1-:;:tt\j]XQ)~l
·((,~j9l'~J~; :~tlq.li~~@~.'~f.9Jlif~i\A~)Q),,~J\~~ftc):§);, (~j~l~·t~:!,

\lJiJ~~]]l(l])]l [l\Jo~fKQ@QY~~J
lliit~J i&lQ)jl~jfdili§i.i\ ~\uU1~,)) iliill
JJt_J).§J~r© \\~\j?:I~y
~;WQ:~®:.f1
W'!l.!l~l hljl~\) lliijJllk[QJ~1 ~{~m mlW
\Q:j])]&~f Iji~TiJ
r~D~l@] @xdll~J
~:"" " I~l,. -:-1

!".~~AQ.tn_Q.rtJ9J_~~!· i'2A!Lr1~"1!)$ Jj.

~t9)li.~ !}\"Hci.lb~Li(fihDii i11~ &\\Jng-l~fl(§)jJ

[yj)_~~J ;~_i~j].i'§J§)Id}~Jg5§5j' [~ilib
Ui,.9:t;If.'].~l ITI\§J;S}~iL~)
l.~lQl!dl !g..B~QJj(j,)j
(,~0§Hjj)2\r~y;) (.~}~!l.~J

(r't ,~\ l~! 1~\'lF))i:;'\
~r'.:i..!"··":'':::'J:;/·',r:-,..:;

~~g:;jjI~iIj{WsslL? ~J !~'.rr:'~\i~~) llijfu
Ult@ !.'A.iiLiVJI-fW @§.ti:@S) ~ ~'@
~-;s~}a~!.) @J1Rfuil§) ~JV\1'¥ @:Nl

l;ill'H~.-!1 !ij)!~§IMif~-t1'!iK~ ~W;t;lE) @~~
li!ll@~;1.;I!')El~38J;:@
'.@lmrD @!Jr:l!Jl'dl1!1i\, iK'm

1EJ1i.Gj' IIa i~li)'oJllli@tl

